Текст
                    «ff 11 U.
| да» Ж* »W/ *i
■ о, <«да <я«ляя
Г, VWHT/
STORI Л DELLE SCI ENZE • VOLUME SEC ONDO
TORI N О 1965


МАРИО ЛЬОЦЦИ ИСТОРИЯ ФИЗИКИ ПЕРЕВОД С ИТАЛЬЯНСКОГО Э. Л. БУРШТЕЙНА ИЗДАТЕЛЬСТВО «МИР» МОСКВА . 1970
УДК 530 Редакция литературы по физике *j? Щ ПИ*?:-?* Инд. 2-3-1 56-70 МАРИО ЛЬОЦЦИ ,? ИСТОРИЯ ФИЗИКИ Редактор Л. В. Гессен ; , ... • "' Художник И. Б. Кравцов Художественный редактор П. Ф. Некундэ г" Технический редактор Е. С. Потапенкова Корректор Сдано в производство 4/VI 1970 г. Подписано к печати 2/XI 1970 г. Бумага Л'. 1 70xl08Vie бум. л. 14,50 печ. л. уел, 40,60. Уч.-изд. л. 39,65. Изд. Ко 2/4819. Цена 3 р. 06 к. Зак. 314 ИЗДАТЕЛЬСТВО «МИР» Москва, 1-й Рижский пер., 2 Московская типография JV4 16 Главполиграфпрома Комитета по печати при Совете Министров СССР, Москва, Трехпрудный пер., 9
ОТ РЕДАКЦИИ Удивительные открытия в области физики в последние десятилетия привлекли к этой науке всеобщее внимание. В какой-то мере этот интерес удовлетворяется многочисленными изданиями учебников, монографий, научно-популярных книг и брошюр. И все же один вопрос остается еще недостаточно освещенным — вопрос о возникновении физической науки, развитии ее методов и идей. Между тем особенно увлекает и интригует именно процесс становления физики, динамика ее развития, вытеснение одних представлений другими, иными словами,— история физики. Однако и в советской, и в зарубежной литературе количество книг, посвященных истории физики, еще исчисляется единицами. Предлагаемая читателю в переводе с итальянского книга Марио Льоцци «История физики» входит в большую серию под общим названием «История науки», выпускаемую в Италии и посвященную истории различных разделов естествознания. Эта книга выгодно отличается от других аналогичных изданий. В первую очередь это относится к ее «всенаправленности». Наибольшую информацию из нее извлекут, несомненно, физики или, во всяком случае, люди, достаточно знакомые с основными проблемами классической и современной физики. Для таких читателей даже беглое упоминание автором того или иного этапа развития физики естественно вызовет в памяти целый ряд ассоциаций, и перед ними вся физика предстанет не моментальной фотографией, а чем-то динамическим, живым, развивающимся. Но и неискушенный в физике читатель, знающий ее, скажем, лишь в объеме средней школы, но проявляющий известный интерес и следящий за ее успехами хотя бы по популярной печати, прочтет эту книгу с большим интересом и пользой, постигнет величие процесса создания этой науки, почувствует переход от незнания к знанию, от неполного знания к более полному. И в этом большая заслуга автора. При изложении физики ему удалось почти полностью исключить математический аппарат, не погрешив тем не менее против науки и не прибегнув к вульгаризации и упрощенчеству. Другое достоинство этой книги — ее современность. Конечно, при теперешних темпах развития физической науки трудно ожидать, чтобы книга по истории физики охватила самые последние ее достижения. И все же Льоцци последовательно довел повествование до достижений физики послевоенного периода (расщепление атомного ядра, ускорители, мезоны и т. д.). Нельзя не сказать и о литературных достоинствах книги. Автору удалось, не размениваясь на мелочи, сохранить единое представление о развитии и состоянии физики, о специфических трудностях каждого этапа и методологических основах их разрешения. В этом отношении наименее удачны, на наш взгляд, главы, посвященные физике XIX века, где под напором большого количества фактов автор несколько теряет общую перспективу 5
и порой довольствуется лишь перечислением имен и событий. Но уже в разделах, посвященных концу этого периода, когда начинают вырисовываться ограничения и трудности классической физики, изложение вновь приобретает стройность, цельность и перспективу. Книга Льоцци не лишена недостатков. В ней, и это естественно, отразились личные интересы автора, и первостепенное внимание он уделяет развитию итальянской физики, которую описывает наиболее подробно. Хуже, что автор, следуя недоброй традиции западноевропейских буржуазных историков науки, почти не говорит о вкладе русских ученых в развитие физики. Мы не сочли возможным в рамках данной книги восполнить этот пробел и вносить существенные коррективы и ограничились лишь несколькими примечаниями, ибо исходили из того, что в советской литературе эта сторона освещена достаточно полно *. Мы уверены, что книга Льоцци будет полезной и интересной широкому кругу советских читателей — научным работникам, преподавателям школ, студентам, всем тем, кто интересуется наукой и ее историей. Редакция выражает искреннюю благодарность академику Н. В. Белову, просмотревшему корректуру и сделавшему ряд ценных замечаний. * См., например, П. С. К у д р я в ц е в, История физики, 2-е изд., под ред. А. К. Тимирязева, Учпедгиз, М., 1956; П. С. Кудрявцев, И. Я. Конфедератов, История физики и техники, 2-е изд., «Просвещение», М., 1965; Б. И. Спасский, История физики, изд. МГУ, ч. I, 1963; ч. II, 1964.
ГЛАВА 1 • АНТИЧНОСТЬ ЭЛЛИНСКИЙ ПЕРИОД 1. УРОВЕНЬ ТЕХНИКИ И КУЛЬТУРЫ. Наличие обширного комплекса практических знаний и технических навыков, высокий общий культурный уровень, а также язык, уже отточенный на тонких философских и математических исследованиях,— все это создало почву в Греции в IV веке до н. э. для начала работы по описанию, упорядочению и объяснению явлений природы. Вокруг этого ядра в течение веков сформировалась физика (от слова <puaig — природа) в современном ее понимании. Практические знания и технический опыт, как и некоторые начатки научных исследований, пришли к грекам от народов еще более древней культуры, в первую очередь из Вавилона и Египта; самые древние научные достижения Китая, начало которых можно отнести к XIII веку до н. э., по-видимому, не оказали влияния на греческую культуру. Из глубокой древности, возможно более чем за 3000 лет до н. э., пришли такие изобретения, как обожженный кирпич, гончарный круг, колесный экипаж. Практическое применение этих изобретений относится примерно к периоду около 3000 лет до н. э., который в истории техники носит название первой промышленной революции. Несколько позднее были открыты способы выплавки и обработки металлов, изобретены весельные и парусные суда, применены плуг, весы, отвес, уровень, угломер, циркуль, клещи. Во втором тысячелетии до н. э. были изобретены кузнечные мехи, рычаги, клин, домкрат, блоки, сифон, водяные часы. Вместе с первыми гражданскими институтами появляется соответствующая техника, уже достаточно развитая на заре греческой цивилизации: водоснабжение, орошение и осушение земель; техника, связанная с производством продуктов питания (обработка зерновых, приготовление муки и хлеба, использование процессов брожения и т. п.); техника изготовления красок, лаков, применение которых в самой глубокой древности обусловлено не столько стремлением к красоте, сколько религиозным значением изображений; производство и применение благовоний и притираний, употреблявшихся первоначально по гигиеническим и ритуальным соображениям и лишь потом уже в косметических целях. Если представить себе, какого уровня знаний, какой высокой организации и изобретательности требовала эта техника, то становится понятно, почему большая часть историков вопреки распространенному мнению считает теперь, что не техника возникает как применение науки, а, наоборот, наука развивается на базе широкого технического опыта, постепенно накопленного человечеством в течение тысячелетий. Лишь значительно позднее, приблизительно в эллинский период, наука начинает приносить некоторую пользу технике, в свою очередь обогащаясь за ее счет. Трудно допустить, что разнообразнейшие практические знания, которые человек, побуждаемый необходимостью сделать свою жизнь более безопасной и более легкой, накопил в столкновении с силами природы, были приобретены пассивно, без длительного наблюдения основных явлений природы, без какого бы то ни было эксперимента, хотя бы самого примитивного. Есть некоторые указания, что и до древних греков люди не ограничивались чисто пассивным восприятием. Так, еще в Вавилоне и Древнем Египте был предпринят ряд попыток упорядочения данных опыта и наблюдения: введение уже к 2500 г. до н. э. фиксированных единиц измерения 7
длины, веса и емкости; осознание периодического чередования времен года; разделение года на месяцы, дни и часы. Но эти примеры еще столь немногочисленны и неопределенны, что мы вынуждены рассматривать весь комплекс практических знаний древних народов лишь как сырье для последующего построения физики. Общий уровень греческой культуры, несомненно, способствовал тому, что техника выросла в науку, связывающую воедино и объясняющую совокупность накопленных сведений и позволяющую таким образом предвидеть явления и влиять на них. Уровень культуры определялся не только литературными традициями, пышным расцветом философских школ в течение двух столетий, начиная с Фалеса Милетского (около 642—548) и вплоть до Платона (428—348). Как известно, труды тех философов, которые жили до Сократа, сохранились главным образом в виде цитат, рассеянных в трудах более поздних авторов. Но из этих отрывков, как и из других древних источников, не видно, чтобы греческие философы вплоть до Платона интересовались собственно физическими вопросами, т. е. отдельными явлениями природы и свойствами конкретных предметов. Наоборот, они со свойственными юности порывом, дерзостью и свежестью отваживались сразу на исследование первоначала всех вещей, ставя перед собой общие проблемы мироздания, что при незнании конкретных законов природы неизбежно принимало явно метафизический характер. Поэтому их умозрительные построения, представляющие интерес для истории философии, не имеют существенного значения для истории физики. Этот исторический обзор не означает, что мы отрицаем влияние греческой философии первых двух веков на историю физики. Рассуждения философов ионической школы о первоначале, пифагорейское учение о четырех стихиях, атомизм Левкиппа и Демокрита, анимизм Платона послужат путеводными вехами и источником вдохновения также и для физиков, когда, как мы убедимся в дальнейшем, они, вооруженные знанием конкретных фактов, вновь вернутся к попытке создать более обширную и уже более обоснованную единую картину мира. Именно поэтому труды первых философских школ представляют собой элемент культурного фона, который способствует развитию научных исследований и делает возможным появление научного языка. Была создана та совокупность способов выражения, причинных связей, логических подходов, та основа «общепринятого смысла», или научного «здравого смысла», который всегда будет «общепринятым» и «здравым» не в абсолютном смысле, а лишь относительно уровня культуры человечества определенной эпохи. 2. АРИСТОТЕЛЬ. Если бы труды философов того времени не были утрачены, возможно, мы обнаружили бы уже в трудах, созданных в первые два века греческой философией, следы наблюдений и опытов над конкретными явлениями и телами. Это предположение подтверждается первой значительной попыткой научной систематизации — трудами Аристотеля о природе, включенными в обширную энциклопедию знаний, которая явно не могла быть итогом творчества одного человека, а представляла собой результат сотрудничества многих людей или многих поколений. Организаторский гений Аристотеля позволил свести обширный материал в единое целое, в единую систему, которая в течение почти двух тысяч лет служила каркасом науки. Аристотель родился в Стагире, во Фракии, в 384 г. до н. э. Он был учеником Платона. Покинув Афины после смерти своего учителя, он отправился путешествовать по Греции. С 343 по 340 г. он находился при дворе Филиппа Македонского в качестве воспитателя его сына — будущего Александра Великого. В 335 г. Аристотель вернулся в Афины и основал 8
Скульптурный портрет Аристотеля (предположительно). Рим. Римский национальный музей. там свою школу — «Ликей», названную так по имени священного сада Аполлона, в котором она была расположена. Он руководил этой школой 12 лет, пока после смерти Александра Великого верх в Афинах не взяла антимакедонская реакция, и Аристотелю пришлось бежать и искать убежища в Халкиде, где он и умер в 322 г. до н. э. в возрасте 63 лет. Сочинения Аристотеля в форме диалогов в основном утеряны, тогда как его труды, написанные в повествовательной манере, почти все сохранились. Среди них с точки зрения физики представляют интерес следующие трактаты: «Physica» («Физика») *, «De Coelo» («О небе»), «De gene- ratione et corruptione» («О возникновении и уничтожении»), «Meteor ologia» («Метеорология»). К ним следует добавить «Problemata» («Проблемы») и «Mechanicab («Механика»), написанные в форме вопросов и ответов, хотя авторство Аристотеля для этих двух произведений точно не установлено. Натурфилософские работы Аристотеля систематизируют все физические знания того времени;"в них излагаются, а местами и опровергаются воззрения предшествовавшей эпохи. Аристотель, борясь с пифагорейской и плато- новой мистикой, пытался основать физику на наблюдении и эксперименте. Особый интерес для нас представляет аристотелево учение о движении, которое господствовало в физике в течение полутора тысячелетий и стало подвергаться ожесточенным нападкам лишь позже, начиная с эпохи Возрождения. Движению Аристотель придавал значительно более широкий смысл, чем принято в физике со времен Галилея. Аристотель понимает под движением любое количественное или качественное изменение, благодаря которому явление реализуется. Такое широкое понимание движения позволяет ему утверждать, что в природе все есть движение. Частному понятию изменения положения тела с течением времени он дал наименование локального движения, а локальные движения он разделял на естественные и насильственные, тем самым отрицая непрерывность явлений и их однородность. и вводя зависимость от того, происходят ли эти движения по естественным или по случайным причинам. Единство и однородность мира нарушаются в системе Аристотеля также различением подлунного мира, в котором вещи возникают, разрушаются и исчезают, и небесного мира — мира небесных звездных сфер, вечно неизменного и нерушимого. Это различение, уже преодоленное философами, жившими до Аристотеля, не было чисто априорным положением или возвращением к идеям, выдвинутым ранее пифагорейской школой. Оно является следствием обыденных наблюдений, которые- * Есть русский перевод: Аристотель, Физика, 2-е изд., М., 1937. 9
«а Земле обнаруживали всевозможные изменения, в частности в области метеорологических явлений, а на небе не замечали никаких изменений, хотя астрономические наблюдения продолжались непрерывпо уже много веков. Естественные движения бывают прямолинейными, как, например, те движения, которые мы постоянно видим вокруг себя (падение тяжелых тел, подъем легких тел), или круговыми, подобно круговращению звезд. Регулярность и вечность круговращения звезд должны иметь какую-то причину, которую Аристотель усматривал в неподвижном перводвигателе, сообщающем движение всем сферам, к которым прикреплены звезды и центр которых совпадает с центром Земли. Если представление о неподвижном перводвигателе было понятием, безусловно, метафизическим и даже теологическим, то помещение Земли в центре мироздания соответствовало данным повседневного опыта, который показывал, что звезды обращаются вокруг Земли. Данным грубых наблюдений соответствуют также законы Аристотеля для естественного движения тел в подлунном мире. Из повседневного опыта известно, что есть тела, которые падают вниз, и тела, которые возносятся вверх (например, дым или огонь). Отсюда делается заключение, что тяжелые тела, естественно, стремятся к «своему месту», находящемуся в центре Земли, а легкие стремятся ввысь, к граничной поверхности мировой сферы. Во всех «лучаях все тела, тяжелые или легкие, стремятся к своему естественному месту. По Аристотелю, траектория ядра или брошенного тела состоит из трех частей: первая часть — прямолинейная наклонная, третья — прямолинейная вертикальная, а вторая — круговая, соединяющая первую с третьей. Эта точка зрения продержалась вплоть до 1546 г., когда появился труд Тартальи «Проблемы и различные изобретения». Но каким же образом брошенное тело поддерживает свое движение? Причина этого не может крыться ни в самом теле, ни в механизме, который привел тело в движение и уже покинут телом, так что не может более на него воздействовать. Значит, кроется она в среде. И Аристотель придумывает замысловатую теорию, согласно которой брошенное тело непрерывно подталкивается, как парус на ветру, воздухом, стремящимся занять место, освобождаемое в своем двюкении брошенным телом. Вытекающая отсюда динамика весьма непохожа на современную. В динамике Аристотеля движущееся тело непрерывно находится под действием некоторой силы и скорость его прямо пропорциональна приложенной «иле и обратно пропорциональна сопротивлению среды. Отсюда следует, что в пустоте, где сопротивление среды отсутствует, скорость стала бы бесконечно большой, т. е. тело приобрело бы свойство вездесущности. Это следствие настолько противоречит обычным представлениям, что Аристотель приходит к выводу о невозможности существования пустоты в природе. Такой вывод прямо противоположен утверждению атомистов, для которых движение как раз было невозможно в заполненном пространстве. Но этому вопросу Аристотель пространно полемизирует с атомистами, приводя в поддержку своего положения другие аргументы. Если принять существование пустоты, говорит Аристотель, то невозможно было бы сказать, почему тело, находящееся в движении, должно остановиться именно тут, а не там, ибо пустота как таковая не несет в себе никакого различия. Более того, можно даже сказать, что в пустоте все должно быть в покое, потому что нет никаких оснований для того, чтобы тело начало двигаться в том или ином направлении, с большей или меньшей скоростью. В общем главный аргумент Аристотеля против существования пустоты заключается в том, что в ней нельзя выделить никакого предпочтительного направления: ни верха, ни низа, ни правого, ни левого. Пустота пассивна и невозмутима. Следовательно, ее нет ао
в нашем ограниченном мире. Очевидно, здесь мы имеем пример скорее злоупотребления, нежели употребления принципа достаточного основания. Из таких рассуждений Аристотель, который определил место как границу объемлющего тела, а пустоту как место, которое не содержит тела, но могло бы его содержать, заключает («Физика», IV, 6—9), что пустота представляет собой логическое противоречие, потому что она представляла бы собой locus sine localo corpore (место без размещенного в нем тела) — абстракция, лишенная смысла, как говорят иными словами современные релятивисты, критикуя понятие абсолютного пространства, к которому следо- -вало бы относить любые движения. Боязнь пустоты (horror vacui) стала впоследствии основой аристотелевой физики, и полемика между сторонниками и противниками пустоты продолжалась вплоть до эпохи научного Возрождения (а может быть, и позже, ибо споры об эфире можно считать ее продолжением). Но чтобы услышать новое слово об этой физической проблеме, нужно было дождаться опыта Торричелли в 1644 г. (см. гл. 5, § 8). Вторым непосредственным следствием аристотелевой динамики был вывод о том, что скорость падения тела в данной среде пропорциональна весу тела. Этот вывод соответствовал повседневным наблюдениям: яблоко падает быстрее, чем лист. Обнаружение же постепенного увеличения скорости падающего тела является плодом неторопливых, но внимательных и продолжительных наблюдений. Аристотель приписывал это увеличение скорости постепенному увеличению веса тела по мере приближения к предопределенному месту. Э. Хоппе хотел видеть в споре Аристотеля со сторонниками пустоты формулировку принципа инерции. Но то место в «Физике» (IV, 8, 215—219), в котором действительно излагается этот принцип, приведено лишь как доказательство абсурдности выводов, к которым привело бы допущение существования пустоты; этот смысл и был односторонне развит в дальнейшем последователями Аристотеля. Большой заслугой аристотелевой кинематики была формулировка точного правила сложения перемещений, пусть лишь для частного случая перемещений, перпендикулярных друг к другу. К данным современной науки ближе стоят также исследования Аристотеля по статике. Он дает формулировку правила равновесия рычага, родственную будущему принципу возможных перемещений, и описывает действие весов и блоков. В трудах Аристотеля, особенно в «Проблемах», содержатся многочисленные сведения из области музыки, метеорологии, физики, прикладной механики: там имеется намек на понятие кинетической энергии, описание осмотических явлений, правильные мысли о распространении звука в воздухе, объяснение эха как явления отражения, аналогичное (но ошибочное) объяснение радуги, попытка экспериментального определения веса воздуха, размышления о распространении света и т. д. Весь этот комплекс сведений достоин самого большого уважения и еще раз показывает, что аристотелева физика была основана на наблюдениях и частично на опытах. Чего не хватало аристотелевой физике — это аналитической обработки, критичности и осторожности при обобщениях. Можно сказать, что современная физика относится к данным эксперимента с критической осторожностью, тогда как аристотелева наука относилась к ним с наивным простодушием. Чтобы быть конкретными, укажем на то, что аристотелева механика не обладала силой абстракции, достаточной для выработки понятия пассивного сопротивления, а физика не почувствовала, что при изучении явлений в искусственных условиях можно иной раз выяснить такие вещи, которые не могут быть обнаружены путем простых наблюдений. Эти замечания не И
могут, конечно, служить объяснением неудач Аристотеля в области физики; они лишь указывают на недостаточность его методов исследования. Объяснение же причин, почему Аристотель и его школа не сумели воспользоваться абстракцией и интуицией в указанном выше смысле, — это старая проблема, до сих пор еще не решенная. ЭЛЛИНИСТИЧЕСКАЯ ЭПОХА 3. АЛЕКСАНДРИЙСКИЙ МУЗЕЙ. После смерти Александра Великого- (323 г. до н. э.) и бегства Аристотеля Афины, которые уже потеряли свое- политическое значение, мало-помалу стали также терять свое первенство и как интеллектуальный центр. Там еще оставались философские школы, но центр научных интересов переместился в Александрию Египетскую. Развитие науки, которому способствовали всеобщее распространение греческого языка и щедрая поддержка правителей многих государств, образовавшихся после распада империи Александра, достигло к тому времени такого уровня, что научные знания не могли уже оставаться общедоступными, а стали уделом специалистов. Птолемей I Сотер, основатель египетской династии Птолемеев, призвал к своему двору Деметрия Фалерского, ученика Аристотеля, и поручил ему создать школу по образцу «Ликея». Так был создан Александрийский музей. Первым ядром библиотеки этого Музея было собрание трудов Аристотеля. При Птолемее II Филадельфе, вступившем на трон в 285 г. дон. э., Музей стал большим культурным центром, где ученые жили вместе, за государственный счет; в своем распоряжении они имели две большие библиотеки, насчитывавшие к 48 г. до н. э. 700 000 томов. Это первый в истории пример- коллективной организации научных исследований. Нечто подобное было вновь достигнуто лишь в нашем веке. Вскоре началось издание книг Музеем, чему способствовало наличие папируса, дававшее Египту естественную монополию в изготовлении писчего материала. Эти условия, исключительно благоприятные для развития науки, привлекали в Александрию большое число ученых со всех концов света. Там процветали научные школы в течение всего античного периода. В частности, вся физика эллинистического периода, представляющая собой большую и лучшую часть вклада античности в исследование природы в современном понимании, связана с Александрийским музеем. 4. АРХИМЕД. С успехами Музея связано также имя Архимеда, труды которого ясно показывают различие между философским синтезом, к которому стремились афинские школы, и систематическим научным исследованием конкретных явлений природы, предпринятым александрийскими учеными. Архимед родился в Сиракузах около 287 г. до н. э. в семье Фидия, известного астронома. Длительное время он учился в Александрии и на всю дальнейшую жизнь сохранил научные связи с учеными Музея. В Египте, возможно во время вторичного пребывания там, когда слава о его гении уже распространилась, Архимедом были сконструированы мосты и воздвигнуты дамбы для регулировки разливов Нила. Но наиболее гениальным изобретением этого периода был подъемный винт, который и до сих пор называется винтом Архимеда. По оценке Галилея, судьи весьма компетентного и строгого, это изобретение «we только великолепно, но просто чудесно, поскольку мы видим, что вода подымается в винте, беспрерывно опускаясь» *. * Le opere di Galileo Galilei, Firenze, 1891, p. 186. (Есть русский перевод: Галилео Галилей, Избранные труды, т. II, изд-во «Наука», 1964, стр. 35.) 12
Винт Архимеда. (Dictionnaire de ma- thematique.) Это изобретение, ставшее возможным благодаря глубоким геометрическим познаниям Архимеда и его исключительной изобретательности в механике, использовалось в Египте как для подъема воды на возвышенности (на высоту до четырех метров), которых обычно разлив Нила не достигал, так и для осушения низменных местностей. Весьма многочисленны (около сорока) другие механические изобретения, приписываемые Архимеду. И хотя исторические источники, которыми мы располагаем, порой содержат элементы легенды, историки все же не сомневаются в том, что он действительно был автором целого ряда изобретений — таких, например, как сцепление бесконечного винта с шестерней и полиспасты, примененные им для спуска на воду громадного корабля. С этим событием связано приписываемое ему изречение: «Дайте мне точку опоры, и я вам подыму весь мир». Несомненно, именно он сконструировал жемчужину точной механики — планетарий, описанный в одном из не дошедших до нас его трудов. Марцелл перенес планетарий в Рим в качестве военного трофея. Впоследствии им восхищался Цицерон. Нет, наконец, никакого сомнения в истинности оснований для популярного впоследствии рассказа об обороне Сиракуз — города, сопротивлявшегося в течение трех лет римским войскам, наступавшим под командованием Марцелла. В период этой осады Архимед непрерывно изобретал все новые боевые машины, наводившие страх на осаждающих. Сиракузы были все же взяты и, согласно легенде, какой-то грубый римский воин вопреки приказу Марцелла убил Архимеда в тот момент, когда он на песке рисовал геометрические фигуры. Даже если эпизод этот выдуман, он все же весьма характерен. Архимед — основатель статики и гидростатики. Хотя его изложение носит геометрический характер и основано на постулатах, полученных из не описанных им опытов, ясно, однако, что у него имелись навыки в проведении точных экспериментов. Архимед сам описывает один из таких экспериментов — установленный им способ измерения кажущегося углового диаметра Солнца: «Итак, укрепив длинную линейку на вертикальной подставке, расположенной в месте, откуда виден восход Солнца, поставим на линейке вертикально небольшой точеный цилиндр. Когда Солнце близко к горизонту и на него можно смотреть, линейка поворачивается в сторону Солнца и глаз располагается на краю линейки. При этом цилиндр, находясь между Солнцем и глазом, закрывает все Солнце. Затем постепенно перемещают 13
Титульный лист издания сочинения Архи- . —^ ^ _. _ j т. ,- __, у^ у q меда в переводе Ф. Коммандино (Венеция,. А К L П 1 iVL JL U 1 Ъ '1558). О Р Е К А N О N N V L L А А' V Е D Е К I С О COMMANDING , V R В I N А Г £ ' Х.Л'РЕЦ. 1'Я, 1ЛТ1ЦУМ COT^yEf^S Я, STCOMMINTARIIS ! ■- •■ ■ ■ .- -о!-' i t t» s т» * т д, цилиндр от глаза, пока Солнце не- начнет слегка показываться со всех Quorum nomma in fctjucnti pagma leguntur. СТПОрОН цилиндра; ?Ш этом Месте цилиндр закрепляется» *. Даже современные физики не- описывают опытов с большей тщательностью. Первым научным трудом Архимеда было, по-видимому, исследование центров тяжести; в нем рассматриваются законы рычага и центры тяжести (барицентры) тел. Как мы уже упоминали, условие равновесия рычага встречается в «Проблемах», приписываемых Аристотелю, но там оно изложено весьма неясно и вперемешку с принципами динамики. Архимед же выводит его из постулатов, полученных из непосредственных опытов с рычагами, так что постулаты, предпосланные рассмотрению равновесия рычагов, имеют, несомненно, ; экспериментальное происхождение. ' - Первый, главный постулат гласит: «Предположим, что равные тяжести, подвешенные на равных длинах, уравновешиваются. На неравных же длинах равные тяжести не уравновешиваются: опускается та часть (системы), где тяжесть подвешена на большем расстоянии» **. Теорема VI гласит: ((Соизмеримые величины уравновешиваются, если длины, на которых они подвешены, находятся в обратном отношении к тяжестям» ***. Дальше это положение распространяется на несоизмеримые величины. В этой работе появляется фундаментальное понятие механики — понятие о центре тяжести. Архимед говорит о нем в постулатах 4 — 7, не давая ему определения. Отсюда заключают, что это понятие было впервые введено то ли неизвестным нам предшественником Архимеда, то ли им самим в более ранней работе, не дошедшей до нас. Но в обоих случаях Архимед все равно должен считаться основателем рациональной теории центров тяжести. * Arenarius, I, 12, в книге Archimedis opera omnia, v. II, Lipsiae, 1881, p. 251 (греческий текст с параллельным латинским переводом). (Часть работ Архимеда переведена на русский язык; см. Архимед, Сочинения, М., 1962.— Прим. перев.) ** Archimedis opera omnia, v. II, p. 143. (См. перевод: Архимед, О равновесии плоских тел, Сочинения, М., 1962.) *** Там же, р. 153. С V М PR5VTLBOIO IN ANNOX X. V Г; N Е Т I I S, aputi Paufuftj Маткшт , Aldi F. M D L V I 1 I. 14
С разработкой этого понятия связано и открытие другого фундаментального понятия механики — момента силы относительно прямой или плоскости^ Архимед знал, как видно из его труда «Metodo» («Метод»), обнаруженного Хейбергом лишь в 1906 г., что «две величины, подвешенные на плечах рычага, находятся в равновесии, если равны произведения их площадей или объемов на расстояние их центров тяже- стей от опоры» *. О том, какую пользу извлек Архимед из этого понятия и из знания центров тяжести для своих математических открытий, рассказывается в любой современной истории математики. Более известно открытие Архимедом закона гидростатики, до сих пор» носящего его имя. Это открытие связано с легендой, передаваемой многими историками, из которых наибольшего доверия заслуживает Витрувий. Согласно легенде, Гиерон, тиран Сиракуз, приходившийся, по-видимому,, родственником Архимеду, поручил ему выяснить, сделана ли его корона целиком из золота или же в нее подмешано серебро. Эта задача занимала Архимеда довольно долго, пока не помог случай. Однажды, принимая ванну, Архимед заметил, что чем больше он погружается в воду, тем больше воды выливается из ванны. Он понял, что это явление даст ему ключ к разгадке' задачи, в восторге выскочил из ванны и побежал по городу, восклицая: «Эврика, эврика!» (нашел, нашел!). Согласно Витрувию, чтобы раскрыть мошенничество с короной, Архимед применил следующий метод: он опустил в сосуд, наполненный водой, золотой слиток того же веса, что и корона, а потом собрал и взвесил вылившуюся воду. Потом он повторил такой же опыт со слитком серебра того же веса и нашел, что воды вылилось больше (потому что при одинаковом весе объем серебра превышает объем золота). Повторив опыт с короной вместо слитков, Архимед получил результат, лежащий где-то посередине между результатами двух предыдущих опытов, откуда и заключил, что корона сделана не из чистого золота. Следует заметить, что Галилей в одной из своих юношеских работ считает описанный Витрувием опыт «...весьма грубым и неизящным. Тем более грубым он кажется тем, кто> потом читал и изучал искуснейшие изобретения столь божественного человека, из которых слишком ясно, насколько все остальные ученые были ниже Архимеда и сколь мало надежды, что кто-либо мог найти что-либо подобное тому, что он нашел... Сознание того, что такой способ рассуждения в целом ошибочен и лишен той точности, которая требуется в математических вопросах, заставило меня многократно задумываться над тем, каким образом можно было бы с помощью воды изящно определить смесь двух металлов. В конце концов после усердного анализа того, что Архимед говорит в своих трудах о предметах, находящихся в воде, причем о предметах с равным весом, мне пришел в голову способ точного решения нашей проблемы, который, по моему убеждению, и есть тот самый способ, который применял Архимед, поскольку он, помимо того, что он весьма точен,, опять же основан на доказательствах, имеющихся у того же Архимеда **. Согласно исторической реконструкции Галилея, Архимед определял потерю веса для чистого золота, для чистого серебра и для короны и по этим* данным находил, как это и теперь делают в учебниках физики, состав короны. * Enrico R u f i n i, II «Metodo» di Archimede, Milano, 1961, p. 84 (перевод па итальянский с комментариями). ** Galileo Galilei, La bilancetta, не опубликованная автором рукопись, написанная- в 1586 г. (Le ореге di Galileo Galilei, v. I, p. 215—216.) 15.
Но каков бы ни был примененный Архимедом способ, ясно, что законы гидростатики были им получены на основе опытных данных, хотя в его дошедшем до нас труде по гидростатике рассмотрение проводится «в геометрическом духе», без всяких ссылок на опыты, лежащие в его основе. Архимед принимает лишь две основные гипотезы: в любой жидкости менее сжатая часть вытесняется более сжатой; выталкивание вверх, испытываемое твердым телом, погруженным в жидкость, направлено по вертикали через центр тяжести этого тела. Отсюда он выводит, что поверхность покоящейся жидкости представляет собой часть поверхности сферы с центром в центре Земли, так что уровень моря всюду одинаков. В предложении 3 рассматриваемого трактата появляется новое фундаментальное понятие физики — неизвестное его предшественникам понятие удельного веса. Вот как оно вводится: «.Твердое тело, которое имеет равный вес и равный объем с жидкостью, погружается в нее настолько, что ни одна часть его поверхности не выступает над жидкостью и не опускается ниже» *. Предложения 4 и 5 касаются случаев тел, более легких и более тяжелых, чем жидкость, в которую они опущены. В предложении 7 излагается знаменитый закон: «Тела, относительно более тяжелые, чем жидкость, опускаются вниз до самого дна и становятся в жидкости настолько легче, сколько весит объем жидкости, равный объему тела» **. Вторая книга этого трактата посвящена условиям плавания, и в частности условиям равновесия пустого сегмента параболоида вращения. Классический метод этого рассмотрения до сих пор применяется в работах по механике. Книги по катоптрике, безусловно написанные Архимедом, до нас не дошли. Предание о применении Архимедом зажигательных стекол для поджога римских кораблей во время осады Сиракуз является, несомненно, легендой более позднего происхождения. Но если эта легенда и приукрашивает образ Архимеда, особенно в том, что относится к его практическим изобретениям, из дошедших до нас его работ ясен тот фундаментальный вклад, который внесен им в физику: введение понятий центра тяжести, статического момента, удельного веса; закон равновесия рычага; основной закон гидростатики. Таким образом, Архимед заложил основы двух новых разделов науки — статики и гидростатики. Традиционное предубеждение греков против физики постепенно ослабевает. 5. АЛЕКСАНДРИЙСКИЕ МЕХАНИКИ. Современником Архимеда, быть может несколько старшим его по возрасту, был Ктезибий, основатель знаменитой александрийской школы механики. Из его работ нам известен лишь один сомнительный отрывок. Однако вокруг его имени также сплетена легенда. Для александрийской механики характерен интерес к изучению и применению сжатого воздуха (пневматика). Основателем этого нового раздела техники, представляющего большой интерес для физики, скорее всего является действительно Ктезибий. В упомянутом сомнительном отрывке из его трудов описывается гидравлический орган, построенный по типу обычного органа из трубок различной высоты, колебания которых возбуждаются проходящим воздухом, сжатым с помощью воды. * Archimedis opera omnia, v. I, p. 362 (Есть русский перевод: Архимед, О плавающих телах, в книге «Начала гидростатики», М., 1933). ** Там же, р. 369. 16
Предание приписывает Ктезибию также многие другие изобретения, относящиеся к прикладной механике, из которых мы упомянем водяные часы, два вида тяжелых «орудий», работающих на сжатом воздухе, нагнетательный водяной насос, переделанный самим Ктезибием в пожарный насос и известный со времен Возрождения как «машина Ктезибия». 6. ФИЛОН. Хотя труды Ктезибия и не дошли до нас, пространный трактат по механике его последователя и ученика Филона, жившего в Александрии, позволяет нам составить себе представление об их разносторонности. «Механика» Филона, написанная приблизительно в 250 г. до н. э., дошла до нас в хорошем состоянии, несмотря на некоторые позднейшие изменения, внесенные в нее арабами. После общего введения Филон начинает свой трактат с описания боевых машин, данного с такой точностью, что в первых десятилетиях нашего столетия они были воссозданы по его описанию и вызывали восхищение своим совершенством. От военного искусства Филон после детального обсуждения теории рычага переходит к описанию автоматов и автоматического театра. В книге, посвященной пневматике, описано множество занимательных игрушек, предназначенных для развлечения гостей во время празднеств: кривые зеркала, сосуды, извергающие различные жидкости, фонтаны с пьющими животными и поющими птицами, подвес, называемый сейчас «кардановым», автоматическое приспособление для подачи святой воды ко входу в храм и др. Во многих из этих механизмов умело используется атмосферное давление и давление водяного пара. Кроме того, Филон проявил прекрасное знание принципа сифона. Имеются также многочисленные описания физических опытов, проведенных с большим мастерством, хотя их истолкование в большинстве случаев сильно отличается от современного. Книгой о пневматике потомки более всего восхищались. Упомянем лишь следующие опыты, взятые из нее. Чтобы доказать, что воздух является телом, Филон берет «сосуд, который считается пустым, такой формы, что он широк в середине и узок в горлышке, типа египетской амфоры», делает в дне его маленькое отверстие, закрывает его воском и опускает сосуд в воду горлышком вниз, после чего удаляет воск из отверстия. «При этом выход воздуха из отверстия непосредственно ощущается; если затем уровень воды сделать выше проделанного отверстия, то мы увидим пузырьки воздуха в воде, пока вследствие выхода воздуха через отверстие сосуд не наполнится... Это доказывает, что воздух является телом» *. Далее Филон описывает термоскоп — первый термоскоп, о котором знает история. Он состоит из двух связанных трубкой сфер: одна из них пустая, а другая частично наполнена водой. Если пустой шар поместить на солнце, то можно видеть, как в другом шаре булькают пузырьки воздуха в воде, потому что, как говорит Филон, когда шар разогревается, «часть воздуха, заключенного в трубке, выходит наружу». Если затем поместить шар в тень, то вода подымется по трубке, пока не попадет в другой, пустой шар. «Если после этого опять разогреть шар над огнем,— заключает Филон,— явление повторится; то же самое получится, если шар облить горячей водой. И наоборот, если охладить шар, то вода выльется наружу» (т. е. вода из первого шара перейдет во второй) **. Таким образом, Филон, а возможно, и его учитель Ктезибий с помощью опыта, который фактически и сейчас демон- * Liber Philonis de ingeniis spiritualibus, с. 2, в книге Heronis Alexandrini opera quae supersunt omnia, v. I, Lipsiae, 1899, p. 462 (оригинал и параллельный немецкий перевод). ** Там же, с. 7, р. 474—476. 2 Марио Льоцци 17
Термоскоп Филона. (Heronis opera omnia.) Свинцовый шар а — пустой, шар g содержит воду. К ели шар а поместить на солнце или нагреть иным способом, то содержавшийся в нем воздух расширится и, проходя по трубне Ь, даст пузыри в сосуде g. Если сосуд а охладить, то объем воздуха уменьшится и вода из сосуда g подымется по трубке Ь и перельется в сосуд о. стрируется в средней школе, пришли к пониманию теплового расширения воздуха, которое они использовали затем в конструкции своих игрушек. Практические знания, особенно в области пневматики, привели к тому, что александрийские механики заняли промежуточную позицию между сторонниками и противниками понятия пустоты: сплошная пустота невозможна, возможна лишь пустота в рассеянном виде, vacuum intermixtum, т. е. пустота между частицами материи. Пустота такого типа объясняет переменную плотность тел, сжимаемость и упругость воздуха: когда объем воздуха уменьшается, частицы воздуха сближаются между собой, причем они насильственно оказываются в состоянии, из которого стремятся вернуться в первоначальное состояние, чем и объясняется сила сжатого воздуха. Точно так же действует и огонь, проникая между частицами. 7. ГЕРОН. Славу Ктезибия и Филона затмил Герон, быть может отчасти потому, что оставленное им обширное литературное наследство дошло до нас почти целиком. Точно известно, что Герон преподавал в Александрии, но неизвестно в какое время. Судя по именам авторов, которых он цитирует и которые цитируют его, можно полагать, что он жил между 150 г. до н. э. и 250 г. н. э. Всеобщую известность, особенно среди ученых эпохи Возрождения, получил двухтомный труд Герона о пневматике, в котором свойство сжимаемости воздуха применяется в различных приспособлениях, в значительной части уже описанных Филоном, что признает сам Герон, хотя и гордится внесенными им усовершенствованиями и предложенными новыми устройствами. Среди последних — знаменитый эолипил, описанный во втором томе его труда, первая действующая паровая машина, отдаленный предок современных реактивных турбин. Эолипил представляет собой, как можно прочесть и в современных учебниках по физике, закрепленный по горизонтальному диаметру полый шар, к которому по концам диаметра, перпендикулярного оси закрепления шара, припаяны две трубки, загнутые под прямым углом так, что их отверстия смотрят в противоположные стороны. Пар из котла попадает сбоку в шар и выходит из обеих трубок; в силу реакции шар приходит во вращение в направлении, противоположном направлению выхода пара. Герон описывает эолипил, стремясь лишь поразить воображение; это одна из многочисленных его игрушек, которая служит 18
Уолипил Герона. (Heronis opera omnia.) a|3 — котел; е£п — полая трубка, подводящая пар к шару #, закрепленному на оси гцх. Пар выхолит через две трубки, загнутые под прямым углом в противоположных направлениях, и шар К приходит во вращение вокруг оси. только для иллюстрации того, как можно, поместив сосуд на огонь, заставить шар вращаться. Получило известность также устройство, которое обеспечивало автоматическое открывание дверей храма при разжигании огня на жертвеннике. Значительную часть труда по пневматике Герон посвятил описанию эффектных фокусов. Похоже, что автор поставил перед собой цель развлечь читателя, вызвать его изумление. Более научный характер носит «Механика», дошедшая до нас полностью лишь в арабском переводе. В ней Герон подробно рассматривает простые механизмы (ворот, рычаг, блок, клин, винт), зубчатые передачи и другие более сложные механизмы. «Механика» Герона — своеобразная энциклопедия античной техники — написана в популярной форме, и ею могли пользоваться с практической целью механики и ремесленники. Помимо «Катоптрики», которую мы рассмотрим ниже, для физики представляет интерес также труд Герона «О диоптре», в котором рассматривается устройство и применение приспособлений для измерения углов, расстояний, уровней и т. п. В целом это трактат по точной механике античного мира. В нем имеется описание годометра, как его называл Герон, или таксометра, как мы его называем,— прибора для измерения пройденного пути. Мнения о Героне расходятся: одни прославляют его как великого техника, другие низводят его до уровня «переписчика, который уделял мало внимания опытам и практическому осуществлению его приспособлений» *. Что Герон был популяризатором, не вызывает сомнения, да он и сам не делает из этого тайны. Поэтому его труды свидетельствуют не столько о талантах автора, сколько о техническом уровне, достигнутом греками эллинистического периода. Им были известны простые механизмы, зубчатые передачи, гидростатика, самые разнообразные применения сифонов, сжимаемость воздуха, движущая сила пара. Таким образом, греки уже владели и техническими знаниями, и научным пониманием, достаточными для того, чтобы создать индустриальные машины и предвосхитить XVIII век. А что же они вместо этого делали? Придумывали механические фокусы и конструировали игрушки для развлечений во время празднеств, изобретали * J. L. H e i Ь е г g, Naturwissenschaften und Mathematik im Klassischcn Altertum, Leipzig, 1912, S. 80. 2* 19
A г"н r~i Приспособление Героиа для автоматического открывания дверей храма. (Heronis opera omnia.) Огонь, зажженный в бронзовом жертвеннике, вызывает расширение воздуха в объеме #, в результате вода по сифону переливается в бак \. Он становится тяжелее, опускается и поворачивает двери на петлях. Годометр Героиа. (Heronis opera omnia.)
приспособления, создающие «магические» эффекты при религиозных богослужениях для усиления суеверия народных масс, изготовляли орудия и катапульты. Такую направленность науки и техники александрийской школы можно лишь частично объяснить такими объективными причинами, как отсутствие в одном и том же месте энергии и сырья (особенно железа и топлива). По крайней мере частично это объясняется социальными условиями того времени. 8. ОПТИКА У ГРЕКОВ. Другой заслугой александрийской науки был толчок, данный ею оптическим исследованиям. Оптикой увлекались еще философы классического периода, которые больше интересовались физиологическими, а не физическими проблемами. Они задавались вопросами: каким образом мы видим, каково соотношение между ощущением и видимым предметом? Дискуссия была, по-видимому, долгая и страстная, но дошедшие до нас документы весьма немногочисленны и толкования их сомнительны. Мы упомянем здесь теории, развитые в классический период и вновь появлявшиеся в ходе позднейшей истории. По-видимому, именно пифагорейцы первые выдвинули гипотезу об особом флюиде, который испускается глазами и «ощупывает» как бы щупальцами предметы, давая их ощущение. Атомисты же были сторонниками испускания предметами «призраков», или «образов» (И8оХа, или, как говорили в средние века, «specie»), которые, попадая в глаза, приносят душе ощущение формы и цвета. Эмпедокл попытался примирить обе теории, но по-настоящему это удалось лишь Платону, почему теория эта и связывается с его именем. Согласно Платону, от предметов исходит специальный флюид, который встречается с «мягким светом дня», «ровно и сильно» бьющим из наших глаз. Если оба флюида подобны друг другу, то, встречаясь, они «крепко связываются» и глаз получает ощущение видимого. Если же «свет очей» (единственное выражение, сохранившееся от теории Платона и бытующее сейчас, но в переносном смысле) встречается с несхожим флюидом, он гаснет и не дает глазам никаких ощущений. Аристотель не следовал ни теории пифагорейцев об испускании света глазами, ни теории сторонников Демокрита о его проникновении в глаз извне. Однако трудно понять, какую теорию он сам поддерживал. Некоторые историки охотно истолковывают одно темное место в трудах Аристотеля l«De anima» («О душе»), II, 7] как указание на теорию распространения света, основанную на изменении среды, находящейся между глазом и предметом. 9. ОПТИКА ЕВКЛИДА. Исследования но оптике в Александрийском музее, где отказались от общих философских рассуждений, приняли совсем другое направление. Наиболее ранним из известных нам документов, касающихся этих работ, является трактат по оптике Евклида, великого геометра, расцвет творчества которого относится к 300 г. до н. э. Трактат состоит из двух частей — «Оптики» и «Катоптрики». Впрочем, многие приписывают «Катоптрику» более поздним авторам. Как следует из первого положения, или постулата: «Испускаемые глазами лучи распространяются по прямому пути» *, Евклид следует теории зрения Платона. От второго постулата до нас дошло понятие конуса зрения и «точки наблюдения»: «Фигура, образуемая лучами зрения, представляет собой конус, вершина которого находится в глазу, а основанием служит граница предмета»**. * Ottica di Euclide, Milano, 1918, p. 21. ** Там же, р. 21. 21
Титульный лист перевода «Оптики» Евклида времен Возрождения (Париж, 1557). На этих и других десяти постулатах (по другим свидетельствам — двенадцати) Евклид основывает геометрическое рассмотрение оптики. В «Оптике» он исследует геометрические проблемы, связанные с постулатом о прямолинейном распространении света: образование тени, изображения, получающиеся с помощью малых отверстий, кажущиеся размеры предметов и их расстояние от глаза. В «Катоптрике» рассмотрены явления, связанные с отражением от плоских и сферических зеркал. Из постулатов «Катоптрики» замечателен второй постулат: «Все, что видно, видно по прямот*. Это основной принцип физиологической оптики. Однако непонятно, как его можно было согласовать с третьим постулатом, дающим точный закон отражения света, известный грекам еще с древнейших времен. Если световой луч — это то же самое, что «свет очей», то как он может не отклоняться на зеркале в соответствии со вторым постулатом и менять свое направление в соответствии с третьим? Читатель не должен удивляться этому противоречию. В истории физики противоречия часты, и ученые преодолевали их почти всегда так же, как и Евклид, т. е. обходили молчанием. В «Катоптрике» содержится также ряд выводов, вполне согласующихся с современной наукой: в плоском зеркале изображение симметрично предмету по отношению к зеркалу, а в сферических зеркалах изображение видно на прямой, соединяющей точку предмета с центром зеркала; в выпуклых зеркалах изображение находится ближе к зеркалу, чем предмет, и имеет меньшие размеры и т. д. Успехи греков в области геометрической оптики — в значительной мере скорее успехи их геометрии, а не физики. Сам Евклид старался всюду подчеркнуть геометрический характер своего рассмотрения. Тем не менее некоторые положения, несомненно, подсказаны экспериментом. Так, шестой постулат «Катоптрики» прямо описывает эксперимент, который и теперь, более чем через две тысячи лет, повторяется на уроках физики: «Если какой-либо предмет поместить на дно сосуда и удалить сосуд от глаз настолько, что предмет не будет виден, то он вновь станет виден на этом расстоянии, если сосуд залить водой» **. * Там же, р. 233. ** Там же. р. 234. WEYKAEIAOY \^/ L / i, i v. «JL ОС CATC f'T R I С. Л, N V N Q у А М A N T 1-, H А С i. V, A «* I» if It i T Л. ,!*,t» AIM M I A I'lfll « I HII I Г A |> К R AH (BMt i v j f ii ituu v м шипим штук I H l И Л Я S W i* V H t Щ in м A l ( M. P A R t S I 1 S, Apud Andre am Wechclum, fub Pegafo, m vice Beliouaco; Anno Salutis» ЦУ7- 22
Интересно заметить, что здесь речь идет об опыте по преломлению света, который не имеет прямого отношения к катоптрике и который дальше в этом труде не используется. Почему же автор — Евклид или кто-либо иной — рассказывает о нем? Помимо многочисленных других наблюдений, на которых мы не можем останавливаться, экспериментальный характер носит также и последнее положение «Катоптрики»: «С помощью вогнутых зеркал, помещенных на солнце, можно зажечь костер» *. В доказательстве идет речь о лучах, исходящих от солнца и падающих на зеркало, и читатель стоит перед вопросом, на который Евклид не дает ответа: откуда же исходит в конце концов свет — от солнца или «из очей»? Даже из этого краткого изложения ясно, что Евклид или неизвестный автор этих трудов должен быть отнесен к крупнейшим физикам древности и даже к физикам-теоретикам: он создал модель прямолинейного светового луча, остающуюся основой современной геометрической оптики, и первым дал рациональное объяснение образования изображений в плоских и сферических зеркалах. 10. ОПТИКА ПТОЛЕМЕЯ. В духе евклидовой традиции написан и другой античный трактат по оптике —«Оптика» Клавдия Птолемея (II век н. э.), дошедший до нас (кроме первой книги) в латинском переводе с арабского. Некоторые математики сурово критиковали «Оптику» Птолемея, считая ее недостойной даже посредственного геометра. Тем не менее она не переставала ■служить отличным фундаментом греческой физики. Великий астроном не ограничился, как Евклид, рассмотрением лишь вопросов геометрической оптики, он обсуждал также физические процессы, лежащие в основе зрения и связанных с ним оптических иллюзий. Особое значение имеет, кроме того, исследование преломления света на границах сред воздух — вода, воздух — стекло и вода — стекло. В описанных Птолемеем опытах применялся прибор, весьма схожий с используемым теперь элементарным приспособлением, описываемым в любом учебнике физики. Поразительна также большая точность измерения, особенно при некоторых углах падения (40°, 50°, 60°). Большинство историков считает, однако, основываясь главным образом на подозрительной регулярности вторых разностей полученных значений, что Птолемей несколько изменил экспериментальные результаты, чтобы они соответствовали ожидаемому им закону преломления, не совпадающему с известным нам законом. Открытие этого закона, как мы увидим в гл. 5, относится лишь к XVII веку. Последователи Птолемея считали отношение угла падения к углу преломления величиной постоянной, тогда как сам Птолемей отмечал зависимость этого отношения от угла падения. Другим важным вкладом Птолемея в оптику было тщательное исследование астрономической рефракции. Птолемей установил, что в результате астрономической рефракции кажущееся положение звезд выше истинного, так что на горизонте бывают видны звезды, которые еще не взошли или, наоборот, которые уже зашли. 11. КАТОПТРИКА ГЕРОНА. Краткая работа Герона по катоптрике, дошедшая до нас лишь в латинском переводе, не стоила бы упоминания, если бы она не содержала утверждения, сходного с принципом Ферма, значение которого для современной физики вновь подчеркнуто волновой механикой. * Там же. р. 411. 23
В этой работе Герона рассматриваются свойства зеркал. В соответствии со вкусами автора она посвящена исключительно описанию эффектных фокусов, которые можно поставить, умело пользуясь этими свойствами. Постулат IV носит геометрический характер и, между прочим, гласит: «Скажу, что из всех лучей, падающих из данной точки и отражающихся в данную точку, минимальны те, которые от плоских и сферических зеркал отражаются под равными углами» *. За этим следует весьма элементарное доказательство, которое теперь общеизвестно. Если же, наоборот, принять, что путь луча минимален, то отражение будет происходить под равными углами. Это весьма интересное геометрическое наблюдение, которое, как мы увидим в гл. 5, приводит непосредственно к принципу Ферма, хотя само еще довольно далеко от него. Можно сделать заключение, что оптика греков представляла собой набор значительного числа различных перемешанных друг с другом и порой неясных экспериментальных фактов — физических, физиологических, психологических, на базе которых рациональное мышление греков все же сумело воздвигнуть новую самостоятельную область науки — геометрическую оптику. А это не так уж мало. ПЕРИОД УПАДКА 12. ЭНЦИКЛОПЕДИИ. После Герона и Птолемея наступил упадок физики. Первые его признаки проявились довольно рано; со временем он становился все глубже и глубже. Свежие оригинальные исследования уступили место компиляциям, бесконечным повторениям, псевдонаучному пережевыванию. Римляне, вступившие в контакт с греческой наукой периода ее упадка, особенно усвоили ее в тех частях, которые могли иметь непосредственное практическое применение. Это усвоение предшествовало периоду создания наиболее поразительных римских сооружений, свидетельством величия которых являются сохранившиеся до наших дней колоссальные руины. Но напрасно мы искали бы в римской литературе оригинальные научные работы. Было создано большое число научных энциклопедий. Их значение особенно велико потому, что в течение многих веков они были единственным источником сведений о греческой науке. Из этих изданий упомянем, поскольку они имеют отношение к истории физики, 7 книг «Quaestiones Naturales» («Вопросы естествознания») Люция Аннея Сенеки Младшего (3 г. до н. э.— 65 г. н. э.); «De Architectural)** Витрувия Поллиона, деятельность которого относится к периоду правления императора Августа; 37 книг «Naturalis Historia» («Естественная история») Гая Плиния Секунда Старшего (23—79 гг. н. э.). Сюда следует также добавить <i.De rerum natura»*** Лукреция Кара (I век до н. э.) не столько из-за содержащейся в этом труде информации, сколько из-за того, что он служит как бы переходным мостиком между атомизмом греков и атомизмом Возрождения, а также из-за того влияния, которое оказали эти страстные и волнующие стихи на людей Возрождения в их стремлении освободиться от деспотизма религии. Позже, со смертью Аниция Манлия Северина Боэция (480—525), на Западе традиции греческой школы были окончательно забыты вследствие нашествия варваров. •Heron, De speculis, IV, в книге Heronis Alexandrini opera quae supersunt omnia,. v. II, Lipsiae, 1900, p. 324. ** Есть русский перевод: В и т р у в и й, Об архитектуре, Л., 1936. *** Есть русский перевод: Лукреций Кар, О природе вещей, М., 1947. 24
13. ФИЛОПОН. На Востоке культурные традиции греков никогда не исчезали, хотя и были сильно ослаблены. Поддерживаемые византийскими комментаторами, они были переняты арабами и еще, раз пришли на Запад приблизительно в XIII веке. Среди комментаторов следует отметить Иоанна Филопопа, называемого также Иоанном Грамматиком, деятельность которого развертывалась в Александрии в первой половине VI века. Он написал обширный комментарий к трудам Аристотеля, причем проявил там известное свободомыслие. В частности, Филопон первым оспорил аристотелеву теорию, по которой движение тела поддерживается толчками воздуха. Возражения Филопопа были вполне правильны, хотя и примитивны. Почему приведенное во вращение колесо продолжает вращаться вокруг своей оси? Каким образом может в этом случае воздух поддерживать движение? Если движение обязано давлению воздуха па обратную сторону тела, то заостренная с хвоста стрела должна была бы лететь медленнее, чем незаостренная. В действительности ?ке происходит как раз обратное. Почему? И почему камень можно бросить дальше, чем перо? Эти и подобные аргументы заставили Филопона отказаться от аристотелевой теории как не подтверждающейся экспериментально в случае падения тел и предположить, что движущая сила сообщает телу некоторое действие или способность к движению, названную позже «импето» («irapeto»), которая постепенно расходуется в процессе движения, так что, когда кончается импето, кончается движение. Точно понять мысль Филопона довольно трудно, в частности из-за его многословия. Но если допустить, что в понятии импето интуиция Филопона и последующих ученых предвосхитила наше понятие энергии, то тогда учение Филопона о движении окажется явным прообразом закона инерции.
ГЛАВА 2 • СРЕДНИЕ ВЕКА МЕХАНИКА 1. МЕХАНИКА У АРАБОВ. У арабов, создавших огромную империю, после первого периода презрительного недоверия к греческой культуре (им приписывают сожжение Александрийской библиотеки в 640 г.) примерно с 750 г. наступил период увлечения ею. На первом этапе ассимиляции, продолжавшемся немногим более столетия, труды греческих ученых были переведены на арабский с греческого и сирийского языков. В это же время в новых столицах — Дамаске и Багдаде — были основаны школы но образцу александрийской. После этого началось самостоятельное развитие арабской науки, интересы которой в первую очередь были направлены в облаетт. теологических проблем, а затем уже в область естественнонаучных. Греческое происхождение науки естественным образом толкало арабских физиков к исследованию проблем механики и оптики — тех двух разделов физики, которые, как мы видели, с успехом были развиты в Греции. Но, как мы покажем позднее, по-настоящему серьезным прогресс арабской науки был лишь в оптике. В общей механике арабы следовали Аристотелю и не внесли в нее сколько-нибудь значительных изменений. Не питаемое новыми идеями искусство арабских механиков, как и в Александрии, растрачивалось на создание игрушек, автоматов, часов с колесами и гирями. В X веке мусульманский мир внес некоторый вклад в гидростатику. Астроном Аль-Наиризи (в латинском написании — Аиариций, ум. в 922 г.) паписал трактат об атмосферных явлениях. Его современник Аль-Рази (ум. в 923 г.), живший в Багдаде, ввел в употребление гидростатические весы для определения удельного веса, что особенно интересовало арабских физиков и привело к введению «рейтера» в точных весах. В частности, известный математик и астроном Аль-Бируни (973—1048) определил с замечательной точностью удельные веса 18 драгоценных камней и металлов. Кроме того, он объяснил действие артезианских колодцев, связав его с принципом сообщающихся сосудов; следует сказать, что на Западе артезианские колодцы еще не были известны, они появились там лишь в 1126 г. в Лилье (Артуа). Аль-Хазини, деятельность которого развертывалась между 1115 и 1121 гг., написал замечательный трактат — «курс» средневековой физики *, в который вошли таблицы удельных весов твердых и жидких тел, описания опытов по взвешиванию воздуха, наблюдения явления капиллярности, описание применения ареометра для измерения плотности жидкости. Однако влияние его на развитие западной физики весьма сомнительно. 2. УНИВЕРСИТЕТЫ. Еще до Аль-Хазини в арабском мире начался упадок физики, столь же быстрый, как и ее взлет. Но контакты с арабами и расцвет экономической деятельности к тому времени привели к интеллектуальному пробуждению в Испании, Лотарингии, Франции, Шотландии. В Италии были созданы первые учреждения, служащие для распространения и расширения знаний,— университеты. В 1100 г. университет в Болонье уже достиг славы. К этому времени приобрел известность и Парижский университет. * Автор имеет в виду «Книгу о весах мудрости», написанную Аль-Хазини в 1121 — 1122 гг.— Прим. перев. 26
'По образцу университетов Парижа и Болоньи были созданы университеты в Падуе (1222 г.), Оксфорде (1229 г.), Кембридже, Неаполе, Риме и т. д. Примерно между 1125 и 1280 гг. в Испании и Италии были переведены труды Аристотеля, Евклида и Птолемея, одностороннее изучение которых привело к развитию схоластики. В это время труды Архимеда и Герона почти наверняка еще не были известны, так что все изучение механики было основано на трудах Аристотеля и «Проблемах механики», которые также приписывались Аристотелю. Пьер Дюэм (1861—1918) на основе изучения многочисленных рукописей, хранящихся в библиотеках Франции, в первую очередь в Национальной библиотеке в Париже, приписывает в своих объемистых и весьма глубоких работах этим первым университетам и школам заслугу не только в сохранении и освоении достижений классической физики, но и в создании фундамента современной физики, которая, по его мнению, диалектически развилась из аристотелевой физики. К сожалению, ценнейшие рукописи французских 'библиотек еще не опубликованы, так что полный их обэор невозможен. Тем яе менее некоторые доводы Дюэма спорны и его антигалилеева позиция представляется не всегда достаточно обоснованной. 3. ПЕРВЫЕ ШКОЛЫ МЕХАНИКИ НА ЗАПАДЕ. Таким образом, не подвергая сомнению достоинства работ Дюэма, следует признать, что влияние этого периода на последующих физиков все еще спорно и, во всяком случае, €го вклад в современную физику весьма незначителен. Первый существенный успех связан с именем Иордана Неморария, о личности которого почти ничего не известно: мы не знаем ни его национальности, ни даже времени жизни (обычно его относят к периоду между XI и XIII веками). Дюэм разыскал в библиотеках Франции различные труды по статике, приписываемые Иордану, для которых характерно систематическое применение понятия gravitas secundum situm, т. е. изменения силы тяжести тела в зависимости от его положения. Иными словами, Иордан заметил, что сила, с которой тело давит на горизонтальную плоскость, на которую оно опирается, уменьшается, если эту плоскость наклонить, и чем больше она наклонена, тем эта сила меньше. Здесь впервые появляется понятие ■о составляющей силы тяжести тела в определенном направлении. Согласно Дюэму, этот принцип приводит Иордана к принципу виртуальных работ, который сформулирован в таком виде: если определенный груз может быть поднят на определенную высоту, то груз, в к раз больший, можно поднять на высоту, в к раз меньшую. Другой Иордан, быть может ученик первого (Дюэм называет его почему-то «предшественником Леонардо»), ввел понятие статического момента, которое было еще у Архимеда (гл. 1, § 4), и рассмотрел его применение к равновесию коленчатого рычага и к наклонной плоскости. Заметим, что в изданной в 1565 г. брошюре Тартальи этому второму Иордану приписывается установление точного условия равновесия тела, опирающегося на наклонную плоскость. Интересно, что Тарталья привел это положение как • свое собственное в 1546 г. в труде «Проблемы и различные изобретения». В XIII веке начались особенно усиленно продолжавшиеся в течение всего последующего XIV века долгие и скучные схоластические споры о физике Аристотеля и о критических замечаниях Филопона (гл. 1, § 13). Главными действующими лицами здесь были Альберт Великий (1206—1280), Фома Аквинский (1226 — 1274), Уильям Оккам (1280—1347), Иоанн Буридан (1297—1358). Ценность их трудов прежде всего в том, что они широко распространили аристотелеву физику со всеми ее достоинствами и недостатками. Из фактов, представляющих особый физический интерес, отметим, что Альберт Саксонский, преподававший в Сорбонне с 1350 по 1361 г., предпри- 27
нял попытку классифицировать движения, различая движения поступательное и вращательное (для последнего дано точное определение угловой скорости), равномерное и переменное. В его время и с его участием было создано понятие движения unii'ormiter difformis, или, как мы его теперь называем, равномерно-переменного движения. Наибольший вклад в изучение равномерно-переменного движения в период средневековья внес Никола Орезм (ок. 1328—1388). Примени» впервые в истории науки графическое представление движения, соответствующее современному методу координат, он установил закон,используемый и сейчас и связывающий для равномерно-переменного движения пройденный движущимся телом путь со временем, затраченным на его прохождение. Одновременно с Парижской школой развертывалась деятельность в Оксфорде, где, по-видимому, Уильям Гейтсбери (начало XIV века) ввел понятие ускорения, а Уильям Коллингсм сформулировал общий закон нечетных чисел, характеризующий равномерно-переменное движение. Позднейшим последователем Оксфордской школы был Доменико Сото (1494—1560), который в комментарии к Аристотелю без какого-либо обоснования принимает, что движение падающего тела является равномерно-переменным, и дает для пройденного падающим телом пути закон, совпадающий^ с современным. ОПТИКА 4. АЛЬХАЗЕН. Наиболее ярким в арабской физике был, несомненно,, период Ибн Аль-Хайтана, известного на Западе под именем Альхазена. Он жил и работал в Египте одновременно с Аль-Бируни; умер Альхазен в Каире в 1039 г. По всеобщему мнению, это был наиболее крупный физик средневековья. Кроме того, он был астрономом, математиком и комментатором Аристотеля и Галопа. Это последнее обстоятельство имеет для нас особое значение. Галену,. жившему между 130 и 201 гг. н. э., принадлежит наряду с прочим заслуга1 рассмотрения глаза как одного из органов чувств нашего организма, описание его строения и выяснение функции зрительного нерва. В теории зрения; Гален в основном придерживался идей Платона, но, с одной стороны, придавал большое значение внешнему флюиду, исходящему из Солнца, а с другой — уточнил, что «свет очей», вырабатываемый мозгом, идет по оптическому нерву к сетчатой оболочке, рассеивается в стекловидном теле глаза и вновь собирается на хрусталике, который, по Галену, есть орган восприятия. Короче говоря, с этого времени в механизме зрения начинает играть роль строение органа чувств — глаза. Альхазен принял без изменения анатомическое описание глаза, данное Галеном, но отбросил как совершенно излишнюю вещь «свет очей». В своем первом фундаментальном постулате он утверждает: «Естественный свет и цветовые лучи воздействуют на глаза» *. Этот постулат он подкрепляет наблюдением, что глаза испытывают боль при попадании па них солнечного света, прямого или отраженного от зеркала, приводя также другие примеры ослепления. Под естественным светом (lux per se) Альхазен понимает белый солнечный свет, а под цветовыми лучами — свет, отраженный от цветных предметов. Затем с помощью ряда хорошо поставленных опытов физико-физиологического характера он показывает несостоятельность представления о свете, * Opticac thesaurus Alhazeni arabis libri scptem, nunc primum editi Basileae, 1572, Lib. I, prop. 1, p. 1. 28
исходящем из глаз и ощупывающем тела. В главе IV своего труда он описывает анатомическое строение глаза, заимствовав его у Галена, и далее заявляет: «Зрительный образ получается с помощью лучей, испускаемых видимыми телами и попадающих в глаз» *. Здесь речь идет уже не о световых лучах Евклида, а, так сказать, об •обращенных световых лучах, которые идут не от глаза к предмету, а от предмета к глазу. Но не это является главным открытием Альхазена. У Евклида, как и у всех греческих физиков, зрение рассматривалось как глобальное явление; считалось, что ощущение воспринимает разом, в едином процессе образ всего наблюдаемого тела, потому ли, что внешняя «оболочка» тела, отделившись, проникает в зрачок, или же потому, что «свет очей» ощупывает его одновременно со всех сторон. Альхазен же с гениальной интуицией разложил этот глобальный процесс на бесконечное множество элементарных процессов: он полагал, что каждой точке наблюдаемого предмета соответствует некоторая воспринимающая точка глаза. Но чтобы объяснить отсутствие избранных направлений наблюдения предмета, нужно предположить, что из каждой точки предмета выходит бесконечное число лучей и в зрачок тоже попадает бесконечное число лучей. Но как же тогда одной точке предмета может соответствовать лишь одна воспринимающая точка? Альхазен преодолел эту трудность, приняв что из всех лучей, проникающих в глаз, действенным является лишь луч, перпендикулярный всем глазным оболочкам, которые он считал концентрическими. Поэтому на переднюю поверхность хрусталика, который, по Альхазену, и есть орган чувства, действуют те лучи, которые, исходя из любой точки наблюдаемого предмета, проходят через геометрический центр глаза. Таким образом, Альхазен устанавливает точное соответствие между точками предмета и точками восприятия на внешней поверхности хрусталика и приходит к выводу: «Зрительный образ получается с помощью пирамиды, вершина которой находится в глазу, а основание — на видимом теле» **. Насколько это положение отличается от евклидова! Это тот же классический закон перспективы, но физика явления здесь изменена. Поэтому, несмотря на серьезные недостатки этого положения, оно представляет собой громадный шаг вперед. Почему же Альхазен не продолжил световые лучи за центр глаза до сетчатой оболочки, сделав ее местом образования изображения? Ему нетрудно было дойти до постановки этой проблемы: он знал нервное строение сетчатки, а оптику, обладающему его проницательностью, должно было казаться странным наличие свойства ощущения у столь прозрачной среды, как хрусталик. Но поставив проблему, он тотчас же вынужден был отказаться от ее решения, испуганный ее следствиями. Действительно, если лучи'пересекаются в центре глаза, то на сетчатке они образуют перевернутое изображение. Но видел ли кто-нибудь когда-нибудь мир перевернутым? Альхазен знал по опыту, а не только на основе элементарных геометрических рассуждений, что на сетчатке изображения должны получаться перевернутыми. Действительно, несколькими страницами дальше после приведенного отрывка он описывает опыт с «камерой-обскурой», чтобы доказать, ■что лучи, исходящие от разных тел, могут пересекаться, не испытывая изменений. Он помещает различные свечи перед стенкой темной камеры с отверстием и, глядя на поверхность, наблюдает свет от всех этих свечей. * Там же, р. 7. ** Там же, р. 10. 29
«...и если накрыть какую-либо свечу, то исчезает также соответствующий: свет на рассматриваемой стене, а если снять колпак со свечи, то возврагцается. и свет. И в этом можно убедиться в любой момент. Значит, если бы лучи- света перемешивались в воздухе, то они перемешивались бы и в плоскости отверстия, оставались бы перемешанными после отверстия, и различить их- было бы невозможно. Но мы видим, что это не так, значит, лучи света: не перемешиваются» *. Достаточно первого чтения этого интереснейшего отрывка, чтобы убедиться, что Альхазен многократно и аккуратно ставил опыты с камерой- обскурой. Поэтому он обязательно должен был наблюдать перевертывание, изображения, хотя в приведенной цитате он об этом не упоминает. Лишь Леонардо да Винчи оказался столь проницательным и xpa6pbiMv что из этого опыта отважился сделать вывод о сущности механизма зрения. И действительно, Леонардо описывает весьма подробно камеру-обскуру и, отметив перевертывание изображения, замечает: «То же происходит ш внутри глаза» **. Всего шесть слов — и великое открытие! Но вернемся к Альхазену, который выдвинул свою теорию зрения" и, чувствуя ее недостаточность, многократно видоизменял ее, приспосабливая для объяснения результатов оптических экспериментов, которые мало-помалу накапливались. Следует заметить, что средневековая геометрическая оптика была значительно сложнее современной, потому что мы получаем изображения на экранах, тогда как в средние века рассматривали изображение в глазу, где имеют место явления физиологической оптики, а не только геометрической. Во второй книге Альхазена рассматриваются свойства зрения, а третья целиком посвящена оптическим иллюзиям, обманам зрения (deceptiones visus) или галлюцинациям (hallucinationes), как называли их переводчики. Несмотря на имеющиеся здесь интересные наблюдения в области физиологической оптики, эта книга Альхазена оказала дурную услугу физике, ибо вдохновила и усилила то направление мистического характера, которое- оставалось сильным еще во времена Галилея и которое учило не доверять, органам чувств, особенно зрительным восприятиям: «Так легко,— говорил еще Альхазен,— принять светлячок за фонаръ!ь Книги IV, V и VI посвящены экспериментальному и геометрическому рассмотрению плоских, сферических, цилиндрических и конических зеркал. В предложении 39 книги V сформулирована знаменитая задача о сферическом зеркале, получившая название задачи Альхазена: приданном положении зеркала, светящейся точки и глаза найти точку зеркала, в которой происходит отражение. Альхазен решает ее, используя пересечение гиперболы с окружностью, сложным и запутанным путем, который трудно проследить даже сейчас. Этой задачей занимались математики на протяжении нескольких * Там же, Lib. I, prop. 19, p. 17. ** Леонардо да Винчи, Ms. D-, f. 8 г. Так историки цитируют рукописи Леонардо, хранящиеся во Французском институте, которые Вентури (первым исследовавший их) пометил буквами от А^до М. В первый раз они были опубликованы факсимиле, т. е. точно, как в оригинале (как известно, Леонардо писал перевернутым шрифтом то ли для сохранения секрета, то ли шутки ради) и во французском переводе Равессоиом-Мольеном, «Les manuscrits de Leonard de Vinci», Paris, 1881 —1891 (6 vol.). Комиссия по трудам Леонардо да Винчи (Comissione Vinciana) перепечатала их. Рукопись D — одна из самых упорядоченных и полных; это оригинальный трактат по физиологической оптике, в котором, между прочим, впервые упоминается зависимость расширения зрачка от изменения интенсивности падающего на пего света. (Ms. D., f. 5 v.) (f. 8 означает восьмой лист, буквы г и v — соответственно лицевую и оборотную стороны листа.— Прим. перев.), 30
Прибор Леонардо для решения задачи Альхазена (реконструкция). последующих веков. Только в 1676 г. Гюйгенс первым указал на простое геометрическое решение, а в 1776 г. Кестнер (1719—1800) дал впервые аналитическую постановку этой задачи, приводящую к уравнению четвертого порядка. Леонардо да Винчи после многочисленных попыток, одни из которых кончались ошибочным убеждением в том, что ответ найден, а другие наводили на мысль о неразрешимости задачи, в конце концов пришел к «конструктивному» решению задачи, т. е. решению с помощью построенного им механического прибора, замечательного тем, что в нем впервые применена пятизвенная шарнирная система. Этот прибор, восстановленный лет тридцать назад, находится сейчас в Институте механики Неаполитанского университета. Последняя, VII книга оптики Альхазена посвящена полностью преломлению света. Здесь следует отметить усовершенствование прибора Птолемея (см. гл. 1) для экспериментального исследования этого явления и достигаемое таким образом увеличение точности измерения, что тем не менее не позволило Альхазену найти точный закон преломления. Но особенно следует подчеркнуть, что Альхазен ввел новое понятие, которое привело Декарта к открытию правильного закона преломления (см. гл. 5). Альхазен начал ставить механические опыты по падению тел на площадки; он разлагал скорость брошенного тела на две составляющие — перпендикулярную и параллельную поверхности площадки — и затем применял результаты этих опытов к свету, заключая, что при переходе света из менее плотного тела в более плотное нормальная составляющая его скорости уменьшается. Важно не то, что на самом деле это не так. Существенно введение нового понятия — разложение скорости света на составляющие, параллельную и перпендикулярную границе раздела двух тел. 5. ТРУДЫ АЛЬХАЗЕНА И ЗАПАДНАЯ НАУКА. Фундаментальный трактат Альхазена, отличающийся новизной, оригинальностью и стройностью построения, был переведен на латинский язык, по всей вероятности, в XII столетии, быть может Герардом Кремонским (ок. 1114—1187), и распространялся в рукописи до первого печатного издания, выпущенного в 1572 г. Риснером (ум. в 1580 г.). Риснер разбил этот трактат на отдельные книги и главы и отредактировал его. В средние века этот трактат был скорее знаме- пит, чем известен. Автора его называли по преимуществу Auctor perspecti- vae. Этому названию не следует удивляться. Как бы странно это ни выглядело с точки зрения современной классификации наук, в средние века оптика, учение о перспективе и метеорология представляли собой единую науку. Мы сказали, что этот трактат был скорее знаменит, чем известен, потому что теории зрения, т. е. наиболее оригинальной части трактата, в Средне- 31
Деформация изображения в коническом зеркале. (М. Bettini, Apiaria universae philosophiae mathematicae, 1642.) вековье по повезло. Вплоть до конца XVI века и позднее наиболее принятой теорией зрения оставалась туманная теория «образов», или «видимостей», которые отрываются от тел и проникают в глаз смотрящего. Сейчас трудно объяснить, почему теория Альхазена не имела успеха. Может быть, его экспериментальный подход слишком отличался от общепринятого философского подхода того времени и поэтому казался трудным. Может быть, авторитет античных философов оставался сильнее авторитета более позднего автора, к тому же еще иноверца. Может быть, глобальная концепция зрения, которая теперь вызывает улыбку, казалась настолько ясной интуитивно, что это скомпенсировало ее серьезные теоретические недостатки. По сравнению с трактатом Альхазена был более распространен в средние века трактат по оптике Вителлин, о личности которого мы знаем очень мало. Неизвестно даже его точное имя (Вителлин, Вителион, Вител?). По-видимому, он был выходцем из Польши, долго жил в Италии, учился примерно с 1262 по 1268 г. в Падуе, а затем в Витербо. Между 1270 и 1278 гг. он написал трактат по оптике, в котором, беззастенчиво заимствуя у Евклида, Птолемея и прежде всего у Альхазена, изложил по существу содержание и методы физики арабов. По сравнению с трактатом Альхазена здесь можно отметить два новых факта: доказательство того, что параболические зеркала имеют единственный фокус (слово focus в современном смысле слова введено Кеплером * в 1604 г.), положение, которое было сформулировано, согласно фрагменту рукописи, найденному в 1881 г., еще греческим автором, возможно, Анфимием из Траллеса (ок. 550 г. н. э.), и тщательное исследование радуги. * Ad Vitellionem paralipomena, quibus astronomiae pars optica traditur, 1604. 32
Мы уже видели (гл. 1), что столь величественное и грандиозное явление, как радуга, привлекало внимание еще первых греческих наблюдателей, но только Декарту удалось дать полное его объяснение. Вителий заметил, что радугу нельзя объяснить простым отражением света на водяных каплях, что нужно при этом учесть также преломление солнечных лучей в этих каплях. 6. РОДЖЕР БЭКОН. В тот же период, чтобы показать, что nulla scientia potest sciri sine mathematica (никакую науку нельзя познать без математики), Роджер Бэкон посвятил тщательному рассмотрению явления радуги целых десять глав шестой части своего «Opus majus» («Больший труд»). Бэкон точно чертит ход световых лучей и находит, что высота радуги равна 42°. Но современный читатель был бы очень поражен, прочтя на этих страницах, что цвета радуги представляют собой субъективное явление, вызванное влажностью нашего глаза. Роджер Бэкон, знаменитый францисканский монах, родился примерно в 1214 г., по-видимому, в Ильчестере, в графстве Сомерсет, но есть также мнение, что он был французом. Умер он в 1292 г. О его жизни и творчестве сложилась легенда, которой, быть может, способствовала ненависть схоластов к Бэкону, вызванная его отношением к Альберту Великому и Фоме Ак- винскому. Легенда приписывает ему самые разнообразные изобретения: порох, линзы, подзорную трубу, компас, паровую машину, самолет, если говорить о наиболее известных изобретениях. Его считают прародителем экспериментального метода. И действительно, шестая часть «Opus majus» озаглавлена «Об опытной науке» и посвящена значению эксперимента. Но у Бэкона это слово имеет гораздо более широкое значение, чем принято теперь. Он говорит: «Опыт может быть двояким: один посредством внешних ощущений... но этот опыт недостаточен для че.говека, потому что он не полностью говорит о вещах телесных и ничего не говорит о духовных. Значит, необходимо, чтобы ум человеческий использовал другой опыт, и вот почему святые отцы и пророки, которые первыми принесли миру знания, испытывали внутреннее озарение, а не придерживались одних лишь ощущений» *. При чтении его трудов по физике создается впечатление о Бэконе как о человеке большого интеллекта, громадной трудоспособности, имеющем подчас независимые суждения, но остающемся все же связанным со своим временем, со свойственными этому времени предрассудками и ограничениями. Пятая часть «Opus majus» наряду со своего рода введением «Opus minus» («Меньший труд») и приложением «Opus tertium» («Третий труд») представляет наибольший интерес для физики. Она полностью посвящена оптике, «украшению всей философии, через которую, а не без ее участия могут быть познаны все другие науки» **. Рассмотрение основано целиком на трудах Альхазена с небольшими добавлениями и несколькими приложениями. Примечательно, что Бэкон не только считает скорость света конечной, но полагает также, что свет — это не испускание частиц, а распространение движения. Конечно, было бы преувеличением сказать, что эта смутная догадка представляет собой первое * The «Opus majus» of Roger Bacon, ed. with introduction and analytical table bv J. H. Bridges, v. II, London, 1900, p. 169. ** Там же, v. II, p. 3. 3 Марио Льоцци 33
выражение волновой теории света. Интересен отрывок из четвертой части «Opus majus», где, напомнив о том, что с помощью сферических зеркал, обращенных к солнцу, можно добиться воспламенения предметов, Бэкон замечает: «Но зажигание происходит не от всех лучей, падающих на зеркала, а только от тех, которые падают на границу единственного круга с центром на оси зеркала... а лучи, падающие на другую окружность, отражаются в другую точку, а падающие на третью окружность — в третью точку, и так для всего бесконечного числа окружностей, которые можно себе представить вокруг оси зеркала» *. Таким образом, Роджер Бэкон положил начало изучению катакаусти- Ru — явления, которое усложнило и замедлило прогресс оптики и было предметом воодушевленных исследований математиков XVIII века. 7. ЛИНЗЫ; И ОЧКИ. Большой исторический интерес представляет также следующий отрывок: «Если человек будет рассматривать буквы или другие мелкие предметы с помощью кристалла или стекла или другого прозрачного тела, расположенного над буквами, и если это тело будет шаровым сегментом, выпуклость которого обращена к глазу, находящемуся в воздухе, то буквы видны лучше и кажутся больше... И потому это приспособление полезно людям старым и со слабым зрением, потому что они могут видеть дажг маленькую букву достаточно большой» **. И Бэкон добавляет, что это приспособление хуже, если кристалл ограничен не меньшим шаровым сегментом, а большим. Это одно из первых, если не первое историческое свидетельство рассмотрения линз в науке. Известно, что Бэкон использовал их во многих опытах и даже поднес одну папе Клименту IV, прося его попробовать применить ее. Но если бы даже и не было других указаний, достаточно приведенного выше отрывка, чтобы убедиться, что Бэкон говорит здесь о вещах, уже хорошо известных в его время. Кто же является изобретателем увеличительных стекол? Несмотря на многочисленные исследования в течение многих веков, более чем оправданные той ролью, которую сыграли эти «выпуклые стеклянные кружочки» для прогресса физики, до сих пор нельзя назвать ни времени, ни места самого открытия. Удалось лить установить, что проблема распадается на две: применение линз для увеличения и их использование для коррекции дальнозоркости. Если оставить в стороне отрывочные данные, которые восходят еще к античным временам, то увеличительные стекла стали объектом научного рассмотрения уже в эпоху раннего средневековья. Еще Альхазен исследовал увеличение, создаваемое стеклянной сферой, рассматривая его как оптическую иллюзию. Позже появились очки, которые не могли быть результатом теоретического рассмотрения, ибо нельзя себе представить, чтобы при средневековой теории зрения можно было даже прийти к мысли о возможности исправления дефектов зрения. Открытие это было, конечно, случайным, и вполне вероятно допустить, что его автором является кто-то изготовлявший стекла. Например, стекольщик из Мурано, изготовлявший стеклянные диски, которые должны были в свинцовой оправе украшать витражи господского дома, мог случайно заметить любопытные свойства этих своеобразных линз. * Там же, v. I, р. 115. ** Там же, v. II, р. 157. 34
Деталь фрески 1352 г. Томмазо да Модены (Тревизо, Санто Никколо, комната капитула). Монах в очках — брат Угоне из Проваыса. То, что это открытие было сделано ремесленниками, проявляется и в народном происхождении слова «lente» (линза) от слова «lenticchia» (чечевица), которое ученые XVI века решили несколько облагородить, латинизировав его. Как мы видели, Бэкон избегает специального названия и говорит о «приспособлении». Даже в XVI веке Иероним Кардан, всегда туманно изъясняющийся и порой непонятный латинист, называет линзы «orbem e vitro»—выражение, которое его французский переводчик то ли не понял, то ли не смог правильно выразить по-французски и прямо перевел «rotondite faite du verre» * (округлость, сделанная из стекла). В течение трех веков после Бэкона в трудах ученых нельзя было отыскать упоминания об «очках для старых», как назывались двояковыпуклые стекла, или «очках для молодых»— двояковогнутых стеклах для коррекции близорукости, которые появились, очевидно, позже двояковыпуклых и то;ко. видимо, случайно были изобретены мастерами-стекольщиками или самое большее явились результатом элементарного рассуждения: если выпуклые стекла помогают зрению стариков, то вогнутые должны, наоборот, помогать зрению молодых. К середине XIV века очки уже получили довольно широкое распространение — на фреске 1352 г. изображен монах в очках. МАГНЕТИЗМ 8. КОМПАС. Магнетизм — единственный раздел физики чисто средневекового происхождения. Классическая античность знала о магнитах минимум возможного: кусок магнетита и кусок железа притягиваются друг к другу. Однажды заметив такой минерал, нельзя было, даже нарочно, пройти мимо этого явления, и греки дали волю пылкой фантазии в построение связанных с магнетизмом теорий и легенд, получивших большое распространение в античном мире и встречающихся также в средневековой литературе. Мы можем с полным основанием на них не останавливаться. * Hieronymi Cardani, De subtilitate libri XXI, Lugduni, 1551, p. 181; франц. перо- вод: R. Le В 1 a n с, Paris, 1556, с 89 v. з* 35
Coper chio super.e Fond о о base /nf. e Вращающийся цилиндрик с проходящей сквозь него стрелкой, описанный Пьетро Перегрино. SN — магнитная стрелка; ОЕ — серебряный стерженек, служащий противовесом. И вот вдруг в тумане средневековья, в XI веке появляется магнитный прибор исключительной важности — морской компас. Откуда он взялся? Вопрос этот до сих пор не решен. В течение всего XIX века почти единодушно все считали, что китайцы знали о магнитной поляризации начиная с 27 века до н. э. Но теперь многие историки утверждают, что первый подлинный китайский документ, в котором упоминаются свойства ориентации магнитной иглы, датируется 1100 г. н. э., причем там ее применение приписывается иноземным морякам. Это согласуется с западным преданием, приписывающим арабам заслугу открытия свойства ориентации магнитной иглы. Первое упоминание об использовании магнитной иглы в мореплавании мы находим в труде англичанина Александра Неккама, написанном в 1180 г., причем он говорит об этом как о вещи уже известной. Этот примитивный морской прибор был введен на Средиземном море, по-видимому, моряками приморских республик Италии, которые вели интенсивную торговлю с Востоком. Об этом говорит тот факт, что итальянское слово calamita (которое происходит, по-видимому, от слова calamus — стрела) вошло во все романские языки и в языки славянских народов, живущих на побережье Средиземного моря. Этот простой прибор описан впервые арабским ученым Байлеком Аль- Кабаяки (ум. в 1288 г.), который в 1242 г. по пути из Триполи (Сирия) в Александрию видел, как им пользуется капитан корабля. В сосуд, полный воды, он опускал пробку с воткнутой в него железной иглой и приближал к поверхности воды магнит, сообщая ему рукой вращательное движение. Плавающая стрелка следовала за магнитом. Когда магнит внезапно убирался, стрелка (намагниченная предыдущими операциями) располагалась в направлении север — юг. Эта грубая техника была усовершенствована в XIII и XIV веках. Прежде всего плавающая игла, намагничивавшаяся каждый раз заново с помощью индукции, была заменена постоянно намагниченной стрелкой, которая легко перемещалась в горизонтальной плоскости. Следующим улучшением, которое произвело переворот в искусстве кораблевождения, была замена розы ветров, неподвижно прикрепленной к описанному прибору, подвижной розой ветров. Оба усовершенствования были произведены, по-видимому, в Италии, поэтому прибор этот получил название bossola della calamita, позже сокращенное в bossolo, bussola (от лат. buxia — деревянная коробка). Это слово перешло из итальянского языка в романские и в морской жаргон арабов и турок. Что касается времени введения этих усовершенствований, то с уверенностью можно лишь сказать, что в 1380 г. компас с подвижной розой (картушкой) получил всеобщее распространение и считался уже давно известным,
Компас XVII века с подвижной картушкой и кардановым подвесом. (L'arcano del mare, 1646.) Франческо да Бути в своем известном комментарии к «Божественной комедии» дает впервые его описание, поясняя стихи Данте: Раздался голос, взор мой понуждая Оборотиться, как иглу звезда *. Из того, что мы здесь весьма кратко изложили, следует, что никакого Флавио Джойя, изобретателя компаса с подвижной картушкой, никогда не существовало, хотя ему и воздвигнут памятник в Амальфи. Можно только утверждать, что компас с подвижной картушкой скорее всего был создан в Италии в XIII веке и, возможно, именно в Амальфи. Так называемый «карданов» подвес, состоящий из двух опор, позволяющих стрелке находиться в почти горизонтальном положении независимо от килевой и бортовой качки судна и известный еще античности (см. гл. 1), никакого отношения к Кардану не имеет и вошел в практику судовождения лишь в первой половине XVI века (Христофор Колумб им не пользовался), хотя на трех рисунках Леонардо да Винчи мы видим его применение в компасе. 9. ПЬЕТРО ПЕРЕГРИНО. Столь же неожиданным, как и создание компаса, было появление первого трактата по магнетизму; судя по дошедшим до нас документам, ему не предшествовали ни отдельные наблюдения, ни опыты, ни какие-либо попытки разобраться в этих явлениях. И хотя автор этого трактата Пьетро Перегрино из Марикура показал себя человеком незаурядного ума и искусным экспериментатором, трудно все же допустить, что трактат его — целиком оригинальный труд. * Данте, Божественная комедия, Рай, XII, 29—30. Перевод М. Лозинского. :\7
Карданов подвес (слова) и компас (справа) в рисунках Леонардо. О Перегрино, получившем это прозвище, по-видимому, благодаря его любви к частым путешествиям, известно очень мало. Он пикардиец, современник Роджера Бэкона, который считал его весьма сведущим, особенно в физике. Перегрино принимал участие в осаде Лючеры (Фоджа) вместе с войсками Карла Анжуйского и во время этой осады написал трактат «De magnete» («О магнитах») в форме письма, датированного 8 августа 1269 г. и адресованного пикардийскому дворянину, некоему Сигеру (или Сигерию). Это почти все, что известно о Перегрино. Целью этого трактата, ходившего затем в рукописи и напечатанного в 1558 г., было описание вечно движущейся машины. Это не должно вызывать усмешки: прошли века, прежде чем после долгих усилий наука смогла установить постулат о невозможности вечного движения (Сади Карно, 1824 г.). В средние века задача о вечном двигателе с научной точки зрения была вполне законна. Усилия, затраченные в этом направлении в течение столетий учеными, а также шарлатанами, которых и теперь достаточно, фактически не были совсем бесполезны, ибо именно их несостоятельность обусловила те настроения, которые в труде Карно вылились в научный принцип. По существу содержание принципа невозможности вечного двигателя — чисто историческое: в нем констатируется, что этот двигатель никогда не удавалось построить. Это тем более верно, что первоначальную категоричность этого утверждения пришлось смягчить в нашем веке в связи с изучением броуновского движения (см. гл. 13). Но вернемся к трактату Перегрино. Он состоит из трех частей. Собственно научное рассмотрение начинается с главы III первой части, в которой указываются четыре характерные отличительные черты хороших магнитов: цвет, вес, способность притяжения и сплошная структура, без пузырей. Все эти характеристики (за исключением удельного веса) и сейчас являются признаками, по которым отличают хорошие магниты. 38
Магнитный графометр Пьетро Перегрино. В стеклянном сосуде плавает деревянная чаша. Черта на крышке чаши располагается в направлении север — юг, а линейка, находящаяся над чашей, поворачивается так, чтобы два визира на пей указывали на звезду. Тогда угол линейки с линией JV — S и будет искомым азимутом. В следующей главе приводятся три экспериментальных метода определения полярности магнита. И здесь нужно подчеркнуть одну интересную особенность, которая оказалась чрезвычайно важной для последующего изучения магнетизма: Перегрино пользуется магнитами сферической формы, а не в виде бруска. Поэтому опытное определение полярности оказывается значительно более трудным, но Перегрино блестяще справляется с этим. Определив направление поляризации, Перегрино показывает, как найти северный и южный полюс, как установить отталкивание одноименных полюсов и притяжение разноименных и как намагнитить железо соприкосновением. Наконец, в главе IX он описывает явление магнитной индукции и опыт со сломанным магнитом в том же виде, как его и сейчас повторяют на уроках физики. От этого систематического описания опытов Перегрино переходит в главе X, как это сделал бы и современный автор, к теоретическому рассмотрению, задаваясь вопросом о причине магнитного действия. Отвергая теорию того времени, которая приписывала ориентацию стрелки наличию больших залежей магнетита вблизи северного полюса Земли, Перегрино утверждает, что небо влияет на магнит так, что каждая точка неба индуцирует на магнитной сфере аналогичную точку, которая in se gerit similitudinem coeli (рождает в себе подобие неба). Эта теория указывает, по нашему мнению, на астрологическое происхождение изучения магнетизма. Во второй части трактата речь идет о технических приложениях свойств магнитов. Описаны примитивный магнитный графометр, с помощью которого можно определять азимут Солнца или звезды, находящихся на горизонте, и компас с вращающейся осью, о котором мы уже говорили. ТЕХНИКА 10. ВЛИЯНИЕ ПРОГРЕССА ТЕХНИКИ НА ФИЗИКУ. В научном отношении в подготовке того широкого и глубокого обновления культуры, которое известно под названием Возрождения (Ренессанса) и которому мы посвящаем последующие главы, сыграли, конечно, роль и возродившийся интерее 39
к античному миру благодаря переводам классиков, и критическая деятельность различных школ, и усилия университетов по распространению культуры, и литературный ренессанс. Но в средние века возник еще один фактор, способствовавший обновлению, особенно в области физики,— постепенное распространение и усовершенствование техники, которая, с одной стороны, изменяла социальные условия и образ мышления людей, с другой — ставила новые проблемы перед наукой. Поэтому история физики оказывается непосредственно связанной с процессом, начавшимся в конце первого тысячелетия нашей эры, продолжавшимся до XVI века и получившим название второй промышленной революции. В связи с этим мы сейчас остановимся на нем кратко. В Италии техническое возрождение началось в результате коллективного стремления к защите и самосохранению в борьбе против вторжений венгров и сарацинов. Укрепленные поселения разрослись, приняв в себя поток сельского населения, которое искало за оборонительными стенами убежища и свободы. Возросла стоимость земель, прилегавших к ним. Это первый признак капиталистической организации общества. Внутри стен таких первоначальных селений, превратившихся в города, народились средневековые ремесленники, искусные и деятельные, для которых жизнь слилась с трудом, а труд приобрел благородную окраску, неизвестную еще античности. Уже в X веке стали подковывать тягловый скот, что позволило использовать в сельском хозяйстве лошадей и решило вопрос обработки каменистых почв; в результате земледелие оживилось. В XI веке древний шейный хомут в сбруе лошадей и быков заменили плечевым хомутом, который позволил в четыре раза увеличить силу тяги упряжки. Только в этом столетии началось совместное использование нескольких тягловых животных, обеспечившее такое увеличение энергии, какой до тех пор человечество не знало. Это позволило, в свою очередь, ввести новый тип плуга — колесного, более тяжелого, чем прежний, с более удобными лемехами, глубже проникающими в почву и лучше ее взрыхляющими. Увеличению возможности получения энергии в деревне соответствовали и новые источники энергии для нужд ремесел и промышленности. В XI веке водяная мельница, которая была известна еще александрийцам в I веке до н. э., широко распространяется на Западе в различных формах в зависимости от местных условий (работающие на силе приливов — в Венеции, наливные — в речных районах). В тот же период получает распространение и ветряная мельница, появившаяся у арабов и пришедшая в Европу через Марокко и Испанию. Водяные и ветряные мельницы, которые уже в первоначальном виде в XI и XII веках обладали мощностью в 40—60 лошадиных сил, до конца XVIII века определяли характер технических сооружений. Этот новый источник энергии в первых десятилетиях XIII века дал мощный толчок развитию металлургии. В старинных печах воздух нагнетался мехами, которые приводились в движение силой человека, так что нельзя было достичь высокой температуры плавления железа (выше 1500° С). В XIII веке мехи стали приводить в движение водой; это позволило получить высокие температуры, при которых можно было выплавлять чугун, помещая в печах чередующимися слоями древесный уголь и железную руду. В XVI веке высота доменных печей достигала уже 6 метров и чугун нашел самое разнообразное применение (пушки, снаряды, печи, трубы, чугунная посуда, плиты). Этот натиск новой жизни отразился на всех формах труда: в оживлении стекольного мастерства, начавшегося в X веке изобретением цветных стекол, непрерывно совершенствовавшегося и завершившегося шедеврами Мура- 40
Титульный лист первого издания «Магии» Дш. Б. Порты (Неаполь, 1558). Это издание сейчас настолько редко, что даже возникал вопрос, существует ли оно на самом деле. Экземпляр, титульный лист которого здесь воспроизводится, принадлежит библиотеке Академии наук в Турине. но в XV веке; в развитии ткачества — с появлением новых сукновальных и ткацких машин; в изобретении печатного станка (первое сохранившееся до нашего времени, издание датировано 1445 г.); в новой архитектуре, вынужденной отказаться от монолитных римских конструкций в пользу более легких — романских, готических, что поставило новые проблемы перед статикой; в применении огнестрельного оружия, что поставило новые задачи перед динамикой; в грандиозных гидравлических работах, предпринятых в Голландии для осушения территорий, заливаемых водами моря, с применением насосов различных типов; в судоходстве — с непрерывным ростом водоизмещения кораблей, усложнением парусной оснастки, появлением морских лоции (XIII век) и компаса, изобретением вертикального штурвала с рукояткой (XII век), что позволило отказаться от прибрежного плавания и выходить в открытое море. В то время как схоластическая наука ограничивалась пассивным созерцанием мира, мореплаватели, архитекторы, строители, стекольщики, ткачи, литейщики, горняки, ремесленники всех специальностей овладевали богатствами природы и улучшали жизнь людей. На протяжении всего средневековья рядом с наукой, замкнутой в своей книжной культуре, происходило параллельное развитие техники, что отражалось в ином мировоззрении и было способно создать новое понимание культуры. Когда в эпоху Возрождения оба течения соприкоснулись, переплелись и в конце концов слились воедино, возникла новая наука со своим новым идеалом человека, который уже не был ни чуждающимся труда ученым, ни невежественным эмпириком, ни человеком sine artificio sciens aut ignarus artifex *, как говорил Порта в первом издании своей «Натуральной магии» **, но человеком, который делает, чтобы знать, и знает, чтобы делать. Благотворное влияние прививки техники на старом стволе науки полностью сознавали выдающиеся деятели новой науки. Крупнейший из них, Галилео Галилей, начинает свою знаменитую работу, которую он долго * Знающим, но не творящим, или творящим, но не знающим (лат.). ** Magiae naturalis sive de miraculis rerum naturalium, libri IV, Jo. Baptista Porta Neapolitano auctore, Neapoli, 1558, lib. I, cap. 2. ««ПИ HJTVUUli RERVM NATVRALIVM h l в R. I I I i i. TO* R Л P T f 4 T A PORTA NFAPOllTANO A V С Т О ft E, Ht к P О I, I AI'ViJ MATT IMAM t.AWC»;fc, CVM GRATIA ft MUVHuEGK V m DICtHNIV». ■~H! 41
и тщательно обдумывал, вкладывая в уста Сальвиати следующие слова о деятельности венецианского арсенала: «Обширное поле для размышления, думается мне, дает пытливым умам постоянная деятельность вашего знаменитого арсенала, синьоры венецианцы, особенно в области, касающейся механики; потому что всякого рода инструменты и машины постоянно применяются здесь большим числом мастеров, из которых многие благодаря ли наблюдениям предшественников или размышлениям при изготовлении собственных изделий приобрели большой опыт и остроту рассуждения»*. На что Сагредо отвечает: «Вы нисколько не ошибаетесь, и я, будучи по натуре любознательным, часто ради удовольствия посещаю это место, наблюдая за деятельностью тех, которых по причине их превосходства над остальными мастерами мы называем «старшими». Беседы с ними не раз помогали мне разобраться в причине явлений не только изумительных, но первоначально скрытых и казавшихся почти немыслимыми» **. * Galileo Galilei, Discorsi e dimostrazioni matematiche intorno a due nuove scienze attinenti alia Mecanica ed i Movimenti locali, Leida, 1638; в книге Le opere di Galileo Galilei, Ediz. Naz., vol. VIII, p. 49. (Есть русский перевод в книге: Г. Галилей, Избранные труды, т. I, II, М., 1964.) ** Там же.
ГЛАВА 3 • ВОЗРОЖДЕНИЕ ЛЕОНАРДО ДА ВИНЧИ 1. ЛЕОНАРДО-ИЗОБРЕТАТЕЛЬ. Творчество Леонардо да Винчи (1452 — 1519), не скованное схоластической наукой, не подавляемое господством авторитетов, шло по пути развивающейся техники. Леонардо был незнатного происхождения. Это помешало ему в пору ранней юности познакомиться с объемистыми латинскими трудами, но зато помогло не застрять на долгих, скучных и туманных рассуждениях о книгах Аристотеля и побудило к непосредственному наблюдению природы, ее изучению и подражанию ей. Леонардо осознает, насколько его понимание мира, достигнутое опытом, более надежно и более правильно, чем почерпнутое из книг понимание ученых того времени: «Хотя я и не умею так, как они, цитировать авторов, я буду цитировать гораздо более достойную вещь — опыт, наставника из наставников. Они .ходят напыщенные и чванные, разряженные и разукрашенные, и не своими, ■а чужими трудами, а мне в моих собственных трудах отказывают, и если ■они меня, изобретателя, презирают, то насколько больше следует порицать их самих — не изобретателей, а лишь трубадуров и пересказчиков чужих трудов» (Cod. Atl., f.117, r.b.) *. И Леонардо действительно был «изобретателем», т. е. инженером, и, пожалуй, был прав Фельдгауз, назвав его величайшим инженером из всех, кого знала история. Но глубина его мышления толкала его к переходу от чистой техники к обобщениям, от непосредственных применений, характерных для техники всех времен, к применениям отдаленным, характерным для науки. Историки техники насчитывают сотни изобретений Леонардо, рассеянных по его тетрадям в виде чертежей, иногда с короткими выразительными ремарками, но часто без единого слова пояснения, как •если бы стремительный полет фантазии изобретателя не позволял ему останавливаться на словесных разъяснениях. Часто чертежи повторяются, уже описанные приспособления модифицируются и совершенствуются, причем подчас это происходит через многие годы, что свидетельствует о серьезном отношении конструктора, а не о переменчивых капризах художника. Упомянем некоторые наиболее известные изобретения Леонардо: приспособления для преобразования и передачи движения (например, стальные цепные передачи, и сейчас применяемые в велосипедах); простые и переплетенные ременные передачи; различного вида сцепления (конические, спиральные, ступенчатые); роликовые опоры для уменьшения трения; двойное соединение, называемое теперь «кардановым» и применяемое в автомобилях; различные станки (например, точный станок для автоматического нанесения насечки или молотобойная машина для формовки слитков золота); приспособле- * II Codice Atlantico di Leonardo da Vinci. Воспроизведен и опубликован Королевской академией деи Линчей, Рим, 1900—1904 гг. Этот зпаменитый кодекс, получивший название «Атлантического» за необыкновенное обилие и разнообразие рассматриваемых вопросов, состоит из 8 томов (из них 4 — с текстом, а 4 — с иллюстрациями), содержащих буквальную транскрипцию и истолкование. Исследователи Леонардо цитируют кодекс следующим образом: Cod. Atl., f. 117, r.b., где буква г или v (г — лицевая, v—оборотная сторона листа) помогает отыскать цитируемый отрывок, что не всегда легко. (Переводы работ Леонардо да Винчи по естествознанию на русский язык см. в книге: Леонардо да Винчи, Избранные естественнонаучные сочинения, М., 1955.— Прим. перев.) 43
Автопортрет Леонардо да Впнчп (предположительно). Хранится в Турине, в Королевской библиотеке. ние (приписывавшееся Челлини) для улучшения четкости чеканки монет; скамья для опытов над трением; подвеска осей на расположенных вокруг нее подвижных колесах для уменьшения трения при вращении (это приспособление, вновь изобретенное Атвудом в конце XVIII века, привело к современным шариковым и роликовым подшипникам); приспособление для опытной проверки сопротивления металлических нитей растяжению; многочисленные ткацкие машины (например, стригальная, сучильная, чесальная); механический ткацкий станок и прядильная машина для шерсти; боевые машины для ведения войны («жесточайшего помешательства», как он ее называл); различные замысловатые музыкальные инструменты. 2. ГИДРАВЛИКА И ГИДРОСТАТИКА. В старинной пауке гидравлике Леонардо был большим мастером и принимал участие в мелиорации Ломеллн- ны, в устройстве гидросооружений в Наваре, проводил исследования по осушению Понтийских болот, проектировал отвод русла реки Арно у Пизан- ского моста, рассматривал гидроустройства на Адде и на Мартезанском канале. И в этой области оя дал ряд изобретений. Леонардо спроектировал землечерпалки, во всем сходные с современными; он придумал механические средства прорытия каналов и обеспечения их судоходности за счет усовершенствования шлюзов. И действительно, он заменил в шлюзах, известных уже в его время, примитивную, несовершенную, легко приходящую в негодность перегородку расположенными под углом двойными воротами, в которых само давление воды используется для улучшения смыкания створок. Он ввел систему щитов, управляющих размерами отверстий для наполнения шлюза и освобождения его от воды. Переходя от практической гидравлики к теоретической, заметим, что Леонардо знал принцип сообщающихся сосудов для жидкостей различной плотности п основной закон гидростатики, известный теперь под названием «закона Паскаля», который, согласно Дюэму, стал известен французскому философу от Леонардо через Джован Баттисту Бепедетти и Марино Мерсенна. Леонардо создал теорию движения воли на море. Более того, расширяя эту теорию с помощью вр.щвинутой им наиболее универсальной физической концепции — «движение есть причина всего живого»,— он, предваряя время, видел в волновод! движении наиболее естественное движение. Согласно Леонардо, свет, звук, цвет, запах, магнетизм и даже мысль распространяются волнами. 1ЩШ , 44
3. ПОЛЕТ ЧЕЛОВЕКА. Наиболее дерзновенной мечтой Леонардо-изобретателя, без сомнения, был полет человека. Леонардо исследовал и описал с удивительной точностью полет птиц. Он знал, что давление воздуха на нижнюю поверхность крыльев создает силу, которую теперь называют подъемной; он исследовал анатомию летательных органов, сопротивление воздуха и динамическую роль центра тяжести для движения. Он так определял план исследований: «Если хочешь говорить о таких вещах, ты должен в первой части определить природу сопротивления воздуха; во второй — строение птицы и ее оперения; в третьей — действие этого оперения при различных движениях; в четвертой — роль крыльев и хвоста» (Ms. F, 41 v.). Именно этот сознательный метод научного исследования и является главной заслугой Леонардо. Этим его попытки полета резко отличаются от других попыток, которых, судя по преданиям и историческим данным, было достаточно и до него: следует хотя бы напомнить о Дж. Баттиста Данти, который, говорят, в начале XV века пересек в полете Перуджийское озеро, или о создании «летающих птиц», приписываемом Региомонтану. Впрочем, Вазари приписывает создание таких летающих птиц также Леонардо, который будто бы во время прогулок развлекался тем, что из особого рода воска изготовлял птичек и запускал летать над окружающими полями. После долгого и внимательного изучения полета птиц, которое он начал еще во время пребывания в Милане, Леонардо спроектировал в 1490 г., а возможно, и построил первую модель летательного аппарата. Эта модель имела крылья, как у летучей мыши, и с ее помощью, используя мускульные усилия рук и ног, человек должен был полететь. Теперь мы знаем, что в такой постановке задача неразрешима, потому что мускульной энергии человека для полета недостаточно. Понял ли это Леонардо или нет, но когда через пятнадцать лет он, находясь во Фьезоле, снова взялся за изучение полета, он думал уже о полете с помощью ветра, т. е. о парящем полете, справедливо заметив, что в этом случае требуется меньше усилий для удержания и продвижения в воздухе. И изменяя свой первоначальный план исследования, он в рукописи К так намечает содержание четырех книг трактата о полете, одного из тех многочисленных научных трудов, которые были им задуманы, но не написаны: «Раздели трактат о птицах на четыре книги, из которых первая будет о их полете при помощи взмахов крыльями, вторая — о полете без взмахов при помощи ветра, третья — полет вообще, то есть птиц, летучих мышей, рыб, животных, насекомых, последняя — о полете с помощью механизмов)) (Ms. К, Зг.). В «Атлантическом кодексе» содержится самый ранний дошедший до нас проект парашюта, о котором говорится: «Если человек имеет шатер из полотна шириной 12 локтей и 12 локтей в высоту, то он может прыгать с любой большой высоты без вреда для себя» (Cod. Atl., f. 381 v.a.). В рукописи В приведен проект геликоптера, движущим элементом которого можно назвать спираль: «... винтовой аппарат, который, если его вращать с большой скоростью, ввинчивается в воздух и подымается вверх» (Ms. В, 83 v.). После стольких исследований скорее символом веры, нежели пророчеством являются знаменитые строфы из «Кодекса о полете птиц» *: * Codice sul voio degli uccelli, Paris, 1892, cop. int. [2]. 45
V Проект самолета Леонардо. (Ms. В.)
rV-rr/-- . *i,-4* ,~ s? ~,- ~*? ~% л-П Hw^ ~^*> .-,, t t . v C*/ ***** ■*4-»vf ^ *:***« ***** ! -?" A** 4^W Jr. * (• *•* ..11 *»f <»«••*:•"' ч _,', *Г -7 С А:. \* t ' \ /: *? / *-«.."- < "• ****** * Л "к*"^«- ' .,..-.-•»'*''"* 1 „«Д-*^4-' Парашют, проект Леонардо. (Cod. Atl.)
* * «V, ♦**■ J* * V * (J'% *" 4У •«** «* Л A», *. M : »■** "*«*« • Jf, ffv он. i** ' ' i '• - I t\ ь 4X -» J* 4 <r • * л ?, 1.., i - r-.. !- "* л v"^ ч ci --' t i |.#.»r >y»»«> {rti^Y' j*-» (j t| «, w **,'„ v« . i-* сф, чти***, |vA*r я «, л>- 4v4M V: * \ .-i^f^.i &. ', f ,' V J Проект геликоптера Леонардо. (Ms. В.)
«пачнет первый полет большая птица, со спины своего гигантского лебедя наполняя мир изумлением, наполняя молвой о себе все писания и вечной славой гнезду, где она родилась» *. Вероятно, Леонардо не испытал свою «большую птицу», но, может быть, именно эти исследования полета, продолжавшиеся с упорством в течение почти четверти века, с 1490 до 1513 г., больше, чем все остальные второстепенные его рассуждения, способствовали тому, что современники считали его магом, а возможно, и сумасшедшим. Вспомним, что, несмотря на четыре столетия непрерывного прогресса, над первыми авиаторами конца прошлого века тоже либо насмехались, либо жалели их, как безумцев. 4. О ЦЕНТРАХ ТЯЖЕСТИ. Великий инженер легко переходит от частного случая к общему, от конкретного к абстрактному, от преходящего к вечному, одним словом — от техники к науке. Так было с Архимедом, так будет потом с Сади Карно. Вопросы механики перспективы привели Леонардо к исследованию проблем геометрии (алгебра, которая начала развиваться в его время, была ему почти незнакома) и механики. Наиболее долговечным и, быть может, наиболее значительным было его исследование центров тяжести плоских и объемных фигур, начатое еще раньше двумя другими великими мыслителями — Архимедом и Героном, о которых Леонардо мог знать по работам Альберта Саксонского и схоластов. Как Архимед нашел центр тяжести треугольника, так и Леонардо находит центр тяжести тетраэдра (а отсюда и произвольной пирамиды). К этому открытию он добавляет также весьма изящную теорему: прямые, соединяющие вершины тетраэдра с центрами тяжестей противоположных граней, пересекаются в одной точке, являющейся центром тяжести тетраэдра и делящей каждую из прямых на две части, из которых та, что прилегает к вершине, втрое больше другой. Это первый результат, который наука нового времени добавила к исследованиям Архимеда о центрах тяжести. 5. СТАТИКА. Вопрос о центрах тяжести находится на стыке математики, прикладной и теоретической механики. Труды Аристотеля, Архимеда и Герона сохранены для всего средневековья арабскими и западными комментаторами, которые анализировали, критиковали, модифицировали и дополняли эти труды. Леонардо, безусловно, был знаком со многими трудами по механике, что следует из немногочисленных приводимых им цитат и из более многочисленных выписок и заметок без указания источников. Помимо книг Аристотеля, Архимеда и Герона, он знал работы Евклида (или приписываемые ему труды), Табита бен-Курра (826—901), таинственного Иордана Неморария, Биаджо Пелакани (Биаджо из Пармы), знаменитого профессора университетов Павии, Падуи и Болоньи, умершего в Парме в 1416 г. Прямо или косвенно он соприкасался с кинематическими и динамическими теориями оксфордской и особенно парижской школ. Из этих источников Леонардо воспринимал современное ему учение о механике, усваивал его, правильно применял и развивал. Он пошел дальше Иордана Неморария и Биаджо из Пармы, расширив понятие момента силы по отношению к точке, открыв для двух частных случаев теорему о разложении моментов и с удивительным искусством применив ее для решения задач о сложении и разложении сил, решения, которое безуспешно искали в течение многих столетий и которое было полностью выяснено лишь столетием позже Стевином и Галилеем. От Иордана Неморария, а может * Леонардо собирался совершить полет с горы Монте-Чечери (гора Лебедя).— Прим. пер ев. 4 Марио Льоцци 49
быть, как считает Дюэм, и от Альберта Саксонского Леонардо узнал условия равновесия тела, опирающегося на наклонную плоскость. Но он превзошел этих авторов, открыв, по-видимому в результате размышлений об устойчивости различных наклонных башен в Италии (Пиза, Болонья), теорему, которая теперь называется «теоремой об опорном многоугольнике»: тело, опирающееся на горизонтальную плоскость, остается в равновесии, если основание вертикали, проведенной из его центра тяжести, попадает внутрь площади опоры. А в применении результатов науки к технике Леонарда первым попытался дать теорию арки — «крепости, создаваемой двумя слабостями; ибо арка здания состоит из двух четвертей круга, каждая из этих четвертей круга весьма слабая, сама по себе стремится упасть, но так как одна препятствует падению другой, то слабости обеих четвертей превращаются в крепость единого целого». Он первый занялся вопросами сопротивления балок растяжению и сжатию, первый стал изучать механизм трения и заметил его влияние на условия равновесия. 6. ДИНАМИКА. Более спорен вклад Леонардо в область динамики. Судя по его весьма многочисленным заметкам по динамике, рассеянным по рукописям вперемежку с прочими мыслями в характерном для него беспорядке, сомнительно, чтобы он, как часто утверждают, предугадывал принцип инерции. В «Кодексе о полете птиц» имеется часто цитируемое утверждение Леонардо, в котором иногда опускают последнюю часть фразы: «Всякое движение стремится к своему сохранению, или же каждое движущееся тело движется постоянно, пока в нем сохраняется действие его двигателя» *. Первые две части предложения, взятые сами по себе, можно было бы понимать как выражающие принцип инерции со свойственной стилю Леонардо четкостью, что в данном случае напоминает четкость латинской формулировки Декарта «quod in vacuo movetur, semper moveri» (что движется в пустоте, будет двигаться всегда). Но нужно учесть последнюю, неотъемлемую часть предложения, в высшей степени ограничивающую общность предыдущего утверждения и сводящую его, очевидно, к теории импето Буридана. Однако нет оснований сомневаться в том, что Леонардо догадывался о принципе равенства действия и противодействия в некоторых частных случаях, не подымаясь еще до его обобщения, произведенного Ньютоном. Об этом свидетельствуют некоторые выдержки из «Атлантического кодекса», часть из которых мы приведем: «Что касается движения воды, то же производит движение весла против неподвижной воды, что и движение воды против неподвижного весла» (Cod. Atl., f. 175, r.c). «Такая же сила создается предметом против воздуха, что и воздухом против предмета» (Cod. Atl., f. 381, v.a.). «To же производит движение воздуха против неподвижного предмета, что и движение предмета против неподвижного воздуха» (Cod. Atl., f. 395, r.b.). Мы бы получили более адекватное представление о том, насколько необходимы были Леонардо исследования по динамике, если бы проследили его многочисленные попытки прояснить и определить понятие силы и про- * Cod. sul volo degli uccelli, f. 13, г., pag. 106. 50
смотрели опыты, аналогии, классификации, заставившие его в конце концов написать те знаменитые слова, которые часто искажают всякие составители антологий, не понимающие их смысла: «Силой я называю духовную способность, невидимую потенцию, которая через случайное внешнее насилие вызывается движением, помещается и вливается в тела, извлекаемые и отклоняемые от своего естественного бытия, причем она дает им активную жизнь удивительной мощности; она принуждает все созданные вещи к изменению формы и положения, стремится с яростью к желанной ей смерти и распространяется при помощи причин. Медленность делает ее большой, а быстрота делает слабой. Рождается она благодаря насилию и умирает благодаря свободе, и чем она больше, тем скорее уничтожается. С яростью гонит она все, что препятствует ее разрушению; она желает победить, убить свою причину, сопротивление себе и, побеждая, убивает самое себя. Она делается сильнее там, где находит большее сопротивление. Всякая вещь охотно убегает от своей смерти. Будучи принужденной, всякая вещь принуждает. Ни одна вещь не движется без нее. Тело, в котором она возникает, не увеличивается ни в весе, ни в форме» (Ms. A, 34 v.). Восхищение универсальным гением Леонардо возрастет еще больше, если от его общих научных концепций мы перейдем к рассмотрению конкретных вопросов. Леонардо приходилось долго и много заниматься с весами, и эта практика привела его не только к открытию того, что воздух имеет вес (тогда как традиция, восходящая к Симплицию, учила, что воздух веса не имеет), но и к открытию изменения атмосферного давления и к созданию разновидности рычажного барометра или, как полагают другие, гигрометра «для определения качества и густоты воздуха и когда ожидается дождь». Будучи художником, он активно интересовался теорией оптики. Он дал первое описание камеры-обскуры, изобретенной арабами еще за два века до него, и первым использовал ее в теории зрения. Он предложил очки, «чтобы видеть Луну большой», и, возможно, сконструировал параболические зеркала. Он открыл явление стойкости изображений; заметил, что оба глаза видят различное изображение объемных тел; ставил перед собой задачи фотометрии; первым утверждал, что пепельный свет Луны (тот самый, который Галилей называл «лунной чистотой») представляет собой свет, исходящий от Земли и отраженный от Луны. 7. МЕТОД. Принято указывать на Леонардо как на основателя экспериментального метода. Такие поиски чудотворного основателя экспериментального метода нам кажутся упрощенчеством. Даже из сказанного выше очевидно, что обращение к эксперименту столь же старо, как и сама физика, и не исчезало в течение всего средневековья. Многие средневековые ученые не ставили опытов не потому, что не признавали их, а потому, что считали их излишними после того, как Аристотель произвел все возможные эксперименты. Экспериментальный метод (это не то же самое, что обращение к опыту) складывался медленно в процессе постепенного освобождения от господства авторитетов и последующего слияния традиций ученых с практикой мастеров-ремесленников. Среди тех, кто чрезвычайно ускорил этот процесс синтеза, выдающееся место занимает Леонардо, «ото sanza lettere» (человек без книжного образования) и потому свободный от предрассудков, более близкий к природе. Он был высокого мнения об опыте, приписывал е.му универсальное значение — «знание — дочь опыта» — и широко прибегал к нему, будучи уверенным, что «всякое наше знание начинается с чувств», поэтому «нужно ограничивать рассуждение опытом», а не простирать его за пределы опыта. Но 4* 51
опыт сам по себе — это сырой материал, и дело разума включить его в концепцию мира и показать, «почему данный опыт должен идти именно так» (Ms. E, 55 г.). Наблюдения, содержащиеся в «Кодексе о полете птиц» («птица — это инструмент, действующий по законам математики»), носят универсальный характер в том смысле, что, по Леонардо (а такое понимание экспериментального метода характерно для него и объединяет его с Галилеем), вся природа пронизана математическими законами, поэтому «никакое человеческое исследование не может претендовать на то, чтобы быть истинной наукой, если оно не использует математических доказательств и нет никакой уверенности там, где нельзя применить одну из математических наук» (Ms. G, 96 v.). В таком понимании опыты сами по себе никогда не бывают ошибочными, «ошибочными бывают лишь ваши суждения, если вы ожидаете от этих экспериментов такого действия, которое не будет следствием их». И поэтому «несправедливо жалуются люди на опыт, в величайшем гневе обвиняя его в обманчивости. Оставьте его в покое и обратите свои жалобы на ваше невежество, которое заставляет вас спешить со своими тщетными и вздорными ожиданиями таких вещей, которые не во власти опыта, и говорить, что он обманчив». Леонардо, как и Галилей, не был теоретиком экспериментального метода, но все его труды по физике, приведенные и подобные им рассуждения ставят его в один ряд с наиболее тонкими и глубокими современными экспериментаторами. МЕХАНИКА 8. КУЛЬТУРА XVI ВЕКА. Много было споров о влиянии Леонардо на последующее'развитие науки. Одни полностью отрицают его, опираясь на тот факт, что рукописи Леонардо оставались неизвестными вплоть до опубликования знаменитой работы Джован Баттисты Вентури *, другие же, в частности Дюэм, считают, что мысли Леонардо распространялись среди итальянских ученых вплоть до Галилея устным путем или были известны по его рукописям. Не вступая в дискуссию, ограничимся объективной констатацией того, что многие идеи Леонардо можно найти в трудах трех крупных ученых XVI века — Николо Тартальи (1499—1552), Иеронима Кардана (1501 — 1576) и Джован Баттисты Бенедетти (1530—1590). Но прежде чем коснуться работ этих и других ученых напомним, что XVI век был веком интенсивной интеллектуальной деятельности. Физики и математики знакомятся с трудами Архимеда по переводам, обильно комментированным Николо Тартальей, Федерико Коммандино (1509 — 1575), Гвидо Убальдо дель Монте (1543—1607) и Франческо Мавроликом (1494—1575). Итальянская математика переживает наиболее блистательный период своего расцвета, вступили в особенно плодотворный период биологические науки. А если взглянуть более широко, то нужно принять во внимание, что это был век борьбы против авторитета церкви — борьбы, известной под названием реформации, век Коперника, революционное * G. В. V en turi, Essai sur les ouvrages physico-mathematiques de Leonard de Vinci avec des fragments tires de ses manuscrits apportes d'ltalie, Paris, 1797 52
учение которого вызвало глубокий резонанс во всем научном мышлении, век обновления философии, выдвинувший первого упорного противника Аристотеля — Бернардино Телезия (1509—1588) и первую жертву — Джордано Бруно (1548—1600). Наконец, это был век великих географических открытий, и прежде всего открытия Америки (1492 г.), оказавших существенное влияние на последующее развитие научного мышления. Успехи физики в XVI веке, взятые сами по себе, кажутся незначительными, носящими отрывочный, почти случайный характер. Но если их рассматривать на более широком фоне развития науки, то они приобретают особенное значение как первые завоевания новой культуры, освобождающейся от груза традиций, сбрасывающей вековое иго господства авторитета. 9. ВКЛАД ИТАЛЬЯНСКИХ МАТЕМАТИКОВ В РАЗВИТИЕ ФИЗИКИ. Появление огнестрельного оружия поставило перед динамикой новые проблемы. С них начал свои исследования Тарталья в небольшой работе «.La nova sciential («Новая наука»), опубликованной в 1537 г. в трех частях. В двух первых частях рассматривается движение снарядов; для Тартальи это было новой наукой. Третья часть посвящена вопросам топографии. В описании тректории снаряда Тарталья еще придерживается представлений Аристотеля, но уже догадывается, что наибольшая дальность полета достигается при наклоне орудия под углом 45° к горизонту; это утверждение мы находим без доказательства в предложении VIII второй части. В своей книге «Quesiti et inventioni diverse» («Проблемы и различные изобретения») он рассказывает, что в 1531 г. его близкий друг спросил, «как нацелить артиллерийское орудие, чтобы оно стреляло возможно дальше», и что он, никогда раньше не стрелявший ни из орудия, ни из ружья, после «изрядного размышления» нашел ответ и показал «естественными и математическими доводами», что орудие должно быть наклонено под углом 45°. И ввиду того что его друг сомневался, поскольку ему казалось, что орудие будет слишком наклонено, «несколькими частными опытами полностью удостоверился, что так оно и есть». Но Тарталья преувеличивает, говоря о «естественных и математических доводах». Можно быть уверенным, что у него не было таких доводов, и этот его рассказ подтверждает впечатление, складывающееся при чтении его работы: характер изложения динамики артиллерийских снарядов таков, что ее мог открыть внимательный наблюдатель, стоя у орудия. «Проблемы и различные изобретения», вышедшие в 1546 г. как продолжение и развитие «Новой науки», написаны очень живым языком. Этому способствует также форма диалога, принятая почти всюду в работе, которую позднее перенял и увековечил Галилей. Здесь беседуют простолюдины, специалисты и благородные господа, ставят перед собой вначале практические вопросы, а от них переходят к научным проблемам. Тарталья чувствует новизну этой формы изложения и в стихотворном обращении «К читателям» обещает ...новые изобретения, не краденные ни у Платона, ни у Плотина, ни у какого иного грека и латинянина, а полученные лишь искусством, измерением и разумом. Этот труд состоит из девяти частей. Первые две посвящены вопросам баллистики, третья — пороху, четвертая — военному искусству, пятая — применению компаса при топографических работах, шестая — вопросам фортификации, седьмая — механике Аристотеля, восьмая —• теории простых механизмов и девятая, наиболее знаменитая,— вопросам математики. Именно в этой работе впервые после Аристотеля в противоположность сказанному в «Новой науке» утверждается (возможно, под влиянием сведений о рукописях Леонардо, а более вероятно — в результате тщательных 53
наблюдений), что траектория снаряда, летящего не по вертикали, является криволинейной: «...насильственное движение тела постоянного веса, брошенного не перпендикулярно к горизонту, никогда не имеет ни одной части, которая была бы совершенно прямой» *. Многие задачи статики, содержащиеся в этой работе, рассмотрены еще в рукописи Иордана Неморария, которую Тарталья сам готовил к изданию. Однако оригинальным является рассуждение в проблеме I книги VII, где утверждается вопреки Аристотелю, что весы с более короткими плечами точнее, чем с более длинными. История и менделеевская теория весов подтвердили это утверждение. Иероним Кардан, великий соперник Тартальи, также занимает заслуженное место в истории физики. Тарталья был простолюдином, писал на итальянском языке и рассматривал практические задачи своего времени. Кардан был гуманистом, постоянно вращался в академической среде, писал на латинском языке, проявляя во всем громадную эрудицию. Его труды «De subtilitate libri XXI», 1550 г. («О тонкости») и вышедший четырьмя годами позже «De rerum varietate libri XVlII» («О разнообразии вещей») представляют собой наиболее полное энциклопедическое изложение естественных и физических наук XVI века. Трактат «О тонкости», переведенный на французский язык Ришаром Лебланом, использовался во Франции в течение всего XVII века как учебник, особенно при изучении статики и гидростатики. Обе эти работы, написанные сжато и подчас неясно по-латыни, содержат понемногу обо всем: от космологии до конструкции механизмов, напоминающих иногда леонардовские, от рассуждений о пользе знаний о природе до вопроса о пагубном влиянии злых духов. Это неисчерпаемый источник фактов, истинных и воображаемых, сведений о состоянии наук, верований, суеверий, техники, алхимических опытов, магии, астрологии и хиромантии того времени. Главная заслуга этого труда, пожалуй, была в том, что он служил стимулом к изучению конкретного и частного. Но в нем были также и оригинальные научные наблюдения, как, например, утверждение о невозможности вечного двигателя, или некоторые места, довольно неясные, в которых Дюэм видит формулировку принципа виртуальных перемещений. Однако Лагранж приписывает этот принцип Гвидо Убальди дель Монте, покровителю Галилея, который не только перевел и комментировал Галилея, но написал также трактат по механике, имея целью свести рассмотрение всех механизмов лишь к рычагу. В другой интересной своей работе «Opus novum» («Новый труд»), вышедшей в 1570 г., Кардан стремится сделать физическое исследование количе ственным. Представляет интерес первое количественное определение отношения плотности воздуха к плотности воды (1 : 50), которое он получил экспериментально на основе аристотелева принципа, согласно которому отношение путей, проходимых за одно и то же время телами равного веса в различных средах, обратно отношению плотностей этих сред. 10. ДЖОВАН БАТТИСТА БЕНЕДЕТТИ. Бенедетти был учеником Тартальи. Из родной Венеции он переехал на несколько лет ко двору герцога Пармского, затем ко двору герцога Савойского в Турин; там он прожил долгую жизнь и там же умер. Трудно указать более значительный вклад в механику, нежели тот, который сделал Бенедетти в предисловии-посвящении к своей первой опубли- * Nicolo Tartaglia, Quesiti et inventioni diverse... di nuovo restampati, Venetia, 1554, Libro I, Quesito II, с 10 r. 54
кованной работе. В этом интересном предисловии на 22 страницах к работе, состоящей всего из 100 страниц, среди беспорядочной мешанины разнообразных сведений внезапно всплывает рассуждение о движении, не имеющее отношения ни к остальному посвящению, ни к содержанию самой работы, представляющей собой собрание геометрических задач, решаемых с помощью одного циркуля с заданным раствором. Эта длинная вставка о движении представляет собой тщательно проведенное доказательство, направленное к следующему утверждению (вопреки Аристотелю): «два тела одинаковой формы и одинакового рода, равные или не равные между собой, в одной и той же среде проходят равные расстояния за равное время» *. Здесь исторически важна не столько формулировка тезиса, сколько его доказательство. Бенедетти рассматривает две однородные сферы, центры которых находятся на одинаковом расстоянии от центра Земли, причем одна вчетверо больше другой. Предположим, говорит он, что мы мысленно разделим большую сферу на четыре меньших; мы увидим, что каждая из них будет перемещаться за то же время, за которое перемещается упомянутая вначале меньшая сфера. Продолжая это рассуждение, он приходит к сформулированному выводу. Через 32 года в своем главном труде Бенедетти вновь возвращается к этому доказательству и упрощает его, рассматривая одно тело, которое он мысленно делит на две равные части, каждая из которых должна двигаться с той же скоростью, что и все тело в целом. Значит, тела падают с одинаковой скоростью. Это рассуждение было принято Карданом, переписано Теснером, повторено Стевином, воспринято Галилеем: «Я представил себе мысленно,— пишет пизанский ученый,— два тела, равных по объему и весу, как, например, два кирпича, которые начинают падать с одинаковой высоты в один и тот же момент... Но если представить себе эти кирпичи в процессе падения соединившимися и столкнувшимися вместе, то который же из них, отдав импето другому, удвоит его скорость, если учесть, что она не может быть увеличена проходящим движущимся телом, если оно не движется с большей скоростью"?» ** Но после Галилея появились эрудиты, которые много раз поступали подобно тому деревенскому священнику, который, желая рассказать историю о своей собственной деревне, начинал каждый раз с Адама. И вот историки весьма удивлялись, как могло случиться, что такого простого рассуждения, как приведенное у Бенедетти, никто не высказывал в течение двух тысячелетий. Общеизвестно, что научные положения, будучи раз высказанными, кажутся простыми: кому при повторении доказательств классиков не знакомо чувство, что сам до них дошел? Во всяком случае, историки нашли предшественников и у Бенедетти. Наиболее знаменитым из них, хотя и не единственным, следует считать писателя Бенедетто Варки, который в написанной в 1544 г., но опубликованной лишь в 1827 г. работе якобы утверждал, что тела падают с одинаковой скоростью. Можно согласиться, что это утверждение высказывалось до Бенедетти, как мы уже видели в гл. 2, но заслуга математического доказательства остается все же за ним. Все остальное, что дал Бенедетти физике, заключено в его главном труде «Diversarum speculationum mathematicarum et physicarum liber» («Различные * Resolutio omnium Euclidis problematum... per Ioannem Baptistam de Benedictis inventa, Venetiis, 1553. ** Le opere di Galileo Galilei, Ediz. naz., vol. VII, p. 731. Это «Примечание» к «Esercita- zioni filosofiche» («Философским упражнениям») Антонио Рокко было написано в 1634 г., но и в юношеской работе «De motu» («О движении»), vol. I, p. 265, Галилей высказывает то же соображение, так что оно ему было известно. 55
Симон Стевин. математические и физические рассуждения»), опубликованном в Турине в 1585 г. В этой работе, состоящей из шести частей, излагаются теоремы арифметики и элементарной алгебры, вопросы перспективы, механики и науки о пропорциях. Здесь собраны также дискуссии и письма по вопросам физики и математики. Это труд, направленный против учения Аристотеля, что весьма важно для тех критиков, которые отрицают в нем какую-либо новизну. Например, в нем мы встречаем принцип инерции, который применяется для объяснения ускорения движения тела при непрерывном действии постоянной силы, так что постоянное увеличение скорости падающих тел обязано накоплению действия, производимого одной и той же причиной движения, а не постепенному увеличению веса, как говорил Аристотель. Те же идеи Бенедетти применяет к вращательному движению, высказывая догадку о существовании центробежной силы. Из исследования равновесия жидкости в двух вертикальных сообщающихся сосудах различного сечения Бенедетти выводит «гидростатический парадокс» (т. е. одинаковость давления жидкости на основание при равных высотах независимо от формы сосуда), примыкающий к гидравлическому принципу Торричелли, который в следующем столетии был вновь рассмотрен Мерсенном и широко распространен Паскалем. 11. СИМОН СТЕВИН. Через год после опубликования «Различных рассуждений» Бенедетти гидростатический парадокс был сформулирован также Симоном Стевином — одним из наиболее самобытных ученых второй половины XVI века. Стевин родился в 1548 г. в Брюгге и умер в 1620 г., по-видимому, в Гааге. Можно полагать, что открытие Стевина было сделано независимо от Бенедетти. Во всяком случае, формулировка Стевина более ясная и четкая. Стевину гидростатика обязана также введением понятия метацентра, важного для рассмотрения равновесия плавающих тел. Точное определение этого понятия было дано лишь в 1746 г. Пьером Бугером (1698—1758). Но самой большой заслугой Стевина является оригинальное доказательство закона равновесия тела, опирающегося на наклонную плоскость. Доказательство основано на рассмотрении равновесия замкнутой цепочки типа четок, наброшенной на две наклонные плоскости, сечение которых представляет собой прямоугольный треугольник с горизонтальной гипотенузой. Появление этого доказательства знаменует собой целую эпоху в истории физики, поскольку оно основано на предположении, что вечное движение невозможно. Здесь впервые это утверждение принимается за исходный научный принцип. Чтобы убедиться в том, что это не так уж очевидно, как может сейчас показаться, достаточно вспомнить, что и после Стевина, до Сади Карно и еще позже, не прекращались попытки построения вечных двигателей. 56
Титульный лист брошюры Стеви- на, посвященной статике, с изображением четок, покоящихся на двух наклонных плоскостях. Из рассмотрения равновесия цепочки Стевин вывел закон сложения одновременно действующих сил и закон разложения силы на две составляющие, перпендикулярные одна другой. Однако оба эти закона ограничены частным случаем, когда три рассматриваемые силы могут быть представлены по величине и направлению сторонами прямоугольного треугольника и, кроме того, рассматриваются лишь в рамках статики. Стевин сделал много изобретений в области механики. Хорошо известен его трактат по математике. И все же его влияние на историю науки было довольно слабым, отчасти потому, что он был убежден в преимуществе голландского языка перед всеми другими древними и современными языками для рассмотрения научных вопросов и упорно писал на родном языке (переводы его работ на латинский и французский появились лишь в первом десятилетии XVII века), отчасти потому, что оба наиболее важных его произведения были опубликованы лишь через много лет после его смерти. ОПТИКА 12. ФРАНЧЕСКО МАВРОЛИК. После работ Вителлин (см. гл. 2) средневековье не оставило никаких систематических исследований по оптике. Там и сям встречаются беглые упоминания, по которым можно лишь понять, что в этом вопросе царила большая путаница и что сформировалось сильное недоверие к зрительным восприятиям — зрение считалось наиболее обманчивым из чувств. Возможно, что именно это настороженное, если не враждебное, отношение к оптике удержало Франческо Мавролика (1494—1575)— знаменитого мессинского математика и гуманиста — от опубликования своего труда, самого оригинального труда по оптике за три столетия со времен Вителлин. Первая часть этого труда была закончена в 1521 г., другая — в 1554 г., но опубликован он был лишь посмертно наследниками Мавролика в 1611 г. * * Abbatis Francisci Maurolyci Messanensis Photismi de lumine et umbra, Neapoli, 1611. В Е WEECHD.AET BESCHREV'EN OVER 4 i М О К W f V ( N van Pruughc i»«fe Dfutkcrye van CfmftefFdf Fhnttjtn By f«»^ey$ van Rsphclirtghert, cf3< la. j.xxxvs. 57
И поскольку идеи Мавролика мы встречаем у более поздних авторов, в частности у Кеплера, то встает все тот же вопрос, что и в случае с Леонардо: остался ли труд Мавролика неизвестным или же он повлиял на последующую науку, ибо был известен по устной передаче или по рукописи? Трактат Мавролика разделен на две части. В первой рассматриваются прямолинейное распространение света и его отражение от плоских, сферических, цилиндрических и конических зеркал, во второй — преломление, радуга, анатомия глаза, механизм зрения и действие очков. В первой части интересно объяснение круглых изображений Солнца в отверстиях произвольной формы. Мавролик показал, что на определенном расстоянии от отверстия изображения световых лучей, испускаемых каждой точкой светящегося предмета, накладываются друг на друга. Впоследствии Кеплер повторил и усовершенствовал это объяснение. Во второй части Мавролик принимает теорию зрения Альхазена, но, основываясь на более точном знании анатомии глаза, считает, что лучи преломляются в хрусталике и вызывают ощущение на сетчатой оболочке глаза. Тем самым было введено фундаментальное положение теории зрения — хрусталик глаза работает как линза. Но Мавролику тоже не хватило мужества принять перевернутое изображение на сетчатке, и он с помощью серии ухищрений показывает, что на сетчатке изображение получается прямым. Такова сила предрассудка даже в наиболее возвышенных умах! В теории зрения Мавролику принадлежит также заслуга установления того, что недостаточная или избыточная кривизна хрусталика является причиной ■соответственно дальнозоркости или близорукости. Не зная даже закона преломления, Мавролик показал, что, проходя пластинку с плоскими и параллельными поверхностями, световые лучи не изменяют направления, а лишь смещаются параллельно самим себе, что выпуклые линзы являются собирающими, а вогнутые—рассеивающими. Исследуя преломление света в стеклянной сфере, Мавролик наблюдал диакаустику и начал ее исследовать. Может показаться странным, но Мавролик был первым ученым, который точно указал семь цветов радуги, тогда как традиция, восходящая к Вителлию, различала в радуге лишь три цвета. Наконец, Мавролик первым начал исследование преломления света в призмах, установив, что при этом получаются те же цвета, что и в радуге. Эта работа Мавролика очень невелика — всего 84 страницы, но это великий труд. Жаль, что она стала доступна лишь через 57 лет после ее написания. 13. ИЗОБРЕТЕНИЕ ПОДЗОРНОЙ ТРУБЫ. Совершенно отличными от этой маленькой, но серьезной книжки Мавролика являются увесистые тома неаполитанца Джован Баггисты Порты (1538? —1615). Серия его трудов начинается с трактата «Magia naturalis sire de miraculis rerum naturalium» («Натуральная магия, или о чудесах вещей естественных») в четырех книгах, опубликованного в 1558 г. и содержащего некоторые новые наблюдения, хотя в целом это чистая компиляция из средневековых книг. В 1589 г. этот трактат был вновь опубликован в 20 книгах. Но от первоначального юношеского произведения остался лишь заголовок, и то не целиком, потому что подзаголовок «или о чудесах вещей естественных» был опущен, должно быть, чтобы избежать неприятностей с инквизицией, которая и так уже доставила автору немало беспокойств. В этом втором издании, несмотря на многочисленные причуды, проявления легковерия и стремление отыскивать всюду любой ценой чудеса, можно заметить более серьезный подход и более выраженное подражание двум энциклопедиям Кардана, упомянутым ранее (§ 9). Из двадцати книг этого трактата нас особенно интересуют сейчас две: седьмая, о которой мы будем говорить ниже, и семнадцатая. .58
Эта последняя книга посвящена «оптическим изображениям» и уже 'во введении обещает чудеса: «И если считалось, что почтенная античность изобрела многие и великие ■вещи, то мы будем говорить о еще более великих, более возвышенных и более славных, и не только о полезных деятелям оптической науки)) *. Но не все здесь было сплошным бахвальством. Даже странно видеть в этом произведении, где все как бы пронизано описанием разных чудес, страницы семнадцатой и седьмой книг, где чувствуется новое слово нового времени. Порта проявил себя опытным экспериментатором в области оптики, •что, кстати, подтверждается и другими источниками. Действительно, в 1580 г. Порта прибыл в Мурано по поручению кардинала д'Эсте, и из его переписки с кардиналом мы узнаем, что он весь день занят со стекольщиками, чтобы сделать линзы и параболическое зеркало. Во время своего пребывания в Мурано он близко подружился с Паоло Сарпи (1552 — 1623), с которым поддерживал затем всю жизнь дружеские отношения и о котором он упоминает в своей «Магии» с большим уважением. В юные годы Паоло посвятил себя естественным и математическим наукам, и в частности оптике, очарованный ее естественнонаучным содержанием и геометрическим подходом. И он не ограничился изучением классиков — Евклида, Птолемея, Альхазена, а производил также самостоятельные исследования, которыми щедро делился со своими многочисленными друзьями-учеными. Имеет смысл остановиться на одном случае, относящемся к рассматриваемому нами периоду. В одном из своих «размышлений», написанных приблизительно в 1578 г., но опубликованных лишь в 1882 г., Сарпи, напоминая, что видимые размеры предмета зависят от угла, под которым он виден, добавляет, что на это влияют также «...очки и другие прозрачные предметы, которые увеличивают или уменьшают предметы, просто увеличивая или уменьшая угол зрения» **. В цитируемой работе Кассани впервые публикует «размышления» Паоло Сарпи о естествознании, взятые из рукописи, хранящейся в Венеции. Теорема об угловом увеличении линз впервые появилась, по-видимому, в брошюре Марко Антонио де Доминиса «De iridisvisus et lucis>> («О радуге зрения и света», Венеция, 1611). Де Доминис был близким другом Паоло Сарпи и известен своим участием в политической и религиозной борьбе той эпохи, вследствие чего он вынужден был провести конец своей жизни узником в Кастель Сан- Анджело. Работа де Доминиса не свидетельствует об особой научной проницательности автора. Кроме упомянутой теоремы, интерес представляет лишь наблюдение того, что радуга обязана отражению света от задней поверхности капелек дождя. Поэтому мы можем легко допустить, что де Доминис узнал теорему об угловом увеличении линз от Сарпи. О других примерах научной щедрости Сарпи мы расскажем в дальнейшем. Но вернемся к Порте, который в своей семнадцатой книге «Магии», как нам кажется, тоже лишь популяризировал результаты Паоло Сарпи как в конкретных вопросах, так и в методологических. Главы I — III этой книги посвящены расположенным под углом плоским зеркалам, имеющим нерегулярную поверхность и позволяющим получать различные оптические иллюзии, которые известны еще со времен Евклида и лежат в основе различных * Io. Baptistae Р о г t a e Neapolitani, Magiae naturalis libri viginti, Francofurti, 1607, p. 572. Первое издание вышло, как мы говорили, в 1589 г. Впоследствии выходили бесчисленные переиздания и переводы на другие языки. ** P. Cass ani, Paolo Sarpi e le scienze natural!, L'Ateneo veneto (6), 1882, p. 308. 59
оптических фокусов. Здесь впервые сформулировано правило, что число изображений, получающихся в двух зеркалах, расположенных под углом, равно уменьшенному на единицу отношению 360° к углу, образуемому зеркалами. В действительности это правило справедливо только при условии, что предмет находится па биссектрисе угла между зеркалами. Глава IV посвящена вогнутым зеркалам. Здесь определяется «точка инверсии», т. е. фокус, и описаны приспособления для достижения удивительных эффектов. Глава V говорит об эффектах, достижимых с помощью комбинации плоских и вогнутых зеркал. В главах VI, VII и VIII описана камера-обскура со всеми чудесами, которые она дарит экспериментатору. После сказанного нами в гл. 2 излишне напоминать, что Порта не был изобретателем камеры-обскуры, как это утверждают иногда и сейчас; нельзя считать также, что он предвосхитил современный фотографический аппарат, только потому, что поместил линзу у отверстия камеры-обскуры; это усовершенствование было введено еще до 1550 г.— о нем сообщает Кардан в своем труде «О тонкости», не приписывая этого открытия себе, а Даниэль Барбаро в книге о перспективе, опубликованной в 1567 г., не только дает описание камеры-обскуры с линзой, но отмечает сферическую аберрацию линз и изобретает способ ослабления этого эффекта, применяемый до сих П0Р,— диафрагмирование линзы, как это называется теперь. Наконец, в 1573 г. Игнатий Данти, переводя и комментируя оптику Евклида, описывает камеру-обскуру и советует применять плоское зеркало для получения прямых изображений. Какие же заслуги остаются в конце концов у Порты? Их остается несколько. О получении прямых изображений с помощью вогнутых зеркал Порта упоминает в «Магии» еще в 1558 г. Ему мы обязаны применением камеры-обскуры для выполнения рисунков. Ему же принадлежит идея применения камеры-обскуры как волшебного фонаря, т. е. для проецирования рисунков, помещенных у отверстия камеры и сильно освещенных солнцем или свечами. Большое научное значение имеет тот факт, что уже в издании 1558 г. Порта пользуется принципом камеры-обскуры для объяснения теории зрения. Действительно, описав опыт, Порта продолжает: «Отсюда философам и медикам становится очевидным, в какой части глаза образуется изображение, а также решается вызвавший столько споров вопрос о проникновении внутрь, и никаким другим рассуждением оба эти вопроса нельзя убедительнее решить. Действительно, маленькое изображение вводится через зрачок, как через окно, а небольшая часть большого шара, находящаяся на дне глаза, играет роль зеркала» *. Можно сказать, что такому приложению камеры-обскуры Порта научился у Леонардо через Кардана, но, во всяком случае, здесь мы имеем первое печатное упоминание об это.м. К сожалению, Порта ни в этом, пи в следующем издании в 1589 г. ничего по говорит о перевертывании изображения на чувствительной части глаза. В главе IX своего труда он рассматривает цилиндрические и пирамидальные зеркала, а следующая, X глава посвящена линзам. В ней приведен комплекс различных весьма интересных экспериментальных и теоретических данных. Далее мы переходим к главе XI с многообещающим заголовком: «О линзах, с помощью которых любой может видеть очень далеко». Речь идет о подзорной трубе — скажет современный читатель и не удивится этому, потому что все предыдущее рассмотрение как будто подводило прямо к подзорной трубе, по крайней мере типа телескопа с параболическим * Magiae naturalis sive dc miraculis rei'um naturalium libri IV, Io. Baptista Porta auctorc, Neapoli, 1558, p. 14i. 60
зеркалом и линзой. Но чтение этой главы, которая в свое время подвергла тяжелому испытанию многие головы, в том числе и самого Кеплера, вызывает разочарование. Изложение абсолютно недоступно пониманию, говорится лонемногу о линзах, о зеркалах, о параболах, о чтении с далекого расстояния. Все это содержится в следующем «Размышлении» Паоло Сарпи: «Одно или несколько зеркал можно приспособить так, что человек увидит, что делается снаружи, и то же самое с очками. Буквы можно читать с расстояния 50 шагов. Я это проверил со сферой и сферической линзой, но лучше с параболой и параболической линзой, и читать можно при далеко стоящем свете» *. И как бы в пояснение этой мысли тот же Сарпи в письме от 6 февраля 1609 г. к синьору Делиль Гросло, в котором он сообщает о появлении подзорной трубы в Венеции, говорит, что он еще с юных лет думал о такой вещи, но, добавляет он, «я не подтвердил и не проверил эту мысль на опыте. Не знаю, может быть, этот мастер осуществил мои мысли, если только сведения не преувеличены, как это обычно бывает со слухами» **. Мы будем, по-видимому, недалеки от истины, если предположим, что в своей знаменитой XI главе семнадцатой книги «Магии» Порта пытался туманно описать телескоп с параболическим зеркалом и увеличивающей линзой, который Паоло собирался построить и в котором Порта по истечении многих лет не смог как следует разобраться. Порта всегда отказывался разъяснять эту главу, ограничиваясь замечанием, что Паоло его понимал. Только после того, как телескоп был использован Галилеем, Порта стал отстаивать свой приоритет, хотя и назвал этот прибор «пустяком». Однако к такому «пустяку» стремились веками, ибо идея эта так же стара, как и само понятие линзы, и возникала почти непроизвольно у каждого, кто пользовался увеличивающей линзой и должен был задаться вопросом, нельзя ли неограниченно повышать способность увеличения. И вот это смешение стремления с осуществлением и заставило многих историков приписывать это изобретение самым различным лицам: Роджеру Бэкону, который хотел построить линзы, позволяющие видеть человека большим, как гора; Леонардо да Винчи, который хотел сделать очки, чтобы видеть Луну большой; Джероламо Фракасторо, который в 1538 г. писал, что если глядеть через двое очков, наложенных одни на другие, то все вещи будут казаться много больше и ближе; Леонардо Диггесу, который в 1571 г. опубликовал книгу, где предлагает комбинировать выпуклые и вогнутые линзы; Паоло Сарпи и, наконец, Джован Баттиста Порте. Гюйгенс (а он-то уж, конечно, разбирался в оптике) писал в своей «Диоптрике», что человек, который смог бы изобрести подзорную трубу, основываясь лишь на теории, без вмешательства случая, должен был бы обладать сверхчеловеческим умом. Оптические теории XVI века не только •не приводили к открытию подзорной трубы, а даже уводили от него. Чтобы убедиться в этом, достаточно просмотреть самый обширный трактат XVI века по теории оптики «De refractione» («О преломлении»), автором которого был не кто иной, как Джован Баттиста Порта. Прошло время, многое изменилось, накоплен жизненный опыт и опыт исследований с разочарованиями в чудесных явлениях, которым он слишком легко верил, были поучительные разговоры с Паоло Сарпи, и вот Порта в трактате «О преломлении» в порыве безмерного восхищения природными явлениями вводит новый научный * Р. С a s s a n i, цит. выше, р. 320. ■** Lettere di Fra Paolo Sarpi, Firenze, 1863, v. I, p. 181. 61
Усовершенствованная камера-обскура, применявшаяся Дж. Б. Портой. (S a v е г i e n, Dictionnaire universel de mathematique et de physique, 1734.) AB — зеркало, наклоненное под углом 45° к горизонту; Е — собирающая линза, проецирующая на бумагу для рисунка изображение внешнего предмета. подход, проявляет критическое мышление, серьезность намерений и методоь которой никак нельзя было ожидать от автора «Магии». Порта, следуя классической теории зрения, настолько не был в состоянии объяснить явления преломления, что создает у читателя впечатление, будто преломление — это обман зрения, иллюзия. Возьмем, например, одно из первых положений пятого предложения первой книги. Порта говорит: «Преломленное изображение приходит в глаз по прямой линии» *, что совершенно непонятно и содержит в себе внутреннее противоречие. Отсюда следует, что Порта не смог фактически объяснить самые простые опыты по преломлению, как, например, опыт с преломлением палочки, который он описывает в первой книге. Еще хуже обстоит дело во второй книге, где в соответствии со злосчастной средневековой традицией проводится исследование преломления в стеклянном шаре, в котором аберрации в сочетании с физико-психологическими факторами, играющими роль при наблюдении, сильно запутывают основное явление. Последующие пять книг были посвящены анатомии глаза и теории зрения, затем в восьмой книге Порта переходит к более интересной теме — к линзам. Здесь много ценных наблюдений, но основное впечатление, которое остается * Io. Baptista Рог t ae Neapolitani, De refractione, optices parte libri novem, Neapoli,, 1593, p. 12. 62
у читателя, это то, что линзам нельзя доверять, они и увеличивают, и уменьшают, и приводят к удвоению предмета, к появлению цветов, которых нет в самом предмете. Нет, линзам верить нельзя. Как же при этих условиях может родиться идея подзорной трубы? И действительно, все документы, которыми мы сейчас располагаем^ указывают, что подзорную трубу создали не ученые, а мастера-ремесленники, мастера по стеклу, точнее, мастера, изготовлявшие очки. В то время это> ремесло настолько распространилось, что превратилось в самостоятельную отрасль промышленности. Но, несмотря на большое число накопленных документов, историки не могут еще с уверенностью сказать, где и когда впервые появилась подзорная труба. Называлось много имен и выдвигалось много гипотез. Точно известно, что в 1604 г. уже многие пользовались подзорной трубой, а если можно верить более позднему документу от 1634 г., то в 1604 г. в Миддель- бурге (Голландия) Захария Янссен построил подзорную трубу по модели, которая, по его словам, прибыла из Италии и на которой было написано: «Год 1590». Если это истинная дата появления подзорной трубы, то изобретение просуществовало незаметно 18 лет, до 1608 г., не привлекая к себе внимания, особенно со стороны ученых. В 1608 г. начинают интересоваться военным применением подзорной трубы, но опять-таки без особого энтузиазма. Весной 1609 г. какие-то сведения об этом приборе попадают в Венецию и доходят до Галилея. И вот через десять месяцев появляется «Sidereus Nun- cius» («Звездный вестник»), возвестивший о приходе новых времен. МАГНЕТИЗМ И ЭЛЕКТРИЧЕСТВО 14. МАГНИТНОЕ СКЛОНЕНИЕ И МАГНИТНОЕ НАКЛОНЕНИЕ. Каждый, кто прочтет сейчас трактат Пьетро Перегрино, восхищающий ясностью и систематичностью изложения, убедится, что автор не компилятор, а искусный экспериментатор. Он пишет не о том, что слышал или читал, а о лично обнаруженных фактах. Поэтому если Перегрино утверждает в главе VII и вновь подтверждает в главе X, что стрелка поворачивается к северному полюсу, то отсюда следует заключить, что именно таким он наблюдал точное положение стрелки. Кроме того, имеются и другие указания, что во времена Перегрино магнитное склонение, т. е. угол между магнитным и географическим меридианами в точке наблюдения, было равно нулю в Италии. Поэтому два примечания, имеющиеся лишь в письме Перегрино, хранящемся в библиотеке Лейденского университета, в которых упоминается о склонении в 5°, следует рассматривать как позднейшие вставки. Так кто же обнаружил магнитное склонение? Этот вопрос остается до сих пор без ответа. До XIX века почти все единодушно считали, что это открытие сделал Христофор Колумб (1436? —1506) во время своего первого путешествия (1492 г.) в Америку. Но в 1905 г. немецкий ученый Волькенауэр показал, что уже в середине XV века в Германии были построены солнечные часы (несколько экземпляров их хранится еще в немецких музеях), на которых указан угол, образуемый магнитной стрелкой с направлением гномона в полдень. Однако этот отдельный факт — единственное свидетельство среди многих рассмотренных — не может заставить историков отказаться от первоначальной версии, приписывающей открытие магнитного склонения Христофору Колумбу, поскольку кажется весьма странным, что это явление было обнаружено в сухопутной стране и не было известно мореплавателям, намного чаще имеющим дело с компасом. 63
Как бы то ни было, хотя первооткрыватель этого явления неизвестен, можно установить время, когда оно стало известным морякам,— начало XVI века. Мореплаватели очень быстро заметили, что магнитное склонение меняется от места к месту. Не зная еще об изменении магнитного склонения во времени [его обнаружение потребовало, естественно, существенно более длительных наблюдений и произведено лишь в 1634 г. Генри Геллибрандом (1597—163G)], они полагали до конца XVIII века, что знание склонения для каждой точки решило бы вторую основную проблему навигации — определение долготы, которую считали связанной со склонением некоторой жесткой зависимостью, так что знание склонения позволило бы найти долготу. Это ложное мнение привело к появлению первой магнитной карты, составленной миссионером Христофором Борри (который родился в Милане, дата рождения неизвестна, умер в Риме в 1632 г.). Он опубликовал в издании «De arte naoigandh («Об искусстве мореплавания») географическую карту, на которой соединил линиями точки, соответствующие, по имевшимся у него данным, одинаковым ^значениям магнитного склонения. Такие магнитные карты распространялись все больше, пока в 1701 г. одну из них не опубликовал английский астроном Эдмонд Галлей, которому обычно и приписывают заслугу в их создании. Явление магнитного наклонения (т. е. тот факт, что намагниченная стрелка, могущая вращаться вокруг горизонтальной оси, располагается северным концом вниз в северном полушарии) требовало для своего обнаружения целого ряда опытов. Действительно, для стрелки, которая могла бы свободно вращаться на вертикальной опоре, угол наклонения неизбежно очень мал, так что это явление легко не заметить. Для плавающей или закрепленной на стерженьке стрелки, а также для плавающего магнитного шара описанное явление не наблюдается. И даже заметив это явление, когда стрелка подвешена на вертикальной опоре, можно легко приписать его несимметрии механической конструкции, из-за которой северный полюс стрелки наклонен вниз. Чтобы обнаружить это явление, нужно изготовить железную стрелку, хорошо уравновесить ее на вертикальной опоре так, чтобы она была горизонтальной, потом намагнитить ее и убедиться, что теперь, будучи помещенной на вертикальную опору, она не остается горизонтальной. Именно такую серию измерений и проделал в 1544 г. Георг Гартман (1489—1564), который впервые описал это явление и нашел угол наклонения равным 9°. Это значение слишком мало именно потому, что применялся прибор, приспособленный для измерения магнитного склонения, а не наклонения. Позже, в 1576 г. англичанин Роберт Норман предложил сделать стрелку свободно вращающейся вокруг горизонтальной оси, создав тем самым первую конструкцию инклинатора. 15. ПЕРВЫЙ ИТАЛЬЯНСКИЙ ТРАКТАТ ПО МАГНЕТИЗМУ. В то время, когда Норман производил свои опыты в Англии, Джован Баттиста Порта лихорадочно работал в Италии над всеми таинственными явлениями, носящими магический характер. А что могло ему казаться более таинственным, чем магнетизм? И понятно, что в поисках таинственного он часто видел одно вместо другого, больше верил, чем экспериментировал, больше фантазировал, чем конструировал. Но даже учитывая все это, следует все же признать, что седьмая книга «Магии», которую мы уже упоминали, является первым итальянским трудом по магнетизму. В ее создании в значительной мере принимал участие Пао- ло Сарпи, как признает сам Порта в предисловии к книге: «Мы знали еВенеции во время занятий этими исследованиями достопочтенного венецианца маэстро Паоло — тогда провинциала, а сейчас достойнейше- 64
го прокуратора ордена, и мы не стыдясь, а с гордостью признаем, что научились от него некоторым вещам, потому что нам еще никогда не приходилось знать более разностороннего, более проницательного человека, являющегося украшением и славой не только Венеции и Италии, по и всего мира». * Седьмая книга «Магии» может быть разделена на три части, если не считать последней главы (LIX), в которой собраны все распространявшиеся в течение многих веков легенды о магических свойствах магнитов. Первая часть содержит экспериментальное описание уже известных магнитных явлений. Во второй части критикуются и отвергаются прежние ошибочные взгляды, причем уже дает себя знать дух независимости и даже нетерпимости к господству авторитетов. Третья часть, наиболее интересная, представляет собой оригинальный вклад в науку о магнетизме. Новым является здесь следующий прекрасный эксперимент. Помести металлические опилки в пакет и затем приблизь к ним магнит. Опилки приобретут магнитные свойства, как если бы это был цельный кусок железа. Теперь высыпь опилки и размешай их, а потом опять помести их в пакет; сила будет в них подавлена и рассеяна. Этот опыт, повторенный Гримальди в следующем столетии, позволил выдвинуть гениальную теорию, послужившую фундаментом теории Юинга, созданной в конце прошлого века. Порте мы обязаны также опытом с железными опилками, образующими «бороду» у магнитных полюсов, что следует рассматривать как первое наблюдение магнитного поля. Упомянем еще два крупных достоверных открытия: использование железной пластины как магнитного экрана (глава XVI) и опытное обнаружение исчезновения магнитных свойств при нагреве магнита до высокой температуры (эффект Кюри, как мы бы сказали сейчас). 16. УИЛЬЯМ ГИЛЬБЕРТ. О том, какое место занимает англичанин Уильям Гильберт в истории магнетизма, было много споров, возможно, отчасти из-за общих условий, в которых находилась в то время Англия. Гильберт родился в Колчестере в 1544 г., умер в Лондоне в 1603 г. Во время своих юношеских путешествий он побывал в Италии, где познакомился с Паоло Сарпи и беседовал с ним о магнетизме. Не только на философию, но даже на стиль Френсиса Бэкона (1561—1626) сильно повлиял главный труд Гильберта «О магните...». Этот труд начинается гневной филиппикой против философов того времени: «...зачем мне, повторяю, вносить кое-что новое в эту пребывающую в таком смятении республику наук и отдавать эту славную и (ввиду множества заключающихся в ней неведомых до сего времени истин) как бы новую и поразительную философию на осуждение и растерзание злоречием либо тем, кто поклялся соблюдать верность чужим мнениям, либо нелепейшим исказителям добрых наук, невежественным ученым, грамматикам, софистам, крикунам и сумасбродной черни! Я, однако, препоручаю эти основания науки о магните — новый род философии — только вам, истинные философы, благородные мужи, ищущие знания не только в книгах, но и в самих вещах» **. Этот новый род философии состоял в поисках знаний не только в книгах, но и в самих вещах, с помощью тщательного, терпеливого их исследования. И тщательное исследование действительно является большой заслугой * Magiae naturalis..., Io. Baptista Porta auctore, Neapoli, 1558. ** W. G il berti, De magnete, magneticisque corporibus et de magno magnete tellure physiologia nova, Londini, 1600. (Есть русский перевод: В. Гильберт, О магните, магнитных телах и о большом магните — Земле, М., 1956.) •1 Марио Льоцци 65
Гильберта, описавшего свыше 600 опытов, которые привели его к формированию концепции большого научного и философского значения. Исходя из идей Перегрино, Гильберт изготовил магнит сферической формы, «маленькую Землю». Затем, обходя с помощью небольшой намагниченной стрелки поверхность шара, он исследовал магнитные свойства своего шара и нашел, что они соответствуют магнитным свойствам Земли — большого магнита. Итак, заключает он, с точки зрения магнитного действия Земля отличается от этого шара лишь своими размерами. Значение этого вывода, о котором Галилей сказал, что он «достоин удивления», далеко выходит за пределы чистой техники. Здесь впервые человек осмеливается сопоставлять явление, полученное в стенах лаборатории, с явлением космического порядка. Тем самым наносился тяжелейший удар тысячелетнему мифу, противопоставлявшему подлунный мир миру небесному, поскольку концепция Гильберта в конечном счете означала, что явления космоса следует изучать теми же методами, которые пригодны для изучения обыденных явлений. Помимо упомянутой замечательной концепции и собственной переработки всего комплекса знаний о магнитных явлениях, накопленного за прошедшие века, в трудах Гильберта имеется еще несколько новых экспериментальных фактов, например такой: железная проволока, натянутая по магнитному меридиану, после ковки и вытяжки приобретает магнитные свойства; сила магнита значительно увеличивается при тщательной обработке поверхности. Этот способ был далеко превзойден Галилеем, который для удобства работы ввел применение сердечника — якоря, а также само слово «якорь». Правда, пытаясь дать теорию магнетизма, Гильберт после долгих и неясных рассуждений пришел к выводу, что ему не представляется «совершенно абсурдным мнение Фалеса, приписывавшего магниту душу»*. Однако возвращаться к Фалесу было поздновато! 17. РОЖДЕНИЕ НАУКИ ОБ ЭЛЕКТРИЧЕСТВЕ. Гильберту мы обязаны зарождением науки об электричестве, остававшейся до 1600 г. практически на уровне знаний Фалеса, когда было известно лишь, что натертый янтарь — а может быть, еще некое неведомое вещество, называемое «линкурием»,— притягивает соломинки. Трудно поверить, что такое универсальное свойство приписывалось в течение многих столетий только янтарю. Одна из главных причин, пожалуй, заключается в том, что электризация трением других тел настолько слаба, что эффект ускользает, если нет чувствительных приспособлений, позволяющих специально его выделить. Говоря современным языком, нужно было преодолеть порог явления. Возможно, это предвидел знаменитый поэт и ученый Джероламо Фракасторо (1483—1553), который в 1550 г. в книге «De sympathia et antipathia rerum» («О симпатии и антипатии вещей») описывает прибор, состоящий из стерженька, подвешенного в одной точке наподобие магнитной стрелки. С помощью такого прибора Фракасторо устанавливает, что янтарь притягивает не только соломинки, но и серебро. Но если Фракасторо не пошел дальше в своем экспериментальном исследовании, то Гильберт, поняв, какую помощь мог бы ему оказать прибор Фракасторо, тотчас сам изготовил его, назвал его версором и систематически применял в своих исследованиях, описанных в гл. II книги II «О магнитах». С помощью этого первого электроскопа Гильберт показал, что притягивает не только натертый янтарь, но и алмаз, сапфир, карбункул, опал, аметист, берилл, горный хрусталь, стекло, сланцы, сера, сургуч, каменная соль, * Там же, р. 68. 66
квасцы. Все эти тела он назвал «электрическими телами». Абстрактное понятие «электричество» появилось в 1650 г. Гильберт установил также, что каждое из этих тел притягивает не только соломинки и щепочки, но и все «металлы, дерево, листья, камни, комки земли и даже воду и масло» *. Гильберт полагал, что другие тела не притягиваются подобно металлам, многим сортам дерева и камня. Он заметил также, что пламя уничтожает свойство притягивания, приобретаемое при трении. После столь обильной экспериментальной жатвы Гильберт попытался построить теорию притяжения электрических тел. Он отбросил оба объяснения, дававшиеся в XVI веке притяжению янтарем. Одно предполагало, что теплота обладает свойством притягивать и янтарь притягивает именно потому, что нагревается от трения. Но уже Бенедетти показал, что теплота обладает свойством разрежать или конденсировать, а отнюдь не притягивать. Гильберт повторяет рассуждение Бенедетти, добавляя, что если бы теплота обладала свойством притягивать, то притягивали бы все нагретые тела, а не только янтарь. Другая теория была весьма древнего происхождения, так как восходила еще к Лукрецию. Согласно этой теории, истечения от натертого янтаря вызывают разрежение воздуха, так что соломинки вталкиваются более плотным воздухом в частичный вакуум, образуемый этими истечениями. Однако, если бы было так, замечает английский ученый, горячие тела и пламя тоже должны были бы притягивать, а наэлектризованное тело должно было бы притягивать пламя находящейся поблизости свечи, но оно не только не притягивает его, а даже теряет свою силу в присутствии пламени. Критика Гильберта, безусловно, правильна, но выдвигаемая им теория представляется не более правдоподобной, чем отвергаемые. Согласно Гильберту, все тела берут начало только от двух первичных элементов — воды и земли. Те, которые берут начало от воды, обладают свойством притягивать, потому что из воды исходят особые истечения, которые «подобно распростертым рукам» хватают тело и несут его к источнику истечения. И, проникнув в него и как бы зацепив его, они удерживают это тело, пока не ослабеют и, обессилев, не отпустят жертву. В таком духе рассматриваются и другие случаи. Нельзя сказать, чтобы теория Гильберта была лучше теорий Кардана или Порты. Подчеркивая различие между магнитным и электрическим притяжением (оно было замечено еще Карданом, тогда как раньше оба эти явления считались одной природы), Гильберт заметил еще один важный факт: влажные тела трудно поддаются электризации трением, тогда как на притяжении магнитов влажность не сказывается. Не останавливаясь на других характерных различиях электрических и магнитных явлений, заметим в заключение, что наука об электричестве, сводившаяся раньше к единственному забавному факту, была благодаря Гильберту обогащена многочисленными новыми явлениями, точными наблюдениями, инструментальной техникой, которая сама по себе есть новый этап в науке. Уильям Гильберт вполне заслуживает титула «отца науки об электричестве». * Там же, р. 68. R*
ГЛАВА 4 . ГАЛИЛЕО ГАЛИЛЕЙ ПИЗАНСКИЙ ПЕРИОД 1. ИЗОХРОНИЗМ КОЛЕБАНИЙ МАЯТНИКА. Галилео Галилей родился 15 февраля 1564 г. в Пизе, а умер 3 января 1642 г. в Арчетри. В 1581 г. из Флоренции, куда переехал его отец, он вернулся в Пизу для обучения медицине. В «Исторических повествованиях о жизни синьора Галилея, члена Академии деи Линчей, благородного флорентийца» (XIX, 597—632) * Винченцо Вивиани (1622 —1703), ученик Галилея, который провел со своим учителем два последних года его жизни, рассказывает, что- в 1583 г. Галилей, наблюдая раскачивание лампады в Пизанском соборе, открыл закон постоянства периода качания маятника, причем, как советовал Кардан, время он измерял по биению собственного пульса. Это сообщение Вивиани многие считают легендой. (Действительно, весь рассказ Вивиани о юношеских годах Галилея имеет несколько легендарную окраску.) Тем не менее Вивиани наверняка узнал об этом из собственных уст Галилея, и, если отбросить возможные приукрашивания, сущность рассказа Вивиани представляется истинной, потому что закон изохронизма рассматривается Галилеем и в «Диалоге о двух главнейших системах мира» и в «Беседах и математических доказательствах, касающихся двух новых наук». В последнем произведении один из участников диалога, Сальвиати, который представляет самого Галилея, действительно вспоминает о колебаниях лампады: «Я тысячи раз наблюдал за колебаниями, в частности колебаниями подвешенной в церкви на длинном подвесе лампады, которую кто-нибудь нечаянно толкнул» (VIII, 140). 2. ПЕРВЫЕ АНТИАРИСТОТЕЛЕВЫ РАБОТЫ ГАЛИЛЕЯ. По представлению Гвидо Убальдо дель Монте Галилей в 1589 г. был назначен профессором в Пизанский университет, и сразу же проявляет независимость своего мышления. Следы первых его исследований, которые, возможно, он излагал с кафедры, можно видеть в его трактате «De motu» («О движении»), написанном приблизительно в 1590 г., и в написанном по-латыни диалоге между Александром и Домиником. Галилей опровергал утверждение, что тела обладают присущим им свойством легкости, замечая, что если средой, в которой движутся тела, является не воздух, а вода, то некоторые тела, как, например, дерево, которые считаются тяжелыми, становятся легкими, потому что движутся вверх. Значит, все тела являются тяжелыми, а движутся ли они вверх или вниз, зависит от их удельного веса по отношению к окружающей среде. Так же неверно, что скорость движущегося предмета в менее плотной среде больше, чем в более плотной: тонкий надутый пузырь медленно опускается в воздухе и быстро поднимается в воде. Поэтому если уж так говорить, то следует принимать во внимание направление движения. Таким образом, лишен основания аристотелев аргумент против существования пустоты. В равной мере несостоятельна и теория движения, * Здесь и далее в соответствии с установившейся традицией так будет цитироваться национальное издание трудов Галилео Галилея (Le opere di Galileo Galilei, Edizione Nazio- nale, v. I — XX, Firenze. 1929 —1939). Первое число указывает том, второе — страницы. (Основные работы Галилея переведены на русский язык; см. Галилео Галилей, Избранные труды, т. I, И, М., 1964; сюда вошли, в частности, «Диалог о двух системах мира», «Беседы и математические доказательства», «О телах, пребывающих в воде», «Звездный вестник».—Прим. перев.) 68
Галилео Галилей. Портрет работы Сустерманса (Флоренция, Галлерея У фици). поддерживаемого воздухом. Галилей приводит пример, который раньше рассматривал Иоанн Буридан,— пример сферы, вращающейся вокруг одного из своих диаметров, где уже никак не понятно, как ее может подталкивать воздух. Рассуждение Джована Баттиста Бенедетти (гл. 3) показывает нелепость утверждения, что скорость падающих тяжелых тел пропорциональна их весу. Противоречие исчезает, если предположить, что скорость падающих тел одна и та же для всех тел независимо от их веса. Это свойство было подтверждено Галилеем в опытах на Пизанской башне, проведенных им, согласно Вивиани, с большой торжественностью в присутствии ■его коллег — последователей Аристотеля — и учеников. Эти опыты, относящиеся, надо полагать, еще к 1590 г., тоже ставятся сейчас некоторыми исследователями под сомнение. Можно, конечно, допустить у Вивиани некоторые преувеличения и ошибки в датах, поскольку он писал свое «Повествование» спустя тринадцать лет после смерти Галилея, но нет никаких серьезных оснований сомневаться в правдивости приведенных фактов. Во многих местах своего трактата «О движении» Галилей говорит об опыте ex alta turri («с высокой башни»). Говорится далее об эксперименте, до результатов которого Галилей «дошел разумом», как сказано в том же «Примечании», которое цитировалось в гл. 3. Наконец, еще при жизни Галилея стали почти традиционными опыты с падением тяжелых тел с высоких башен. Их повторяли Джован Баттиста Бальяни — с верхушки Рокка ди Савона в 1611 г., Винченцо Раньери, бывший ученик Галилея в Пизе,— с колокольни в Пизе в 1641 г., Джован Баттиста Риччоли и Никола Кабео — с колокольни церкви в Ферраре; один Риччоли в присутствии Фран- ческо Мария Гримальди — с башни Азкнелли в Болонье в 1640, 1645 и 1648 гг. Отсюда можно заключить, что сомнения современных критиков в истинности пизанских опытов Галилея представляются необоснованными. К пизанскому периоду относятся изобретение биланчетты («маленькие весы»), т. е. гидравлических весов для измерения плотности твердых тел. и исследование центров тяжести, которое принесло Галилею славу опытного геометра. Все это, а также талантливые публикации вызывали все более недоброжелательное отношение к Галилею— обстоятельство, которое наряду с ухудшением материального положения семьи заставило его искать себе более удобного места. 69
ПАДУАНСКИЙ ПЕРИОД 3. МЕХАНИКА. В 1592 г. Галилей, опять-таки через Гвидо Убальдо дель Монте, получил место профессора математики в Падуанском университете. Он пробыл там 18 лет, и это были наиболее продуктивные и спокойные годы его бурной жизни. Падуанский университет делился тогда на два отделения — «юридическое» и «артистическое». Последнее, к которому и принадлежал Галилей, охватывало теологов, философов и медиков. Большинство слушателей Галилея состояло из обучающихся медицине; изучив начала геометрии, они переходили к изучению астрономии, необходимой для того, чтобы приступить к астрологии — предмету, который каждый уважающий себя медик должен был знать (или хотя бы делать вид, что знает). Из немногих университетских записей, дошедших до нас, мы знаем, что публичные лекции Галилея основывались на «Элементах» Евклида, «Сфере» Сакробоско, «Альмагесте» Птолемея и «Механике» Аристотеля. Эти лекции он читал в 1597—1598 учебном году. Название их было традиционным, но весьма вероятно, что лектор излагал с кафедры результаты своих пизан- ских исследований и новые соображения, в процессе чтения приходившие ему в голову. В этот период был составлен, возможно с помощью учеников, трактат «О механической науке и о пользе, которую можно извлечь из механических инструментов», который ходил в рукописи и был опубликован впервые в 1634 г. в переводе Мерсенна на французский язык под названием «Механика». В трактате излагается теория простых механизмов. Не зная еще закона разложения сил, Галилей рассматривает сначала рычаг, доказывая теорему моментов, затем сводит к рычагу клин, к клину — наклонную плоскость, а к наклонной плоскости — винт. В этой небольшой работе, превосходящей все предыдущие по краткости, ясности и элегантности изложения, мы находим явную и конкретную, хотя и не общую, формулировку одного из наиболее плодотворных современных принципов — принципа виртуальных работ, намеки на который, как мы уже говорили в гл. 1, при некотором желании можно найти и у предшествующих авторов. Не останавливаясь на астрономических исследованиях Галилея, добавим, что к падуанскому периоду, несомненно, относятся его рукописи об изохронизме колебаний маятника, исследование магнитов (см. гл. 3) и открытие законов движения, о котором мы будем говорить позднее. 4. ОПЫТ С ТЕРМОСКОПОМ. Особого упоминания заслуживает опыт Галилея с термоскопом, который также относится к падуанскому периоду, примерно к 1597 г. Эксперимент важен не тем, что послужил поводом для последующих дискуссий о приоритете в изобретении термометра, а из-за нового антиаристотелева образа мышления, проявляющегося и в замысле и в осуществлении опыта. Опыт заключается в следующем. Руками согревают колбу размером с яйцо; колба имеет длинное и тонкое, как пшеничный стебель, горлышко, опущенное в чашу с водой. Если убрать руки с колбы, то вода из чаши по мере остывания сосуда начнет подниматься в горлышко. Бене- детто Кастелли, бывший ученик Галилея, пишет в 1638 г.: «Этот эффект вышеупомянутый синьор Галилей использовал для изготовления инструмента для определения степени жары и холода». Ни одному перипатетику * и в голову бы не пришла возможность измерения степени тепла и холода, потому что, согласно их учению, холод и тепло — это различные свойства, перемешанные в материи. Галилей же учил, а позже * Последователь Аристотеля.— Прим. перев. 70
Схема термоскопического опыта Галилея. (Le ореге di Galileo Galilei, v. XVII.) (в 1623 г.) и прямо написал в «Saggiatore» («Пробирщик»), что холод не является положительным качеством, а есть лишь отсутствие тепла, холод пребывает не в материи, а в чувствительном теле. 5. ПЕРВИЧНЫЕ И ВТОРИЧНЫЕ СВОЙСТВА. Разделение свойств на первичные и вторичные (как их называл Локк), за которое некоторые критики упрекают Галилея, считая, что это послужило основанием для философского дуализма, есть характерная особенность галилеевой физики. На такой же позиции стоял Демокрит, исходивший из релятивизма Протагора (примерно 480—410 гг. до н. э.). Хорошо известен отрывок из «Пробирщика», где Галилей воспроизводит соображения Демокрита. Целесообразно все же привести его еще раз: «...я вполне понимаю, что, как только я представляю что-нибудь телесное, материальное, я должен вместе с тем понимать, что оно ограничено, имеет ту или иную форму, большое или малое по отношению к другим вещам, находится в том или ином месте, в тот или в иной момент времени, движется или неподвижно, касается или не касается другого тела, существует в единственном теле, в нескольких или во многих, и никакое воображение не может оторвать вещь от этих условий. Но то, что она должна быть белой или красной, горькой или сладкой, звучащей или немой, дурно или хорошо пахнущей,— не понимаю, почему я должен заставить себя считать, что вещи должны обязательно сопутствовать эти характеристики. Наоборот, если бы чувства не служили нам проводниками ощущений, возможно, не возникло бы и разговора, и даже самого представления о них. Поэтому я думаю, что все эти вкусы, запахи, цвета и т. д. с точки зрения предмета, в котором, казалось бы, они пребывают, суть не что иное, как одни лишь наименования; местом их пребывания является лишь ощущающее тело, так что если убрать ощущающее животное, то будут устранены и уничтожены все эти свойства. Потому мы хотели бы верить, что, так же как этим свойствам присвоены названия, отличные от названий других, первичных и реальных явлений, так же и в действительности они от них отличны» (VI, 347—348). Чтобы еще лучше пояснить сказанное, Галилей переходит вскоре к примерам осязательных ощущений, которые заключены в нас, а не в телах, к которым мы прикасаемся, затем к запаху, вкусу, звуку, «которые, я думаю, вне живого существа не больше чем наименования». Наконец, «тепло», т. е. то, что мы теперь называем температурой, является для Галилея чувственным признаком: 71
«...я весьма склонен думать, что тепло носит такой же характер и что те вещества, которые заставляют нас чувствовать тепло и которые мы называем общим именем «пламя», представляют собой множество мелких частиц той или иной формы, движущихся с той или иной скоростью, которые, встречаясь с нашим телом, проникают в него с величайшим проворством; их прикосновение, осуществляемое при прохождении в нашу ткань и ощущаемое нами, и есть то воздействие, которое мы называем теплом, приятным или неприятным в зависимости от величины и большей или меньшей скорости этих малых частиц, которые колют и пронизывают нас» (VI, 351). Здесь еще нет кинетической теории тепла, поскольку галилеевские минимальные тельца—это частицы огня, а не материальные молекулы. И все же это был первый шаг к кинетической теории, утвердившейся в следующем столетии. 6. ВТОРИЧНОЕ ИЗОБРЕТЕНИЕ ПОДЗОРНОЙ ТРУБЫ. В конце 1608 или начале 1609 г. в Венеции распространились слухи о том, что какой-то «иностранец» изобрел подзорную трубу. Через несколько месяцев появились первые образцы труб, которые можно было уже купить «за несколько сольдо». Галилей, который в то время был в Венеции, узнал о них из Парижа от одного бывшего своего ученика, обсуждал это со своими венецианскими друзьями и, возможно, хотя он этого нигде не упоминает, даже имел экземпляр такой трубы. Но в то время в области оптики Галилей имел более чем скромную подготовку, ограниченную классическими представлениями, хотя в письме от 24 августа 1609 г., в котором он представлял подзорную трубу дожу Леонардо Донато, он подчеркивал, что «извлек ее из наиболее сокровенных соображений о перспективе». Однако эта некомпетентность дала Галилею то преимущество, что он был лишен недоверия к этому инструменту, недоверия, характерного для специалистов, хорошо знавших, сколько можно увидеть с помощью линз таких вещей, которых в действительности не существует. Даже теперь при столь совершенных инструментах и столь опытных экспериментаторах иной раз можно увидеть с помощью оптических приборов вещи, которых нет в действительности, «призраки», как их называют иногда специалисты. В первую неделю июля 1609 г. Галилей собственными руками построил себе первую подзорную трубу, как он сам рассказывает в хорошо известном месте из «Пробирщика», где вспоминает, как он узнал о существовании этого инструмента, сообщает о внесенных им улучшениях и достигнутых успехах, а затем продолжает, показывая, какие рассуждения привели его к вторичному открытию подзорной трубы: «Я рассуждал так. Это приспособление состоит либо из одного стекла, либо из нескольких. Из одного оно не может состоять, потому что тогда оно должно быть либо выпуклым, т. е. посредине толще, чем по краям, либо вогнутым, более тонким посредине, либо ограниченным параллельными поверхностями. В последнем случае стекло совсем не меняет видимых объектов, ни увеличивая, ни уменьшая; вогнутое стекло уменьшает предметы, а выпуклое их заметно увеличивает, но они кажутся нечеткими и искаженными. Значит, одного-единственного стекла недостаточно для получения эффекта. Тогда, переходя к двум стеклам и зная, что стекло с параллельными поверхностями ничего не меняет, как уже было сказано, я заключил, что эффект не может быть достигнут и при сочетании плоского стекла с неплоским. Поэтому я ограничился решением проверить на опыте, что даст сочетание двух неплос- 72
ких стекол, т. е. выпуклого и вогнутого, и увидел, что это позволило мне получить желаемое» (VI, 259). Где же здесь «наиболее сокровенные соображения о перспективе»? Просто — талант человека, верящего в возможность увеличения остроты наших чувств с помощью приспособлений, весьма искусного в ручном труде и удачно оказавшегося вблизи центра стекольной промышленности. Все эти обстоятельства позволили ему быстро усовершенствовать подзорную трубу, о чем он убедительно рассказывает в «Звездном вестнике»: «Сначала я сделал себе свинцовую трубу, по концам которой приспособил два оптических стекла, оба с одной стороны плоские, а с другой первое было сферически выпуклым, второе — вогнутым; приблизив затем глаз к вогнутому стеклу, я увидел предметы достаточно большими и близкими; они казались втрое ближе и в девять раз больше, чем при наблюдении их простым глазом. После этого я изготовил другой прибор, более совершенный, который представлял предметы увеличенными более чем в шестьдесят раз. Наконец, не щадя ни труда, ни издержек, я дошел до того, что построил себе прибор до такой степени превосходный, что при его помощи предметы казались почти в тысячу раз больше и более чем в тридцать раз ближе, чем при наблюдении простым глазом» (III, 60—61). Здесь отражается основная заслуга Галилея во введении в употребление подзорной трубы — терпеливые эксперименты с трубой, постепенное ее усовершенствование, которое достигалось Галилеем за счет точной обработки поверхностей линз, чему он научился при посещении стекольных мастерских своего друга Джироламо Маганьяти в Мурано. Успех подзорной трубы был порожден твердой верой в нее Галилея, все более увеличивавшейся и усиливавшейся по мере постепенного усовершенствования им этого прибора, в достоверности показаний которого он убедился по многочисленным контрольным опытам при наблюдении земных объектов в самых разнообразных условиях. Подзорная труба прожила лет двадцать в полной безвестности. Но побыв всего 10 месяцев, а то и меньше в руках Галилея, она превратилась в главное действующее лицо науки нового времени. Галилей вполне мог называть ее «своим детищем». Обратив трубу к небу, совершив памятные астрономические открытия, на которых мы здесь не будем останавливаться, Галилей спешит 30 января в Венецию, чтобы опубликовать небольшую работу, оповещающую ученый мир о новых открытиях. Эта работа, «Sidereus nuncius» («Звездный вестник»), вышла 12 марта 1610 г. ГАЛИЛЕЙ В АРЧЕТРИ 7. АЭРОСТАТИКА. Громкая слава, которую принес Галилею его «Звездный вестник», позволила ему получить должность первого математика Пизанского университета без обязательства жить там и читать лекции. Поэтому Галилей поселился в Арчетри близ Флоренции. Там он продолжал свои астрономические наблюдения и физические исследования, о которых сказано в его первой работе 1612 г. «Discorso intorno alle cose che stanno in su I'acqua о che in quella si muovono» («Рассуждение о телах, пребывающих в воде, и о тех, которые в ней движутся»). Эти «Рассуждения» направлены против некоторых перипатетиков, полагавших, что от формы тел зависит их способность плавать или тонуть; в них возрождается античная теория Архимеда, выхолощенная в процессе схоластических изысканий. К этой теории в некотором 73-
смысле примыкают опыты Галилея по определению веса воздуха, проведенные примерно в 1612 г. Аристотель в одном из отрывков из трактата «De coelo» («О небе») прямо говорит о весе воздуха. Но Симплиций, комментатор Аристотеля, счел нужным исправить его. Перипатетики приняли поправку Симплиция и в течение веков учили, что «чистый» воздух веса не имеет. А Галилей тремя различными способами показал, что воздух имеет вес. В первом, качественном эксперименте Галилей, достигнув термическим путем разрежения воздуха в колбе с длинным горлышком, тщательно закрытым пробкой, убедился, что если пустить этот сосуд плавать в воде, то он погружается меньше, чем в том случае, когда воздух не был разрежен. Мер- сенн модифицировал этот опыт, поставив его в том виде, в каком он и сейчас демонстрируется в средней школе. Он установил уменьшение веса сильно нагретого баллона или, как сейчас делают, баллона, из которого выкачан воздух. Два других, количественных метода Галилея состояли в нагнетании во флягу с помощью насоса избыточного воздуха, помимо обычно находящегося в ней, и в установлении увеличения веса фляги. С помощью остроумных уловок Галилею удалось измерить объем воздуха, нагнетенного во флягу, а отсюда определить отношение удельного веса воздуха к удельному весу воды. Он получил значение 1 : 400. Какой-то критик нашел это значение чересчур большим и пришел к выводу, что экспериментальное искусство Галилея было невелико. Нам же эта точность представляется замечательной, если учесть, какими средствами располагал тогда Галилей. Чтобы подтвердить наше мнение, достаточно, исходя из полученного сейчас отношения 1 : 773, сопоставить значение, полученное Галилеем, с данными последующих экспериментов: Мерсенн, •столь восхваляемый за это Дюэмом, дает два значения, 1 : 255 и 1 : 1870, Декарт дает 1 : 145, Академия опытов 1 : 1438, а Джован Баттиста Борелли 1 : 1179. Более точное, чем у Галилея, значение этого отношения было получено лишь Бойлем, который нашел его равным 1 : 938. Но Бойль ставил этот опыт в 1661 г., почти через полстолетия после Галилея, и откачивал воздух из сосуда уже пневматическим насосом — что ж тут сравнивать! 8. О ГЛАВНЕЙШИХ СИСТЕМАХ МИРА. В 1632 г. во Флоренции вышел знаменитый труд Галилея «Dialogo di Galileo Galilei Linceo... sopra i due massimi sistemi del mondo Tolemaico e Copernicano» («Диалог о двух главнейших системах мира — птолемеевой и коперниковой») . Это произведение состоит из четырех диалогов, каждый из которых считается происходившим в течение одного дня. Собеседниками являются флорентиец Филиппо Сальвиати (1582 —1614), близкий друг и, возможно, ученик Галилея, венецианец Джован Франческо Сагредо (1571—1620), тоже друг Галилея, и Симпличио — персонаж вымышленный. Сальвиати представляет самого Галилея, Симпличио защищает философию перипатетиков, а Сагредо представляет просвещенного человека со здравым смыслом, который должен выбирать между обеими философиями. «День первый» посвящен главным образом опровержению учения о неизменяемости и нетленности небесного мира. Новые звезды и солнечные пятна, согласно Галилею, позволяют утверждать, что небесные тела изменчивы и не вечны. Симпличио повторяет доводы перипатетиков о том, что солнечные пятна в действительности находятся не на Солнце, а представляют ■собой затемнения, обусловленные непрозрачными телами, образующимися вокруг Солнца. 74
С другой стороны, гористая структура поверхности Луны показывает, что физическое строение нашего спутника, а, следовательно, по аналогии и всех небесных тел, такое же, как и строение Земли. Но Симпличио отрицает гористость Луны, утверждая, что тени возникают потому, что разные части Луны светятся по-разному. D. ПРИНЦИП ИНЕРЦИИ. «День второй» посвящен в основном обсуждению вопроса о движении Земли. Здесь Галилей, чтобы ответить на возражения, которые, начиная с Птолемея, выдвигались против движения Земли, закладывает два краеугольных камня современной динамики: принцип инерции и классический принцип относительности. Принцип инерции, который, как мы уже говорили, кажется противоречащим повседневному опыту, устанавливается Галилеем с помощью рассуждения, напоминающего доказательство от противного в математике: наклон плоскости по отношению к горизонту является причиной ускоренного движения тела, движущегося вниз, п замедленного движения тела, движущегося вверх; если же тело движется по неограниченной горизонтальной плоскости, то, не имея причины ускоряться или замедляться, оно совершает равномерное движение. Принцип инерции имеет длиннейшую историю, что видно из сказанного нами ранее. Однако никто раньше не формулировал его с такой ясностью. Верно, как замечают многие критики, что Галилей не дал общей формулировки этого принципа (в первый раз она встречается в напечатанной в 1635 г. небольшой работе Джузеппе Балло), но тот факт, что Галилей всегда точно применял его, показывает, что он понимал его во всей его общности. 10. ПРИНЦИП ОТНОСИТЕЛЬНОСТИ. Возражения перипатетиков против движения Земли, производившие большое впечатление на широкую публику, были основаны на том, что все механические явления на поверхности Земли происходят так, как если бы Земля была неподвижна. Летящие птицы не отстают от находящейся под ними Земли, как должно было бы быть при ее вращении. Дальность стрельбы орудий на запад не больше, чем на восток. Тяжелые тела падают по вертикали, а не наклонно, и т. д. На всю эту критику Галилей отвечает классическим принципом относительности: «Уединитесь с кем-либо из друзей в просторное помещение под палубой какого-нибудь корабля, запаситесь мухами, бабочками и другими подобными мелкими летающими насекомыми; пусть будет у вас там также большой сосуд с водой и плавающими в нем маленькими рыбками; подвесьте, далее, наверху ведерко, из которого вода будет капать капля за каплей в другой сосуд с узким горлышком, подставленный внизу. Пока корабль стоит неподвижно, наблюдайте прилежно, как мелкие летающие животные с одной и той же скоростью движутся во все стороны помещения; рыбы, как вы увидите, будут плавать безразлично во всех направлениях; все падающие капли попадут в подставленный сосуд, и вам, бросая другу какой-нибудь предмет, не придется бросать его с большей силой в одну сторону, чем в другую, если расстояния будут одни и те же; и если вы будете прыгать сразу двумя ногами, то сделаете прыжок на одинаковое расстояние в любом направлении. Прилежно наблюдайте все это, хотя у нас не возникает никакого сомнения в том, что, пока корабль стоит неподвижно, все должно происходить именно так. Заставьте теперь корабль двигаться с любой скоростью и тогда (если только движение будет равномерным и без качки в ту и другую сторону) во всех названных явлениях вы не обнаружите ни малейшего изменения и ни по одному из них не сможете установить, движется ли корабль или стоит неподвижно... И причина согласованности всех этих явлений в том, что движение корабля обще всем находящимся в нем предметам, так же как и воздуху; поэтому-то я и сказал, что вы должны находиться под палубой..л (VII, 212—213). 75
DIAL O G О D I GALILEO GALILEI LINCEO MATEMATICO SOPRAORDINARIO DELLO STVDIO DI PISA. E Ftlofofo, с Matonatico primarb del SERENISS1MO GJLDVCA DI TOSCANA- Doue ne i congreffi di quattro giornate й difcorre fopra i due MASSIMI SISTEMf DEL MONDO Т01.Е\ШСО, Е COPJ7RNICANO; гРг>'рул{тЫс' iruhttrminalamtHU Is ragioni pihfojichc, с Naturali tantoj'zr 1'ъта z qvanloper I'altra parte . CON PRI ЩЖШСЩХ VILEGI IN FIORENZA, PerGioiBatiflaLandini MDCXXXII. CON LICENZA DE' SVPERJORI. Титульный лист первого издания «Диалога». Содержание этого отрывка теперь формулируют короче, говоря, что механические явления в какой-либо системе происходят одинаково независимо от того, неподвижна ли система или совершает равномерное и прямолинейное движение, или, иначе, механические явления происходят одинаково в двух системах, движущихся равномерно и прямолинейно относительно друг друга. Аналитически переход от законов движения, выраженных в одной системе, к законам, выраженным в другой системе, совершается с помощью простейших формул, которые в своей совокупности называются преобразованиями Галилея. Следовательно, принцип относительности означает инвариантность законов механики по отношению к преобразованиям Галилея. И. ГОДИЧНОЕ ДВИЖЕНИЕ ЗЕМЛИ. «День третий» начинается продолжительной дискуссией о новой звезде 1604 г. Затем разговор переходит на главную тему о годичном движении Земли. Наблюдение движения планет, фаз Венеры, спутников Юпитера, солнечных пятен — все эти аргументы позволяют Галилею устами Сальвиати показать, с одной стороны, несоответствие учения Аристотеля данным астрономических наблюдений, с другой — возможность гелиоцентрической системы мира и с геометрической и с динамической точки зрения. Предметом «Дня четвертого» выбраны морские приливы и отливы, которые Галилей ошибочно считал неопровержимым доказательством дви- 76
жения Земли. Представим себе, говорит Галилей, лодку, доставляющую пресную воду в Венецию. Если скорость этой лодки меняется, то содержащаяся в ней вода устремляется по инерции к корме или к носу, поднимаясь там. Земля подобна этой лодке, море подобно воде в лодке, а неравномерность движения обязана сложению двух движений Земли — суточного и годичного. Между тем Галилей знал, что совсем недавно Марк Антонио де Доминис и Кеплер выдвинули предположение, что приливы и отливы обусловлены притяжением Луны и Солнца, но он объявил эти гипотезы «легкомысленными». Прежде чем удивляться такому поведению Галилея и осуждать его, следует вспомнить обстоятельства того времени и понять образ мыслей ученого. Ведь все эти действия, исходящие от Луны и Солнца, prensatio или vis prensandi, о которых говорил Кеплер, все эти «силы» и «притяжения», •о которых впоследствии будет говорить Ньютон,— все это выглядело так, как будто бы небесные тела вновь наделялись теми оккультными свойствами, о которых болтали перипатетики и против которых яростно сражался Галилей. Опубликование «Диалога о двух главнейших системах мира», источника всех несчастий последних лет жизни Галилея,— знаменательное событие в истории человеческой мысли. «Диалог»— это, собственно, не трактат по астрономии или физике, а педагогический труд, направленный на опровержение аристотелизма и склонение честных людей к новому мировоззрению, которое приносит с собой учение Коперника. То, что эта цель была полностью достигнута, доказывает весь ход истории. 12. СКОРОСТЬ СВЕТА. «Диалог» заканчивается репликой Сагредо о том, что он «...горит желанием ознакомиться с элементами новой науки нашего Академика, касающейся местных движений, естественных и насильственных». Содержащееся в этих словах обещание было выполнено Галилеем, опубликовавшим в Лейдене в 1638 г. после многих превратностей «Discorsi е demostrazioni matematiche, intorno a due nuove scienze attenenti alia meccanica i movementi locali» («Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению») — труд, который Галилей сам справедливо называл своим шедевром, поскольку он содержит систематическое изложение всех его открытий в области механики. Работа эта состоит из четырех диалогов (к которым Галилей намеревался добавить другие, имевшиеся в набросках); собеседниками остаются те же Сальвиати, Сагредо и Симпличио. Беседа развертывается спокойно и ровно, без полемического возбуждения и сарказма, характерного для «Диалога о двух главнейших системах», как если бы учение Аристотеля было уже разбито, став за последние века карикатурой на мировоззрение, и можно приступить к спокойному построению новой науки. «День первый» начинается долгой и интересной дискуссией о неделимых; эта дискуссия приводит собеседников к рассмотрению вопроса о возможном значении скорости света. Устами Сальвиати Галилей предлагает эксперимент для решения спора о том, конечна или бесконечна скорость света. Два экспериментатора, вооруженные фонарями, становятся на некотором расстоянии друг от друга и, согласно предварительной договоренности, первый открывает свой фонарь, как только заметит свет открытого фонаря второго. Тогда сигнал первого экспериментатора вернется к нему через удвоенное время распространения света от одного наблюдателя ко второму. 77
Этот опыт не мог получиться из-за чрезвычайно большой скорости света. Но за Галилеем остается заслуга первой постановки этой проблемы в экспериментальном плане и проектирования эксперимента столь гениального, что этот проект был осуществлен Физо через 250 лет при первом измерении скорости света в земных условиях. Действительно, в принципе опыт Физо отличается от опыта Галилея лишь тем, что один из двух экспериментаторов заменен зеркалом, тотчас отражающим пришедший световой сигнал. О конечной скорости света и о возможности ее измерения на опыте Галилей, должно быть, много раз беседовал со своим другом Паоло Сарпиг который в юные годы размышлял об измерении скорости света с помощью совсем примитивного опыта, вдохновившего, по-видимому, Галилея, который предложил свой вариант. Сарпи пишет: «Если показать и спрятать источник света, то было бы, как со звуком: сначала его перестал бы видеть ближний сосед, тогда как дальний начинал бы видеть свет, однако разность была бы здесь меньшей, потому что скорость света больше» *. 13. ДИНАМИКА. После отступления, касающегося скорости света, собеседники переходят к рассмотрению проблемы движения: опровергаются утверждения Аристотеля и устанавливается, что «если бы совершенно устранить сопротивление среды, то все тела падали бы с одинаковой скоростью"». Чтобы доказать на опыте это утверждение, Галилей хотел сначала рассмотреть падение тел вдоль наклонной плоскости (для замедления движения), но затем решил освободиться также «.от сопротивления, которое обусловливается соприкосновением движущихся тел с наклонной плоскостью», и воспользовался двумя маятниками равной длины (один — со свинцовым шаром, а второй — с пробковым). Он нашел, что их периоды колебаний одинаковы и это доказывает одинаковость скоростей падения тел независимо от вида вещества. Рассмотрение маятников (на основе которого были установлены законы качания маятников) привело к разговору об акустических явлениях." получение звука с помощью колебаний, частота которых определяет высоту звука, волновое распространение в воздухе, явление резонанса, акустические интервалы. Решительно устранив «сонорные» и «транссонорные» качества старой школы, Галилей дополнил, таким образом, то, что написал по этому вопросу в «Пробирщике». Все это сделало Галилея основателем современной акустики и вызвало восхищение Декарта. «День второй», которым заканчивается обсуждение первой из двух развитых новых отраслей наук — науки о сопротивлении материалов,— посвящен сопротивлению твердых тел разрушению при различных способах воздействия на них. Галилей рассматривает абсолютно твердые тела, поэтому полученные им результаты мы не можем сейчас считать приемлемыми. Но все же навсегда останется заслугой Великого пизанца то, что он показал (и в этом его предшественником, оставшимся для него неизвестным, был Леонардо да Винчи) возможность рассматривать научно практические задачи расчета конструкций. Второй новой отраслью науки, рассматриваемой в «Дне третьем» и «Дне четвертом», является локальное движение, т. е. динамика. Сальвиати читает и комментирует латинский трактат «De motu locali» («О местном движении»), принадлежащий «нашему автору», т. е. Галилею. Стиль изложения становится совершенно иным. При сведенном к минимуму диалоге на итальянском языке изложение приобретает характер особой торжественности, создавая * P. Cassani, Paolo Sarpi e le scienze naturali, p. 310—311. 78
Схема маятника переменной длины Галилея. (Le opere di Galileo Galilei, v. VIII). поразительно впечатляющий эффект. Торжественно и умышленно гордо звучит первая фраза трактата: De subiecto vetustissimo novissimam promove- mus scientiam («о предмете древнейшем создаем мы науку новейшую»). В первой части трактата рассматривается равномерное движение. Эта часть очень короткая, очень ясная и не дает темы для дискуссии. Наоборот, определение ускоренного движения, приведенное во второй части трактата, дает повод для продолжительной и чрезвычайно интересной дискуссии, поскольку в ней описывается история попыток Галилея прийти к закону пропорциональности скорости падающего тела времени падения. Сначала Галилей предполагал, что скорость падающего тела пропорциональна пройденному пути, как следует из одного его письма от 1606 г. к Паоло Сарпи. Неизвестно, когда он обнаружил свою ошибку. Из письма математика Лука Валерио Галилею ясно, что в 1609 г. ему уже был известен правильный закон. Автор исходит из другого постулата: тела, падающие по различным наклонным плоскостям одинаковой высоты, приобретают к концу своего падения равные скорости. Хотя приемлемость этого постулата и была показана замечательными опытами с маятником переменной длины, молодой Вивиани считал, что его трудно принять. Галилей — тогда уже глубокий старик — нашел доказательство этого постулата, которое и было продиктовано его ученику, а в 1639 г. сообщено Кастелли. Доказательство основано на новом постулате — еще одном проявлении гения старика Галилея: каждая механическая система, предоставленная самой себе, движется так, что ее центр тяжести опускается. Это положение называется сейчас принципом Торричелли, поскольку последний опубликовал эту формулировку в 1644 г., не зная о формулировке Галилея. Исходя из того что скорость падающего тела пропорциональна времени падения, Галилей выводит теорему: путь, пройденный при естественно ускоренном движении, равен пути, который за то же время прошло бы тело, двигаясь равномерно со скоростью, равной среднему значению между начальной и конечной скоростями. Из этой теоремы легко выводится пропорциональность пройденного пути квадрату затраченного времени. Этот закон был подтвержден Галилеем в его знаменитейших опытах с наклонными плоскостями. В доске длиной 12 локтей в продольном направлении был прорезан прямой желоб, поверхность которого была покрыта возможно более гладким пергаментом. Вдоль этого канала падал из различных положений гладкий, хорошо отполированный правильной формы шарик из твердой бронзы. Одновременно с этим измерялось время падения шарика с помощью остроумного приспособления: из ведра через узкую трубочку в его дне стекала струйка воды, собиравшаяся в подставленный бокал. По отношению весов накопленной воды можно было судить об отношении соответствующих времен. Исходя из постулата о наклонных плоскостях, Галилей геометрическим методом построил свою совершенно новую теорию движения по наклонной 79
плоскости и движения по хордам круга. В частности, он показал, что время движения по дуге круга, которая меньше или равна четверти окружности, меньше времени движения по стягивающей хорде *. «День четвертый» посвящен движению брошенных тел. Вновь привлекая принцип инерции, Галилей выдвигает другой фундаментальный принцип — закон сложения перемещений. С помощью этих двух принципов он показывает, что невертикальная траектория брошенного тела является параболой. Этот результат был совершенно неизвестен всем его предшественникам. Отсюда он выводит целый ряд других теорем, в частности доказывает и дополняет теорему Тартальи, доказав также, что дальность полета одинакова для углов 45° + а и 45° — а. 14. МЕТОД. Хронологический метод изложения работ Галилея, применявшийся до сих пор, позволил коснуться некоторых из большого числа фундаментальных открытий Галилея. Но главную его заслугу следует искать не столько в его открытиях, сколько в новом образе мышления, который Галилей ввел при исследовании природы. Когда говорят, что Галилей был основателем экспериментального метода, не следует понимать, что ему мы обязаны введением эксперимента как средства исследования, потому что применение эксперимента не прекращалось с античности и до его дней. Но речь шла почти всегда о грубых опытах, сводившихся к чистому эмпиризму. Галилей же интерпретирует явление, пытаясь очистить его от всех возмущающих причин, руководимый философской концепцией, которой следует с того времени и до наших дней любой физик, может быть порой бессознательно: книга природы «...написана на языке математики, ее буквами служат треугольники, окружности и другие геометрические фигуры, без помощи которых человеку невозможно понять ее речь; без них — напрасное блуждание в темном лабиринте» (VI, 232). Таким образом, задача физика — придумать эксперимент, повторить его несколько раз, исключив или уменьшив влияние возмущающих факторов, уловить в неточных экспериментальных данных математические законы, связывающие величины, характеризующие явление, предусмотреть новые эксперименты для подтверждения — в пределах экспериментальных возможностей — сформулированных законов, а найдя подтверждения, идти дальше с помощью дедуктивного метода и найти новые следствия из этих законов, в свою очередь подлежащие проверке. В противоположность Френсису Бэкону (1561—1626), чисто теоретически разработавшему свой экспериментальный метод, которому, кстати, ни один физик никогда не следовал, Галилей нигде не дает абстрактного изложения экспериментального метода. Весь этот подход дан в конкретном приложении к исследованию частных явлений природы. Такая личность, как Галилей, движимый столь разнообразными побуждениями, столь свободный от груза традиций, не может быть втиснута в какую-то жесткую схему. Но все же во многих изысканиях Галилея можно, пожалуй, выделить четыре момента. Первая фаза — восприятие явления, чувственный опыт, как говорил Галилей, привлекающий наше внимание к изучению определенной частной группы явлений, но еще не дающий законов природы. Методу Галилея была, очевидно, чужда та точка зрения, что наш разум покорно воспринимает от внешнего мира научные знания, т. е. что опыт — это все и в нем все содержится. За чувственным * Следует оговорить, что это справедливо, если дуга окружности обращена выпуклостью вниз, как это и имеет место в рассмотренном Галилеем случае.— Прим. перев. 80
экспериментом Галилей переходит, как он говорил, к аксиоме, т. е., согласно современной терминологии, к рабочей гипотезе. В этом центральный момент открытия, возникающий из внимательного критического рассмотрения чувственного опыта путем творческого процесса, сходного с интуицией художника. Далее следует третья фаза, которую Галилей называл математическим развитием, т. е. нахождением логических следствий из принятой рабочей гипотезы. Но почему математические следствия должны соответствовать данным ощущений? «Потому что наши рассуждения должны быть о чувственном мире, а не о бумажном мире» (VII, 139), Таким образом, мы дошли до четвертого элемента галилеева эксперимента — опытной проверки как высшего критерия всего пути открытия. Чувственный опыт, рабочая гипотеза, математическая разработка и опытная проверка — таковы четыре фазы исследования явления природы, которое начинается с опыта и к нему возвращается, но не может развиваться] без обращения к математике. Имеет ли математика у Галилея функцию только инструмента или же ей приписывается метафизическое значение, как у Платона? Этот вопрос — вопрос о философских воззрениях Галилея — много обсуждался и обсуждается и поныне. Галилея называли и платоником, и кантианцем, и позитивистом и т. д. Не входя в обсуждение этого вопроса, напомним в заключение, что Галилей хотел, чтобы на обложке собрания его сочинений были написаны слова! «Отсюда станет понятным на бесчисленных примерах, сколь полезна математика в заключениях, касающихся того, что предлагает нам природа и насколько невозможна настоящая философия без помощи геометрии, в соответствии с истинощ провозглашенной Платоном» (VIII, 613—614).
ГЛАВА 5 • ОТ ГАЛИЛЕЯ ДО НЬЮТОНА ОБЩАЯ МЕХАНИКА 1. РЕНЕ ДЕКАРТ. Изучение физики, согласно Декарту (1596—1650), должно иметь цель сделать людей «господами и хозяевами природы». Этого господства над природой человек может достичь, применив к физическому исследованию методы математики, наиболее совершенной из известных ему наук. Поэтому Декарт поставил себе задачей математизацию физики, или, точнее, ее геометризацию по типу евклидовой геометрии: небольшое число аксиом, само собой очевидных, на которые опирается упорядоченная последовательность выводов, обладающих той же степенью достоверности, что и первичные аксиомы. Принимая галилееву концепцию вторичных качеств, заключенных не в телах, а в ощущающем субъекте, Декарт кладет в основу своего рассмотрения лишь две сущности — протяженность и движение, которые представляются ему интуитивно понятными, и, будучи убежден в невозможности существования пустоты в природе, наполняет протяженность «тонкой материей», которую бог наделил непрерывным движением. Физический мир состоит, таким образом, только из двух сущностей: материи, простой «протяженности, наделенной формой», лишеппой всех качеств, кроме геометрических, и движения. Следовательно, достаточно будет установить закопы движения, чтобы вывести затем с помощью ряда последовательных теорем законы чувственного мира. В своем трактате «Le monde» («Мир») Декарт не упоминает об относительности движения. Но в «.Principia pliilosophiae» («Начала философии»), опубликованных в 1G44 г., т. е. после появления «Диалога о двух главнейших системах мира», он, возможно под влиянием этого труда Галилея, принимает принцип относительности, делая все же для осторожности ряд оговорок, позволяющих ему формально не вступать в противоречие с положением о неподвижности Земли, требуемым священпым писанием. Но если бы страх перед инквизицией не заставлял его скрывать свои мысли, Декарт дал бы более широкое понятие относительности, чем Галилей. Действительно, Галилей, а позже Ньютон верили в абсолютное движение по отношению к пространству, тогда как Декарт утверждал относительный его- характер. В частной переписке он писал: «Если из двух человек один движется с кораблем, а второй стоит неподвижно на берегу..., то нет никакого преимущества ни в движении первого, ни в покое второго» *. Декартова механика основана на трех законах. Два первых охватывают то, что сейчас называется принципом инерции. Третий закон утверждает постоянство количества движения (произведение массы тела, которую Декарт путал с весом, на его скорость). Декарт полагает также количество движения равным произведению приложенной силы на время ее действия и называет это произведение импульсом силы; это название сохранилось в науке и сейчас в том же значении. Третий закон Декарта является по существу центральным пунктом его механики. То, что Декарт сумел выделить его и положить в основу своей механики, говорит о незаурядной интуиции автора. * Oeuvres de Descartes, publiees par Charles Adam et Paul Tannery, Pan's, 1902, v. VI, p. 348. (Есть русский перевод: Р. Декарт, Избранные произведения, М., 1950.) 82
Рене Декарт. Гравюра неизвестного автора XVII века. К сожалению, в формулировке этого закона Декарт допускает ошибку, весьма странную для геометра его масштаба. Он не учитывает, что поскольку скорость, как мы бы сейчас сказали и как знал Декарт, является вектором, т. е. величиной, имеющей направление и ориентацию, то и количества движения являются векторами, так что их сумму нужно понимать в геометрическом, а не в алгебраическом смысле. Таким образом, формулировка третьего закона ошибочна. Отсюда неверность вытекающих из него семи правил (за исключением первого), образующих декартову теорию соударения упругих тел. Некоторые случаи соударения, исследованные Декартом, легко проверяются на опыте. Например, четвертое декартово правило гласит, что если неподвижное тело испытывает центральное соударение с другим телом меньшей массы, то оно остается неподвижным, тогда как движущееся тело меняет направление скорости на обратное с сохранением абсолютной величины скорости. Но достаточно подойти к бильярдному столу, чтобы убедиться в ошибочности этого правила. И Декарт действительно это сделал и установил неверность своих правил. Но он слишком доверял своему разуму и своим «ясным и четким» идеям. Опыт опровергает теоретические построения? Тем хуже для опыта. Опыт не удается, говорит с уверенностью Декарт, потому что эти правила предполагают, «что тела идеально твердые и настолько удалены от всех остальных тел, что ни одно из этих тел не может способствовать или препятствовать их движению» *. * Oeuvres de Descartes, v. IX, p. 93. 6* 83
Но даже если признать это объяснение правильным, как же мы сможем стать хозяевами природы, располагая физикой, говорящей о явлениях имеющих место в ином мире, а не в том, в котором мы существуем? Установив законы движения, Декарт в трактате «Мир» и в «Началах философии» начинает свой космологический роман, объясняя образование Солнца, планет, комет. Наконец, он спускается с неба на Землю и устанавливает, что тонкая материя обладает тремя действиями: светом, теплом и тяготением. Этим он создает основы того представления о флюидах, которое господствовало в физике в течение всего XVIII и частично в XIX веке. Эти удобные флюиды, которые, подобно добрым гномам, готовы к услугам в наиболее трудных случаях и скромно действуют скрытно от наших чувств, не представляют ли они, по крайней мере частично, возврат назад, к оккультизму? По нашему мнению, это так. Но всегда нужно помнить, что представление о флюидах оказало физике также громадные услуги, особенно в оптике и теории электричества. При этом мы имеем в виду научную концепцию, временное модельное представление, инструмент механистической философии, но не конкретные флюиды, введенные Декартом, как, например, его магнитный флюид, состоящий из двух типов частиц спиральной формы с тремя витками, навитыми в противоположные стороны. С его помощью Декарт дал ответ на 34 вопроса, которые можно, по его мнению, задать по магнетизму. Этот магнитный флюид и эта вызывающая восхищение цепь рассуждений на протяжении всех «Начал» свидетельствуют об искусстве Декарта в построении гипотетических дедуктивных систем, но ни на йоту не обогащают наших знаний о магнитных явлениях. Совсем иную роль сыграло декартово понятие тяжести. Каждое тело находится, по Декарту, в вихре, будучи окруженным в свою очередь другими вихрями, которые прижимают его к центру. Это стремление к центру и составляет вес тела, т. е. тяжесть. Если бы Галилей это знал, сказал Декарт в известном письме к Мерсенну, ему не нужно было бы строить безосновательную теорию падения тел в пустоте. Письмо Декарта, которое мы уже упоминали выше, представляет собой резкую критику «Беседы, касающейся двух новых отраслей науки» Галилея и интересно с точки зрения различия мышления обоих ученых: для Декарта физика должна искать ответ на вопрос, почему происходят явления, по Галилею — исследовать, как они происходят; поиски причины — цель Декарта, описание явлений — цель Галилея. В вопросе падения тяжелых тел Декарт не соглашался с законами Галилея и не понимал их, в частности, потому, что его кинематике было чуждо понятие ускорения. Вес, как и любую силу, Декарт понимал как реакцию связей геометрического типа. Это — свойство движения тонкой материи. Так что, отождествляя ее с пространством и пользуясь более понятной сейчас терминологией, можно сказать, что вес есть свойство пространства. Но к такому пониманию картезианство никогда не склонялось, и потому оно пало, побежденное приверженцами ньютонова притяжения, несмотря на защиту со стороны Гюйгенса и Лейбница, которые обратили внимание на то, что ньютоново понимание притяжения, воспринявшее кеплерово понятие prensatio или vis prensandi, заключенной в теле, представляет собой неявное возвращение к оккультным свойствам схоластики, потому что в конце концов, для того чтобы тело А притягивало тело В, нужно, чтобы оно знало, где находится тело В. Обычно говорят, что декартово понимание физики механистично. Но понимание Галилея и Ньютона тоже было механистичным, потому что под механицизмом понимаются все иногда противоречащие друг другу теории, которые объясняют все физические явления с помощью системы 84
&£\\\ ■• \ Ур\\ \ ^\VSsiHSia^-i J ;':%3®9 к^ЖЖЩ0У///ИУ Хй/: =:!®К ....... ЩШ^^^'/>//!^^Ш//;/{;!Р^:-:: fut^ ^ш §§ ^ш* Вихри тонкой материи по представлению Декарта. В центре находится солнечная система. (Oeuvres de Descartes, v. IX.) 85
движений, подобных движению механизма. Нам представляется, что механицизм Декарта отличается от механицизма Галилея — Ньютона двумя существенными чертами. Первое, более очевидное, отличие только что отмечалось — это понятие силы. Для Галилея и Ньютона сила — это физическая реальность, не сводимая к свойствам пространства и движения; для Декарта же сила, как мы видели,— это свойство пространства. Механицизм Декарта противостоит динамизму Ньютона, доведенному до крайнего предела Рожером Босковичем в XVIII и Майклом Фарадеем в XIX веке. Согласно этим динамистам, непосредственно данной является сила; так называемая материя исчезает, а ее «почтенные качества», как называл их Оствальд, суть не что иное, как свойства полей сил в пустом пространстве. Но механицизм Декарта противостоит также и атомизму, согласно которому именно атомы создают поля сил, а их скрытые движения объясняют все физические процессы. Очевидно, декартово учение, отождествляющее вещество с протяженностью, не могло быть атомистическим в традиционном демокритовом смысле слова. 2. УЧЕНИКИ ГАЛИЛЕЯ. Джакомо Леопарди приписывает Копернику слова, что подтверждение гелиоцентрической системы «... не будет таким простым делом, как могло бы показаться на первый взгляд... Ее влияние не ограничится физикой. Она приведет к переоценке ценностей и взаимоотношений различных категорий; она изменит взгляд на цели творения. Тем самым она произведет переворот также и в метафизике и вообще во всех областях, соприкасающихся с умозрительной стороной знания. Отсюда следует, что люди, если сумеют или захотят рассуждать здраво, окажутся совсем в другом положении, чем они были до сих пор или воображали, что были» *. Этот полный переворот в образе мыслей, так хорошо понятый Леопарди, вполне можно отнести и к физическим исследованиям, проведенным после Галилея. Правда, не было недостатка и в противниках нового метода исследования, особенно усердствовавших после осуждения Галилея, но значительная часть их вынуждена была отвечать на наблюдения другими наблюдениями, на опыты — другими опытами, на математические доказательства — другими математическими доказательствами. Вынужденные, таким образом, исследовать вещи, а не труды Аристотеля, перипатетики этого периода также помогли, хотя и косвенно, отказу от слепой веры в авторитеты и облегчили труд ученикам Галилея. К числу учеников Галилея мы относим не только тех, кто из его собственных уст воспринимал новую науку, но и его многочисленных корреспондентов, а также первое поколение ученых, научное мировоззрение которых формировалось на его трудах. В этом смысле Галилей имел много учеников не только в Италии, но и за ее пределами, особенно во Франции, прежде всего благодаря деятельности Марена Мерсенна (1588—1648), который, как мы уже говорили, перевел в 1634 г. «Механику» Галилея. Позже, когда переиздание и перевод «Диалога о двух главнейших системах» были запрещены, Мерсенн составил для своих соотечественников краткое изложение этой работы и распространил во Франции исследования Галилея по падению тяжелых тел; он был первым среди ученых того времени, кто поддерживал точку зрения о субъективном характере ощущений. Хотя в труде Мерсенна мы бы напрасно искали оригинальные идеи, он все же сыграл важную роль в распространении новой науки, информируя о работах других ученых, * Giacomo Leopard i, Le operette morali, Livorno, 1870, p. 314, с предисловием Пьетро Джордани, издание исправленное и дополненное Дж. Кьярини. 86
Эванджелиста Торричелли. комментируя и пересказывая их, а иногда издавая полностью. Поэтому труды Мерсенна представляют собой неисчерпаемый источник сведений об уровне знаний в ту бурную эпоху. Неутомимый корреспондент крупнейших ученых того времени, Мерсенн информировал других, сам получал информацию, ставил проблемы, выдвигал возражения, выполняя, таким образом, функции сбора и распространения знаний, возложенные сейчас на большие международные научные журналы. 3. ЭВАНДЖЕЛИСТА ТОРРИЧЕЛЛИ. В апреле 1641 г. Бенедетто Кастелли (1577—1644), профессор математики Римского университета и в прошлом ученик Галилея, посетил своего учителя, жившего тогда в Арчетри, и привез ему на просмотр рукопись о движении свободно падающих тел. Ее автором был Эванджелиста Торричелли (1608—1647), ученик Кастелли. Кастелли предложил Галилею взять Торричелли к себе в дом в качестве помощника в подготовке исследований по механике. Получив согласие Галилея, Торричелли в первой половине августа того же года переехал к нему в Арчетри. Но их сотрудничество продолжалось всего три месяца. Галилей умер. Великий герцог Тосканский, прибывший в Арчетри в связи со смертью Галилея, назначил Торричелли на ставшую вакантной должность придворного математика. Научная деятельность Торричелли, бесспорно, самого блестящего ученика Галилея, относится к области физики и математики. Однако, следуя примеру своего учителя, он не гнушается и практической деятельности. Узнав от Галилея о значении изготовления линз и подзорных труб, он -с 1642 г. стал упорно заниматься этим и вскоре достиг такого совершенства, что намного превзошел наиболее знаменитых итальянских мастеров (Ипполита Мариани, прозванного «Простофилей», Евстахия Дивини из Рима, Франческо Фонтана из Неаполя), изделия которых признаются крупнейшими достижениями оптики первой половины XVII века. В дальнейшем мы будем говорить об открытии Торричелли атмосферного давления, открытии, которое больше других способствовало тому, что его имя стало бессмертным. Сейчас мы ограничимся лишь кратким рассмотрением его работ по механике, содержащихся в единственной опубликованной им книге, состоящей из трех частей. Первая и третья части посвящены геометрии, а вторая, озаглавленная «De motu gravium descendentium et proiec- torum libri duo» («О движении свободно падающих и брошенных тяжелых тел»), представляет собой ту рукопись, которую Кастелли принес на просмотр Галилею. 87
В первой книге этого трактата Торричелли ставит себе целью доказать постулат Галилея о равенстве скоростей тяжелых тел, падающих по наклонным плоскостям одинаковой высоты, и, не зная, что это уже сделано Галилеем, доказывает его. При этом он принимает в качестве постулата принцип, носящий сейчас имя Торричелли, о движении центров тяжести. Благодаря Торричелли при многочисленных применениях этого принципа (к наклонной плоскости, рычагу, движению по хорде круга и по параболе) были опровергнуты взгляды ряда авторитетных ученых, которые ставили в упрек Архимеду то, что он считал вертикальные направления двух нитей с подвешенными грузами у поверхности земли параллельными, а не сходящимися к центру Земли. Торричелли показал, что представление Архимеда более пригодно для теоретических физических исследований. Во второй книге трактата Торричелли сначала рассматривает движение брошенных тел, обобщая подход, принятый в «Беседах» Галилея, где обсуждается лишь движение тел, брошенных по горизонтали. Только попутно, для доказательства, Галилей выдвинул утверждение, что если тело бросить из точки его падения со скоростью, равной, но противоположной той, с которой оно пришло в точку падения, то оно пройдет ту же параболу в обратном направлении. Торричелли же рассмотрел движение тела, брошенного под произвольным углом, и, применив к нему принципы Галилея, определил параболический характер траектории и установил другие, хорошо известные сейчас теоремы баллистики. В частности, обобщая наблюдение Галилея, он заметил, что движение брошенного тела — явление обратимое. Таким образом, представление о том, что динамические явления обратимы, т. е. что время в галилеевой механике упорядочено, но лишено ориентации, восходит к Галилею и Торричелли. После раздела «О движении жидкостей», которого мы коснемся ниже, Торричелли приводит пять баллистических таблиц, по-видимому, первых таблиц в истории артиллерии, причем, опасаясь, что практики, для которых предназначены эти таблицы, не понимают латыни, он внезапно переходит на итальянский язык. В вопросе о движении жидкостей (непосредственными предшественниками в этих исследованиях были Бенедетти и Кастелли) вклад Торричелли столь велик, что Мах провозгласил его основателем гидродинамики. Основная проблема, которую поставил перед собой Торричелли, заключалась в определении скорости истечения жидкости из узкого отверстия в дне сосуда. С помощью специального приспособления он заставил жидкость, вытекающую из отверстия, бить ключом вверх и установил, что она подымается на высоту, меньшую, чем уровень воды в сосуде. Тогда он предположил, что, если бы совсем не было сопротивления движению жидкости, струя поднялась бы до уровня воды в сосуде. Очевидно, эта гипотеза эквивалентна для данного частного случая закону сохранения энергии. Используя аналогию с падением тяжелых тел, Торричелли выводит из принятой гипотезы следующее основное положение (называемое теперь «теоремой Торричелли»): «Вырывающаяся из сосуда вода имеет в точке истечения ту же скорость, которую имело бы произвольное тяжелое тело, а значит, и отдельная капля той же воды, падая свободно с верхнего уровня этой воды до уровня отверстия»*. Эта теорема, являющаяся основой гидростатики, была впоследствии доказана Ньютоном и Вариньоном. Торричелли использовал ее вместе с уже полученными результатами, касающимися движения брошенных тел, чтобы доказать, что если отверстие сделано в стенке у дна сосуда, то стру» * «De motu...», Libro II, prop. XXXVII, в книге Ореге di Evangelista Torricelli, ed. G. Loria, G. Vassura, Faenze, II, 1919, p. 186. 88
имеет параболическую форму. Кроме того, Торричелли принадлежат тонкие физические наблюдения над распадением на капли струи жидкости и влиянием сопротивления воздуха. 4. ДЖОВАННИ АЛЬФОНСО БОРЕЛЛИ. К ученикам Галилея относится также неаполитанец (по другим данным — мессинец) Джованни Альфонсо Борелли (1608—1679) — один из наиболее проницательных умов итальянской науки XVII века. Борелли предвосхитил ньютоново представление о том, что планеты стремятся к Солнцу по той же причине, по которой тяжелые тела стремятся к Земле. Его сравнение движения камня, вращающегося на краю пращи, и движения планеты вокруг Солнца, по почти единодушному мнению всех критиков, — первый зародыш теории динамического равновесия движущихся планет. Согласно Борелли, «инстинкт», который заставляет планету стремиться к Солнцу, уравновешивается тенденцией каждого тела удаляться от центра. Борелли считает эту vis repellens, или центробежную силу, как мы ее сейчас называем, обратно пропорциональной радиусу описываемой окружности. В своей работе по механике «De vi percussionis» («О силе удара»), 1667 г., более широкой по смыслу, чем это видно из названия, он приводит законы центрального соударения двух неупругих сфер, справедливые и сейчас. В этой работе он ставит себе целью определить, каково было бы эффективное движение падающих тел, если предположить (ex mera hypothesi — «чисто гипотетически», добавляет он с осмотрительностью, особенно необходимой, поскольку он был монахом), что тела принимают участие в равномерном круговом вращательном движении Земли. И он приходит к выводу об отклонении тел к востоку, которое было экспериментально подтверждено лишь в 1791 г. Джован Баттистой Гульельмини (?—1817) в опытах с падением тел с башни Азинелли в Болонье. В своей работе «De motionibus naturalibus a gravitate pendentibus» («О естественных движениях, зависящих от тяжести»), 1670 г., одну главу он посвящает экспериментальному исследованию капиллярных явлений и приходит к выводу, что в капиллярных трубках подъем жидкости обратно пропорционален диаметру трубки. Этот закон был вторично открыт в 1718 г. врачом Жаком Жюреном (1684—1750), по имени которого он и назван. В этой же работе приведено определение удельного веса воздуха с помощью прибора — первого представителя ареометров с постоянным объемом. В 1656 г. Борелли вместе с Вивиани определили скорость звука в воздухе, воспользовавшись прямым методом, предложенным Галилеем, т. е. измеряя интервал времени между моментом светового восприятия взрыва и моментом, когда становится слышен звук взрыва. Так ему удалось получить значительно более точные результаты, чем его предшественникам (Мер- сенн, Гассенди и др.). Однако лучшим творением Борелли, достойно венчающим все остальные его работы, является его труд «De motu animalium» («О движении животных»), вышедший посмертно в двух томах в 1680— 1681 гг. в Риме, где Борелли умер в глубокой нищете. В первом томе описываются строение, форма, действие и возможности мышц человека и животных. Во втором томе с помощью механических аналогий рассматриваются сокращения мышц, движения сердца, циркуляция крови, пищеварение. Эта работа, многократно переиздававшаяся, положила начало новому научному направлению—ятромеханике. Особенно© восхищение вызывает глава XXII о полете птиц (De volatu), издававшаяся поэтому много раз отдельно. Уже в нашем веке в английском переводе эта глава была включена в серию «Aeronautical classics» (№ 6, London, 1911), а в немецкам переводе — в серию «Klassiker der exakten Wissenschaften» (№ 221, Leipzig, 1927). 89
5. МАЯТНИКОВЫЕ ЧАСЫ. Вскоре после открытия «медицейских планет», т. е. первых четырех спутников Юпитера *, у Галилея родилась идея использовать их для определения долготы места, что, как известно, имеет громадное значение для мореплавателей. Теоретически определение долготы выглядит весьма просто: рассчитав для какого-то места эфемериды, определяющие момент, когда спутник входит в конус тени Юпитера, достаточно установить время, когда это явление наблюдается в другом месте, чтобы по разности этих времен найти разность долгот обоих мест. Но применение этого метода требует таблиц с эфемеридами и двух хронометров. В 1612, затем в 1616 г. и еще позже в 1630 г. Галилей пытался вступить в переговоры с испанским правительством, чтобы передать ему это открытие, но его попытки не увенчались успехом. В 1636 г. он вновь обратился с этим предложением к Генеральным штатам Нидерландов, которые с удовольствием приняли это предложение, тотчас назначили специальную комиссию для его рассмотрения и постановили отправить в дар Галилею золотое колье стоимостью 500 флоринов. Комиссия отметила некоторые недостатки проекта Галилея, которые тот признал справедливыми, но вполне преодолимыми. Однако дело было не из тех, которые можно решить перепиской, поэтому Галилей предложил, чтобы к нему в Арчетри приехали представители Генеральных штатов. Друзья Галилея обратились к секретарю принца Оранского Константину Гюйгенсу, отцу Христиана Гюйгенса, с просьбой оказать содействие, используя свое высокое положение при Генеральных штатах. Константин Гюйгенс принял предложение и довел переговоры до благополучного конца. Однако весть о них дошла до кардинала Фран- ческо Барберини, и тот немедленно приказал Генеральному инквизитору Флоренции воспрепятствовать переговорам. Поэтому Галилей прервал переговоры и отказался от дара Генеральных штатов, который как раз в эти дни ему доставила купеческая делегация. 15 августа 1636 г. во время переговоров Галилей писал Генеральным штатам: «У меня есть такой измеритель времени, что если бы сделать 4 или 6 таких приборов и запустить их, то мы бы обнаружили (в подтверждение их точности), что измеряемое и показываемое ими время не только из часу в час, но изо дня в день, из месяца в месяц не отличалось бы на различных приборах даже на секунду, настолько одинаково они бы шли» **. Нетрудно сообразить, что измеритель времени, о котором упоминает Галилей, должен был быть прибором, в котором используется изохронизм колебаний маятника. И действительно, в письме от июня 1637 г. Реалю (или Реалио — согласно принятому итальянизированному написанию), губернатору Голландских Индий, Галилей сообщает, что его часы представляют собой применение маятника, и описывает также специальный счетчик числа колебаний. В 1641 г., по словам Вивиани, ему «... пришло в голову, что можно добавить маятник к часам с гирями и с пружиной» ***. Уже глубоким стариком он поверил эти планы своему сыну Винченцо (ум. в 1649 г.). Отец и сын решили построить механизм (дошедший до нас благодаря чертежу Вивиани) с остроумным устройством часового спуска (так называемый «крючковый спуск»). То, что Винченцо Вивиани построил в действительности такие часы, установлено точно: это следует из инвентарной * Галилей назвал][обнаруженные*им спутники Юпитера «медицейскими звездами» в честь герцога Тосканского Козимо Медичи.— Прим. перев. ** Le Opere di Galileo Galilei, Ediz. Naz., XVI, p. 467. *** Там же, XIX, p. 655. 90
Часы с маятником Галилея на рисунке В. Вивиани. (Le opere di Galileo Galilei, v. XIX.) описи наследства его жены и из переписки Леопольдо де Медичи, который послал Буйо 21 августа 1659 г. чертеж модели, «нарисованный столь же грубо, как и сама модель, находящаяся сейчас в моей комнате». Христиан Гюйгенс (1629—1695) в письме от 12 января 1657 г. сообщил о созданных им маятниковых часах. В июне того же года он получил патент на эти часы, а в 1658 г. опубликовал свое открытие в сочинении «Horologium» («Часы»). Знал ли о проекте Галилея Христиан Гюйгенс, сын Константина Гюйгенса, принимавшего большое участие в переговорах Галилея с Генеральными штатами и, в частности, знакомого с идеей Галилея о применении маятника в часах? Он всегда отрицал это, признавая лишь, что ему пришла в голову та же идея, что и Галилею, часы которого шли так же хорошо, как и его собственные, и говорил, что целью создания часов он, как и Галилей, считал определение долготы места на море. Мы не видим оснований не доверять голландскому ученому, конструкция часов которого уступает конструкции Галилея в механизме спуска, так как он сохранил старинное несовершенное устройство, но зато значительно превзошел Галилея, заменив гирю пружиной с балансом. 6. ХРИСТИАН ГЮЙГЕНС. Опубликование «Часов» вскоре создало Гюйгенсу такую славу, что Кольбер пригласил его в 1666 г. в Париж, где в то время была основана Парижская Академия наук (см. § 14). Там Гюйгенс оставался до 1681 г. Осложнившаяся обстановка в связи с преследованиями гугенотов, к которым принадлежал Гюйгенс, заставила его благоразумно вернуться в Гаагу. Его работа 1658 г. о часах носит ясно выраженный прикладной характер. Но от математика такого масштаба, как Гюйгенс, не укрылись и те теоретические проблемы механики, которые связаны с созданием часов. Исследованию этих проблем он посвятил последующие годы. В 1673 г. в Париже выходит его шедевр — труд «Horologium oscillatorium, sive de motu pendulorum ad horologia aptato demonstrationes geometricae» («Качающиеся часы, или о движении маятника»), состоящий из пяти частей: описание часов, движение тяжелых тел по циклоиде; развертка и определение длины кривых линий; центр колебаний или возбуждения; устройство другого типа часов — с круговым маятником; теоремы о центробежной силе. Гюйгенс был прямым продолжателем Галилея и Торричелли, теории которых он, по его собственному выражению, «подтверждал и обобщал». Галилей основал динамику лишь одного тела, Гюйгенс же начал построение динамики нескольких тел. 91
Христиан Гюйгенс- Остановимся вкратце на содержании этой работы, имеющей фундаментальное значение для истории механики, опустив при этом первую и третью части, не имеющие прямого отношения к нашей теме. Во второй части, после изложения галилеевских законов падения тяжелых тел, доказательство которых он уточняет систематическим применением принципа сложения перемещений, Гюйгенс с помощью замечательных рассуждений дифференциально-геометрического характера устанавливает изохронизм колебаний циклоидального маятника. Четвертая часть начинается с упоминания о том, что в те годы, когда Гюйгенс был еще юношей, Мерсенн предложил ему найти центр колебаний, т. е. точку на проведенном через центр тяжести перпендикуляре к оси колебаний, отстоящую от оси колебаний на расстоянии, равном длине простого маятника, изохронного с данным сложным маятником. Понятие центра колебаний, которому Гюйгенс дал приведенное выше определение, встречается уже у Галилея и повторяется у Мерсенна в 1646 т.: если бы имелась совокупность простых маятников различной длины, представляемых как тяжелые точки, подвешенные на невесомых нитях так, что все были бы прикреплены к одной и той же перекладине, то более короткие маятники колебались бы быстрее более длинных. Если все эти маятники сразу скрепить между собой так, чтобы они образовали жесткую систему, то они вынуждены были бы все совершать колебания за одно и то же время,, более короткие маятники ускоряли бы движение более длинных, одни маятники теряли бы скорость, другие увеличивали бы ее, а третьи не теряли бы и не увеличивали. Центром колебаний называется положение тяжелой точки того из маятников этой последней группы, который расположен на перпендикуляре к оси подвеса, проведенном через центр тяжести. Руководствуясь приведенными соображениями, Декарт и Роберваль пытались найти положение центра колебаний, но эта попытка успехом не увенчалась. Гюйгенс также занялся этой проблемой и решил ее, приняв за основу рассмотрения принцип Торричелли. Теория Гюйгенса представлялась его- современникам неубедительной, поэтому Якоб Бернулли развил в 1703 г. другую, более строгую теорию и пришел к той же формуле для «приведенной длины» сложного маятника, что и Гюйгенс. В ходе рассмотрения проблемы было введено понятие момента инерции и было открыто знаменитое соотно- 92
шение (предложение XX у Гюйгенса): щентр колебаний и точка подвеса взаимосопряженыь *. Это соотношение позволяет находить центр колебаний экспериментально. В 1818 г. Генрих Катер (1777—1835) использовал эту теорему, сконструировав «обратимый маятник», т. е. практический прибор для определения длины секундного маятника и для определения значения ускорения силы тяжести в данном месте. И этим последним применением маятника мы тоже обязаны Гюйгенсу. В 1676 г. Жан Рише (ум. в 1696 г.) был чрезвычайно удивлен тем, что маятник с секундным периодом в Париже стал в Кайенне колебаться медленнее. Его укоротили и после окончания исследований перевезли обратно в Париж, где он, наоборот, стал колебаться быстрее. Гюйгенс в своем труде «Duscours sur la cause de la pesanteur» («О причине тяжести»), законченном в 1681 г. и опубликованном в 1690 г., объяснил это явление изменением значения ускорения силы тяжести, которое он приписывал исключительно вариации центробежной силы, обусловленной вращением Земли. Это исследование привело его к заключению, что Земля должна быть сплющена у полюсов и вздута у экватора. Чтобы подтвердить это экспериментально, он привел в быстрое вращение шар из мягкой глины, надетый на ось, и наблюдал его сплющивание. Как известно, сейчас этот опыт повторяется в учебных целях с упругими стальными кольцами, надетыми на ось по диаметру. Этот опыт оказал заметное влияние на генезис космогонических теорий Канта и Лапласа. С 1659 г. Гюйгенс писал трактат «De vi centrifugal («0 центробежной силе»), который был опубликован лишь посмертно, в 1703 г. В нем Гюйгенс исследовал «стремление» (conatus) тела, прикрепленного к вращающемуся колесу,— это стремление, согласно Гюйгенсу, той же природы, что и стремление тяжелого тела к падению. Что произойдет, если человек, находящийся на вращающемся колесе, держит в руке нить, на которой висит свинцовый цдарик? Произойдет то, отвечает Гюйгенс, что нить будет натянута с такой же «илой, которая тянула бы шарик, если бы он был прикреплен к центру колеса. После некоторых геометрических рассуждений Гюйгенс приходит к выводу: «Conatus шара, прикрепленного к вращающемуся колесу, таков, что шар стремился бы двигаться равномерно ускоренно по радиусу... Этот conatus аналогичен тому, который имеется у тяжелого тела, подвешенного на нити. Отсюда мы заключаем, что центробежные силы неодинаковых тел, движущихся с одинаковой скоростью по равным окружностям, относятся между собой как веса этих тел, т. е. как количества вещества в них... Остается ■найти величину или количество conatus для различных скоростей вращения» **. Остается добавить, что определяющие центробежную силу законы, найденные Гюйгенсом и приведенные без доказательства в конце «Качающихся часов», совпадают с теми, которые мы можем сейчас прочесть (с небольшим изменением терминологии) в любом элементарном курсе физики. После нашего беглого обзора излишне добавлять, что для Гюйгенса центробежная сила отнюдь не фиктивная, а вполне реальная сила той же природы, что и сила тяжести. О работах Гюйгенса по оптике мы будем говорить в следующей главе. В эту область голландский ученый внес наибольший вклад. Однако мы не можем закончить обзор его работ по механике, не упомянув об исследованиях столкновений тел. * Ch. Huygens, Horologium oscillatorium, Paris, 1673, в книге Oeuvres completes, XVIII, La Haye, 1934, p. 305. -** Ch. H u у g e n s, De vi centrifuga, в книге Oeuvres completes, XVI, 1929, p. 266. 93
Эта задача представляла особую трудность для первых механиков Ею занимался Джован Баттиста Бальяни в своей работе «De motu graviun solidorum» («О движении твердых тел»), 1638 г. Галилей собирался посвятит: этому вопросу «День шестой» своих «Бесед», но хотя в дошедших до нас фраг ментах могут вызвать восхищение удивительно интересные эксперименты никакого решения проблемы мы там не найдем. Как мы видели ранее, на зтоь подводном камне потерпела крушение вся механика Декарта. Значительно больше повезло Борелли, который нашел законы соударения неупругих тел. Гюйгенс же обратился к исследованию соударения упругих тел. В своей работе «De motu corporum ex percussions» («О движении тел после удара»), законченной в 1656 г., но опубликованной уже после его смерти, в 1700 г., Гюйгенс рассматривает эту сложную задачу на основе трех принципов: принципа инерции, принципа относительности и третьего принципа, о котором мы скажем ниже. Здесь же мы добавим, что принцип относительности Гюйгенс понимает в смысле Декарта, т. е. более широко, чем Галилей и Ньютон; иными словами, Гюйгенс не признает абсолютного движения относительно пространства. Третий принцип (по нумерации Гюйгенса — второй) утверждает, что- если два одинаковых тела с равными, но противоположно направленными скоростями испытывают центральный удар, то они отлетают одно от другого- с теми же скоростями, но измененившими знак. Основываясь на этих исходных принципах, Гюйгенс вывел законы соударения упругих тел, которые эатем изложил в мемуаре, представленном в 1669 г. на конкурс на лучшую- работу по теории удара, объявленный Королевским обществом годом раньше. В этом конкурсе участвовали также Джон Уаллис (1616—1703), рассмотревший соударение неупругих тел, и Христофор Рен (1632—1723), рассмотревший соударение упругих тел. Исследование Гюйгенса, несомненно, значительно превосходило эти две работы и по широте постановки вопроса и поясности изложения; правда, иной раз ясность достигалась в ущерб краткости. Последующие исследования по механике мало что изменили в законах соударения Гюйгенса. В работах Уаллиса, Рена и Гюйгенса изложение носит геометрический- характер. Эдм Мариотт (1620—1G84) в своей работе «Traite de la percussion ou choc des corps» («Трактат о соударении тел»), опубликованной посмертно в его. трудах (Лейден, 1717), исследовал те же задачи и чисто экспериментальным путем пришел примерно к тем же результатам. Чтобы иметь возможность- произвольно регулировать скорость тела, Мариотт придумал приспособление, состоящее из двух равных маятников, которые можно заставить падать, с произвольно регулируемой высоты. Ему принадлежит также прибор, применяемый и сейчас для демонстрации передачи движения упругими телами и состоящий из ряда подвешенных на нитях упругих шаров, соприкасающихся друг с другом; если сместить первый шар и позволить ему падать, то последний шар поднимется вверх, а остальные останутся неподвижными. 7. ПОЛЕМИКА О ЖИВОЙ СИЛЕ. В упомянутой выше работе о соударении тел и в более явной форме еще раз в 1686 г. Гюйгенс выдвигает утверждение, что сумма произведений «каждого тела» на квадрат его скорости до и после- удара остается неизменной. С этой теоремой сохранения был знаком и Лейбниц, который, сообщив о ней письмом Гюйгенсу, сделал ее предметом мемуа- ра «Demonstratio erroris memorabilis Cartesii» («Доказательство примечательной ошибки Декарта»), опубликованного в 1686 г. в «Acta eruditorum» («Ученые записки»). В этом мемуаре Лейбниц называет произведение «тела» на квадрат его скорости «живой силой» и противопоставляет его «мертвой силе»,, или, как мы бы ее назвали теперь, потенциальной энергии. Первое выраже- 94
ние, как известно, осталось в науке до сих пор с изменением, внесенным Густавом Кориолисом (1792—1843), который в качестве меры живой силы предпочел принять половину произведения массы тела на квадрат его скорости. Итак, Лейбниц предложил оценивать «силу» (мы бы сказали — энергию) падающего тела высотой, на которую это тело могло бы подняться, если бы его бросили вверх с приобретенной им скоростью; таким образом, во всех случаях имело бы место равенство между живой силой и мертвой силой. Если так оценивать «силу», то из законов механики можно вывести, что она равна произведению «тела» на квадрат его скорости, так что тело, удвоившее свою скорость, учетверяет свою «силу». При соударении тел сохраняется не количество движения, как утверждает третье правило Декарта, а сумма живых сил соударяющихся тел; в этом, согласно Лейбницу, и кроется ошибка Декарта. Однако картезианцы поднялись против Лейбница в защиту Декарта. Между сторонниками Лейбница и Декарта завязались оживленные споры, длившиеся свыше 30 лет и известные в истории физики как «полемика о живой силе». По сути дела, картезианцы обращали внимание на то, что когда тело, брошенное вверх, подымается на первоначальную высоту за вдвое большее время и производит учетверенный эффект за вдвое большее время, то это означает, что его «сила» не учетверилась, а лишь удвоилась. Здесь неуместно входить в технические детали полемики. Достаточно сказать, что спор был разрешен в 1728 г. Жан-Жаком де Мераном (1678—1771) и еще лучше Жаном Даламбером (1717—1783) в предисловии к его «Traite de dynamique» («Трактат о динамике»), 1743 г. Весь спор был основан на двусмысленности определения количества движения. Картезианцы придерживались скалярного определения, данного Декартом. Де Меран показал, что все примеры соударений, приведенные в процессе полемики, подчиняются закону сохранения количества движения, если только его понимать правильно, т. е. в векторном смысле. Таким образом, окончательно: при упругом ударе имеет место как сохранение количества движения, так и сохранение живой силы. ГИДРОСТАТИКА 8. ДАВЛЕНИЕ ЖИДКОСТЕЙ. В эпоху Возрождения обострился старинный спор между сторонниками и противниками пустоты. Несмотря на резкую критику Роджера Бэкона, перипатетики продолжали объяснять различные физические явления, как, например, действие сифонов, медицинских банокг пипеток и др., тем, что природа боится пустоты (horror vacui);причина притяжения —«ne detur vacuum» (вакуума не должно быть). Кардан, отвергнув «боязнь пустоты» как бессмыслицу, приписывал подъем воды в определенных опытах «насильственному разрежению» (raritatis violentia), предполагая, что он обусловлен разрежением воздуха над водой. Против такого объяснения возражал Порта, который, мечтая «провести реки из низких долин через высочайшие горные вершины», считал, что причиной такого действия природы «...является не пустота, не боязнь пустоты, не разрежение, а более возвышенная причина, а именно сохранение собственного бытия» *. Сторонниками пустоты («вакуистами»), хотя и в различном ее понимании, были Телезий и Бруно, Бенедетти и Галилей. К 1630 г. всех вакуистов * G. В. Р о г t a, I tre libri de'Spiritali, cioe d'inalzar acque per forza dell'aria, Napoli,. 1602, p. 19. 95
объединяла одна черта: они признавали, что~воздух обладает «абсолютным» весом, т. е. весом воздуха, «вынутого из атмосферы». Это может показаться весьма странным современному читателю, но для этих первых физиков воздух в воздухе ничего не весил, так же как вода в воде. Тарталья пишет: 4...признано, что никакое тело не имеет тяжести, находясь само в себе... т. е. вода в воде, вино в вине, масло в масле, воздух в воздухе не имеют никакой тяжести» *. Того же мнения придерживались Кардан, Бруно и Галилей. Так, Галилей в своем известном «Рассуждении о телах, пребывающих в воде», пишет: «Говорить, что вода может увеличивать вес предметов, погруженных в нее, совершенно неправильно, потому что вода в воде не имеет никакого веса, почему она и не опускается» **. Но отрицать, что часть жидкости, находящаяся внутри жидкости, имеет вес, значит отрицать, что внутри массы жидкости уравновешиваются давления, приложенные к этому весу. Иными словами, наличие веса у воздуха не приводило к выводу об атмосферном давлении, а в некотором смысле даже исключало его. Некоторые идеи о внутреннем давлении в жидкости были у Леонардо да Винчи, и весьма ясные представления, как мы видели в гл. 3,— у Бенедетти и Стевина, но их обобщение на воздух после определения его плотности Галилеем потребовало еще 30 лет работы. Узнав от флорентийских водопроводчиков, что всасывающие насосы не могут поднять воду выше 18 локтей, Галилей пытался в своих «Беседах» объяснить это явление, заменив старинную «боязнь пустоты» «силой пустоты», т. е. сопротивлением образованию пустоты, измеряемым как раз столбом воды высотой 18 локтей. «Каждый раз, как мы взвесим воду, содержащуюся в 18 локтях трубы, широкой или узкой, мы получим значение сопротивления образованию пустоты» ***. С помощью представления о силе сопротивления образованию пустоты Галилей в 1630 г. пытался объяснить, почему отказал в работе сифон, который должен был преодолеть гору высотой 70 шагов. Эту задачу поставил перед ним Джован Баттиста Бальяни (1582—1666), человек, «философствующий о природе и смеющийся над Аристотелем и всеми перипатетиками», как писал Галилею Филиппо Сальвиати в 1612 г., уговаривая Галилея вступить в переписку с генуэзским философом. На данное Галилеем объяснение Бальяни ответил письмом от 24 октября 1630 г., выразив предположение, что к поведению сифона может иметь касательство вес воздуха. Узнав о весе воздуха от Галилея, он и пришел к выводу о возможности пустоты. И так же, как если бы мы были на дне моря, мы бы чувствовали себя сжатыми со всех сторон, «.так же, мне кажется, происходит и в воздухе: мы находимся на дне необъятного воздушного моря, не чувствуя ни его веса, ни давления, производимого им со всех сторон, потому что наше тело сотворено богом таким, что оно безболезненно может сопротивляться этому давлению», но если бы мы были в пустоте и над нашей головой навис бы столб воздуха, мы бы почувствовали его вес, «.очень большой, но не бесконечный и поэтому [определенный, * Quesiti et invention! diverse, 2a ediz., Venetia, 1554, fol. 86 v. ** Le Opere di Galileo Galilei, Ediz. Naz., IV, p. 99. *** Там же, VIII, p. 64. •96
Титульный лист «Академических лекций» Торричелли. 1715 г. и пропорциональной ему силой можно было бы его преодолеть и тем самым создать пустоту» *. Это письмо Бальяни и некоторые отрывки из дневника Исаака Бекмана (1588—1637) из Миддельбурга являются первыми упоминаниями об атмосферном давлении. Галилей не считал возможным принять идею Бальяни. но почти наверняка обсуждал ее с Торричелли; об этом говорит и сходство образных выражений, содержащихся в цитированном письме Бальяни и в письме Торричелли от 11 июня 1644 г., посланном им Микельанджело Риччи (1619—1692) с сообщением об опыте с «живым серебром»: «Мы погружены на дно безбрежного моря воздушной стихии, которая, как известно из неоспоримых опытов, имеет вес, причем он наибольший вблизи поверхности Земли, где он составляет одну четырехсотую часть веса воды»**. Далее Торричелли описывает знаменитый опыт: стеклянную трубку длиной около метра, запаянную с одного конца, заполняют ртутью и, прикрыв пальцем второй конец трубки, переворачивают ее над чашечкой со ртутью и опускают в нее трубку отверстием вниз. Если палец убрать, то ртуть в трубке опустится, остановившись на уровне «в один локоть с четвертью и еще палец». Этот опыт, который по поручению Торричелли был впервые выполнен Вивиани, повторялся с различными сосудами. Одни были цилиндрическими, другие заканчивались шарообразным утолщением, но всегда достигаемый ртутью уровень оставался одним и тем же. Чтобы доказать, что пространство, находящееся над ртутью, остается пустым, Торричелли впускал в него воду, которая врывалась в него «со страшным напором» и целиком его заполняла. Описав эти опыты, Торричелли продолжает «До сих пор думали, что ...эта сила, которая удерживает живое серебро (ртуть) от его естественного стремления упасть вниз, обусловлена сосудом, или пустотой, или некоей весьма разреженной субстанцией, но я утверждаю, * Там же, XIV, р. 159. ** Ореге di Bvangelista Torricelli, III, Faenza, 1919, p. 187. L,E Z I О N I ACCADEMICHE D' EVANGELISTA TORRICELLI Mattemat'm, e Filofifo DEL SERENISS. FERDINANDO II. GRAN DUCA DI TOSCANA Lettore delle Mattematiche nelh Studio di Firenzs E ACCADEMICO DELLA CRUSCA. Cm bcenza de' Superwi- 7 Марио Льоццп 97
что она внешняя, что сила приходит извне. На поверхность жидкости в чашке давит тяжесть 50 миль воздуха. Поэтому что же удивительного, если внутри стекла, где ртуть не испытывает ни влечения, ни сопротивления, поскольку там ничего нет, она подымается до такого уровня, что уравновешивает тяжесть внешнего воздуха, оказывающего на нее давление!.. В такой же трубке, но значительно более длинной, вода подымается на высоту 18 локтей, т. е. во столько раз выше ртути, во сколько раз ртуть тяжелее воды, для того чтобы уравновесить ту же самую причину, оказывающую давление и в том и в другом случае»*. В этом письме дан начальный набросок теории атмосферного давления, уточненный в следующем письме от 28 июня 1644 г., в котором Торричелли разрешает некоторые сомнения, выдвинутые его другом Риччи. Вопрос заключался в том, будет ли поддерживаться столб ртути и в том случае, если нижняя чашка будет закрыта, так что атмосферный воздух не сможет давить своей тяжестью на ртуть. И Торричелли отвечает, что и в том случае, когда чашечка прикрыта крышкой, ртутный столб не опустится, потому что оставшийся в чашечке воздух будет иметь такое же «уплотнение», как и внешний, точно так же, как нижняя часть рассеченной кипы шерсти останется сжатой, как и прежде. Эта весьма эффектная аналогия использовалась также Паскалем и Бойлем без указания источника. Риччи спрашивал также, почему вес воздуха, который должен был бы давить вниз, давит во все стороны и даже вверх. И Торричелли, по существу формулируя то, что впоследствии будет называться законом Паскаля, в шутку отвечает: «Был однажды Философ, который, увидев трубку, вставленную в бочку одним из его слуг, упрекнул его, сказав, что вино никогда не пойдет по этой трубке, так как тяжелые тела по природе стремятся вниз, а не горизонтально в сторону. Но слуга убедил его на деле, что если жидкость и тяготеет по природе вниз, она всеми способами устремляется и растекается во все стороны и даже вверх, потому что ищет места, куда бы переместиться, т. е. места, со стороны которого сопротивление меньше, чем сила этой жидкости» **. После этих писем, которые по ясности идей можно сопоставить лишь с принадлежащим Бойлю изложением аэростатики, Торричелли больше ничего не писал о своем опыте, если не считать академических лекций о ветре (опубликованы посмертно, в 1715 г.), в которых он первым объясняет ветер вариацией атмосферного давления, обусловленной различным нагревом разных участков земной поверхности ***. Микельанджелло Риччи, один из просвещеннейших людей своего времени, друг и ученик Торричелли, был итальянским Мерсенном. Поддерживая переписку с крупнейшими учеными, он тоже выполнял роль центра научной информации. В частности, Риччи послал копию письма Торричелли Мерсенну. Тот поспешил в Италию, чтобы увидеть этот опыт. В ноябре 1644 г. он встретился с Риччи в Риме. Во Францию Мерсенн возвращался через Флоренцию, где задержался у Торричелли, показывавшего ему свой опыт. После долгого путешествия по Франции Мерсенн вернулся в Париж, где в конце 1645 г. ознакомил ученых с опытом Торричелли. Волнение, вызванное в ученой среде торричеллиевой трубкой, сравнимо лишь с интересом, вызванным галилеевой подзорной трубой. Между * Там же, р. 188. ** Там же, р. 199. *** Е. Torricelli, Lezioni arcademiche, Firenze, 1715, L?zione VII 98
Опыт Гаспара Берти в Риме с барометрической трубкой, заполненной водой. С — колокольчик; А — магнит, подымающий молоточек и позволяющий ему затем падать. Слыша звук колокольчика снаружи, Берти и А. Кирхер (предложивший ему этот опыт) заключили, что в сосуде не образовалось пустоты. Барометрическая трубка с изгибом в точке В. Если провести обычным образом опыт, то в изгибе В останется немного ртути. Если убрать палец, прикрывающий отверстие в отростке М, то под действием атмосферного давления ртуть упадет в чашку N и подымется в изгибе В. (Этот рисунок взят из трактата Паскаля; изгиб В изображен на нем неверно: он должен быть глубже, чтобы ртуть перекрывала его.) перипатетиками, картезианцами и экспериментаторами разгорелась яростная дискуссия. Споры касались в основном пустоты — существует она или нет,— силы сопротивления образованию пустоты и атмосферного давления, но для многих из спорящих был еще не вполне ясен сам предмет спора. В этих условиях Влез Паскаль (1623—1662), тогда еще сторонник «боязни пустоты», повторил опыт Торричелли, узнав о нем от Мерсенна. Чтобы ответить на рассуждения одного приходского священника, отстаивавшего невозможность образования пустоты и приписывавшего явление Торричелли свойствам ртути, вещества «ненастоящего», не знающего, куда ему следует идти — вверх или вниз, Паскаль повторил этот опыт во внутреннем дворике стекольного завода в Руане с двумя длинными трубками, одна из которых была наполнена вином, а другая — водой, и получил результаты, предсказанные Торричелли и уже полученные Гаспаре Берти в Риме. Эксперимент, который был произведен 19 декабря 1648 г. по поручению Паскаля его родственником Перье на горе Пюи-де-Дом и в ходе которого было обнаружено, что на вершине уровень ртути в трубке ниже, чем у основания горы, оказался поистине эпохальным. Паскаль опубликовал результаты опыта в небольшой книжке, вышедшей в том же году под назва- 7* 99
Сифонный барометр Бореллп. Р.чгг'то чашки применена изогнутая трубка FBC с расширершем DG. нием «Recit de la Grande Experience de VEquilibre des Liqueurs» («Рассказ о великом эксперименте по равновесию жидкостей»). «Великий эксперимент» — в действительности лишь простое подтверждение известной Паскалю теории Торричелли об атмосферном давлении — был почти наверняка подсказан Паскалю Декартом во время обсуждения опыта Торричелли этими двумя философами 24 сентября 1647 г. Для подтверждения теории Торричелли более существенным, чем «великий эксперимент», оказался опыт с «пустотой в пустоте», задуманный в 1648 г. Андре Озу (1622— 1691) и описанный в его посмертно вышедшем труде «La pesanteur de la masse de Vain («О тяжести массы воздуха»), где он приводит его в несколько измененном виде. Именно этот опыт побудил многих еще колебавшихся ученых, в частности Роберваля и Мерсенна, согласиться с теорией Торричелли. В 1648 г. период споров об опыте Торричелли заканчивается, и для всех принявших учение Торричелли начинается период его приложения. Первым, кому пришла в голову мысль производить непрерывные наблюдения атмосферного давления в различных местах, был, по-видимому, Декарт, еще в конце 1647 г. пославший Мерсенну, своему бывшему товарищу по учению, полоску бумаги, градуированную точно так же, как та, которую использовал он сам в своей торричеллиевой трубке; он просил прикрепить эту полоску к прибору, с тем чтобы можно было сравнивать обе серии измерений. Через некоторое время Паскаль и Перье также начали серию количественных наблюдений. Заметив, что показания торричеллиевой трубки связаны с метеорологическими условиями, Паскаль пытался дать правила предсказания погоды и догадался, что торричеллиева трубка может быть применена для определения разности уровней двух точек местности. В Италии эти исследования вскоре были начаты Раффаэле Маджотти (1597—1656), но бумаги с его результатами были сожжены, ибо он умер от чумы. Исследования Маджотти продолжил Джованни Альфонсо Борелли, произведший ряд систематических исследований в 1657—1658 гг. Он сделал прибор переносным, спабдив его приспособлением, изобретенным независимо также Паскалем. Этот прибор, названный позже сифонным барометром и описанный им в работе «De motionibus naturalibus a gravitate pendentibus» («О естественных движениях, зависящих от тяжести»), некоторые приписывают Торричелли. В 1667 г. Бойль назвал этот прибор бароскопом, или барометром. Однако Эдм Мариотт (1620—1684) счел второе название более точным, как оно и есть на самом деле, и популяризировал его в своей работе «De la nature de Vair» («О природе воздуха»), 1676 г. Весовой барометр, представляющий собой подвешенную к чашке весов барометрическую трубку, в которой уровень ртути определяется по изменению веса, был предложен в 1670 г. Самуэлем Морлендом. В 1791 г. прибор был переделан Артуром Маккуайром в барограф, а в 1867 г. доведен до большой степени точности Анджело Секки (1818—1878). Металлические барометры, значительно более чувствительные, чем ртутные, также были предложены еще в XVII веке. 100
Сифонный барометр Бойля. Идея такого барометра была высказана еще Лейбницем в 1697 г., но впервые он был осуществлен, по-видимому, в 1844 г. Види (1805—1866). Види использовал закрытую гофрированной крышкой металлическую коробку, из которой выкачан воздух. Рычажок, прикрепленный к центру крышки, воздействовал на систему индикации. Известный теперь барометр-анероид был предложен в 1853 г. Бурдоном (1779—1854) и стал вскоре применяться также как манометр. 9. ЗАКОН ПАСКАЛЯ. Исследования, связанные с опытом Торричелли, привели Паскаля, естественно, к гидростатике, единственной области физики, которой он интересовался. Между 1651 и 1654 гг. он пишет свои замечательные «Traites de Vequilibre des liqueurs et de la pesanteur de la masse de i'aire» («Трактаты о равновесии жидкостей и о весе массы воздуха»), опубликованные уже после его смерти, в 1663 г. Эти работы являются классическими по ясности изложения, глубине рассмотрения и постановке эксперимента. Паскаль устанавливает, что «вес» жидкости зависит от ее высоты, и доказывает это с помощью опыта, столь замечательного, что он по существу повторяется и в наши дни во всех учебниках физики: берется несколько сосудов самой разнообразной формы, но с одинаковой площадью основания и одинаковой высотой заполнения жидкостью; тогда давление на основания во всех сосудах будет одинаковым. Паскаль тут же применил свой результат к гидравлическому прессу, идея которого высказывалась еще Бенедетти и Стевином (см. гл. 3): «Сосуд, наполненный водой, является новым механическим инструментом, т. е. новым механизмом для увеличения сил в желаемой степени»*. И дальше в своем «Трактате» Паскаль связывает этот закон с законом виртуальных перемещений: «...ясно, что сместить на один дюйм сто фунтов воды — все равно что сместить на сто дюймов один фунт воды»**. Паскаль устанавливает условие равновесия пресса, исходя из принципа Торричелли, хотя нигде не ссылается на него: ч.Я исхожу из принципа, согласно которому тело никогда не может начать двигаться под действием собственного веса без того, чтобы его центр тяжести не опустился»**. Во всех этих примерах, по мнению Паскаля, причина равновесия заключается в том, что * В. Pascal, Trattato sull'equilibrio dei liquidi, Torino, 1958, p. 39. (Есть русский перевод в сборнике «Начала гидростатики», М.— Л., 1933.) ** Там же, р. 40, 42. 101
Отто фон Герике. Гравюра 1640 г. «вещество, расположенное у дна сосудов и соединяющее одно отверстие с другим, является жидкостью» *. Таким образом, для жидкости характерно свойство полностью передавать давление. В физике это утверждение называется законом Паскаля, хотя, как мы знаем, по существу он был известен еще и его предшественникам. 10. ПНЕВМАТИЧЕСКАЯ МАШИ НА. Отто фон Герике (1602—1686), с 1646 г. бургомистр Магдебурга, был способным и изобретательным экспериментатором с заметным пристрастием к театральности. В юности он объездил многие города Германии и Франции, завязывая знакомства с учеными, которые сообщали ему о новых исследованиях. Поэтому трудно поверить его рассказу о том, что об опыте Торричелли он узнал лишь в 1654 г. от того миланского капуцина Валериано Магно (1586—1661), который в 1647 г. ошеломил варшавский двор показом опыта Торричелли. Этот довольно знающий, но не очень щепетильный монах выдавал его за собственное изобретение. Как бы то ни было, Герике рассказывал, что у него появилось сильное желание убедиться лично в возможности образования пустоты. Для этой цели он заполнил винную бочку водой, подсоединил к ней насос и попытался выкачать жидкость. Время этого опыта Герике не уточняет; немецкие историки считают, что это было до 1654 г. Как только началась откачка, ободы треснули. Так же плачевно закончился и второй опыт с более прочной бочкой. Герике повторил опыт и в третий раз, но уже с медным сосудом. Постепенно выдвигаемый из насоса поршень шел сначала легко, потом все труднее, и вдруг случилось такое, что привело всех присутствующих в ужас. По словам Герике, ((внезапно ко всеобщему ужасу шар со страшным шумом разлетелся на мелкие куски, как если бы он был сброшен с высочайшей башни» **. Хотя страх, вызванный этой бурной поломкой прибора, был велик, Герике понимал, что находится на правильном пути к созданию машины, которую Гаспар Шотт (1608—1666), первым сообщивший о ней в своей * Там же, р. 45. ** О. G u е г i с k e, Experimenta nova (ut vocantur) Magdeburgica de vacuo spatio, Amstelodami. 1672, p. 75. 102
Титульный лист «Новых магдебургских опытов о пустом пространстве» Отто фоп Герике (Амстердам, 1672).
^J^V^JBSSineMws . *» ^?^?^*d^^^|S Различные пневматические инструменты. (О. G u е г i с k e, Experi- menta de vacuo spatio, 1672.) «Mechanica hydraulico pneumatica» («Гидравлико-пневматическая механика»), 1657 г., назвал «пневматической» и которая позволяет откачивать воздух из сосуда. Первые же опыты вызвали изумление Герике и всех присутствовавших. Напомним некоторые из них: описываемый и сейчас во всех учебниках опыт с магдебургскими полушариями, произведенный в 1654 г. в Реген- сбурге в присутствии императора и князей; опыт с пузырем; опыт, подтверждающий нераспространение звука в пустоте; опыт с бароскопом, используемым и сейчас в промышленности для определения плотности какого-либо газа (полый шар уравновешивается на весах сплошным, конечно, меньшего объема; при более плотном газе перетягивает сплошной шар, при более разреженном — полый). Мы хотим специально напомнить об одном опыте, который тогда остался незамеченным, но был вновь повторен и использован Вильсоном уже в нашем веке в одном из наиболее ценных приборов ядерной физики (см. гл. 11). Герике соединил перемычкой два сосуда, снабженных кранами, из которых нижний, больший сосуд был откачан, а верхний, меньший, содержал воздух. Затем он открыл краны, связав между собой эти сосуды. При этом в верхнем сосуде образовывался туман: «...„маленькое небо", которое сначала было покрыто тучами, а потом медленно прояснялось» *. Роберт Бойль (1627 — 1691), один из наиболее проницательных ученых того времени, воспитанных на трудах Галилея, узнал о пневматических опытах Герике, по-видимому, из упомянутой книги Гаспара Шотта. Вместе * Там же, р. 89. 104
Опыт с «магдебургскими полушариями». (О. G u о г i с к е. Experimenta de vacuo spatio, 1672.) со своим ассистентом Робертом Гуком он усовершенствовал машину Герике, применив для облегчения перемещения поршня систему из зубчатой рейки и зубчатого колеса. Всасывание и выпуск воздуха производились через краны, которые попеременно то открывались, то закрывались. Позже, в 1676 г. Дени Папен (1647—1712?) заменил выпускной кран клапаном в поршне, снабдил машину тарелкой, на которую можно было поместить стеклянный колокол, а для получения непрерывной откачки соединил вместе два насоса, поршни которых Хоксби приводил в движение (1709 г.) с помощью системы двух зубчатых реек, соединенных с одним зубчатым колесом. Короче говоря, к 1709 г. машина приобрела почти тот вид, какой имеют ее современные потомки, демонстрируемые иногда в некоторых старомодных физических кабинетах. Опыты Бойля не отличались существенно от опытов Герике. Напомним наиболее интересные из них: определение веса воздуха; измерение степени разрежения с помощью помещаемой в откачиваемый объем чашечки, в которую опущен конец трубки барометра, выведенной наружу [зтот прибор является зачаточной формой вакуометра, введенного Жан-Жаком де Мера- ном (1678—1771) в 1734 г.]; доказательство того, что в резервуарах, из которых откачан воздух, невозможны ни горение, ни жизнь, ни распространение звука, ни работа сифона. Все эти и многие другие результаты Бойль опубликовал в 1660 г. в работе под названием «New experiments... touching the spring of the air» («Новые опыты... касающиеся упругости воздуха»). В последующей работе, являющейся продолжением первой и опубликованной в 1686 г., Бойль описывает нагнетательный насос, совершенно аналогичный в принципе современному поршневому нагнетательному насосу. Возможность откачки воздуха из резервуаров большого размера привела тотчас к возникновению проектов воздухоплавания. Начало положил 1ПЧ
Зарождение воздухоплаиания. (A. S. de Montforrie r, Dictionnaire des sciences mathematiques, 1838.) В июне 1783 г. братья Жозеф и Жак Монгольфье подняли с площади Аннонэ воздушный шар, наполненный теплым воздухом. 1 декабря того же года физики Жак Шарль (1746—1823) и Франсуа Робер (1737 —1819) в Тюильри в присутствии 400 000 зрителей предприняли первый полет в гондоле воздушного шара (рис. 1), наполненного водородом. На рис. г а 3 изображены парашюты, успешно применявшиеся в 1802 г. На рис. 4 показано наполнение шара водородом, получающимся при подливании серной кислоты в воду, содержащую железные опилки. Франческо Лана Терци (1631—1687), который в шестой главе своего труда «.Prodrome overo saggio di alcune inventioni nuove premesso all'Arte Maestra» («Предвестник или образчик некоторых новых изобретений, предпосланный Великому Искусству»), 1670 г., определив удельный вес воздуха равным 1/640 веса воды, предлагает летательный аппарат «более легкий, чем воздух», состоящий из прикрепленных к лодке четырех полых шаров, из которых откачан воздух. Подъем и спуск обеспечиваются соответственно сбрасыванием балласта и частичным впуском воздуха в полые шары. Предусмотрены 106
Титульный лист работы Бойля «Об упругости и тяжести воздуха», 1680 г. также возможные военные применения этой машины. Эта глава «Предвестника», переведенная на латинский язык и несколько раз издававшаяся в различное время, возбуждала техническую фантазию и внесла свой вклад в решение проблемы воздухоплавания. 11. ЗАКОН БОЙЛЯ. Приве денное название книги Бойля привлекает внимание к фундаментальному понятию — упругости воздуха, которое было определяющим в замыслах и в осуществлении опытов Бойля. Упругость воздуха была продемонстрирована Паскалем в опыте, повторенном Академией опытов и Герике. Пузырь с воздухом раздувается, если его поместить в барометрическую камеру или в резервуар, из которого откачан воздух. Опыт Герике с двумя сообщающимися сосудами также свидетельствовал об упругости воздуха. Заметим кстати, что из описанных опытов с воздухом родилась теория упругости. Этот термин, введенный Пекке (1622 — 1674) в 1651 г., широко применялся Бойлем, который произвел также первые исследования упругости твердых тел. Против такого понимания ополчился Франческо Лино (1595—1675) который по существу отстаивал идеи, выдвинутые Фабри, а также Мер- сенном, пытавшимися приписать эффект Торричелли и всасывание воды насосом сцеплению «крючковатых» частиц воды и воздуха, сталкивающихся друг с другом. В своей работе «De experimento argenti vivi tubo vitreo inclu- si...» («Об эксперименте с ртутью в стеклянных трубках...»), опубликованной в 1660 г., Лино замечает, что если опустить в ртуть трубку, открытую с обоих концов, а затем прикрыть верхний конец пальцем и частично вытащить трубку из ртути, то чувствуется, что подушечка пальца втягивается внутрь трубки. Это притяжение, рассуждает далее Лино, свидетельствует не о внешнем атмосферном давлении, а о внутренней силе, обусловленной невидимыми нитями («фуникулами») материальной субстанции, прикрепленными одним концом к пальцу, а другим к столбу ртути. Сейчас такие идеи вызывают лишь улыбку, но тогда они нуждались в серьезном рассмотрении, что и сделал Бойль в своей работе «.Defence against Linus» («Защита против Лино»), где ставит себе целью доказать, что упругость воздуха способна на большее, нежели простое удержание торричеллиева столба: DEFENSIO DOCTRINE TIF F Г ATF RF X-J JL_/ l^j JLj> il A jL-j A. V JL_/ ET GRAVITATE AERIS> Prapojttrf ah Honor■avjjtftta ROBERTO BOYLE, In Novis Iffius PHYSICO-MECHAN1C1S EXPERIMENTS MwrftS OBIECTIONES FRANCISCI LINI Ubl ctiim Oijeflmi Ftt»Kn'im Hjpukepi txaroinatur , caquc occafiooe cju^Jam fcxHRiMEHTA adduntur. K^lb AvroM Jif4-iAf»» EX!!HMt»T(l«VM. a i ,\ в v-л, Apud SAMVELEM DE TOVRNES. t!U, DC, IXXX. 1П7
Эксперименты Бойля. Справа — барометр с длинной чашкой. В длинную трубку А, содержащую ртуть, Войль вводил прямую трубку В, предварительно разогретую и затем закрытую с конца С. После охлаждения трубки В ртуть в ней подымается. В зависимости от большего пли меньшего погружения трубки В в трубку А запертый в трубке В возчуз будет занимать разный объем и находиться под различным давлением, которое можно определить по разности высот ртути в обеих трубках. Слева показана изогнутая трубка, описанная в тексте. ((Теперь мы постараемся доказать специальными опытами, что упругость воздуха способна сделать значительно больше, чем требуется для объяснения эффекта Торричелли... Мы взяли длинную стеклянную трубку и согнули ее внизу на огне так, чтобы загнутая часть была почти параллельна остальной части трубки. Отверстие этой более короткой ветви трубки было герметически закрыто, а на самой трубке были нанесены деления (по 8 делений на дюйме) с помощью полоски бумаги с такими делениями, тщательно надетой на эту ветвь трубки» *. Производя опыты с этой U-образной трубкой, как их продолжают делать м теперь, он нашел, что при уменьшении объема воздуха в коротком колене трубки вдвое разность уровней ртути в обоих коленах стала равной высоте барометрического столба, а при уменьшении объема воздуха втрое зта разность удвоилась. Значение этого закона было понято не Бойлем, а любителем из Ланкастера Ричардом Таунли, который повторил этот опыт и написал Бойлю, что причина этого явления — упругость воздуха. Бойль опубликовал наблюдения Таунли, назвав этот закон «законом Таунли». Чтобы подтвердить закон Таунли для давлений меньше атмосферного, Войль придумал прибор, ставший классическим и известный теперь как барометр с длинной чашкой. С помощью этих двух приборов Бойль исследовал замкнутый объем воздуха при различных давлениях от 1V4 дюйма ртутного столба до 1179/16 дюймов и при каждом измерении сопоставлял наблюденное значение давления с тем, которое должно было бы быть согласно гипотезе об обратной пропорциональности. Найдя прекрасное согласие измеренных значений с теоретически рассчитанными, он заключает: ((упругость воздуха находится в обратном отношении к его объему». Бойль вернулся вновь к аэростатике в 1666 г., опубликовав ((ffydrosta- tical Paradoxes» («Гидростатические парадоксы»), в которых опровергает старинную теорию о том, что более легкая жидкость не оказывает никакого * R. В о у 1 е, Defence against Linus, 1662; в книге The Works of the Honourable Robert Boyle, London, 1744, p. 100. 108
давления на находящуюся под ней более тяжелую. Эта работа интересна не сама по себе, а как свидетельство медленного распространения новых идей. 12. БАРОМЕТРИЧЕСКИЕ ФОРМУЛЫ. В 1676 г Эдм Мариотт (1620— 1684), настоятель монастыря Св. Мартина (Дижон), опубликовал работу «De la nature de Vain («О природе воздуха»), в которой описал опыты, почти совпадающие с опытами Бойля, и пришел (независимо?) к тому же выводу, к «закону Бойля», который французы называют «законом Мариотта». Но Мариотт понял лучше Бойля значение этого закона и предсказал различные его применения, из которых наиболее важным был расчет высоты места по данным барометра. Расчет производился путем оперирования с бесконечно малыми величинами и вследствие слабой математической подготовки Мариотта привел к неудаче. Роберт Гук повторил расчет Мариотта, но ему повезло не больше, чем его французскому коллеге: он пришел к выводу, что полная высота атмосферы бесконечна, откуда вывел заключение о несправедливости закона Бойля. К проблеме определения высоты по атмосферному давлению обратился н 1686 г. английский астроном Эдмонд Галлей (1656—1742), более известный по открытой им комете, носящей его имя. Он нашел формулу, по существу правильную, если не учитывать изменения температуры. Суть формулы Галлея сводится к утверждению, что по мере возрастания высоты в арифметической прогрессии атмосферное давление уменьшается в геометрической прогрессии. Работа Галлея прошла, по-видимому, почти незамеченной, потому что ряд математиков (Маральди, Кассини, Д. Бернулли и многие другие) в течение всего XVIII века и позже занимались поисками барометрической формулы, опираясь на различные исходные предпосылки. Только Бугер в 1748 г. вернулся к подходу Галлея. Во всей общности задача была рассмотрена лишь Лапласом (в 1821 г.). Полученное им решение весьма сложно, однако для практических нужд оно было упрощено и оказалось чрезвычайно полезным для быстрого определения высоты в воздухоплавании и, наконец, при исследовании броуновского движения (см. гл. 13). АКАДЕМИИ НАУК 13. АКАДЕМИЯ ДЕИ ЛИНЧЕЙ. По примеру литературных академий в Италии возникли научные академии, оказавшие большое влияние на развитие и распространение науки и ставшие центрами научного прогресса. В 1560 г. Джован Баттиста Порта организовал в Неаполе первую физическую академию—Academia secretorum naturae (Академия тайн природы). Но, по всей вероятности, это не была настоящая академия с соответствующими органами и статутом, а скорее периодические собрания в доме Порты близких Порте любителей различных отраслей знания: науки, магии, астрологии. Совсем другой характер имела Accademia dei Lincei (Академия дел Линчей, буквально — Академия «рысьеглазых»), основанная в 1603 г. Федерико Чези (1585—1630) вместе с голландцем Иоганном Гекком (итальянизированная фамилия — Эккио), Франческо Стеллути (1577—1651) из Фаб- риано и Анастасио де Филипсом из Терни. Целью этой Академии было изучение и распространение научных знаний в области физики. Ее гербом служила рысь, которой приписывался столь острый взгляд, что он проникает сквозь предметы; над рысью был расположен девиз «sagacius ista» (эта быстрейшая разумом). Академия, первое заседание которой состоялось в Риме 17 августа 1603 г., сразу же подверглась яростным нападкам родителя Федерико Чези, человека
грубого, презиравшего всякие исследования; ему удалось заставить прервать заседания в 1604 г. В 1609 г. Федерико Чези преобразовал Академию, пригласив войти в ее состав новых членов — итальянцев и иностранцев, и в первую очередь Галилея, который дал согласие на вступление в Академию 25 апреля 1611 г. Между 1609 г. и 1630 г., т. е. годом смерти Чези, Академия процветала и постоянно выступала с открытой защитой учения Галилея. В этот период она опубликовала важные научные работы, из которых упомянем «Историю и доказательства, касающиеся солнечных пятен» (1613) и «Пробирщика» (1623) Галилея. Попытки поддержать деятельность Академии после смерти Чези ни к чему не привели. В 1745 г. и затем в 1795 г. ее пытались преобразовать, в 1802 г. переименовали в Accademia dei Nuovi Lincei (Новая Академия деи Линчей), а двумя годами позже вернулись опять к прежнему названию — Академия деи Линчей. Академия с трудом просуществовала до 1840 г. и была распущена папой Григорием XVI. В 1847 г. папой Пием IX Академия была восстановлена под названием Accademia Pontificia dei Nuovi Lincei (Новая папская академия деи Линчей), а в 1870 г. преобразована в Reale Accademia dei Lincei (Королевская академия деи Линчей). Ее научный уровень повысился главным образом благодаря работам Квинтино Селлы (1827—1884). В 1939 г. она слилась с распущенной Итальянской академией и, наконец, в 1944 г. преобразована в Accademia Nazionale dei Lincei (Национальная академия деи Линчей). 14. ЛОНДОНСКАЯ И ПАРИЖСКАЯ АКАДЕМИИ. Вернувшись в 1644 г. в Англию из Италии, Бойль стал инициатором объединения энтузиастов нового научного направления. Эти «виртуозы», как он их называл, образовали ту «невидимую коллегию», которая с 1645 г. начала свою деятельность в Лондоне и Оксфорде и вскоре стала столь авторитетной научной организацией, что в 1660 г. была официально признана Карлом II и преобразована в Royal Society for the Advancement of Learning (Королевское общество для развития знания). С того времени и до наших дней Королевское общество с завидным постоянством всегда тесно связано с историей науки в Великобритании. Учреждение Королевского общества побудило французских ученых сплотиться в Париже в Academie des Sciences (Академия точных наук), основанную в 1666 г. министром Кольбером; ей было вменено в обязанность никогда не говорить «...на заседаниях ни о религиозных таинствах, ни о государственных делах. И если иногда и говорится о метафизике, морали, истории или грамматике пусть даже мимоходом, то лишь в той мере, в какой это относится к физике и к отношениям между людьми». 15. АКАДЕМИЯ ОПЫТОВ. Как Королевское общество, так и Парижская Академия наук были созданы по образцу Accademia del Cimento (Академия опытов), основанной в 1657 г. князем Леопольдо Медичи, братом великого герцога Фердинанда II. Под председательством князя Леопольдо 19 июня того же года состоялось первое заседание Академии. Подобно ранее созданной Академии деи Линчей, Академия опытов замышлялась для пропаганды науки и должна была способствовать расширению познаний в области физики путем коллективной экспериментальной деятельности своих членов, следуя методу, установленному Галилеем, на работы которого она прямо опиралась. Ее гербом была печь с тремя тиглями, над которой помещена надпись— изречение Данте «provando e riprovando» (доказательством и еще раз доказательством) 110
Герб Академии опытов. (Saggi di naturali esperienze. '1667.') Действительными членами Академии были Винченцо Вивиани, Джо- ванни Альфонсо Борелли, Карло Ренальдини, Алессандро Марсили, Паоло дель Буоно, Антонио Олива, Карло Дати, Лоренцо Магалотти. Потом к ним добавились многие итальянские и иностранные члены-корреспонденты. Лучшая часть многосторонней десятилетней научной деятельности Академии была представлена «ученым секретарем» Магалотти в знаменитой работе 1667 г. «Saggi di naturali esperienze fatte nell'Accademia del Cimento» («Очерки о естественнонаучной деятельности Академии опытов»). На английский язык эта работа была переведена в 1684 г., а на латинский — в 1731 г. Еще более полное представление о работе Академии было дано Джованни Тарджони Тодзетти в четырех томах «Atti e Метопе inedite dell'Accademia del Cimento e notizie aneddote dei progressi delle sienze in Toscana» («Труды и неизданные отчеты Академии опытов», Флоренция, 1780). После общего введения в «Очерках» приводится описание термометров и методов их конструирования. Затем дается описание гигрометров, барометров и способов применения маятников для измерения времени. Далее идут четырнадцать серий систематических экспериментов: исследования атмосферного давления, затвердевания, термического изменения объема, пористости металлов, сжимаемости воды, предполагаемой «положительной легкости», магнитов, электрических явлений, цвета, звука, движения брошенных тел. Примитивный воздушный термоскоп Галилея (см. гл. 4) Торричелли преобразовал в жидкостный (спиртовый) термометр. Его конструкция была настолько улучшена Торричелли и членами Академии и оказалась столь удобной для различных применений, что в XVII веке «флорентийские термометры» стали знамениты. Они были введены в Англии Бойлем и распространились во Франции благодаря астроному Бульо (1605 —1694), получившему в дар такой термометр от польского дипломата. В 1694 г. один из членов Академии опытов Карло Ренальдини (1615—1698) первый предложил принять в качестве фиксированных температур при градуировке термометра температуру таяния льда и температуру кипения воды. Ринальдини был поддержан в 1742 г. астрономом Цельсием (1701 —1744), предложившим стоградусную шкалу с точкой «0», соответствующей кипению воды, и точкой «100», АЛЛ
Барометрические опыты Академии опытов (Saggi di naturali esperi- enze, 1841.) В центре—один из вариантов опыта с пустотой в пустоте. соответствующей ее замерзанию. Изменение направления шкалы было произведено в 1750 г. другим астрономом, Мартином Штрёмером (1707-1770). В процессе исследования теплоты члены Академии, желая доказать, что все тела расширяются при нагревании, предложили опыт, который и сейчас повторяется в школах и известен как «кольцо Гравезанда», но вместо шара, который в холодном состоянии может пройти сквозь кольцо, а в горячем не проходит, члены Академии применяли цилиндр. Они показали также, что тепловое расширение жидкостей больше, чем твердых тел, и имели ясное понятие о теплоемкости, хотя относящиеся сюда опыты не были опубликованы в «Очерках». Опуская интересные опыты по исследованию сопротивления воздуха, сжимаемости жидкостей и явлений, происходящих в пустоте в барометрической камере, отметим, что, улучшив конструкцию барометров и термометров, члены Академии начали систематические метеорологические наблюдения, пользуясь также конденсационным гигрометром, изобретенным великим герцогом Фердинандом II, а иногда — плювиометром, предложенным раньше Кастелли. Измерения производились сначала в различных местах в Тоскане, затем в Милане, Болонье и Парме по определенным часам пять раз в сутки, причем отмечалось также направление ветра и состояние неба. Исследование накопленных таким образом Академией данных позволяет заключить, что метеорологические условия в Тоскане во второй половине XVII века не отличались от теперешних. 5 марта 1667 г. Академия провела свое последнее заседание. В том же году она была распущена. Точные причины ее роспуска неизвестны, но роль сыграли, по-видимому, анонимность открытий, предписываемая правилами устава, согласно которым автор любого суждения, любого опыта, любого наблюдения должен оставаться неизвестным, принести себя в жертву Академии; соперничество и зависть, зародившиеся между ее членами, и особенно между двумя крупнейшими — Вивиани и Борелли, и, наконец, враждебность и подозрительность римской курии, которая разжигала вражду между учеными, осмеивала их труды, угрожала их личности. Некоторые авторы сообщают, что князю Леопольдо была обещана кардинальская шапка (которую он и получил в конце того же 1667 г.) при том единственном условии, что Академия будет распущена. ,41 -•чг ^m'Mnt- 112
Термометры Академии опытов. Какова бы ни была причина, роспуск Академии опытов был прискорбным событием для итальянской науки. Примерно в течение целого столетия итальянская наука ничего не могла дать европейской, на формирование которой она в свое время столь сильно повлияла. ОПТИКА 16. ОПТИКА КЕПЛЕРА. Физика XVII века фактически состояла из двух разделов — механики и оптики, для которых общей областью применения была астрономия. Чтобы удовлетворить нужды астрономии, Иоганн Кеплер (1571—1630) написал фундаментальный труд по оптике «Ad Vitellionem para- lipomena, quibus astronomiae pars optica traditur» («Паралипомены к Вителлию»), 1604 г., который он скромно рассматривал (это видно из самого названия) как простое дополнение к оптике Вителлин, т. е. (см. гл. 2) к оптике Аль- хазена. Кеплер неоднократно говорил, что его вдохновляли семнадцатая книга «Магии» и трактат «О преломлении» Порты, которым он приписывал значительно большие достоинства, чем склонны признавать современные критики. Интересно заметить, что многие идеи Кеплера встречались у Мавро- лика, работы которого по оптике тогда еще, впрочем, не были опубликованы (см. гл. 3). Из этой работы Кеплера для нас интересны первые шесть глав, поскольку последние пять глав посвящены астрономическим проблемам. В соответствии с идеями Альхазена Кеплер изгоняет из оптики всякие «призраки» и «образы» и рассматривает конусы лучей, исходящих по всем направлениям из каждой S Марио Льоцци J J. • J
Иоганн Кеплер. Портрет кисти неизвестного автора. светящейся точки. С помощью этих лучей он объясняет задачу, которая оставалась покрытой тайной для всех предшествующих оптиков. Почему мы видим в зеркале изображения там, где их заведомо нет? Потому, отвечает Кеплер и вместе с ним современные физики, что глаз, воспринимающий лучи, не может знать, какой путь они прошли, и помещает светящуюся точку на их продолжении. Аналогичное объяснение дается локализации изображения, видимого при преломлении; таким образом легко объясняется опыт с кажущимся переломом опущенной в воду палки, остававшийся необъясненным в течение тысячелетий —«macula joeda in pul- cherrima scientia» («черное пятно в прекраснейшей науке»), как говорил Кеплер. Пятая глава работы Кеплера посвящена преломлению. С помощью остроумного экспериментального приспособления он пытался найти закон преломления, но в конце концов удовлетворился тем, что вернулся к старому правилу, приписываемому Птолемею (см. гл. 1): для углов меньше 30° угол падения пропорционален углу преломления. И все же даже это правило пригодилось ему при исследовании преломления в шаре, когда он вводит новый очень важный экспериментальный метод. Кеплер сознает, что это не одно и то же — рассматривать изображения глазом или же получать их на экране, и догадывается, что второй метод значительно упрощает эксперимент, который становится более объективным. Одним словом, он заменяет средневековую физиологическую оптику современной геометрической. Комбинируя этот метод с идеей Даниэля Барбаро о диафрагмировании сферы (см. гл. 3), Кеплер приходит к фундаментальному открытию: при преломлении лучей, проходящих через задиафрагмированпую сферу, одна точка изображения соответствует также одной точке предмета, а параллельный пучок лучей «сходится», «конвергирует» (ему принадлежит и применение этого термина) в точке, которой он дал название фокус. Пятая глава — самая знаменитая в работе Кеплера. В ней рассматривается механизм зрения. Кеплер оказался смелее Альхазена, Мавролика и Порты и продолжил ход лучей света до сетчатой оболочки. Он понимал, что изображение на сетчатой оболочке обязательно будет перевернутым, но считал, что из этого факта вовсе не следует, что мы должны видеть предметы перевернутыми: достаточно, чтобы глаз помещал светящую точку вверх, когда образующееся в глазу изображение находится внизу, и помещал эту точку справа, когда оно находится слева, и наоборот. Среди ученых того времени работа Кеплера не вызвала большого интереса. В 1610 г. Галилей еще, несомненно, не знал о ней, так что ее влияние на создание и тем более на применение подзорной трубы следует исключить. 114
Более того, из неопределенного отношения Кеплера к первым сообщениям об астрономических открытиях Галилея следовало бы сделать вывод, что он даже не очень доверял подзорной трубе. Однако эта нерешительность Кеплера, впрочем не совсем неоправданная, вскоре была искуплена его восхищением астрономическими открытиями Галилея и написанной им в августе— сентябре 1610 г. и опубликованной в 1611 г. «Диоптрикой», целью которой было дать теорию подзорной трубы, подкрепив математическими доказательствами данные чувств. «Диоптрика» основана на геометрической оптике, изложенной в «Пара- липоменах», однако она расширяет и уточняет ее и прежде всего применяет к исследованию линз, действия хрусталика глаза, коррекции близорукости и дальнозоркости. Затем Кеплер переходит к рассмотрению комбинации нескольких линз, четко формулируя положение о том, что изображение от одной линзы может служить предметом для другой. Результаты рассмотрения он применяет в конструкции подзорной трубы с выпуклым окуляром, называемой теперь кеплеровой, или астрономической, впервые реализованной, по-видимому, в 1630 г. Шейнером (1575 —1650. Кеплер рассматривает также прибор, который называется сейчас телеобъективом, и, наконец, дает теорию подзорной трубы Галилея. 17. ЗАКОНЫ ПРЕЛОМЛЕНИЯ. В упомянутых двух работах Кеплера была построена современная элементарная геометрическая оптика. Однако здесь не хватало одного основного закона — закона npt-ломления. Астрономические открытия Галилея придавали оптике весьма большую актуальность, а труды Кеплера вырвали большую часть ее, и особенно теорию зрения, из-под власти философии. В такой обстановке начал свои исследования по оптике Декарт, воодушевленный изобретением подзорной трубы, задавшийся целью улучшить ее конструкцию (что ему, впрочем, не удалось) и, по-видимому, питавший надежду соперничать с Галилеем и превзойти его в астрономических открытиях. Он отдавал себе отчет в том, что фундаментальной проблемой новой науки является теория света. И действительно, первая глава его «Диоптрики» носит многообещающее заглавие «О свете». Но, к сожалению, это лишь название. Перед лицом сложной проблемы одной научной фантазии философа недостаточно. Пообещав объяснить «все» уже известные свойства света и вывести «все» другие свойства, он тем не менее заявляет, что ему незачем вскрывать истинную природу света, для его целей, т. е. для объяснения зрения и действия подзорной трубы, ему достаточно использовать две-три аналогии. Первая аналогия—двухтысячелетней давности: как слепой, нащупывая своей палкой, создает себе представление о предметах, так и свет «является неким движением или неким действием», которое через воздух и другие прозрачные тела идет от светящегося тела к глазам. Вторая аналогия, противоречащая предыдущей, говорит о материальной природе света: как два потока вино; | адного сусла вытекают, не мешая друг другу, из двух отверстий в дне чана, полного винограда, так и потоки тонкой материи, исходящей из Солнца к нашим глазам, не возмущают друг друга и не возмущаются обычной материей. Третья аналогия — это аналогия Альхазена: световой луч подобен брошенному материальному телу. С помощью этих трех аналогий, используя то одну, то другую, Декарт рассматривает прямолинейное распространение света, прохождение света через прозрачные тела, отражение, рассеяние. Нельзя сказать, чтобы его идеи были «ясными и отчетливыми», поскольку в конце концов так и не удается установить, чем же является для Декарта свет: объективным или субъективным явлением, движением или материей? Эта первая глава «Диоптрики» столь непонятна и путанна, что математик, и к тому же картезианец, Хри- 8* Ц5
стиан Гюйгенс вынужден был признаться, что не понимает, что хотел сказать Декарт о природе света. Ученые пришли к выводу, пожалуй чересчур уж поспешному, что «Диоптрика», представленная Декартом как пример применения его «метода», есть как раз свидетельство несостоятельности последнего [как известно, знаменитая работа Декарта, опубликованная в 1637 г., носила название «Discours de la Methode pour bien conduire sa raison, et chercher la verite dans les sciences. Plus la Dioptrique les Meteores et la Geometrie qui sont desessais de cette Methode» («Рассуждение о методе как средстве направлять свой разум и отыскивать истину в науках. С приложениями: Диоптрика, Метеоры и Геометрия, которые дают примеры этого метода»)]*. Во второй главе говорится о законах отражения и преломления, но не света, а брошенных тел, с последующим обобщением, разумеется произвольным, на свет. В ней содержится ряд важных результатов. Декарт рассматривает мяч, брошенный на слабую сетку; пусть он прорывает ее, теряя часть скорости, скажем, половину. Тогда, говорит Декарт, движение мяча «совершенно отличается от его предназначения в одну или в другую сторону». Можно представить себе, что это «предназначение» составлено из двух частей: одной, побуждающей мяч двигаться сверху вниз, другой — слева направо. На современном языке все это, очевидно, означает, что фактическое движение можно представлять как результирующую двух составляющих движений. Горизонтальная составляющая не меняется, так как сетка не препятствует движению тела в этом направлении, тогда как вертикальная составляющая меняется, потому что в этом направлении сетка препятствует движению. Изменение одной из составляющих как раз и вызывает изменение направления движения мяча. Это рассуждение позволяет Декарту прийти с помощью простых геометрических рассуждений к закону преломления, которого безуспешно доискивались в течение тысячелетий: отношение синуса угла падения к синусу угла преломления есть величина постоянная. Но в рассуждении Декарта есть один порок: более плотная среда обычно сильнее преломляет (во времена Декарта полагали, что это всегда так), поэтому Декарт должен был заключить, что скорость света в более плотных средах больше. В то же затруднительное положение попадет впоследствии и Ньютон, но он просто обойдет эту трудность. Декарт же хочет найти объяснение этому странному факту и предается рассуждениям, столь туманным, что мы снова должны согласиться с Гюйгенсом — понять, что подразумевает Декарт под светом, невозможно. Лейбниц, Гюйгенс и многие другие обвинили Декарта в плагиате, поскольку закон преломления был открыт экспериментально Виллебродом Снеллиусом (1591—1626), излагавшим его на лекциях в Лейдене, и эти лекции Декарту были известны. Но обвинение не было подтверждено документами. К тому же в рассмотрении Декарта истинным открытием является разложение скорости света на составляющие. А эту ключевую идею Декарт заимствовал у Альхазена (см. гл. 2), так что открытием своего закона Декарт больше обязан этому арабскому физику, нежели голландскому ученому. Декарта обвиняли также в противоречиях, поскольку он, как и Кеплер до него, считал скорость света бесконечной, а затем в случае преломления разлагал ее на две составляющие, одна из которых менялась: это означало, очевидно, что он полагал скорость конечной. Это противоречие, по нашему мнению, можно объяснить без всякого мудрствования, если вспомнить об утилитарных сторонах науки, которые означают всегда известную долю эмпиризма, того самого эмпиризма, который позволил, например, Ньютону допустить действие на расстоянии, хотя он был убежден, что даже бог не может действовать на расстоянии. * Есть русский перевод: Р. Декарт, Рассуждение о методе, Л., 1953. ш
В теоретическом плане Декарт должен был принять бесконечность скорости света, потому что конечная скорость, складываясь со скоростью Земли, привела бы к явлению, названному позже «аберрацией» и обнаруженному Бредли лишь в 1725 г. Но, размышляя над страницами трудов Альхазена, Декарт в 1627 г. открыл простой закон преломления, безуспешно разыскивавшийся веками. Найдя этот закон, он его сопоставил с многочисленными экспериментами, применил для отыскания профилей линз, которые он считал наилучшими, и использовал для объяснения радуги. Короче говоря, Декарт дал жизнь многочисленным следствиям этого закона. Неужели он должен был отказаться от него только потому, что он вытекал из модели, не согласующейся с его теоретическими представлениями? Декарт прямо говорит, что все его модели неверны или ненадежны, но все же верит, что из них можно вывести правильные и полезные следствия, «подражая в этом астрономам, которые, хотя их предположения почти всегда ошибочны и недостоверны, делают весьма правильные заключения, опирающиеся на различные выполненные ими наблюдения)) *. В общем, по нашему мнению, даже рационалист Декарт оказался в этом случае в рядах многочисленных «физиков-оппортунистов», к которым принадлежали в этом веке Паскаль, Гюйгенс и Ньютон, если называть лишь крупнейших. Прежде чем говорить о блестящем применении закона преломления для объяснения радуги, мы должны остановиться на принципиально новом подходе к пониманию цветов в первой главе «Диоптрики». У физиков первой половины XVII века свет был бесцветным в буквальном смысле слова. Даже Кеплер считал, что цвет — это вещь, совершенно отличная от света, некое «качество», которое должны продолжать изучать философы. А философы говорили о цвете такие вещи, которые совершенно непостижимы для нас сейчас: что цвет есть качество, пребывающее на поверхности непрозрачных тел; что он существует в предвидении, видим в потенции и становится видимым в действии внешнего света; что между прозрачным и непрозрачным существует различие ограничения, и прочее, и прочее. Но Декарт знает, что вторичные качества пребывают в ощущающем субъекте, поэтому он выбрасывает за борт все эти философствования и утверждает, что мы различаем цвета по различным способам воздействия света на наши глаза. Более явно это звучит в гл. VIII «Метеоров»: «Природа цвета заключается лишь в том, что частицы тонкой материи, передающей действие света, стремятся с большей силой вращаться, чем двигаться по прямой линии; таким образом, те, которые вращаются с гораздо большей силой, дают красный свет, а те, которые вращаются лишь немного сильнее, дают желтый... И во всем этом рассуждение так хорошо согласуется с опытом, что, по-моему, хорошо познав то и другое, невозможно сомневаться в том, что дело происходит именно так, как я это сейчас объяснил» **. Оставляя в стороне детальный физический анализ этого отрывка, обратим внимание лишь на принципиально новое фундаментальное представление: цвет — это физико-физиологическое явление, обязанное различным ощущениям, вызываемым различным движением светоносных частиц. Одной из наибольших удач Декарта как экспериментатора были его опыты по исследованию образования радуги, описанные в гл. VIII «Метеоров». Во всех современных работах приводится объяснение радуги Декарта, которое было дополнено Ньютоном. Ученые XIX века (Юнг, Эйри и Пернтер) * Oeuvres de Descartes, цит. выше, VI, р. 83. ** Там же, р. 333, 334. 117
Декартово объяснение радуги. Солнечный луч АВ преломляется, распространяется, отражается в капле воды и попадает к наблюдателю окрашенным по пути DE. оставили без изменения это объяснение и лишь уточнили его, учтя явления интерференции и дифракции, неизвестные во времена Декарта. В современных работах этот вопрос излагается сравнительно просто, без привлечения данных эксперимента, что достигается благодаря использованию представления о наименьшем отклонении, введенного в оптику только Ньютоном и особенно разработанного в 1725 г. Эйлером. Декарт же, который, не зная принципа наименьшего отклонения, должен был сначала произвести опыты со сферическим стеклянным сосудом, заполненным водой и помещенным на солнце. При этом оказалось, что если линия зрения, идущая к какой-либо точке сосуда, образует угол около 42° с направлением падающих лучей, то эта часть сосуда кажется ярко-красной; если этот угол чуть меньше, то появляются последовательно другие цвета. Затем с помощью небольшого экрана, которым он закрывал различные части сосуда, ему удалось выделить пучок падающих лучей, который мы теперь называем пучком в положении наименьшего отклонения, и проследить его путь внутри сосуда. Вот тут Декарт для разъяснения своих идей о природе радуги проводит сравнение появления окраски на сферическом сосуде с появлением окраски при прохождении лучей через призму. Это позволяет ему построить на основе эксперимента свою теорию цветов, о которой мы упоминали выше. При этом закон преломления дает возможность объяснить с помощью длинного численного подсчета, как получается этот вполне определенный угол в 42° между падающими лучами и лучами, исходящими из сосуда. Таким образом, объяснение радуги получено в результате серии опытов, хорошо задуманных, тщательно проведенных и подкрепленных расчетом—истинный шедевр современного физического исследования! 118
18. ПРИНЦИП ФЕРМА. Излагая историю этого принципа, значение которого в новое время особенно подчеркнула волновая механика, мы остановимся на некоторых деталях, достаточно хорошо иллюстрирующих медленность усвоения определенных идей (сейчас представляющихся очевидными), и в то же время извилистость и запутанность того пути, каким иной раз физика приходит к установлению своих принципов. Еще до опубликования «Диоптрики» Декарта Мерсенн направил Пьеру Ферма (1608—1665) первые главы ее, спрашивая его мнение о них. И уже в сентябре 1637 г. Ферма ответил, высказав в основном два замечания по методу Декарта. В первом он ставил в вину Декарту то, что тот произвольно переносит на распространение света свойства движения брошенных тел, поскольку скорость последних конечна и переменна, тогда как свет распространяется мгновенно. Во втором замечании Ферма отвергает принцип разложения движения на составляющие, который он, как видно, не понял и к которому всегда относился с подозрением. Даже через 20 лет, в 1657 г., он писал, что нужно соблюдать осторожность в применении составных движений, уподобляя их лекарствам, которые становятся ядами при неправильном употреблении. После возражения Декарта, переданного опять-таки через Мерсенна, Ферма по-прежнему настаивал на своих критических замечаниях и отрицал главным образом пользу и законность принципа разложения движений; кроме того, он недопонимал декартово понятие «предназначения» («determination»), которое было для него эквивалентно просто направлению, тогда как Декарт употреблял его в смысле вектора скорости. В декабре 1637 г. полемика между этими двумя учеными фактически закончилась двумя письмами Ферма, одним Декарта — и каждый остался при своем мнении. Но Ферма продолжал размышлять на эту тему и изложил свои соображения в «Рассуждении», к сожалению утерянном, направленном его другу Кюро де ла Шамбру. Эти соображения должны были еще раз подкрепить убеждение в ошибочности законов преломления Декарта или по крайней мере в несостоятельности его доказательства. Это Ферма подтверждает в энергичном письме к картезианцу Клерселье, написанном в 1658 г., в котором он вновь выдвигает свои старые возражения и добавляет еще одно: нет никаких оснований считать, что касательная составляющая скорости во второй среде должна оставаться неизменной, потому что вторая среда обладает иными свойствами. Но при возобновлении спора с картезианцами ход мыслей Ферма уже изменился. На это повлияло чтение книги по оптике де ла Шамбра, в которой законы отражения выводятся по методу Герона (гл. 1), т. е. с помощью метафизического принципа, согласно которому природа всегда действует по кратчайшему пути,— общего принципа, достаточно неопределенного, чтобы его можно было всегда надлежащим образом приспособить к конкретным случаям. Ферма тотчас стал искать такую формулировку принципа, которая успокоила бы научную совесть его друга, обеспокоенного тем, что в ряде известных случаев отражения от вогнутых зеркал природа действует по самому длинному пути. Ферма уверял, что в этих случаях под более коротким путем следует понимать путь более простой; следовательно, поскольку прямая проще кривой, луч света, падающий на вогнутое зеркало, следует относить к плоскости, касательной к зеркалу в точке падения, а отсюда вытекает, что отнесенный к этой плоскости путь луча всегда самый короткий. Нельзя сказать, чтобы это рассуждение было особенно ясным! Если этот принцип объясняет так хорошо все случаи отражения, почему бы его не применить также и к преломлению? Если луч света идет из точки А в точку С, преломляясь в точке В, то его путь ABC, конечно, длиннее, чем АС. Но принцип экономии в природе следует понимать в том смысле, что 119
кратчайшие пути — это наиболее легкие, т. е. пути наименьшего сопротивления. А если предположить, что сопротивление второй среды распространяющемуся свету отличается от сопротивления первой, то может оказаться, что путь ABC соответствует в целом меньшему сопротивлению, чем путь АС. Эта идея — первый зародыш идеи, приведшей к формулировке принципа Ферма,— была, несомненно, весьма остроумной, но тотчас вступила в противоречие с убеждениями ученого. Действительно, понятие сопротивления сразу влечет за собой представление о распространении света во времени. между тем Ферма считал распространение света мгновенным. Это осложнение не укрылось от математика Ферма, однако он предполагал, что возможно преодолеть его, считая распространение мгновенным и объясняя сопротивление «антипатией» света к веществу, постулированной также де ла Шамбром. По-видимому, Ферма сам не был удовлетворен такой уверткой. Мы будем. вероятно, ближе к действительности, если предположим, что его уму математика проблема представлялась в чисто геометрическом аспекте, который он пытался как-то связать с физической реальностью. Сама же проблема, как она сформулирована в том же письме к де ла Шамбру, заключается в следующем: дана точка А в полуплоскости, определяемой прямой BD (и точкой А), и точка С на противоположной полуплоскости, и дан коэффициент т, отличный от единицы; требуется на прямой BD найти такую точку 5, чтобы сумма АВ + т -ВС была наименьшей из всех аналогично образуемых сумм. В то время эту задачу решить было нелегко, но Ферма обещает своему ДРУГУ дать решение, когда тот захочет: ведь Ферма был гасконцем, поясняет Декарт. Решения пришлось ждать четыре года, и, возможно, как многократно выяснялось при психологическом анализе научных открытий, оно неожиданно всплыло в сознании Ферма при попытке новой формулировки принципа экономии в природе: под кратчайшим путем следует теперь понимать уже не самый легкий, или самый простой, или путь с наименьшим сопротивлением, или с наименьшей антипатией, а путь, проходимый в кратчайшее время (breviori tempore percurri possint). Используя этот принцип в соединении с гипотезой о том, что скорость света постоянна в определенной среде и уменьшается с увеличением плотности среды, Ферма смог найти закон преломления и, к своему великому удивлению, установить, что он совпадает с законом Декарта. Формулировка принципа и его применение для доказательства закона преломления содержатся в отрывке под названием «Анализ преломления» * из письма от 1 января 1662 г. к Кгоро де ла Шамбру. Впоследствии в записке, названной «Синтез преломления», Ферма дает обратную теорему: если преломление света подчиняется закону Декарта и если показатель преломления равен отношению скоростей света в первой и во второй среде, то при распространении из одной среды в другую свет следует по пути, требующему наименьшего времени. Новая формулировка принципа экономии требовала, естественно, конечной скорости света, не говоря уже о том, что он нарушался в известных случаях отражения от вогнутых зеркал. Последней трудности Ферма вообще не упоминает, полагая, по-видимому, что она решается с помощью рассуждения, которое мы приводили выше. Что касается конечной скорости распространения света, то Ферма считал, что можно обойти это понятие, поскольку его можно заменить (весьма неопределенными) «утечкой» или «сопротивлением» света, которые для разных сред различны, иначе говоря, чем-то, что можно рассматривать как словесное выражение его коэффициента т из чисто геометрической задачи. Ферма всегда сосредоточивал внимание больше на математической стороне задачи, чем на физической. * Oeuvres de Fermat, od. P. Tannery et Ch. Henry, I, Paris, 1894, p. 170—172. 120
Против принципа Ферма тотчас ополчились картезианцы. Их главные возражения содержатся в одном из писем Клерселье (весьма резком, порой даже оскорбительном): принцип, согласно которому природа действует наиболее коротким или наиболее простым путем, не является физическим принципом, потому что он требует от природы сознательного поведения. Действительно, луч света, попавший на линию раздела двух сред, должен был бы знать, что, преломляясь данным определенным образом, он затратит наименьшее время. Кроме того, таким образом получилось бы, что время является причиной движения. Вариаций на эту тему можно было бы привести бесконечное множество. Приведя некоторые из них, Клерселье приходит к выводу, что Ферма показал, что преломление происходит так, «как если бы» свет шел по кратчайшему пути. Вначале физики тоже встретили новый принцип с недоверием. Пти не был доволен им. Гюйгенс в 1662 г. критиковал физические принципы, принятые Ферма, ни один из которых не достоверен, и особенно этот «злосчастный» принцип экономии, с помощью которого ничего нельзя доказать. Но очень скоро эти резкие суждения стали смягчаться. Уже через три месяца тот же Гюйгенс оценивал работу Ферма как весьма хорошую и тонкую, хотя считал ее физические основы весьма шаткими. Еще позже, повторив расчеты Ферма и убедившись в их правильности, Гюйгенс настолько поверил в этот принцип, или, как он его называл, в «феномен Ферма», что уверенно использовал в своей собственной теории равенство показателя преломления отношению скорости света в первой среде к его скорости во второй. 19. ДИФРАКЦИЯ. Всего лишь через несколько лет после установления закона преломления (Декарт) и его теоретического подтверждения (Ферма) было открыто другое явление отклонения света. Оно было описано в посмертно опубликованном труде Франческо Мариа Гримальди (1618—1663), человека необыкновенных способностей, исключительно трудолюбивого и желавшего верить лишь фактам, а не авторитету учителей, как уверяет он в предисловии к своей объемистой работе в 535 страниц, вышедшей в 1665 г. под названием «Physico-mathesis de lumine, coloribus et iride» («Физико-математический трактат о свете, цветах и радуге»). Книга начинается с заявления об открытии нового типа отклонения света, названного Гримальди дифракцией — термином, сохранившимся в науке и по сей день. Открытие это было, несомненно, случайным и обязано тому обстоятельству, что Гримальди экспериментировал с очень тонкими пучками света, получающимися за маленьким отверстием в освещенном солнцем окне. В пучке света, проходящем через отверстие, ученый помещал предмет и получал его тень на белом экране. Он заметил, что на экране тень оказалась шире, чем должна была быть геометрическая тень, и, кроме того, по обе стороны от нее лежали три цветные полосы, синие с внутренней стороны по отношению к тени и красные с наружной. Далее, если этот световой пучок падает на непрозрачный экран со вторым маленьким отверстием, расположенный параллельно первому, и проходящий пучок наблюдается на еще одном экране, то получается центральное светлое пятно значительно большего размера, чем следует из геометрической оптики; края его окрашены в красный и голубой цвета. Не оставалось сомнения: за отверстием свет отклоняется. После рассмотрения многочисленных вариантов эксперимента, выполнения многих других опытов по дифракции на тонких нитях, птичьих перьях, тканях, волокнистых веществах Гримальди пытается так объяснить это явление: как вокруг камня, брошенного в воду, образуются волны, так и препятствие, помещенное на пути пучка света, порождает в световом флюиде волны, отклоняющиеся за отверстием. 121
Франческо Мариа Гримальди. Портрет кисти неизвестного автора. Значит ли это, что для Гримальди свет является флюидом? Надо сказать, что его работа весьма интересна и курьезна. Интересна она своим содержанием, поскольку в ней рассматриваются самые разнообразные физические задачи (к одной из них мы еще вернемся). Курьезна же она тем, что в первой книге утверждается субстанциональность света, а во второй — его акцидентальность, или, пользуясь принятым Гримальди термином, более понятным для нас, — его волновой характер. К волновой гипотезе Гримальди прибегает, чтобы объяснить природу цветов, которые, как он говорит, являются составными частями света: «Не исключена возможность, что видоизменения света, в силу которых он постоянно окрашивается в так называемые кажущиеся цвета, или, лучше сказать, становится видимым как цветной, представляют собой определенную его волнистость с очень частым волнением, как бы трепет распространения с мельчайшим волнением, благодаря которому и получается, что он действует на орган зрения определенным характерным для него образом)} *. В поддержку этой своей волновой теории Гримальди приводит целый ряд аргументов, и в частности аналогию со звуком, различная высота которого, как учил Галилей, зависит от различных колебаний воздуха. Можно сказать, что Гримальди закончил начатый Декартом и происходивший не без сильного сопротивления процесс перенесения цветов в область физических явлений. Опыты, аналогичные опытам Гримальди, в 1672 г. провел Роберт Гук, причем утверждал, что провел их независимо. Однако хорошо известен крупный недостаток характера Гука, заключающийся в том, что он всегда заявлял о своем приоритете на чужие изобретения. Во всяком случае, опыты Гука ничего не добавили к опытам Гримальди. Совсем иное значение имеют опыты Гука, описанные в его «Micro- graphia» («Микрографии»), вышедшей в 1665 г., в том же году, в котором вышел «Физико-математический трактат» Гримальди. «Микрография» — очень интересная книга, особенно для истории микроскопа, сконструированного еще Галилеем и использованного Гуком с исключительным искусством. Среди его микроскопических наблюдений заслуживают особого упоминания наблюдения тонких слоев (мыльные пузыри, масляные пленки и т. п.), * F. M. Grimaldi, Physico-mathesis de lumine, Bononiae, 1665, p. 342. 122
D E BJ A—J Cf -^ Gw Ecqf /J * Л * /1 * / I ' / 1 • / I * / 1 * / I I/N/ t |h n It l\ * 11 * 1 \ ♦ 1 \ ♦ IV* 1 \ * Ml \o\jr Схема светового луча по волновой теории Гримальди. (F. M. G r i» maldi, De lumine, 1665.) Видно, что колебания предполагаются поперечными. Опыт Гримальди по дифракции. (F. M. G г i m a 1- di, De lumine, 1665.) Свет, входящий через отверстие CD в окне и проходящий отверстие GH в непрозрачной стенке, образует на экране световое пятно LM, окруженное цветными кольцами. помещаемых в световой пучок. Гук заметил их окрашивание, внимательно исследовал его и пытался объяснить с помощью «колебательной» теории света, на которой мы не будем останавливаться, поскольку она не представляет особого интересса. 20. ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ И СКОРОСТЬ СВЕТА. Прежде чем рассмотреть в следующей главе две основные теории света, которые в течение нескольких веков с переменным успехом вели спор друг с другом, следует еще упомянуть о двух открытиях, предшествовавших этим теориям и оказавших на них влияние. В 1669 г. датчанин Эразм Бартолин (1635—1698) опубликовал работу под названием «Experimenta crystalli islandici disdiaclastici, quibus mira et insolita refractio detegitur» («Опыты с кристаллами исландского известкового шпата, которые обнаруживают удивительное и странное преломление»). Он описывает опыты с исландским шпатом, в которых он обнаружил «удивительное и странное» двойное лучепреломление. Как известно, речь идет о следующем: если луч света попадает на поверхность исландского шпата, он, преломляясь, раздваивается. Бартолин, кроме того, заметил, что один из двух лучей подчиняется закону преломления Декарта с показателем преломления, равным 5/3 по данным его измерений, тогда как второй луч, названный им «подвижным», а сейчас называющийся «необыкновенным», этому закону не подчиняется. Датский ученый открыл также, что в кристалле шпата существует направление, определенное им почти точно, вдоль которого луч не раздваивается. Бартолин приписал это явление распределению пор в кристалле. В дальнейшем (гл. 6) мы расскажем о гораздо менее наивном объяснении этого явления, которое дал Гюйгенс, проведший весьма точные исследования. Несмотря на сомнения, высказанные Галилеем (см. гл. 4), Порта, Кеплер и Декарт продолжали считать скорость света бесконечной. Попытки итальянской Академии опытов определить скорость света методом Галилея, естественно, окончившиеся неудачей, о чем сообщается в «Очерках», еще 123
более усилили убеждение в мгновенности распространения света, которое нельзя считать целиком предвзятым: большое значение имели приведенные Декартом соображения. В 1672 г. астроном Жан Доминик Кассини (1625 —1712), один из многих итальянских ученых, которые были приглашены в Париж Людовиком XIV, предпринял систематическое исследование спутников Юпитера. Он заметил определенные запаздывания в моментах вхождения первого спутника в конус тени планеты и выхода из нее, как если бы время обращения спутника вокруг Юпитера было больше, когда он находится дальше от Земли. А поскольку представлялось невероятным, чтобы время обращения спутников Юпитера зависело от расстояния до Земли, то этот астрономический факт представлялся необъяснимым. Это явление было исследовано молодым датским ученым Олафом Реме- ром (1644—1710), который нришел к выводу, что эту кажущуюся нерегулярность следует приписать конечности скорости распространения света. В сентябре 1676 г. он предсказал отставание, которое должно наблюдаться при предстоящем затмении первого спутника Юпитера в ноябре. Убедившись в правильности предсказания, он в том же месяце представил свою теорию- Парижской Академии наук, утверждая, что свету требуется 22 минуты, чтобы пройти диаметр земной орбиты (более точное современное значение этой величины — 16 минут 36 секунд). Однако в Парижской академии и в Парижском университете господствовала тогда картезианская философия, поэтому теория Рёмера встретила сильное сопротивление. Кассини, который сам принимал большое участие в наблюдениях, публично снял с себя ответственность за выводы Рёмера. Но все же нашлось много сторонников Рёмера как во Франции, так и особенно за рубежом; особенно важна была энергичная поддержка астронома Эдмонда Галлея. Окончательно подтвердил теорию Рёмера и одновременно снял возражения Декарта астроном Бредли (1693—1762) в 1725 г., когда он, пытаясь найти параллакс некоторых звезд, обнаружил, что в своей кульминации они кажутся отклоненными к югу. Наблюдения, продолжавшиеся до 1728 г., показали, что в течение года эти звезды как бы описывают эллипс. Бредли интерпретировал это явление, названное в 1729 г. Евстахием Манфреди аберрацией, как результат сложения скорости света, идущего от звезды, скоростью орбитального движения Земли. Хотя земные измерения скорости света были произведены лишь в следующем столетии (см. гл. 8), после Бредли конечность скорости распространения света была единодушно принята как опытный факт. МАГНЕТИЗМ И ЭЛЕКТРИЧЕСТВО 21. РАБОТЫ ПО МАГНЕТИЗМУ ПОСЛЕ ГИЛЬБЕРТА. Груд Гильберта (см. гл. 3, § 16 и 17), новый по методу и революционный по содержанию, нашел в Италии своих первых поклонников и первых критиков. Среди поклонников были такие, как Галилей, а среди критиков — Никола Кабео (1585—1650), который, как и Гильберт, опирался на эксперименты. В 1629 г. Никола Кабео опубликовал в Ферраре свой труд «Philosophia magnetica» («Магнитная философия»), представляющий интерес не только из-за некоторых имеющихся в нем новых положений, о которых мы скажем ниже, и не из-за иллюстрации магнитных явлений, уже открытых Гильбертом, а потому, что он позволяет понять аргументы, не всегда научного характера, которые побуждали автора противиться главной идее Гильберта — 124
представлению о Зсмло как о большом машите. Цель кпиги Кабсо была опровергнуть утверждение о количественном совпадении данных о земном магнетизме и о магнетизме шара Гильберта. И если Гильберт, чтобы подтвердить свою теорию, показывает, что кусок железа, помещенный вдоль земного магнитного меридиана, намагничивается, то Кабео как раз пытается обесценить это доказательство, опровергая его с помощью нового, открытого им явления: расположенные по вертикали железные предметы намагничиваются, причем южный полюс оказывается наверху, а северный — внизу. Если Гильберт не принимает изложенную у Лукреция античную теорию притяжения янтаря, поскольку ему представляется, что истечения из янтаря, отталкивая воздух, должны были бы отталкивать и легкие тела, то, согласно Кабео, такое отталкивание действительно существует и в нем можно убедиться на опыте, который и является первым доказательством электрического отталкивания. Кабео натирал кусок янтаря и приближал его к деревянным опилкам. Сначала опилки прилипали к янтарю, выстраивались в линии на его поверхности, слегка колебались, как при легком ветре, затем начинали качаться сильнее и в конце концов отскакивали. Кабео восхищался экспериментальной частью труда Гильберта, но пытался обесценить его теории. Мы говорим «пытался», потому что, не заменив их другими, более вероятными, он ограничился пережевыванием устарелых представлений, от которых новое научное мышление уже отказалось. Это новое мышление проявил Бенедетто Кастелли, когда он в заметке о магнетизме попытался дать теорию строения магнитов, их намагничивания и магнитного притяжения. К сожалению, эта заметка «Discorso» («Рассуждение») оставалась неизданной вплоть до 1883 г. В ней Кастелли приводит ряд более или менее известных опытов, из коих особенно интересен опыт по определению формы магнитного поля, проведенный почти также, как это делается в наши дни: под листом бумаги помещается магнит, а сверху насыпаются магнитные опилки (сейчас применяются простые железные опилки). Кастелли полагал, что существуют «магнитные тела первого рода», в которых рассеяны магнитные частицы, т. е. крошечные магнитные иглы, способные ориентироваться под действием внешнего магнита, после чего все они или большая их часть остаются в новом положении. Существуют еще «магнитные тела второго рода», в которых беспорядочно рассеянные магнитные частицы обладают склонностью возвращаться в первоначальное положение. Пусть теперь читатель сопоставит эти гипотезы с предположениями, высказываемыми в современных курсах и касающимися строения магнитов по Юингу. Такое сравнение покажет, что различие имеется лишь в словах; из него станет ясно, каким образом Кастелли с помощью своих простых гипотез объясняет строение магнитов, временное и постоянное намагничивание и притяжение магнитов. Гримальди в своем трактате «De lumine» («О свете») также посвятил свыше 30 страниц магнетизму, где он описывает старые и новые эксперименты (среди последних — опыт с намагниченной проволокой, которая в результате многократного сгибания и выпрямления теряет свои магнитные свойства), пытаясь затем объяснить их с помощью гипотезы картезианского типа о единой материальной магнитной жидкости, перетекающей от одного полюса магнита к другому. Каждое ненамагниченное магнитное тело, как, например, железо, содержит неупорядоченную жидкость; магнит упорядочивает ее и, таким образом, индуцирует в теле магнитные свойства. Для теории Гримальди, хотя она и получена из картезианских предпосылок, характерно, что она вводит представление о единой жидкости и не строит гипотезы о форме образующих ее частиц (см. § 1). 125
Первая электростатическая машина. Справа—вращающийся шар из серы, слева—наэлектризованная пушинка, висящая над шаром из серы, который тоже наэлектризован. 22. ЭКСПЕРИМЕНТЫ ГЕРИКЕ ПО ЭЛЕКТРИЧЕСТВУ. Введением вер- сора Гильберт дал достаточно чувствительный инструмент для обнаружения электрических явлений, а Отто фон Герике, построив свой вращающийся шар иэ серы, во много раз усилил эффект. Герике изготовил шар из плавленой серы «размером с голову ребенка» и продел сквозь него по диаметру железную ось, вокруг которой шар приводился во вращение. К поверхности шара прикладывалась сухая ладонь. Таким образом, речь идет о первой электростатической машине, основанной на трении. Наэлектризованный серный шар притягивал листочки золота, серебра, бумаги и т. п., которые, как впоследствии заметил уже Кабео, отталкивались, а потом вновь притягивались, если до них сначала дотрагивались каким-нибудь другим телом. Особенно интересным и занимательным был подобный опыт с пушинкой, которая, оттолкнувшись от наэлектризованного шара, после соприкосновения с ним еще некоторое время оставалась висеть в «сфере действия» шара и по мере перемещения шара могла следовать за ним по всей комнате. Можно было заметить, что эта пушинка, перемещаясь по комнате, сама притягивает все окружающие предметы, а если сил для этого у нее оказывается недостаточно, то приближается к ним сама, особенно если эти предметы имеют какие-нибудь выступы. Если приблизить к пушинке палец, то пушинка забавно мчится к нему, затем поворачивает вновь к шару, от шара снова к пальцу и так продолжается довольно долго. Кроме того, шар передает свою способность притяжения нити длиной свыше локтя (67 см), так что теория притяжения через посредство воздуха оказывается несостоятельной. И, наконец, если электризовать серный шар в темноте, то он сверкает подобно сахару, раздробляемому пестиком, причем слышно характерное потрескивание. Опыты Герике, значение которых очевидно, были повторены Бойлем с тем же результатом. Бойль добавил еще один эксперимент (подобный эксперимент члены Академии опытов ставили с магнитами и предполагали провести с наэлектризованными телами, но он у них не удался). С помощью пневматической машины Бойль показал, что электрическое и магнитное 126
притяжение проявляется и в пустоте. Тем самым была окончательно разрушена старая теория о действии через воздух. Но что же предлагают физики вместо воздуха? Не что иное, как возврат к старой теории Гильберта о жидкости, истекающей из заряженного тела и «зацепляющей» легкие тела. В этом заключается объяснение Бойля. Этим Ньютон объяснил явление «электрического танца», которое он получил, натерев тканью стеклянный диск, укрепленный в бронзовом кольце и расположенный на расстоянии примерно 8 мм от поверхности стола, на котором были разбросаны ку сочки бумаги.
ГЛАВА 6 • ИСААК 11Ы0Т0П МЕХАНИКА 1. ПРАВИЛА РАССУЖДЕНИЯ. Современным своим видом классическая механика обязана Ньютону (родился в Вулсторпе 25 декабря 1642 г. *, умер 31 марта 1727 г. в Лондоне). Вначале интересы молодого Ньютона лежали в области оптики, и особенно экспериментальной оптики, в которой он проявил особый изобретательский дар и технические способности. По мере того как с годами интерес его к экспериментированию ослаблялся и одновременно росло увлечение вопросами теории, Ньютон от оптики постепенно перешел к вопросам механики. Но поскольку его первая книга по механике появилась в 1687 г., а по оптике — лишь в 1704 г., нам представляется удобным и в нашем изложении придерживаться именно этого порядка. Галилей и Гюйгенс развивали механику тел на поверхности Земли. Работы Ньютона отличаются обобщением принципа инерции и понятия силы, введением понятия массы и распространением области применимости законов механики на всю Вселенную. Это последнее обобщение, возвратившее миру единство и непрерывность, утерянные в механике Аристотеля (см. гл. 1, § 2), было обосновано Ньютоном с помощью правил рассуждения (regulae philosophandi), которые, хотя они предпосланы третьей части «Philosophiae naturalis principia mathematical) («Математические начала натуральной философии») **, характеризуют все его исследования по механике. Первое правило — не принимать иных причин явлений, кроме тех, что достаточны для их объяснения. Второе правило — всегда относить аналогичные явления к одной и той же причине. Например, свет от кухонного очага и солнечный свет должны вести себя одинаково. Третье правило — считать свойством всех тел вообще такие свойства, которые не могут быть ни ослаблены, ни усилены и присущи всем телам, над которыми мы можем экспериментировать. Это—ньютоновское правило индукции, позволяющее, например, сделать вывод о непроницаемости и протяженности всех тел, хотя эксперимент можно поставить лишь на некоторых. И наконец, последнее, четвертое правило (добавленное лишь в третьем издании «Начал») — считать правильным всякое утверждение, полученное из опыта с помощью индукции, до тех пор пока не будут обнаружены другие явления, которые ограничивают это утверждение или противоречат ему. Сохранившееся лишь в рукописи пятое правило противопоставляет декартовскому иннатизму локковский эмпиризм. Третье правило позволило Ньютону сформулировать универсальный закон тяготения: если все тела притягиваются к Земле, море притягивается к Луне, а планеты притягиваются к Солнцу, то мы можем заключить, что все тела притягиваются друг к другу- Провозглашая этот закон, Ньютон не намеревается определять причину притяжения: * Ио юлианскому календарю, применявшемуся в Англии до 1752 г. По новому (григорианскому) календарю это соответствует 5 января 1643 г. ** Этот трактат был представлен Королевскому обществу 28 апреля 1686 г. По инициативе Галлея и за его счет этот трактат впервые был опубликован в 1687 г. Еще два издания Ньютон выпустил сам в 1713 и 1726 гг., исправляли улучшая каждое последующее издание. 128
Исаак Ньютон. Портрет кисти Г. Кнсл- лсра (1702 г.). «Причину этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю (hypotheses поп lingo). Все же, что не выводится из явлений, должно называться гипотезой, гипотезам же метафизическим, физическим, механическим, скрытым свойствам не место в экспериментальной философии. В такой философии предложения выводятся из явлений и обобщаются с помощью индукции. Так были изучены непроницаемость, подвижность и напор (импето) тел, законы движения и тяготение. Довольно того, что тяготение на самом деле существует и действует согласно изложенным нами законам и вполне достаточно для объяснения всех движений небесных тел и моряъ *. В этих кратко сформулированных утверждениях, введенных лишь во втором издании 1713 г., отражается полемика с картезианцами (гл. 5, § 1). Ньютон противопоставляет «физике гипотез» Декарта «физику принципов». Но принципы — это по существу произвольное обобщение опытных фактов, и кто знает, как их точно отличить от гипотез? Поэтому не удивительно, что, несмотря на этот его «символ веры», Ньютон также прибегает в своих построениях к абстракциям. Однако в целом эта его работа представляет собой, пожалуй, наиболее завершенный образец гармонического слияния данных опыта и теоретических рассмотрений из всех существовавших когда- либо в физике. Прежде чем дать представление об общем построении этого труда и его характерных особенностях, мы хотим еще раз заметить, что, в то время как для оптических опытов Ньютона (как мы увидим ниже) характерна гениальность постановки и разносторонность, его опыты по механике были значительно более скромными и ограничивались проверкой известных фактов. В механике гений Ньютона проявился прежде всего в упорядочении работ его предшественников и обобщении законов, уже известных в частных случаях. 2. МАССА. Первые 17 страниц «Начал» (третье издание) содержат основные понятия, аксиоматику классической механики. Эта часть состоит из восьми определений, трех законов движения, следствий из них и одной схолии (поучения). Понятие массы, вводимое первым определением, впервые было использовано не Ньютоном. В отличие от общепринятого мнения оно постепенно форми- * I. Newton, Philosophiae naturalis principia mathematical, London, 1726, p. 530. (Есть русский перевод в книге: X. Н. Крылов, Собрание трудов, т. 7, М.—Л., 1936.) 9 Марио Льощш 129
ровалось в течение нескольких поколений. Следы этого можно найти в «Проблемах механики», приписываемых Аристотелю, в механике Герона, и так вплоть до Коперника, Гильберта, Кеплера. Непосредственные предшественники Ньютона (Декарт и Гюйгенс) путали понятия массы и веса (см. гл. 5, § 1 и 7). Первое четкое различие между весом и массой мы находим в предисловии к работе Джован Баттисты Бальяни «De motu naturali gravium solidorurm) («О естественном движении тяжелых тел»), опубликованной в Генуе в 1638 г. В ней Бальяни рассказывает, что, установив на опыте неверность общепринятого мнения о пропорциональности скорости падающего тела его весу, он пришел к мысли, что «...в то время как вес ведет себя как действующее начало, вещество ведет себя как пассивное начало, и поэтому тяжелые тела движутся в зависимости от отношения их веса к их веществу; следовательно, если они падают без препятствия по вертикали, то они должны двигаться с одной и той же скоростью, потому что те тела, которые тяжелее, имеют больше вещества или количества вещества» *. А в четвертой книге, опубликованной в 1646 г., Бальяни окончательно уточняет это понятие: «.Природа тяжелых тел такова, что их вес связан с веществом: каков вес, а значит, и его способность к действию, таково и количество вещества, а значит, и сопротивление, откуда в результате и вытекают равные эффекты»**. Мы видим отсюда, что Бальяни было ясно не только понятие массы, но и ее пропорциональность весу. Но Ньютон пошел значительно дальше: не только сформулировал это понятие, но и показал фундаментальную роль, которую оно играет в механических процессах. «Начала», собственно, начинаются с определения массы: «Количество материи есть мера таковой, устанавливаемая пропорционально плотности и объему ее» ***. Для пояснения этого определения Ньютон добавляет, что он называет это количество материи также словами «тело» и «масса» и что количество материи можно определить по весу тела, потому что, как он убедился в результате точнейших опытов с маятниками, веса тел пропорциональны их массам. Ньютоновское определение массы, которое принималось в течение более чем столетия, вызывало ожесточенную дискуссию. Порочный круг здесь совершенно очевиден: масса определяется через понятие плотности, тогда как плотность есть масса в единице объема. Оставляя в стороне историю споров по поводу этого определения, продолжавшихся вплоть до XIX столетия, заметим лишь, что не определенное или недостаточно определенное понятие не обязательно должно быть само по себе неясным. Часто не удается определить понятие не потому, что мы недостаточно ясно его представляем, а именно потому, что оно слишком известно, настолько известно, что не удается найти более простых понятий, через которые его можно было бы определить. Именно таково понятие массы, совершенно ясное Ньютону и всегда правильно им применявшееся. 3. СИЛА. Второе определение «Начал» вводит количество движения; третье — то, что мы называем инерцией, а Ньютон называл vis insita («врожденная сила») или vis inertiae («сила инерции») материи (это последнее выра- * Jo. Baptistae В а 1 i a n i, De motu naturali gravium solidorum et liquidorum, Genuae,. 1646, p. 7. (Первое издание, содержащее первую книгу о движении твердых тел, вышло, как мы говорили выше, в 1638 г.) ** Там же, р. 98. *** I. Newton, Philosophiae naturalis, p. 1. 130
жение, очевидно, имело иной смысл, чем теперь); четвертое определение вводит vis impressa («приложенную силу»), которая определяет ускорение. Понятие силы как причины движения ввел еще Кеплер, но он измерял ее скоростью. У Галилея сила была эквивалентна весу, зато в отличие от Кеплера он измерял силу вызванным ускорением. У Ньютона, пожалуй, не было столь ясного представления, как у Галилея. Его четвертое определение гласит: «...приложенная сила есть действие, производимое над телом, чтобы изменить его состояние покоя или равномерного прямолинейного движения». И далее это определение поясняется следующим образом: «Сила проявляется единственно только в действии и по прекращении действия в теле не остается. Тело продолжает затем удерживать свое новое состояние вследствие одной только инерции. Происхождение приложенной силы может быть различное: от удара, от давления, от центростремительной силы»*. Следующие определения, с пятого до восьмого, касаются центростремительной силы, причем Ньютон различает здесь абсолютную силу, ускорительную силу и движущую силу. В качестве примера центростремительной силы Ньютон приводит силу тяжести, магнитную силу, ту силу, которая удерживает планеты на их криволинейных орбитах, каково бы ни было ее происхождение, силу действия руки при раскручивании камня в праще. Из этих примеров ему легко вывести возможность как искусственных спутников Земли (если снаряды выпущены с достаточной скоростью), так и того, что тела, брошенные с Земли в небесное пространство, могут бесконечно продолжать свое движение. Обе эти возможности смогли стать действительностью лишь по истечении трех веков. В восьмом определении говорится, что движущая величина центростремительной силы измеряется скоростью, приобретаемой в заданный промежуток времени, т. е. в современной терминологии — ускорением. Следовательно, именно эту «движущую величину силы» мы теперь называем приложенной силой и в случае падения тяжелых тел отождествляем с весом. В полемике со сторонниками декартовского понятия вихрей Ньютон так разъяснял понятие силы: «В дальнейшем я придаю тот же самый смысл названиям „ускорительные''' и „движущие'" притяжения и импульсы. Название же „притяжение" (центром), импульс или „стремление" (к центру) я употребляю безразлично одно вместо другого, рассматривая эти силы не физически, а математически, поэтому читатель должен озаботиться, чтобы ввиду таких названий не думать, что я ими хочу определить самый характер действия или физические причины происхождения этих сил или же приписывать центрам (которые суть математические точки) действительно и физически силы, хотя я буду говорить о силах центров и о притяжении центрами»*. Несмотря на все эти оговорки, остается фактом, что Ньютон вводил все новые и новые понятия и определения. Он ввел понятие абсолютной центростремительной силы, понятие чисто абстрактное, которое больше никак не упоминается в «Началах». Сила it масса у него — понятия независимые. Такими они и оставались до 1845 г., когда Жан Дюамель (1797—1872) в своем «Cours de mecanique» («Курс механики») ввел способ определения массы как отношения приложенной к телу силы к приобретаемому телом ускорению, ставший традиционным, несмотря на жестокую критику со стороны Эрнеста Маха. * Там же, р. 2, 6. 9* 131
4. ВРЕМЯ И ПРОСТРАНСТВО. После восьми определений следует знаменитое «поучение», послужившее предметом глубоких размышлений и долгих дискуссий сначала для философов, начиная с Канта, а затем, уже в нашем веке, и для физиков. В этом поучении постулируются абсолютное время и абсолютное пространство, метафизические понятия, на которых после Ньютона была основана вся физика до XIX столетия. Вот наиболее характерные выдержки: «1. Абсолютное, истинное математическое время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью. Относительное, кажущееся или обыденное время есть или точная, или изменчивая, постигаемая чувствами, внешняя, совершаемая при посредстве какого-либо движения мера продолжительности, употребляемая в обыденной жизни вместо истинного, или математического, времени, как-то: час, день, месяц, год. 2. Абсолютное пространство по самой своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным. Относительное есть его мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное... Возможно, что не существует (в природе) такого равномерного движения, которым время могло бы измеряться с совершенной точностью. Все движения могут ускоряться или замедляться, течение же абсолютного времени изменяться не может... Время и пространство составляют как бы вместилища самих себя и всего существующего. Во времени все располагается в смысле порядка последовательности, в пространстве — в смысле порядка положения. По самой своей сущности они есть места, приписывать же первичным местам движения нелепо. Вот эти-то места и суть места абсолютные, и только перемещения из этих мест составляют, абсолютные движения... Причины происхождения, которыми различаются истинные и кажущиеся движения, суть те силы, которые надо к телам приложить, чтобы произвести эти движения. Истинное абсолютное движение не может ни произойти, ни измениться иначе, как от действия сил, приложенных непосредственно к движущемуся телу, тогда как относительное движение тела может быть и произведено и изменено без приложения сил к этому телу»*. Таким образом, для Ньютона сила является абсолютным элементом, тогда как движение может иметь лишь относительный характер из-за отсутствия абсолютной системы отсчета. о. ЗАКОНЫ ДВИЖЕНИЯ. После определений идут три закона движения: закон инерции, закон пропорциональности силы ускорению и закон о действии и противодействии. Эти три закона, фигурирующие сейчас в любой книге по физике, общеизвестны. Менее известной и не соответствующей обычаям того времени является дань уважения, которое Ньютон оказывает своим предшественникам: «До сих пор я излагал начала, принятые математиками и подтверждаемые многочисленными опытами. Пользуясь первыми двумя законами и первыми двумя следствиями [о сложении сил], Галилей нашел, что падение тел пропорционально квадрату времени и что движение брошенных тел происходит по параболе; это подтверждается опытом, поскольку такое движение не претерпевает замедления от сопротивления воздуха... Из этих же двух * Там же, р. О—9. J 32
законов и из третьего кавалер Христофор Рен, доктор богословия Иоанн. Уаллис и Христиан Гюйгенс, величайшие геометры нашего времени, вывели законы удара и отражения тел и почти одновременно сообщили их Королев- скому обществу, причем их выводы во всем, касающемся этих законов, между собою согласны))*. Ньютон в свою очередь повторяет опыты по удару, проведенные ранее Реном и Мариоттом (см. гл. 5, § С), с использованием двух маятников различной массы и приходит к выводу, что количество движения всегда сохраняется при ударе тел, как жестких, так и нежестких, как упругих, так и неупругих. Далее, чтобы доказать справедливость принципа равенства действия и противодействия, Пыотон так рассуждает для случая притяжения: если бы два взаимно притягивающихся тела были разделены какой-либо перегородкой, и если бы одно тело притягивалось сильнее, чем другое, то препятствие, испытывая с одной стороны большее давление, чем с другой, двигалось бы в направлении большей силы, а в свободном пространстве, двигаясь равномерно ускоренно, ушло бы в бесконечность. Однако это противоречит первому закону. Следовательно, оба тела давят на препятствие одинаково. Этот вывод был подтвержден Ньютоном опытами с магнитом и плавающим куском железа. 6~ЦЕНТРОСТРЕМИТЕЛЬНОЕ ДВИЖЕНИЕ. Рассмотрение центростреми тельного движения начинается в первой книге и носит геометрический характер. По всей вероятности, Ньютон принял геометрическую форму изложения для того, чтобы его могло понять возможно большее число читателей, хотя он уже разработал к этому времени дифференциальное исчисление. В первой книге рассматривается движение тел под действием центральных сил. С помощью очень простого доказательства Ньютон устанавливает справедливость следующей теоремы и обратной ей: движение материальной точки под действием центральной силы является плоским и происходит так, что площадь, описываемая радиусом-вектором, пропорциональна затраченному времени. Затем он устанавливает, что приложенные силы отклонены в сторону движения, если описываемая радиусом-вектором площадь растет все быстрее, и обратно движению при уменьшении прироста площади. В шестом следствии из предложения IV утверждается, что силы обратно пропорциональны квадратам расстояний, если квадраты периодов обращения пропорциональны кубам расстояний. В предложении VI устанавливается общая теорема о движении по кривой линии вокруг центра. Эта теорема применяется в третьем разделе книги, где рассматривается движение по коническим сечениям. В последующих теоремах Ньютон показывает с помощью рассуждений, за которыми довольно трудно проследить, что если тело движется по коническому сечению, то оно находится под действием центростремительной силы, направленной к одному из фокусов сечения. Отсюда следует, что в этих случаях центростремительная сила обратно пропорциональна квадрату радиуса-вектора. Это новые теоремы механики, достаточные для объяснения эмпирических законов Кеплера и расширяющие область применимости новой динамики на движение планет. В предложении LIX доказывается, что если система из нескольких тел А, В, С, D,... такова, что тело А притягивает все остальные тела с силон, обратно пропорциональной квадрату расстояния, и аналогично тело 5. то А и В взаимно притягиваются с силой, пропорциональной их массам. В «поучении», следующем за этим предложением, Ньютон вновь обращает внимание на то, что слова «притяжение» и «импульс» употребляются в мате- * Там же, р. 21—22. 133
матическом смысле, чтобы указать на стремление, ведущее к сближению тел друг к другу безотносительно к природе этого стремления. Двенадцатый раздел, идущий вслед за рассмотренным предложением, посвящен взаимному притяжению двух сферических тел. Центральным пунктом является решение задачи, давно мучившей Ньютона и, как мы увидим в дальнейшем, задержавшей динамическую интерпретацию мира,— задачи о притяжении сферическим телом материальной точки вне него. Ответ на нее Ньютон дает в предложении LXXI: (Дастица, находящаяся вне сферической поверхности, притягивается к центру сферы с силой, обратно пропорциональной квадрату ее расстояния от центра сферы»*. Иначе говоря, если частица находится вне сферы, то она притягивается так, как если бы вся масса сферы была сосредоточена в ее центре. Это предположение Галлей выдвинул интуитивно еще до доказательства, предложенного Ньютоном, но Ньютон отказался принять его. Если точка находится внутри сферы, добавляется в предложении LXXIII, то она притягивается с силой, пропорциональной ее расстоянию от центра. В тринадцатом разделе рассматривается притяжение тел несферической формы. Он является переходным к последнему, четырнадцатому разделу, посвященному движению весьма малых телец под действием сил притяжения к большим телам. Эти теоремы применялись для рассмотрения отражения и преломления света. Но это применение, спешит заверить Ньютон, не будет следствием какой-либо гипотезы о природе света, корпускулярной или иной, а вытекает лишь из установленной на опыте аналогии между траекторией этих малых телец и траекторией световых лучей. Действительно, наблюдения затмений спутников Юпитера (см. гл. 5, § 20) показывают, что свет распространяется с конечной скоростью. Закон преломления Декарта — Снеллиуса совпадает с законом поведения указанных малых тел. Опыты Гримальди показывают, что лучи света притягиваются и загибаются, проходя у острых углов тел. Наконец, как доказывают и теоремы механики для материальных частиц, «...отражение луча происходит не в точке падения, а постепенно непрерывным искривлением луча, происходящим частью в воздухе, ранее достижения стекла, частью (если не ошибаюсь) в самом стекле, после проникновения в него»*. В общем Ньютон пытался доказать, что корпускулярная структура света — не гипотеза, а результат экспериментальных данных. Хотя рассуждения Ньютона здесь и не очень убедительны, все же аналогия между движением малых телец и распространением света позволила Ньютону закончить книгу рядом предложений, полезных для построения линз. 7. ДВИЖЕНИЕ В ЖИДКОСТИ. Вся первая книга «Начал» написана в предположении, что тела движутся в среде без сопротивления, под действием одних лишь приложенных сил. Для завершения учения о движении нужно исследовать, как это и делает Ньютон во второй книге, какие изменения испытывают найденные законы движения, когда тела движутся в жидкости, как это имеет место в земных условиях. Уаллис ввел предположение о том, что сопротивление жидкости движению тела пропорционально скорости этого тела. Однако Гюйгенс заметил, что с увеличением скорости тела возрастает масса перемещенной жидкости, * Там же, р. 189-190, 226. 134
так что сопротивление должно быть пропорционально квадрату скорости. Ньютон рассматривал оба эти случая. Он заметил, что движущееся в жидкости тело должно не только смещать жидкость, но и преодолевать ее вязкость; поэтому он считает сопротивление равным сумме двух членов; одного — пропорционального квадрату скорости и другого — пропорционального скорости. Результаты теории применены к движению брошенных тел в воздухе, к движению тел под действием центростремительных сил в среде с сопротивлением и к движению маятника. Экспериментальная проверка произведена в опытах с маятниками и с падением тел в воздухе и воде. Затем Ньютон предпринял исследование влияния формы тела на сопротивление, испытываемое им при движении, и сформулировал теорему о пропорциональности сопротивления при прочих равных условиях максимальной площади сечения тела, перпендикулярного направлению движения. Этот результат привел его, естественно, к исследованию аэродинамических профилей, если говорить современным языком, т. е. такой формы тел, которой при прочих равных условиях соответствует наименьшее сопротивление движению в жидкости. В предложении XXVI рассматривается истечение жидкостей из сосудов. Многие экспериментаторы, начиная с Торричелли, занимались этим, но мало что добавили нового. Ньютоново рассмотрение в первом издании также оставляет желать лучшего. Но во втором издании Ньютон дал точный вывод скорости истечения. Он заметил сжатие струи жидкости у отверстия и приближенно измерил его, но дал ему неудовлетворительное объяснение, основываясь на представлении о сходимости нитей потока жидкости. Немного позже (в 1718 г.) независимо от Ньютона это же явление исследовал Джо- ванни Полени (1683—1761), который определил влияние отверстия на истечение и заметил, что сжатие струи исчезает, если к отверстию, через которое вытекает жидкость, добавить короткую цилиндрическую трубку. 8. АКУСТИКА. Большое значение имеет восьмой раздел второй книги, в котором разработана теория волнового распространения движений в тяжелых средах. Ньютон начинает с колебательного движения жидкости в U-образном сосуде и показывает, что колебания жидкости подобны колебаниям маятника. Затем он показывает, что возмущение, вызванное в точке А жидкости, распространяется волнообразно и если оно попадает на отверстие ВС в препятствии KN, то за препятствием волны этого возмущения имеют началом отверстие ВС. В предложении XLVI впервые применяется, по крайней мере как термин, общепринятое сейчас выражение «длина волны» (undarum latitu- do). В предложении XLVIII находится скорость распространения упругих волн, равная квадратному корню из отношения модуля упругости к плотности среды. В последнем «поучении» Ньютон заключает, что эти предложения применимы к распространению звука, который есть не что иное, как толчки воздуха. Это обстоятельство позволяет провести экспериментальную проверку теории путем измерения скорости распространения звука с учетом того, что из-за изменения температуры, а следовательно, и упругости, скорость звука должна быть летом больше, чем зимой. В промежутке между первым и вторым изданием «Начал» в 1700—- 1707 гг. вышли мемуары Жозефа Савёра (1653 — 1716) по акустике, опубликованные Парижской Академией наук. В этих прекрасных мемуарах Савёр рассматривает явление, хорошо известное конструкторам органов: если две трубы органа издают одновременно два звука, лишь немного отличающиеся по высоте, то слышны периодические усиления звука, подобные барабанной дроби. Савёр объяснил это явление периодическим совпадением колебаний обоих звуков. Если, например, один из двух звуков соответствует 135
32 колебаниям в секунду, а другой — 40 колебаниям, то конец четвертого колебания первого звука совпадает с концом пятого колебания второго звука и, таким образом, происходит усиление звука. На этом явлении и его истолковании Савёр построил метод определения числа колебаний в секунду, т. е. частоты звука. От органных труб Савёр перешел к экспериментальному исследованию колебаний струны, наблюдал узлы и пучности колебаний (эти названия, существующие до сих пор в науке, введены им), а также заметил, что при возбуждении струны наряду с основной нотой звучат и другие ноты, длина волны которых составляет х/2, х/3, V4, ... от основной. Он назвал эти ноты высшими гармоническими тонами, и этому названию суждено было остаться в науке. Наконец, Савёр первый пытался определить границы восприятия колебаний как звуков: для низких звуков он указал границу в 25 колебаний в секунду, для высоких — 12 800. Во втором издании «Начал» Ньютон, основываясь на этих экспериментальных работах Савёра, дал первый расчет длины волны звука и пришел к выводу, хорошо известному сейчас в физике, что для любой открытой трубы длина волны испускаемого звука равна удвоенной длине трубы. «И в этом состоят главнейшие звуковые явления»*. Такими словами Ньютон заканчивает эту часть труда с чувством удовлетворения, ибо ему удалось превратить акустическую науку в раздел механики, чем она остается и поныне. 9. ВСЕМИРНОЕ ТЯГОТЕНИЕ. Здесь уместно напомнить, пусть очень бегло,. исторический путь этого открытия, чтобы показать, что случайного падения яблока — явления, которое приводит в пример еще Кеплер,— отнюдь не было достаточно для того, чтобы Ньютона озарила мысль о всемирном тяготении. Родственники и друзья Ньютона рассказывали об этом эпизоде, утверждая, что слышали о нем от самого Ньютона; Вольтер создал ему популярность. Но если даже этот эпизод и имел место, его следует рассматривать совсем в ином свете. Стремление подобного соединиться с подобным постулировалось еще первыми греческими школами (Эмпедокл, Анаксагор, Демокрит). Эта идея продолжала жить в течение всего средневековья и в эпоху Возрождения, поддерживаемая явлением магнитного притяжения, которое в известном смысле служило ее доказательством или по крайней мере иллюстрацией. Теория, приписывавшая приливы и отливы влиянию Луны и Солнца,— тоже античного происхождения (около III века до н. э.); она разделялась многими учеными эпохи Возрождения, такими, как Кардан, Скальеро, Порта, Кеплер. Эта проблема приобрела особое значение после принятия гелиоцентрической системы. В 1609 г. Кеплер опубликовал первые два эмпирических закона движения планет, а в 1618 г. — третий. Но еще до открытия этих законов он задавался вопросом о причине движения планет вокруг Солнца, а Луны вокруг Земли. В своем произведении «Prodromus continens myslerium cosmographicum» («Тайна Вселенной»), вышедшем в 1596 г., он приписывает движение Луны земному притяжению и утверждает, что это движение нельзя понять, если не допустить, что всякой материи присуще стремление к покою: причина движения — это vis immateriata, борющаяся с инерцией материи. В случае движения планет механическая причина, virtus movens, заключена в Солнце и распространяется от него не во все стороны, как свет, а лишь в плоскости солнечного экватора; поэтому она убывает обратно * Там же, р. 374. 136
пропорционально расстоянию. Эта мысль Кеплера становится яснее в его главной работе 1609 г. «Astronomia nova seu Physica coelestis» («Новая астрономия или небесная физика»): вес тел представляет собой тенденцию всех тел вообще к соединению и аналогичен магнитному притяжению. Если бы во Вселенной было лишь два камня, они двигались бы один к другому, пока не встретились бы. Таким же образом и Земля с Луной шли бы навстречу ДРУГ другу, если бы их не удерживала на их орбитах эквивалентная «анималь- ная сила или какая-либо иная»; но vis prensandi («влекущая сила») Луны проявляется на Земле в приливах и отливах — вода наших морей вся бы ушла на Луну, если бы Земля ее не удерживала. Похоже, что Ньютон не знал об этой работе Кеплера, когда сформулировал свой закон всемирного тяготения (Ньютон, как и Галилей, принадлежал к числу тех людей, которые мало читают). В «Началах» он относит к своим предшественникам Измаэля Бульо, Борелли и Гука. Бульо в своей книге «Astronomia philolaica» («Популярная астрономия»), вышедшей в 1645 г., полемизируя с Кеплером, отрицает, что из Солнца исходит сила, и замечает, что если бы тезис Кеплера был верен, то сила эта должна была бы рассеиваться от одной поверхности к другой, подобно свету, и менялась бы поэтому по величине обратно пропорционально квадрату расстояния от Солнца. Значительно более существенными для Ньютона были замечания Борелли (см. гл. 5, § 4), которые при точной математической формулировке понятий центробежной силы и силы гравитации могли бы превратиться в единую теорию движения планет. Более сложны и до сих пор не вполне ясны отношения между Гуком и Ньютоном. Мы на них здесь кратко остановимся. В 1666 г. Гук докладывал Королевскому обществу о некоторых своих опытах, предпринятых с целью доказать по аналогии с магнитным притяжением зависимость веса тела от высоты. Позже он пытался применить эту идею к движению планет, на которые, как он догадывался, должна непрерывно действовать некоторая сила. В 1674 г. Гук публикует этюд о движении Земли. В конце там говорится: «Я предлагаю систему мироздания, во многом отличающуюся от всех других систем, известных до сих пор, но во всех отношениях согласующуюся с общими законами механики. Такая система основана на трех гипотезах: 1) все небесные тела испытывают притяжение или тяготение к своему центру в том смысле, что они притягивают не только свои собственные части, препятствуя их удалению, как мы видим на Земле, но и другие небесные тела, находящиеся в сфере их действия. Отсюда следует, например, что не только Солнце и Луна оказывают влияние на форму и движение Земли — а она в свою очередь влияет на их движение,— но Меркурий, Венера, Марс, Юпитер и Сатурн также влияют своим притяжением на движение Земли... 3) Действие сил притяжения настолько больше, насколько ближе к центру притяжения тела, на которые они действуют)) *. В 1680 г. в письме Гук сообщил Ньютону, что он пришел к выводу о необходимости отказаться от этого последнего закона простой обратной пропорциональности силы расстоянию и заменить его законом обратной пропорциональности квадрату расстояния. Когда Ньютон представил рукопись «Начал» в Королевское общество, Гук потребовал признания его приоритета в открытии этого закона. Однако Ньютон реагировал весьма энергич- * Robert H о о k e. An attempt to prove the annual motion of the earth from observations., London, 1674, p. 27. 137
но, заявив, что он уже двадцать лет знает о законе обратных квадратов, что он сообщал о нем Гюйгенсу через Ольденбурга, секретаря Королевского общества, и что, собственно, из этих-то писем Гук и мог узнать о нем. Сверх того Ньютон умалял заслуги Гука, обвиняя его в том, что он черпает свои знания у Борелли. Только позже, под дружеским влиянием Галлея, он согласился признать, что одно из писем Гука послужило ему поводом к расчету движения планет, и согласился сослаться на него в «Началах». Суждение Ньютона о Гуке было слишком суровым и до сих пор кладет тень на репутацию бывшего ассистента Бойля. Характер у Гука был, как говорится, непростой, но у него был редкий изобретательский талант (ему приписывают около ста изобретений) и гениальная интуиция, которая позволила ему установить основные динамические законы, управляющие солнечной системой. Однако он не мог их систематически изложить из-за непостоянства характера и недостаточных математических знаний. После этого долгого отступления вернемся к системе мира, содержащейся в третьей книге «Начал». Ньютон сначала излагает установленные наблюдениями законы движения планет, Луны, спутников Юпитера и Сатурна. Применяя результаты первой книги, Ньютон дает динамическую интерпретацию этих законов по существу в том виде, как это делается теперь в курсах физики, и приходит к выводу, что во всех случаях центральная звезда действует на планету или же планета на спутник с силой, обратно пропорциональной квадрату расстояния. Центральным пунктом третьей книги можно считать предложение IV, в котором Ньютон производит приводимый и сейчас в учебниках расчет, доказывающий, что сила, удерживающая Луну на ее орбите,— это та же сила, которая заставляет тела падать на поверхности Земли, лишь ослабленная за счет расстояния. Об этом расчете вплоть до конца XIX века было распространено предание, которому многие верят и сейчас: в 1670 г. Ньютон, догадавшись о законе всемирного тяготения, пытался подтвердить его, сопоставив значение силы тяжести на Луне с ее величиной на поверхности Земли, но его расчет, основанный на ошибочном значении радиуса Земли, приводил лишь к приближенному подтверждению закона притяжения, что вызывало у Ньютона сомнение в его точности. Но в 1682 г. он узнал на одном из заседаний Королевского общества о новом измерении длины меридиана, выполненном во Франции Жаном Пикаром, повторил свои расчеты и нашел полное соответствие между значениями силы тяжести на Луне и на поверхности Земли. Этому рассказу едва ли можно верить, потому что трудно допустить, что Ньютон ждал до 1682 г., чтобы узнать значение радиуса Земли, использованное им в «Началах». Фактически это значение было получено Снел- лиусом еще в 1617 г. и приведено в «Geographia generalis» («Всеобщая география») Бернарда Варениуса (ум. в 1660 г.), опубликованной посмертно в 1664 г. в Амстердаме и переизданной в 1672 г. в Кембридже самим Ньютоном. Более вероятно другое предположение, к которому пришел в 1927 г. американский астроном Адаме, тщательно изучавший неизданные письма и рукописи Ньютона. Главную причину задержки опубликования закона всемирного тяготения Адаме видит в том, что Ньютону в течение длительного времени не удавалось определить притяжение внешней точки к телу сферической формы. Более того, как видно из его письма Галлею, он в то время не допускал того, что сам потом доказал (§ 6), а именно что сфера притягивает внешнюю точку так, как если бы вся ее масса была сосредоточена в ее центре. Произведя упомянутый расчет, Ньютон в предложении VII приходит к выводу: 138
«Тяготение существует ко всем телам вообще и пропорционально массе наждвго из них»*. Но если тяготение — универсальное свойство всех тел, почему же мы с ним яе встречаемся в нашем обыденном опыте? Ньютон предвидит это возражение и отвечает: ч.Если кто возразит, что все тела, находящиеся у нас, по этому закону •должны бы тяготеть друг к другу, тогда как такого рода тяготение совершенно не ощущается, то я на это отвечу, что тяготение к этим телам, будучи во столько же раз меньше тяготения к Земле, во сколько раз масса тела меньше массы всей Земли, окажется гораздо меньшее такого, которое могло бы быть ощущаемо»*. В 1798 г. Генри Кавендиш непосредственно измерил с помощью крутильных весов (см. гл. 7, § 18) притяжение двух небольших сфер и подтвердил догадку Ньютона о том, что между телами нашего обыденного мира ■существует притяжение, которое, однако, столь слабо, что остается незаметным. Метод Кавендиша, впоследствии усовершенствованный, позволил в прошлом веке произвести численное определение гравитационной постоянной **. Предложение VIII содержит знаменитую теорему о том, что два шара, состоящие из концентрических однородных слоев, притягиваются, как если ■бы их массы были сосредоточены в центре каждой сферы. В предложении XXIV утверждается, что прилив и отлив моря происходят от совместного действия Луны и Солнца. В следующем предложении ставится задача Клеро (1743 г.), названная позже «задачей трех тел» и причинившая столько хлопот математикам, начиная с Ньютона и до наших дней. Задача заключается в определении движения трех тел (у Ньютона — Солнце, Земля и Луна) под действием взаимного тяготения. После выхода «Начал», работы глубокой и трудной, Лейбниц и картезианцы обрушились с критикой на понятие тяготения. Эта заключенная в теле способность действовать на расстоянии, говорили они, есть возврат к скрытым свойствам схоластической науки (см. гл. 5, § 1). На это Роджер Коте ответил в предисловии ко второму изданию «Начал», воспроизведенном также и в третьем издании, что нельзя считать скрытой причину, существование которой обнаруживается наблюдением с полнейшей очевидностью. Наоборот, скрытыми являются причины, приводимые теми, кто делает движение планет зависящим от ^неведомо каких вихрей некоторой части ■воображаемой материи, совершенно непостижимой чувствами». Ответ этот категоричный, но совершенно неубедительный. До Эйнштейна гравитация оставалась догматом науки, одним из многих непостижимых явлений, как говорил Мах. Сам Ньютон находил бессмысленным действие на расстоянии, без помощи посредника, но всегда отказывался публично выражать свое отношение к природе силы тяжести. Согласно заметке Дэвида Грегори, датированной 21 декабря 1705 г., но опубликованной лишь в 1937 г., Ньютон нашел свое решение этой проблемы. Это было мистико-религиозное решение, которое проявляется в конце •«Начал» и «Оптики» в предложениях, являющихся выражением религиозного * Там же, р. 403, 404. ** Если т и т — массы двух тел в граммах, а г — расстояние между ними в сантиметрах, то между этими двумя массами действует сила взаимного притяжения, которая в динах выражается формулой / = 6,67.10-8^2-. г2 [Коэффициент этой формулы и есть гравитационная постоянная.— Прим. перев.] 139
духа: «...движущиеся тела не испытывают сопротивления от вездесущия божия»; «...бог пребывает всюду, также и в вещах». Если верить упомянутой заметке, то решение Ньютона должно быть таково: посредником в действии на расстоянии является бог, присутствующий как в пространстве, свободном от тел, так и в том, где есть тела. Это уже не гипотезы — физические или метафизические,— это чистая теология! Недаром некоторые современные критики (Дюгас, Луи де Бройль) считают Ньютона великим мечтателем, тут же оговаривая, что «именно мечтатели творят» *. ОПТИКА 10. «ОПТИКА» НЬЮТОНА. Биографы Ньютона единодушны в том, что возникновение его интереса к оптике можно отнести к 1664 г. и что в 1665 г, он приобрел призму, «чтобы произвести опыты со знаменитыми явлениями цветов». Первые успехи в этой области были им достигнуты, вероятно, в период добровольного уединения с 1665 по 1667 г. в деревенской тиши Вулсторпа, куда он укрылся во время эпидемии чумы, свирепствовавшей в Англии с 1664 по 1667 г. В 1668 г. учитель Ньютона Исаак Барроу нашел его столь компетентным в оптике, что доверил ему просмотр своей собственной работы «Lectiones opticae et geometriae» («Лекции по оптике и геометрии»), вышедшей в Лондоне в 1674 г. (разрешение на печать датировано 1668 г.). Это сотрудничество действительно поражает многих биографов Ньютона, которых смущает тот факт, что Ньютон мог пропустить без комментариев устаревшие представления Барроу о цветах. На этом основании строятся некоторые заключения о том, что в 1668 г. Ньютон еще не получил ни одного из своих фундаментальных результатов, касающихся природы цветов. Вывод этот слишком поспешный, поскольку просматривать работу другого автора не значит подменять его представления своими. В 1669 г. Барроу уступил Ньютону лукасовскую кафедру в Кембридже и Ньютон сам начал читать оптику. К этому периоду относятся его «Lectiones opticae» («Лекции по оптике»)**, опубликованные посмертно в 1729 г. Научный мир узнал об открытии Ньютона о природе цветов из доклада, опубликованного в 1672 г. и вызвавшего критические замечания ряда ученых, и в частности Гука. За ним последовала долгая полемика, сильно огорчившая Ньютона, человека весьма раздражительного и чувствительного к критике. Дело кончилось тем, что Ньютон заперся в своей лаборатории, чтобы там в тишине завершить свою фундаментальную работу по оптике, которую опубликовал в Лондоне в 1704 г. под названием «Optics» («Оптика») в момент, представлявшийся ему благоприятным (годом раньше умер Гук). В предисловии Ньютон говорит, что значительная часть этой работы была написана в 1675 г. и направлена секретарю Королевского общества для прочтения на заседании. Через 12 лет Ньютон написал к ней добавление, чтобы сделать теорию более полной. Еще позже он добавил третью книгу. Еще при жизни Ньютона вышли второе издание «Оптики» в 1717 г. и третье в 1721 г. С согласия автора работа в 1706 г. была переведена на латинский язык Кларком ***, а в 1720 г. — на французский язык Костом (под редакцией Дезагюлье). В XVIII веке был широко распространен латинский перевод * L. D e Broglie, Nouvelles perspectives en microphysique, Paris, 1956, p. 334. ** F.CTb русский перевод: И. Ньютон, Лекции по оптике, М. —Л., 1946. *** Optice: sive de reflexionibus, rcfractionibus inflexionibus et coloribus lucis libri tres. Auctore Isaaco Newton... la tine reddidit Samuel Clarke, editio novissima, Lausannao et Genevac, 1740. (Есть русский перевод: И. Ньютон, Оптика, М. — Л., 1954. 140
Кларка, многократно переиздававшийся, которого мы и будем придерживаться, отказываясь, таким образом, от прослеживания хронологии различных открытий и формирования взглядов Ньютона. «Оптика» состоит из трех книг. В первой рассматриваются отражение, преломление и дисперсия света (анализ и синтез цветов) с приложением к объяснению радуги и с отступлением, посвященным телескопам и отражению. Во второй книге рассматриваются цвета тонких пленок. Наконец, третья книга содержит краткое экспериментальное исследование дифракции и заканчивается 31 «вопросом» теоретического характера. Книга начинается провозглашением верности экспериментальному методу и обещанием описывать явления, не выдвигая гипотез: «Мое намерение в этой книге,— предупреждает автор,— не объяснять свойства света гипотезами, но изложить и доказать их рассуждением и опытами. Для этого я предпосылаю следующие определения и аксиомы»*. Но пет и речи о том, чтобы Ньютон придерживался этой программы. Сразу же после этих слов читателя поражает первое определение, которое либо ничего не означает, либо говорит о явно корпускулярном характере теории. Первое определение гласит: «Под лучами света я разумею его мельчайшие части, как в их последовательном чередовании вдоль тех же линий, man и одновременно существующие по различным линиям»*. А что означает утверждение: «луч света — это его мельчайшая часть»? Мы индии, что для Ньютона луч света — это уже не траектория в понимании древнегреческих геометров, а, как говорится в пояснении к этому определению, ((наименьший свет или часть света... которая может быть оставлена одна, без остального света, или же распространяется одна, или совершает или испытывает одна что-либо такое, чего не совершает и не испытывает остальной свет»*. Иными словами, Ньютон был жертвой иллюзии, присущей многим экспериментаторам: заявляя о желании придерживаться только фактов и отбросить всякие теории, он одновременно основывает истолкование своих экспериментальных результатов на новой теоретической концепции светового луча — концепции корпускулярной, или, если пользоваться современным термином, квантовой. Далее идет еще восемь определений, столь же неясных, как и первое, и восемь «аксиом», резюмирующих геометрическую оптику того времени: законы отражения и преломления, законы образования изображений. 11. ДИСПЕРСИЯ СВЕТА И ПРИРОДА ЦВЕТОВ. Следующая за этим экспериментальная часть выдержала испытание временем и по существу осталась основой современной физической оптики. Было бы излишне подчеркивать гениальность постановки проблемы, искусность ее решения, точность измерений. Достаточно лишь обратить внимание на громадный скачок, произошедший под влиянием работ Ньютона в исследованиях преломления в призме, которыми занимались до него очень многие физики, начиная с Мавролика и даже, если хотите, с Сенеки. Первая группа опытов, весьма простых, состояла в наблюдении через призму двухцветной полоски бумаги (красной и синей), освещенной солнцем. * Optice, p. 1, 2. 141
Опыты Ньютона по дисперсии света. (S a v e r i e n, Dictionnare universal de mathematique et de physique, 1754.) Этот опыт позволил Ньютону прийти к фундаментальному выводу: «Лучи, отличающиеся по цвету, отличаются и по степени преломляемости»*„ И если само это утверждение и не вполне ново, поскольку оно высказывалось еще в 1648 г. Марко Марчи (1595—1667), зато весь комплекс последующих экспериментов, дающих ему окончательное подтверждение, был весьма новым, так что не мог пройти незамеченным. Проделав небольшое круглое отверстие в ставне окна темной комнаты, Ньютон заставил пучок лучей, проходящих через это отверстие, падать на призму с большой дисперсией и направлял «спектр» на противоположную стену, находившуюся на расстоянии в несколько метров. Тщательные наблюдения позволили ему установить, что паилучшие экспериментальные условия достигаются, когда призма находится, как говорят сейчас, в положении наименьшего отклонения, которое может быть легко найдено поворотом призмы вокруг своей оси. В первой серии опытов, проведенных с помощью такого приспособления, выделяется опыт с двумя скрещенными призмами. Эти опыты убедили Ньютона в том, что цвета присутствуют в солнечном свете, а призма лишь разделяет их, и привели его к установлению взаимно однозначного соответствия между степенью преломления и цветом с вытекающей отсюда поправкой к закону преломления Декарта: показатели преломления действительно постоянны для двух заданных сред при любых углах падения, но меняются при изменении цвета. Отсюда следует, что линза имеет столько- фокусов, сколько цветов содержится в падающем на нее свете. И Ньютон * Optice, p. 1, 2. 142
подтверждает это следствие с помощью опытов, совпадающих с теми, которые и сейчас ставятся в средних школах. В этом месте Ньютон критически исследует вопрос о чистоте спектра и описывает прибор, состоящий из линзы и призмы и представляющий собой не что иное, как коллиматор спектроскопа Фраунгофера (см. гл. 8, § 8). Почему же Ньютон не заметил тогда черных полос солнечного спектра? Возможно, потому, что зрение у него было слабое и наблюдения проводил ассистент. Это обстоятельство следует считать счастливой случайностью, так как обнаружение темных полос вызвало бы усложнение, которое Ньютону не так-то легко было бы распутать. В другой серии опытов Ньютон разлагает свет с помощью призмы, направляет спектр на экран, в котором проделана узкая щель, и направляет свет, проходящий через эту щель, на вторую призму, которая отклоняет его, но уже не разлагает. Эта группа опытов, имеющая фундаментальное значение для спектроскопии, привела Ньютона к понятию однородного света: «Всякий однородный свет имеет собственную окраску, отвечающую степени его преломляемости, и такая окраска не может изменяться при отражениях и преломлениях»*. Тем самым с предельной очевидностью было экспериментально подтверждено предвидение Декарта о природе цветов: тела, на которые падает свет, не производят цветов, и лучи не окрашиваются philosophice et proprie (сами по себе); лучам свойственна определенная способность возбуждать в нас ощущение того или иного цвета. Следуя многовековой традиции, Ньютон насчитывает семь цветов (красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый), не считая белого и черного. После анализа цветов Ньютон переходит к следующей серии опытов, в равной мере изумительных, к синтезу цветов. Некоторые из этих опытов стали классическими и приводятся теперь в учебниках физики. Сюда относится, например, опыт с гребенкой, которая быстро перемещается перед спектром, так что он кажется белым благодаря явлению стойкости изображения, которому Ньютон не дал более точного объяснения, или же опыт с обратным сложением цветов с помощью второй призмы. Все эти открытые Ньютоном свойства света позволили ему дать новое, более полное объяснение радуги и истолковать цвета тел как результат избирательного поглощения падающего на них света. Однако эта последняя часть не избегла критики. Ньютону был показан опыт, в котором цвета, получающиеся при поглощении, ведут себя отлично от цветов спектра. Тем не менее он считал возможным применять к цветам спектра правила смешения цветных красок и говорил, например, что зеленый цвет спектра получается смешением желтого и синего. 12. ЗЕРКАЛЬНЫЙ ТЕЛЕСКОП. В проведенном выше анализе содержания первой книги «Оптики» мы опустили одно интересное отступление автора. Ставя свои великолепные опыты со скрещенными призмами, Ньютон пытался объяснить их с помощью выдвинутой в «Началах» гипотезы, которая привела его к заключению о том, что дисперсия пропорциональна степени преломления. Это и есть знаменитая «ошибка Ньютона», ошибка, которой он мог бы избежать, если бы прибег к экспериментальной проверке. Но, найдя для единственного случая значение отношения степени преломления к дисперсии равным 27,5, Ньютон решил, что это отношение должно во всех случаях иметь то же значение. В 1676 г. бельгийский физик Лукас в докладе Академии наук сообщил, что он повторил опыты Ньютона 1672 г. * Там же, р. 87 143
От удаленного источника Принцип устройства телескопа. Вогнутое зеркало дает изображение удаленного предмета, которое можно рассматривать через увеличивающую линзу. Но куда следует поместить голову наблюдателя, чтобы она не загораживала свет, попадающий на зеркало М? и нашел их вернылш, за исключением одного количественного отличия: его призма с углом преломления 60° давала спектр, длина которого втрое больше ширины, тогда как Ньютон с призмой с углом преломления 63°12' получил спектр, длина которого в пять раз больше ширины. Таким образом, дисперсия оказывается непропорциональной степени преломления. Однако Ньютон выдвинул против этого ряд хитроумных возражений, поставив под сомнение точность опыта Лукаса и вновь подтвердив свое мнение, которое не желал даже подвергать сомнению. Трудно понять, в чем причина этого упорства Ньютона. Если дисперсия пропорциональна степени преломления, то ахроматические призмы или линзы невозможны. Изображения, образуемые линзами, всегда искажены сопутствующим им окрашиванием, «цветовыми помехами», как говорил Ньютон, или хроматической аберрацией, как сказали бы мы. В то время как сферическая аберрация может быть уменьшена за счет диафрагмирования линз, хроматическая аберрация никогда не может быть уменьшена. Поэтому Ньютон начинает заниматься подзорными трубами с зеркалами, или телескопами, как их теперь называют. Как известно, в этом приборе изображение объекта, образуемое вогнутым зеркалом, рассматривается через увеличивающую линзу. К прибору такого типа приблизились в своих работах Сарпи и Порта (см. гл. 3, § 13). О нем говорил Галилей со своими учениками. Отрицательное суждение о таком приборе высказал Кавальери. Телескоп был описан также Николо Цукки (1586—1670) в его «Optica philosophical («Философская оптика»), изданной в 1652—1656 гг. Возможно, что одна такая труба была сконструирована еще в 1616 г. В телескопе Цукки лучи, отраженные от большого сферического металлического зеркала, попадают на маленькое коаксиальное стеклянное зеркало и далее идут к наблюдателю через линзу, расположенную в отверстии в центре большого зеркала. Мерсенн модифицировал телескоп Цукки, сделав оба зеркала параболическими и устранив линзу: изображение, образуемое маленьким зеркалом, рассматривалось непосредственно через отверстие в большом зеркале. На том же принципе основан телескоп, предложенный в 1663 г. Джемсом Грегори (1638—1675). Однако Ньютон, по-видимому, ничего не знал обо всех этих предшествующих работах и в 1668 г. сконструировал свой первый телескоп на основе собственных исследований. Конструктивно этот телескоп отличался от предшествующих одной весьма простой, но остроумной особенностью. В прежних вариантах из-за отверстия в большом зеркале вблизи его центра не использовалась наиболее действенная часть падающих лучей. Ньютон же 144
-агг? -Fu?: %$>. •"•""*:""W" -Ж— ■;: :,- .■■■■-^-^——JIM J Телескоп Ньютона с призмой полного внутреннего отражения (I. Newton, Optice, 1740.) Вблизи фокуса зеркала aqsb помещается призма полного внутреннего отражения gtf, которая направляет лучи в окуляр. Призма играет ту же роль, что и плоское зеркальце, однако рекомендована Ньютоном для уменьшения длины телескопа. направлял изображение от вогнутого зеркала на маленькое плоское зеркало, наклоненное под углом 45° к оси телескопа, и производил наблюдения его через линзу, помещенную в боковой стенке телескопа. Приспособление это весьма простое, хотя и несколько неудобное. Первая такая труба длиной всего 15 см с зеркалом радиусом 25 мм давала увеличение в 40 раз, что позволяло видеть спутники Юпитера, однако изображение было неясным. Усовершенствованию телескопа Ньютон посвятил не менее пятнадцати лет, исследовав большое число сплавов для изготовления зеркала и прежде всего введя новый метод его полировки. Уже в 1671 г. он построил телескоп больших размеров и значительно лучшего качества, чем прежний. Он послал его в дар королю Карлу II. Телескоп был представлен на рассмотрение Королевского общества, которое единодушно оценило его важность и избрало Ньютона членом общества. Исследование зеркального телескопа было отправной точкой всей научной деятельности Ньютона. Вместе с тем этот прибор, усовершенствованный в 1789 г. Гершелем (1738—1822), сопутствует прогрессу инструментальной астрономии вплоть до наших дней. Значительно меньший успех пришелся на долю разрабатывавшегося Ньютоном зеркального микроскопа, сконструированного в 1827 г. Джован Баттиста Амичи (1776—1863) и нашедшего применение лишь в нашем веке для некоторых специальных исследований. 13. КОЛЬЦА, ДИФРАКЦИЯ И ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ В «ОПТИКЕ» НЬЮТОНА. В первой части второй книги «Оптики», состоящей из четырех частей, описывается серия основополагающих опытов, проведенных с исключительным искусством и ставших классическими. Эта часть работы представляет собой истинный шедевр экспериментального искусства. Здесь Ньютон возобновляет исследование цветов тонких слоев, начатое еще Гуном (см. гл. 5, § 19), но в то время как Гук исследовал слои постоянной толщины, которую безуспешно пытался непосредственно измерить, Ньютон воспользовался счастливой идеей Бойля применить в опытах слои с непрерывно изменяющейся толщиной. Применявшееся Ньютоном классическое устройство общеизвестно: плосковыпуклая линза с очень малой кривизной, опирающаяся своей плоской стороной на другую линзу, двояковыпуклую. При падении на поверхность линзы белого света Ньютон, как до него Бойль, а после него все студенты, обучающиеся физике, наблюдая отражение света, т. е. глядя с той же стороны, откуда падает свет, видел темное пятно, соот- 10 Марпо Льоцци 145
ветствующее точке соприкосновения двух линз, окруженное последовательностью чередующихся светлых и темных концентрических колец радужной окраски. Ньютон наблюдал это явление не только в белом свете, но и в монохроматическом. Качественно явление носило такой же характер, но в то время как в белом свете видны были лишь восемь или девять колец, в монохроматическом свете было видно их несколько десятков. Это явление представлялось значительно более эффектным, если кольца, полученные в белом свете, рассматривались через призму: в этом случае каждое радужное кольцо как бы состояло из бесконечной системы колец различного цвета, смещенных относительно друг друга. Многочисленные опыты с этим величественным явлением и точные измерения позволили Ньютону открыть различные закономерности, оставшиеся справедливыми и по настоящее время: радиусы колец (светлых и темных) растут пропорционально квадратному корню из их порядкового номера, так что радиус четвертого кольца вдвое больше радиуса первого кольца, а радиус девятого кольца — втрое больше; кольца расположены тем ближе, чем больше степень преломляемости света, т. е. радиусы колец одного и того же порядкового номера регулярно уменьшаются при переходе от красного цвета к фиолетовому; темные кольца образуются всегда при толщинах слоев, кратных некоторому наименьшему значению, зависящему от цвета; толщина, соответствующая красным кольцам, составляет 14/д толщины, соответствующей фиолетовым кольцам того же порядка; кольца сближаются, если пространство между обеими линзами заполняется водой. Весь этот комплекс количественных экспериментальных результатов не мог не вызвать полнейшего изумления и не мог не привести к мысли о наличии некоторой периодичности, характерной для каждого цвета. Поэтому Ньютон был вынужден дать хотя бы формальное объяснение этой периодичности. С этой целью он прежде всего замечает, что материю следует считать весьма «пористой», т. е. состоящей из отдельных крупинок, погруженных в пустое пространство, подобно тому как туман состоит из капелек воды, окруженных воздухом. Отсюда следует, что отражение света не может быть обусловлено упругим ударом частиц света о вещество, и, согласно Ньютону, многие оптические явления подтверждают эту точку зрения. Как же тогда объяснить отражение? «Каждый луч света при своем прохождении через любую преломляющую- поверхность приобретает некоторое преходящее строение или состояние, которое при продвижении луча возвращается через равные интервалы и рас- полагает луч при каждом возвращении к легкому прохождению через ближайшую преломляющую поверхность, а между возвращениями — к легкому отражению»*. Определив «приступы» (vices) отражения или преломления как периодическое возвращение предрасположения луча к отражению или преломлению, а периоды приступов как промежутки времени между двумя последовательными приступами, Ньютон следующим образом отвечает на вопрос, почему свет, попадающий на границу раздела двух сред, частично отражается, а частично преломляется: «Свет находится в состоянии приступов легкого отражения и легкого преломления и до падения на прозрачные тела. И, вероятно, он получил такие приступы при первом испускании от светящегося тела, сохраняя их во время- своего путиь*. * Там же, р. 216, 219 146
Что же в конце концов — эти приступы свойственны свету, присущи ему с самого момента его излучения или же они являются приобретенным свойством, т. е. приобретаются в момент прохождения света через тела? Ньютон считает свойства света то внутренними, то приобретенными, в зависимости от того, что более удобно. Ньютон чувствовал противоречивость и затруднительность своей позиции, но настаивал на том, что не выдвигает никаких гипотез и что приступы — это просто констатация факта, какова бы ни была их природа. Тут же он добавляет, правда, что те, кто любит строить гипотезы картезианского типа, могут представить себе, что, так же как камни, падая в воду, вызывают в ней определенное колебательное движение, так и световые корпускулы, ударяясь об отражающие или преломляющие поверхности, возбуждают колебания, распространяющиеся быстрее самих частиц света и потому обогняющие их; эти волны, действуя на корпускулы определяют и обусловливают приступы легкого прохождения и легкого отражения. Верна или ошибочна эта гипотеза, Ньютон не хочет разбирать: «Я довольствуюсь простым открытием, что лучи света благодаря той или иной причине попеременно располагаются к отражению или преломлению во многих чередованиях»*. Несмотря на противоречия, неясности и поправки, теория приступов является весьма глубоким представлением, которое теперь, в свете волновой механики, может быть лучше понято и точнее оценено. Первая часть третьей книги «Оптики» содержит несколько экспериментальных исследований явлений, открытых Гримальди. Однако Ньютон старается обойти слово «дифракция». Как ио подходу, так и по интерпретации эти его опыты сильно уступают описанным в первых двух книгах и подобраны с целью представления явления дифракции как результата действия притяжения вещества на световые корпускулы: лучи света, проходя близ краев тел, испытывают притяжение и потому изгибаются. Ньютон чувствует недостаточность этой части работы и в экспериментальном и в теоретическом отношении и заканчивает честным признанием: «Производя предыдущие наблюдения, я намеревался повторить большинство из них с большей тщательностью и точностью и сделать некоторые новые наблюдения для определения способа, каковым лучи света изгибаются при их прохождении около тел, создавая цветные каемки с темными линиями между ними. Но я был тогда прерван и не могу теперь думать о том, чтобы приняться за дальнейшее рассмотрение этих предметов. Ввиду того что я не завершил этой части моего плана, я закончу предложением только нескольких вопросов для дальнейшего исследования, которое произведут другие»*. И дальше следует 31 вопрос, «которые служат,— как добавляет Кост в латинском переводе,— заключением всего труда». В действительности же вопросы касаются не только оптики, но и гравитации, и химии, и других частных явлений. В них собраны разнообразные соображения Ньютона, в которых наряду с многими глубокими мыслями встречаются и ошибки и очевидные противоречия; это сырой материал, который в последующих изданиях обновлялся и дополнялся, однако так и остался несистематизированным и несогласованным. Вопросы 25 и 26 касаются двойного лучепреломления. То, что рассмотрение этого явления помещено в этой части труда, свидетельствует, по нашему мнению, о том, что Ньютон смог исследовать его экспериментально лишь довольно бегло и в общих чертах. И действительно, он ограничивается описанием исландского шпата и повторением опытов Бартолина и Гюйгенса. * Там же, р. 218, 269—270 ю* 147
Интерпретировать эти опыты очень трудно. Ньютон ограничивается тем, что в вопросе 26 робко выдвигает идею возможного объяснения этого явления с помощью гипотезы, согласно которой лучи света, т. е. световые корпускулы, обладают «различными сторонами» специальной формы, так что поведение корпускул зависит от того, какой стороной они ударяются. Ньютон вводит здесь понятие поляризации света, однако не настаивает на нем и не рассматривает никаких его приложений. 14. КОРПУСКУЛЯРНАЯ ТЕОРИЯ. В первые годы своей научной карьеры Ньютон, казалось, склонялся к волновой теории света. В докладе от 1672 г. он говорит: «Наибольшие колебания эфира дают ощущение красного цвета, наименьшие и наиболее короткие — фиолетового, а промежуточные — промежуточных цветов» *. Но последующие размышления не только не утвердили его в этом мнении, а все больше отталкивали его от этой точки зрения, пока он не превратился в одного из наиболее решительных противников волновой теории. Причины этого хорошо известны, поскольку он сам сформулировал их четко и ясно в вопросе 28. Главной причиной является несовместимость, по мнению Ньютона, прямолинейного распространения света с его волновым характером: «Если бы свет состоял в давлении или движении, распространяющихся в жидкой среде мгновенно или во времени, он должен был бы загибаться внутрь тени» так же, как загибаются волны на воде за препятствием, как звук колокола проникает за холм. «Но относительно света неизвестно ни одного случая, чтобы он распространялся по извилистым проходам или загибался внутрь тени»**. Ньютону обычно ставят в упрек, что он не понял значения опытов Гримальди, которые как раз и показывают отклонение света за препятствием. Но при этом забывают добавить, что в то время и Гук, и Гюйгенс, создатели волновой теории, тоже не понимали, что дифракция представляет собой явление отклонения света. Ньютоновская модель света, как она следует из «Оптики», и в частности из последних «Вопросов»,— весьма сложная, во многих пунктах запутанная и противоречивая. Физики XVIII века стилизовали ее, частично исказили, сохранив лишь основную идею: свет, по Ньютону, состоит из мельчайших корпускул, вылетающих с громадной скоростью из источника света по всем направлениям и движущихся прямолинейно со скоростью тем большей, чем больше плотность среды. Иногда проявляется притяжение кориускул к обычной материи. Первый вопрос Ньютона гласит: «Не действуют ли тела на свет на расстоянии и не изгибают ли этим действием его лучей; и не будет ли caeteris paribus *** эт,о действие сильнее всего на наименьшем расстоянии?»**** Размер корпускул для разных цветов различен: более крупные, попадая на дно глаза, возбуждают там колебания, распространяющиеся к мозгу вдоль зрительных нервов, вызывая ощущение красного цвета, а более мелкие вызывают ощущение фиолетового цвета. Но различные цветовые ощущения обусловлены не непосредственно различной величиной корпускул, а раз- * Isaac Newton's answer to some considerations upon his doctrine of light and colors, Philc- sophical Transactions of the Royal Society, London, 5088 (1672). ** Optice, p. 291, 292. *** При прочих равных условиях (лат.). **** Optice, p. 270. 148
личной частотой колебаний, вызываемых ими в зрительном нерве. Во время прямолинейного полета в каждой корпускуле что-то колеблется: может, это внутреннее, присущее ей колебание, а может быть, оно обусловлено колебаниями материальных частиц, которые эта же частица вызвала на расстоянии. Эти колебания передаются эфиру, заполняющему всю Вселенную и пронизывающему все тела, причем его плотность в разных телах различна и максимальна в пустоте. Таким образом получаются эфирные волны. Когда световая корпускула приближается к преломляющей поверхности, на нее воздействует ею же созданная волна, вызывающая в ней периодические приступы легкого прохождения и легкого отражения. Однако в противовес этой волновой трактовке в вопросах 25—28 Ньютон приводит одно соображение за другим, чтобы опровергнуть существование эфира, привлекая даже (что вовсе на него не похоже) авторитет многих древних философов. Этого, по-видимому, достаточно, чтобы составить себе представление о сложности и громоздкости теории Ньютона, не вникая более детально в другие странные свойства этих корпускул, приписанные им для объяснения того или иного частного явления. Если даже согласиться, что в механике Ньютон гипотез не выдвигает, в оптике он отыгрывается за это вдесятеро! 15. ВОЛНОВАЯ ТЕОРИЯ. В кратком предисловии к своему «Traite de la lumiere» («Трактат о свете»), изданном в Лейдене в 1690 г., Христиан Гюйгенс пишет, что закончил этот трактат еще в 1678 г. и в том же году представил его Парижской Академии наук. Он не публиковал его раньше из-за плохого французского языка, на котором был написан трактат, надеясь перевести его на латинский (и действительно, среди бумаг Гюйгенса найден перевод первых страниц) и опубликовать вместе с трактатом по инструментальной оптике. Видя, однако, что эти намерения остаются нереализованными, Гюйгенс решил опубликовать работу в том виде, в каком она есть, чтобы она вообще не пропала. Как мы уже видели выше, в 1678 г. появились фундаментальные работы Ньютона, вошедшие потом в «Оптику». Мышление Гюйгенса находится под воздействием этих работ. Действительно, будучи приверженцехМ теории цветов Гука, он после работ Ньютона, восхищаясь их экспериментальной стороной, но не разделяя его теоретической интерпретации, пришел к выводу, что «...явление окрашивания остается еще весьма таинственным из-за трудности объяснения этого разнообразия цветов с помощью какого-либо физического механизма». Поэтому он счел наиболее целесообразным вообще не рассматривать вопроса о цветах в своем трактате. Эта небольшая работа, занимающая лишь 77 страниц в его полном собрании сочинений, состоит из шести глав. В первой рассматривается прямолинейное распространение света, во второй — отражение, в третьей — преломление, в четвертой — атмосферная рефракция, в пятой — двойное лучепреломление и в шестой — формы линз. Работа начинается с критики предшествовавших теорий Декарта, Гримальди и Ньютона. Если свет состоит из корпускул, то как же он может распространяться прямолинейно в телах, не испытывая отклонения? И как это может быть, чтобы два пересекающихся пучка лучей, т. е. два потока частиц, не возмущали друг друга путем взаимных соударений? Но достаточно вспомнить, что свет возникает от огня и пламени, т. е. от тел, находящихся в очень быстром движении; что свет, сконцентрированный зеркалом, способен сжигать предметы, т. е. разъединять их части, «что служит убедительным признаком движений, по крайней мере для истинной философии»; что зритель- 149
Пример с пламенем. (Oeuvres completes de Ch. Huygens.) ное ощущение возникает при возбуждении окончания зрительного нерва; что, как и в случае соударений, два или несколько движений могут накладываться, не возмущая друг друга; что распространение звука происходит путем движения. Достаточно, говорит Гюйгенс, учесть все эти факты, чтобы прийти к безусловному выводу: «Нельзя сомневаться в том, что свет состоит в движении какого-то вещества» *. Увы, нельзя сказать, чтобы аргументы Гюйгенса были очень убедительны! Но в какой же среде распространяется свет? Еще раз установив параллель между звуком и светом, Гюйгенс замечает, что этой средой не может служить воздух, поскольку опыты с пневматической машиной показали, что свет в отличие от звука распространяется и в пустоте, и постулирует существование некоторой эфирной материи, которая заполняет всю Вселенную, проникает во все тела, чрезвычайно разрежена, так что она не проявляет никаких свойств тяжести, но очень жесткая и очень упругая. Как видно, Декарт нашел достойного последователя! Приняв существование такого странного вещества, Гюйгенс рассматривает механизм распространения движения. Он начинает с примера пламени. Каждая точка пламени сообщает движение частицам окружающего эфира, т. е. создает свою собственную волну, а каждая частица эфира, которой достигла волна, становится в свою очередь центром другой, меньшей волны. Таким образом, это движение распространяется от частицы к частице через посредство вторичных сферических волн, подобно тому как распространяется пожар. Может показаться странным и почти невероятным, что волнообразное движение, вызываемое столь малыми движениями и частицами, способно распространяться на такие огромные расстояния, как отделяющие нас от звезд. На это Гюйгенс отвечает: «Но это перестает быть удивительным, если принять во внимание, что бесконечное число волн, исходящих, правда, из различных точек светящегося тела, на большом расстоянии от него соединяются для нашего ощущения только в одну волну, которая, следовательно, и должна обладать достаточной силой, чтобы быть воспринятой»**. Это и есть принцип построения огибающей волны, сделавший бессмертным имя Гюйгенса. Он поясняет его рисунком, точно таким же, какие мог * Ch. Huygens, Traite de la lumiere, Leyde, 1690, в книге Oeuvres completes de Ch. Huygens publiees par la Societe hollandaise des sciences, XIX, Leyde, 1937, p. 461. (Есть русский перевод: X. Гюйгенс, Трактат о свете, М., 1953.) ** Там же, X, р. 475. 150
Построение огибающей волны по Гюйгенсу. (Oeuvres completes de Ch. Huygens.) DCEF — сферическая волна с центром А. Каждая точка внутри этой сферы, например точка В, является центром элементарной волны KCL, касающейся DCEF в точке С. Элементарные волны весьма слабые, так что оппгщается^не эффект каждой волны в отдельности, а лишь их огибающая. видеть читатель чуть ли не в каждом современном учебнике физики. Ясно, что при таком понимании исчезает световой луч древних греков, исчезает и луч света Ньютона. Лейбниц сразу понял значение новой концепции и писал Гюйгенсу 22 июня 1694 г.: «Безусловно, господин Гук и патер Пардиз никогда бы не пришли к объяснению законов преломления с помощью построенной ими картины волновых движений. Вся суть в том, каким образом вы рассматриваете каждую точку луча как излучающую и складываете основную волну со всеми вспомогательными волнами» *. К сожалению, при новом подходе исчезает и непосредственное интуитивное представление о прямолинейном распространении света. Гюйгенс выдвигает объяснение, утверждая, что за препятствием распространяющиеся там элементарные волны не имеют огибающей и потому остаются незаметными, и делает вывод: «В этом смысле можно принимать лучи света за прямые линии»**. Однако это утверждение остается голословным, так что его можно с равным правом принять или отвергнуть. Неудовлетворительное объяснение прямолинейного распространения света Гюйгенс возместил блестящим объяснением с помощью своего механизма частичного отражения, преломления и полного внутреннего отраже- * Там же, р. 643. ** Там же, р, 477 151
ния — явлений, интерпретация которых вынудила Ньютона осложнять свою теорию, нагромождая одну гипотезу на другую. По существу эти объяснения Гюйгенса и сейчас приводятся во всех учебниках. Новая теория обладала также тем преимуществом, что для объяснения преломления она в соответствии со здравым смыслом требовала меньшей скорости в более плотной среде. Показав, что предложенный им колебательный механизм приводит к принципу Ферма (причем даваемое им доказательство значительно проще, чем у Ферма), и рассмотрев в четвертой главе атмосферную рефракцию, Гюйгенс переходит к пятой главе, которую все, начиная с Лейбница, всегда считали самой изумительной частью его трактата. Здесь Гюйгенс рассматривает явление двойного лучепреломления (см. гл. 5, § 20), которое он обнаружил также и в кварце. Он измерил с очень большой точностью геометрические характеристики исландского шпата, определил по ним главное сечение и ось кристалла (эти термины, введенные им, остались до сих пор в науке) и нашел, что показатель преломления необыкновенного луча меняется в зависимости от положения плоскости и от значения угла падения. В шпате или в кварце имеются две преломленные волны. Отсюда Гюйгенс заключает, что им соответствуют две различные скорости распространения. Та, что соответствует обыкновенной волне, одинакова по всем направлениям в кристалле и приводит поэтому к сферической форме огибающих волн. Скорость необыкновенной волны зависит от направления, так что эта волна не является сферической. Гюйгенс считает ее эллипсоидальной и вычисляет в этом предположении поведение необыкновенного луча при различных условиях падения, получив при этом результаты, удивительно согласующиеся с опытом. Это согласие представлялось ему триумфом его теории. Однако Гюйгенс здесь несколько поспешил. Увлеченный, по-видимому, аналогией между звуком и светом, из которой он исходил, Гюйгенс считал колебания эфира продольными, хотя Гримальди и Гук уже выдвигали предположения о поперечности этих колебаний. Если принять предположение о продольности колебаний, то некоторые особенности этого явления не поддаются волновому объяснению, в частности поведение лучей света при прохождении двух кристаллов с параллельными главными сечениями. Гюйгенс, чувствуя этот недостаток своей теории, признает, что не знает, как его восполнить удовлетворительным образом, и полагается на будущее: «...Скажу еще об одном удивительном явлении, которое обнаружили после того, как было написано все предыдущее. Хотя я еще до сих пор не нашел его причины, все же я хочу указать на него, чтобы предоставить возможность другим отыскать эту причину. По-видимому, нужно принять еще другие предположения сверх сделанных мною, хотя последние и сохраняют все свое правдоподобие, будучи подтвержденными столькими доказательствами»*. * Там же, р. 517.
ГЛАВА 7 • ВОСЕМНАДЦАТЫЙ ВЕК МЕХАНИКА 1. ПОПЫТКА СИНТЕЗА. Грандиозная попытка физического синтеза была предпринята Рожером Босковнчем (1711—1787), одним из крупнейших ученых XVIII века. Изложение его взглядов имеется в нескольких работах, но наиболее полное представление дает его «Philosophiae naturalis theoria redacta ad unicam legem virium in natura existentium» («Теория натуральной философии, сведенная к единственному закону сил, существующих в природе»), опубликованная в 1759 г. и многократно переиздававшаяся. Эта работа состоит из трех частей. В первой части излагается динамическая интерпретация материи. Согласно Босковичу, материя состоит из малых физических материальных точек, подчиняющихся трем законам ньютоновской динамики. Между каждыми двумя материальными точками существует сила притяжения или отталкивания, зависимость величины которой от расстояния носит колебательный характер. Точнее говоря, на значительных расстояниях две точки притягиваются, причем это притяжение по мере сближения частиц возрастает, пока не достигнет максимума, после чего начинает ослабляться до нуля и переходит затем в отталкивание, изменяющееся таким же образом при дальнейшем уменьшении расстояния; и такие изменения направления силы происходят несколько раз. Для самых малых расстояний всегда имеет место отталкивание, быстро возрастающее с уменьшением расстояния, что делает невозможным соприкосновение двух .материальных точек при сколь угодно большой внешней силе. Во второй и третьей частях своей работы Боскович показывает, как с помощью этой теории можно объяснить «все» механические и физические явления: непроницаемость, протяженность, соударения, тяжесть, сцепление, твердость, плотность, капиллярность, оптические явления, химические действия и что угодно еще. В XVIII веке работа Босковича хотя и вызывала восхищение, но все же последователей не имела. А в XIX веке она оказала большое влияние на физиков и рассматривается как предшественница взглядов современной атомистики. Главное направление исследований XVIII века было совсем иным — скорее аналитическим, нежели синтетическим. Этот век характерен главным образом накоплением, систематизацией и критикой. Организовывались физические лаборатории, улучшалась конструкция приборов, подвергались проверке ранее полученные экспериментальные результаты, распространялись теории, выдвинутые в предшествующие столетия. По сравнению с предыдущим столетием это был значительно менее яркий период; он не дал ни одной великой новой идеи и не выдвинул ни одного ученого такого масштаба, как Галилей, Гюйгенс или Ньютон. Однако результаты предвидения этих великих ученых XVII века высились подобно отдельным изолированным вершинам. Задачей XVIII века было связать эти отдельные научные достижения в одну связную ц упорядоченную картину с помощью систематического применения методов математического анализа к исследованию физических явлений. В этом — главный вклад этого века в дальнейшее развитие науки. Если пытаться коротко сформулировать успехи физики XVIII века, то следует сказать: механика превратилась в этом столетии из геометрической в аналитическую; рядом с небесной механикой и в известном смысле как ее следствие возникла математическая физика; была усовершенствована термометрия и возникла калориметрия; утвердилась оптика Ньютона без. 153
заметного прогресса в этой области; во второй половине столетия возникла новая наука — паука об электричестве. 2. ПРИНЦИП ДАЛАМБЕРА. Как мы уже говорили, механика Ньютона была изложена на геометрическом языке. Долгими и кропотливыми усилиями ученых XVIII века изложение постепенно было превращено из геометрического в аналитическое. Хотя принципов Ньютона достаточно для решения любой задачи, в процессе развития механики оказалось удобным ввести частные законы (сохранения движения центра тяжести, количества движения, момента количества движения, живой силы и т. д.) для более удобного рассмотрения некоторых классов задач. Из этих законов нам представляются заслуживающими специального рассмотрения принцип Даламбера и принцип наименьшего действия, которые мы и обсудим вкратце в этом и следующем параграфах. Жан Батист Даламбер (1717—1783), пожалуй, более широко известен не как ученый, а как соратник Дени Дидро (1713—1784) по «Энциклопедии». И все же наибольшей его заслугой является вклад в динамику, а также ставший уже классическим «Traite de dynamique» («Трактат по динамике») *, появившийся в 1743 г. и вновь изданный самим автором в 1758 г. в расширенном и исправленном виде. В «Предварительных замечаниях», предпосланных трактату, Даламбер излагает свою философию механики. Согласно Даламберу, механика относится к чисто рациональным наукам, т. е. к наукам, основанным на безусловно истинных принципах, а не на физических принципах или гипотезах. Как чисто рациональная наука, механика должна быть очищена от принципов, имеющих экспериментальное содержание. Она должна быть полностью основана на небольшом числе необходимых наиболее общих принципов. Уменьшить число принципов, расширить область их применения — такова программа механики Даламбера. Принимая ньютоновские понятия пространства и времени, Даламбер критиковал закон пропорциональности силы ускорению, поскольку этот закон основан на туманной аксиоме, что причина пропорциональна следствию. С другой стороны, этот закон независимо от того, верен он или неверен, является излишним, потому что может быть заменен другим законом, доложенным уже автором Парижской Академии наук в 1742 г. Даламбер рассмотрел общий случай механической системы со связями и показал, что должна существовать эквивалентность между реальными силами, приложенными к системе, и силами, которые были бы необходимы, если бы связей не было, чтобы система совершала то же самое движение. Если написать соответствующее условие равновесия — в этом и состоит «принцип Даламбера»,— то силы действия связей, вообще говоря неизвестные, оказываются исключенными. Отсюда следует, что каждая задача динамики может быть сведена в некотором смысле к задаче равновесия, т. е. к статике. В действительности этот принцип был применен еще в 1703 г. Якобом Бернулли (1G54—1705) при рассмотрении физического маятника и выводится из ньютоновской механики. Заслуга Даламбера состоит в том, что он увидел необычайную плодотворность этого принципа и поэтому основал свою динамику на этом принципе, принципе инерции и принципе параллелограмма сил. Из .множества задач, решенных Даламбером таким способом, упомянем задачу о столкновении, решенную им без применения теоремы о живой силе, и ставшие знаменитыми расчеты (1749 г.) предварения равноденствий и нутации земной оси, хотя оба эти расчета и были выполнены ранее (1745 г.) Эйлером без применения принципа Даламбера. * Есть русский перевод: Ж. Даламбер, Динамика, М.—Л., 1950. 154
3. ПРИНЦИП НАИМЕНЬШЕГО ДЕЙСТВИЯ. Принятие ньютоновской теории света, требовавшей большей скорости распространения в более плотной среде, неизбежно должно было привести к возобновлению критики принципа Ферма, который, наоборот, предполагал меньшую скорость распространения в более плотной среде. После первых критиков, о которых мы упоминали в гл. 5, § 18, и Лейбница (1682 г.), отвергавшего принцип Ферма на том основании, что, хотя природа и действует всегда наиболее легкими путями, они отнюдь не самые короткие и не самые быстрые, в XVIII веке в полемику включился Пьер Луи Моро де Мопертюи (1698—1759), бывший с 1745 по 1753 г. президентом Физического отделения Берлинской Академии наук. В своем докладе 1740 г. Парижской Академии наук и более полно в следующем докладе, зачитанном в 1744 г., под названием «Accord de differentes ioix de la Nature qui avoient jusqu'ici paru incompatibles» («Согласование различных законов природы, которые до сих пор казались несовместимыми»), Мопертюи, неточно воспроизводя мысль Ферма о распространении света, заявляет, что ньютоновская теория полностью разрушила все построения Ферма. В противовес Ферма он хочет найти в природе другой принцип экономии, совместимый с ньютоновским законом сохранения. И интересно, что это ему удалось, причем с помощью чисто метафизических рассуждений. Почему при преломлении света, раз уж он не идет по кратчайшей линии — по прямой, он должен идти по быстрейшему пути? Почему время должно иметь преимущество перед пространством? Нет, свет не идет ни по кратчайшему, ни по быстрейшему пути. «Он выбирает путь, дающий более реальную экономию: путь, по которому он следует,— это путь, на котором величина действия минимальна» *. А под количеством действия Мопертюи понимал произведение количества движения тела на пройденный им путь. Отсюда легко показать, что если свет распространяется из точки А одной среды в точку В другой так, что на его пути действие минимально, то преломление на границе раздела двух сред происходит по закону Декарта, причем большая скорость соответствует более преломляющей среде. Мопертюи показал также, что при прямолинейном распространении и при отражении свет тоже подчиняется принципу наименьшего действия. В одном из последующих докладов, опубликованных в 1747 г. Берлинской Академией наук, Мопертюи применяет принцип наименьшего действия также к случаю прямого соударения двух тел. Обобщение это совершенно тривиальное, тем не менее его успех натолкнул Мопертюи на провозглашение общего принципа: когда в природе происходит какое-нибудь изменение, необходимое для этого изменения количество действия всегда имеет возможно меньшую величину. За провозглашением этого принципа последовала полемика, в которой поднимались не столько физические, сколько метафизические вопросы (конечная причина, существование бога). Начата она была Самуэлем Кёни- гом (1712 —1757), в ней принимали участие (как противники Мопертюи) Вольтер, Мальбранш, Вольф и другие. Между прочим, оспаривался приоритет Мопертюи, автором принципа наименьшего действия считали Эйлера. Но сам Эйлер отрицал это, хотя именно благодаря ему принцип наименьшего действия, очищенный от метафизики, стал применяться на практике. Именно Эйлер показал универсальную приложимость принципа, начав с 1744 г. применять его для решения различных задач механики (движение снарядов, центральное движение и т. д.). В действительности название принципа «наименьшего» действия неправильное, как и название принципа * Memoires de l'Academie Royale des Sciences, 1744, p. 423. 155
«наименьшего» времени Ферма. В некоторых случаях к серьезному ущербу для мудрости Творца, призванной оправдать этот принцип, действие (и соответственно время) не минимально, а максимально. По, несмотря на возражения Лагранжа, а позднее Гамильтона, термин «наименьший» или «минимальный» остались в учебниках физики до наших дней. 4. АНАЛИТИЧЕСКАЯ МЕХАНИКА. В 1736 г. вышла работа «Mcchanica, sive motus scientia analytice exposita» («Механика, или наука о движении, аналитически представленная»), само название которой уже является программой. Автором ее был Леонард Эйлер (1707—1783) — одна из наиболее выдающихся фигур в науке XVIII века. Он поставил себе целью изложение механики как рациональной науки, основанной на небольшом числе определений и аксиом, чтобы законы механики были не только верны, но и «необходимо верны». Динамика Эйлера основана на первичном понятии силы и на сравнении сил по их статическому действию. Эйлер исходил из постулата (полагая, что доказал его), согласно которому эквивалентность сил или правило их сложения в статике остаются справедливыми и в динамике — традиционное представление, идущее еще от Галилея. В изложении особый упор делается прежде всего на импульс силы и проводится в основном аналитическое рассмотрение большого числа задач движения свободной и связанной точек,. находящихся на линии или на поверхности, в пустоте или в среде с сопротивлением. С этого трактата началось превращение механики из геометрической науки в аналитическую, превращение, которое, как мы видели, было продолжено в трактате Даламбера. За динамикой точки последовала в 1760 г. динамика твердого тела, изложенная в «Theoria motus corporum solidorum seu rigidorum» («Теория движения твердых или жестких тел»). В этом труде Эйлер развил теорию моментов инерции и исследовал движение свободного твердого тела. Он пошел дальше исследования центрального движения, принятого со времен Ньютона, и рассмотрел в общем виде произвольное вращательное движение и движение под действием произвольных сил, подготовив, таким образом, почву для современной кинематики и кинетики. В частности, вызывает восхищение в значительной части справедливое и сейчас аналитическое исследование движения волчка, в котором используются понятия момента и осей инерции. После динамики твердого тела аналитическое представление получила также гидродинамика в работах «Theorie de la figure de la Terre tiree des prin- cipes de Vhydrodynamique» («Теория фигур Земли, основанная на гидродинамических принципах» )Клеро (1743 г.); «Tlydrodynamica, sive de viribus et moti- bus fluidorum commentarii» («Гидродинамика, или комментарии о силах и движениях жидкостей») Даниила Бернулли (1738 г.); в работах Даламбера по гидродинамике: «Traite de Vequilibre et du mouvement des fluides» («Трактат о равновесии и движении жидкостей»), 1744 г., «Essai d'une nouvelle theorie de la resistance des fluides» («Опыт новой теории сопротивления жидкостей»), 1752 г.; в замечательных мемуарах Эйлера «Principes generaux du mouvement des fluides» («Общие принципы движения жидкостей»), представленных Берлинской Академии в 1755 г.; в вышедшем в 1766 г. «Memoire sur Г'ecoulement des fluides par les orifices des vases» («Мемуар об истечении жидкостей через отверстия в сосудах») француза Жана Шарля Борда (1733—1799) и, наконец, в двух важных трактатах по механике французского революционного генерала Лазара Карно (1753—1823): «L'Essai sur les machines en general» («О машинах вообще»), вышедшем в 1783 г., и «Principes generaux de I'equilibre et du mouvement» («Общие принципы равновесия и движения») издания 1803 г. Работы XVIII века, развивающие рациональную механику, подыто- 156
Титульный лист второго издания «Теории движения твердых тел» Эйлера (Грей- февальд, 1790). THEORIA MOTVS CORPORVM SOLinOR VM si'-v RIGIDORVM f X I'RiMlK МгПКЛГ. COGNITIONS PRINCITIU; SI А н I L. I T A FT Sl> "MN| s WO TVS, o\i IN mnsMoi» coim>R\ < Л14',кк 1'os.svni. Л < t к M M " f> A S 1 UsONlI. I О HP KULF.RO жены в «Mechanique ana- lytique» («Аналитическая механика») Лагранжа (1736—1813), опубликованной впервые в 1788 г. В этом трактате из единых принципов развиваются все разделы механики — статика и гидростатика, динамика и гидродинамика. Принимая понятия и постулаты Галилея, Гюйгенса, Ньютона, изучив труды своих современников, Лагранж ставит перед собой цель — слить воедино эти принципы и вывести из них общий аналитический метод решения механических задач. В «Предисловии» Лагранж так говорит о своих целях: «Мне предстоит свести теорию механики и искусство решения относящихся к ней задач к общим формулам, простая детализация которых дает все уравнения, необходимые для решения любой задачи... С другой стороны, этот труд будет полезен также тем, что он объединит и представит с единой точки зрения различные принципы, применяемые и сейчас для облегчения решения механических задач, покажет, их связь и взаимозависимость и упорядочит их так, чтобы можно было судить о степени их точности и общности)}*. Но главной заботой Лагранжа было исключение из рассмотрения всяких ссылок на геометрические представления: «5 этой работе вы не найдете рисунков. Излагаемые мною методы не нуждаются ил в построениях, ни в рассуждениях геометрического или механического характера, а лишь в алгебраических операциях, подчиняющихся строгим и однообразным правилам. Тот, кто любит математический анализ, с удовольствием увидит, что механика становится новым разделом анализа, и будет мне благодарен за такое расширение области его применения»**. Математический талант Лагранжа и ясность идей позволили ему достичь намеченных целей в почти совершенном труде по классической механике; рассмотрение основано на принципе Даламбера в сочетании с принципом * Mechanique analytique, в книге Oeuvres de Lagrange XI, Paris, 1! скин перевод: Ж. Лагранж, Аналитическая механика, т. I, II, М., 1950/ ** Там же, р. 11 — 12. р. И. (Есть рус- 157
виртуальных перемещений и приводит к известным динамическим уравнениям Лагранжа и к основным уравнениям динамики систем, лежащим в основе механики и современной классической физики. 5. АКУСТИКА. После экспериментальных исследований Савёра (см. гл. 6. § 8) к математическому рассмотрению задачи о колеблющейся струне в 1715 г. приступил английский математик Брук Тэйлор (1685—1731), положив этим начало математической физике в собственном смысле слова. Ему удалось рассчитать зависимость числа колебаний струны от ее длины, веса, натяжения и местного значения ускорения силы тяжести. Эта задача сразу же стала широко известна и привлекла внимание почти всех математиков XVIII века, вызвав долгую и плодотворную дискуссию. Ею занимались среди прочих Иоганн Бернулли и его сын Даниил Бернулли, Риккати (1709 —1790) и Далам- бер. Последний нашел уравнения в частных производных, определяющие малые колебания однородной струны, и проинтегрировал их методом, применяемым и поныне. Но наиболее существенный вклад внес Эйлер. Ему мы обязаны полной теорией колебаний струны, начало построению которой было положено еще в 1739 г. в его труде «Tentamen novae theoriae musicae» («Опыт новой теории музыки») и продолжалось в многочисленных последующих докладах. В частности, из теории Эйлера вытекало, что скорость распространения волны по струне не зависит от длины волны возбуждаемого звука. Эйлер производил также теоретические исследования колебаний стержней, колец, пластин, колоколов, но полученные результаты не совпали, с результатами экспериментальной проверки, предпринятой немецким физиком Эрнестом Хладни (1756—1827), которого считают отцом экспериментальной акустики. Хладни первым точно исследовал колебания камертона и установил (1796 г.) законы колебаний стержней. Фактическое объяснение эха, явления довольно капризного, также принадлежит Хладни, по крайней мере в существенных частях. Ему мы обязаны и новым экспериментальным определением верхней границы слышимости звука, соответствующей 22 000 колебаний в секунду. Эти измерения, многократно повторяемые физиками до сих пор, весьма субъективны и зависят от интенсивности и характера звука. Но особенно известны опыты Хладни (1787 г.) по исследованию колебаний пластин, при которых образуются красивые «акустические фигуры», носящие название фигур Хладни и получающиеся, если посыпать колеблющуюся пластину песком (Савар заменил песок порошком ликоподия). Эти экспериментальные исследования поставили новую задачу математической физики — задачу о колебаниях мембраны. Хладни начал исследования продольных волн в твердых телах и сопоставил продольные и поперечные колебания стержня при различных способах возбуждения (ударом, трением и др.). Исследования продольных волн были продолжены экспериментально Саваром (1791—1841), а теоретически — Лапласом и Пуассоном. В XVIII веке было исследовано много других акустических явлений (скорость распространения звука в твердых телах и газах, резонанс, комбинационные тона и др.). Все они объяснялись движением частей колеблющегося тела и частиц среды, в которой распространяется звук. Иными словами, все акустические явления объяснялись как механические процессы. ОПТИКА 6. АХРОМАТИЗМ ЛИНЗ. Триумф корпускулярной теории света в XVIII веке обычно приписывается авторитету Ньютона, и причиненный этим науке вред подчас сопоставляется с вредом двухтысячелетнего господства автори- 158
■ * , Ь,«- t. «* i . i. L / i X: v --тТ—р* • X A : < .xl % •5 r *—^j- ' X. ^ x r X_^ >4 * У ',15 / , r * 0 / ' * X X~' t ! « - / », X' ^»' / ш ~t \ * ^ 4 « <**♦ У *« r: ' - Щ • S'A • >' -*? »/ \ У - Г У ч * ^ •' Й - J» .'«- Piif i у *' . ■ * - _ * . * %". Ощ' . XX Хе' У Л X 1"' - ,' \.''-.- -~ Hi'/- ь yCX X Фигуры' Хладни для одной п той же колеблющейся квадратной пластины, полученные- экспериментально Саваром. (М. Pouillet, Elements de physique oxperimentale et de meteorologie, 1853.) На рисунках изображены линии узлог.
тета Аристотеля. Такое историческое толкование, пожалуй, чересчур упрощено. Конечно, авторитет Ньютона оказал определенное влияние, но сомнительно, чтобы он был определяющим в успехе корпускулярной теории. В XVIII веке не имелось решающих научных аргументов в пользу той или иной теории. Явление дифракции, которое теперь приводится как experimentum crucis (решающий эксперимент) в пользу волновой теории, оставалось таинственным даже для Гюйгенса. Обе^теории объясняли — плохо ли, хорошо ли — наиболее общеизвестные явления. Обе теории были достаточно сложными. И потом, после целого ряда усложнений стоило уж придерживаться корпускулярной теории, которая представлялась оптикой здравого смысла, поскольку она непосредственно объясняла простейшее оптическое явление — прямолинейное распространение света. Хотя большинство физиков XVIII века придерживалось корпускулярной теории, которая, будучи лишена всех волновых элементов, даже не была ньютоновской теорией света, все же традиции волновой теории тогда поддерживались рядом таких выдающихся физиков и математиков, как Лейбниц, Бенджамин Франклин, Иоганн Бернулли-сын (1710—1790) и Эйлер. Труды Эйлера заслуживают специального упоминания. В докладе, представленном в 1747 г., он дал применяемую и сейчас формулу для фокусного расстояния двояковыпуклой линзы, а в более позднем докладе (1766 г.) нашел метод расчета показателя преломления вещества по хорошо известной сейчас формуле, устанавливающей соотношение между показателем преломления, преломляющим углом призмы и отклонением светового луча при ее прохождении. Значительно важнее работа Эйлера «Nova theoria lucis et colorurm) («Новая теория света и цветов»), опубликованная в 1746 г. Здесь Эйлер придерживается волновой теории и считает различную длину волн физической причиной различия цветов. Это фундаментальное положение теории вместе с дополнительным утверждением того же Эйлера (1752 г.) о том, что максимальная длина волны соответствует красным лучам, а минимальная — фиолетовым, сохранилось в науке до наших дней. Из своей теории Эйлер вывел возможность исключения хроматической аберрации линз и предложил целый ряд приспособлений для достижения этой цели, однако ему не удалось осуществить ни одного. Труды Эйлера заставили профессора Уппсальского университета Самуэля Клингенстерна (1698 — 1765) повторить опыты Ньютона по дисперсии (см. гл. 6, § 11). Клингенстерн обнаружил неточность результатов Ньютона. Эти выводы были подтверждены английским оптиком Джоном Доллондом (1706—1761), которому после многолетнего упорного труда в 1758 г. удалось, соединив линзу из кронгласа с линзой из флинтгласа, сконструировать ахроматическую линзу. Ахроматические линзы были немедленно применены в телескопах, а потом, после многократных неудач, и в микроскопах. Это значительно улучшило качество оптических инструментов, создав новые большие возможности для наблюдательных наук, в частности астрономии. Создание этих инструментов было первым веским опровержением положений ньютоновской оптики. Однако никакого пересмотра теории это, по-видимому, не вызвало, быть может потому, что рассматривалось как изолированный факт чисто технического характера. 7. ФОТОМЕТРИЯ. Понятие интенсивности света в XVIII веке приобрело ясность. Началось исследование приборов, которые могли бы помочь глазу сравнивать силу света. Уже в 1698 г. Гюйгенс пытался сравнивать силу света Солнца и Сириуса, а двумя годами позже Франческо Мариа пытался установить силу света, считая ее пропорциональной числу пластин стекла одинаковой толщины, необходимых для полного подавления света. Однако первое 160
Солнечный проекционный микроскоп, представленный Лондонскому Королевскому обществу в 1740 г. (S a v е г i e n, Dictionnaire universel de mathematique et de physique, 1753.) Зеркало G посылает пучок солнечных лучей на микроскоп М, помещенный внутри темной камеры. На противоположной стенке образуется изображение. систематическое наблюдение было проведено французом Пьером Бугером (1698—1758), который опубликовал в 1729 г. «Essai d'optique sur la gradation de la lumfere» *, посмертно включенные в его трактат «Traite d'Optique» («Трактат по оптике») издания 1760 г. Бугер исследовал уменьшение интенсивности света при отражении, замеченное ранее еще Герике, а затем Ньютоном. Он направлял под одинаковым углом свет от свечи на два зеркала и наблюдал одно изображение непосредственно, а другое после еще одного отражения от третьего зеркала. Свеча смещалась до тех пор, пока интенсивность обоих изображений не начинала казаться одинаковой. С помощью такого прибора и других, в которых использовался солнечный свет, Бугер изучил отражающую способность различных веществ и влияние на отражение угла падения лучей, определил потерю интенсивности при прохождении лучей через среду, заметил также избирательное поглощение различных цветов в воздухе. Это последнее исследование было повторено в том же веке ван Мушен- бреком, Кантоном и Пристли. Решающим шагом было появление в 1760 г. труда немецкого математика и физика Иоганна Ламберта (1728—1777) «Photometria, sive de mensura et gradibus luminis colorum et umbrae» («Фотометрия, или об измерениях и сравнениях света, цветов и тени»). Новый термин в заглавии, дошедший до нашего времени и давший много производных слов, вполне соответствует новизне понятий и методов, содержащихся в этой работе. Ламберт различает яркость (claritas visa)— величину, характеризующую источник, и освещенность (ilhiminatio) — величину, характеризующую освещенные тела. Он начинает теоретическое и экспериментальное исследования с освещенности, доказав четыре теоремы: освещенность пропорциональна поверхности освещающего тела, обратно пропорциональна квадрату расстояния от освещающего^ тела до освещенного, прямо пропорциональна синусу угла падения лучей на освещенную поверхность и прямо пропорциональна синусу угла, * Есть русский перевод: П. Б у г е р, Оптический трактат о градации света, М.— Л., 11 Марио Льоццн 161
образуемого падающими лучами с освещающей поверхностью. Если учесть, что теперь углами падения называют углы, образуемые лучами с нормалью к поверхности, то последние два закона, очевидно, сведутся к «законам косинуса», или, как мы их иначе называем, законам Ламберта. Затем Ламберт перешел к исследованию яркости, детально описывая поглощение в воздухе и вслед за Бугером формулируя логарифмический закон поглощения (интенсивность света убывает в геометрической прогрессии по мере увеличения толщины проходимого лучом слоя воздуха в арифметической прогрессии). Бугеру мы обязаны фотометром (1740 г.), который теперь в школьных учебниках приписывается Румфорду. Этот фотометр представляет собой экран, на который проецируются тени от двух металлических стержней, образуемые сравниваемыми источниками света. В 1795 г. Румфорд продолжил разработку этого прибора, сконструировал его с большой тщательностью и ввел некоторые усложнения. Он счел также необходимым применять «нормальный свет» для точного сравнения различных интенсивностей. Для этого он выбрал масляную лампу, сконструированную в 1783 г. швейцарцем Армандом Арганом (1755—1803), которая ничем, кроме применяемого горючего, не отличалась от дедовских керосиновых ламп с круглым фитилем и ламповым стеклом — эти два новшества, введенные Арганом, совершили переворот в технике освещения. В 1800 г. французский часовщик Гийом Карсель (1750—1812) добавил сюда часовой механизм для сохранения постоянства высоты фитиля. Такая лампа, носящая имя своего автора, и сейчас упоминается в учебниках по физике. С несколько усовершенствованной лампой Аргана и фотометром собственной конструкции Румфорд определил значения коэффициента поглощения для большого числа материалов, имея целью главным образом экономию освещения. ТЕПЛОТА 8. ТЕМПЕРАТУРА И ТЕРМОМЕТРЫ. В начале XVIII века количественных исследований тепловых явлений почти не производили. Лучшими инструментами по-прежнему оставались флорентийские термометры (см. гл. 5, § 15). В 1702 г. Гийом Амонтон (1663—1703) усовершенствовал воздушный термометр Галилея, сконструировав термометр, в основном совпадающий с современным газовым. Термометр Амонтона представлял собой U-образную стеклянную трубку, более короткое колено которой заканчивалось резервуаром, содержащим воздух; в длинное колено наливалась ртуть в количестве, необходимом для поддержания постоянства объема воздуха в резервуаре. По высоте столба ртути определялась температура. Интересно, что- с этим инструментом, встреченным весьма неодобрительно, Амонтон пришел к понятию абсолютного нуля, который по его данным соответствовал —239,5° С. Ламберт повторил опыты Амонтона с большей точностью и тоже пришел к понятию абсолютного нуля, которое он выражает так: «Степень тепла, равная нулю, может быть фактически названа абсолютным холодом. Значит, при абсолютном холоде объем воздуха равен или почти равен нулю. Можно сказать, что при абсолютном холоде воздух становится столь плотным, что его частицы абсолютно соприкасаются друг с другом, так что воздух становится непроницаемым» *. Решающее усовершенствование конструкции термометра произвел немец Габриэль Даниэль Фаренгейт (1686—1736), воспользовавшийся идеей Олафа * Johann Heinrich Lambert, Pyrometrie, Berlin, 1779, S. 29. 162
Table dc Comparaisort de tows les Theprrwmetres invented depim leur. • О rig we /шдиа VanmeiySb. Сравнительная таблица термометрических шкал по Жан-Жаку де Мерану. (J. J. De Mai- ran, Dissertation sur la glace. 1749.) 11*
Рёмера. Фаренгейт изготовлял ртутные и спиртовые термометры той формы, которая применяется и сейчас. Успех его термометров следует искать во введенном им новом методе очищения ртути; кроме того, перед запаиванием он кипятил жидкость в трубке. Его термометрическая шкала (во втором варианте, прхгаятом с 1714 г.) имела три фиксированные точки: 0° соответствовал температуре смеси воды, льда и нашатыря, 96° — температуре тела здорового человека (под мышкой или во рту). В качестве контрольной температуры для сверки различных термометров было принято значение 32° для точки таяния льда. Рене Антуан Фершо де Реомюр (1683 —1757) не одобрял применения ртути в термометрах вследствие малого коэффициента расширения ртути. В 1730 г. он предложил применять в термометрах спирт и ввел шкалу, построенную не произвольным образом, как шкала Фаренгейта, а в соответствии с тепловым расширением спирта. И поскольку Реомюр нашел, что применяемый им спирт, смешанный в пропорции 5:1с водой, расширяется в отношении 1000 : 1080 при изменении температуры от точки замерзания до точки кипения воды, то предложил шкалу от 0 до 80°. К этим двум шкалам добавилась шкала Цельсия — Штрёмера (см. гл. 5, § 15). К концу столетия число различных шкал быстро возросло. В «Пирометрии» Ламберта приводится 19 шкал. К счастью, сейчас применяются лишь три описанные выше шкалы, и этого тоже слишком много. История установления метрической системы служит наглядным примером того, как трудно остановиться на какой-либо системе мер, преодолев для этого силу традиций, различие интересов изготовителей и национальные чувства. В 1747 г. голландец Петер ван Мушенбрек (1692 —1761), первый автор систематического курса физики, использовал расширение железного бруска для измерения температуры плавления ряда металлов. Мушенбреку мы обязаны первыми опытными исследованиями теплового расширения твердых тел, которое он регистрировал с помощью механизма из зубчаток и рычагов, сходного с демонстрируемым сейчас в школе. 9. О ПОЯВЛЕНИИ ПАРОВОЙ МАШИНЫ. Хотя история техники находится вне рамок нашей книги, необходимо все же сказать несколько слов о появлении паровой машины, которая оказала прямое влияние на собственно физические исследования. Еще в XVI веке некоторые ученые, как, например, Кардан и Порта, рассматривали силу расширения водяного пара. Порта даже придумал приспособление для подъема водяного столба, где использовалось разряжение, образующееся при конденсации водяного пара. В 1629 г. Джованни Бранка (1571 —1640) задумал переделать эолипил Герона (см. гл. 1, § 7) в настоящую паровую турбину. Но проект так и не был осуществлен; в лучшем случае была создана лишь модель. Дени Папен (1647—1714), работавший в 1682 г. вместе с Гюйгенсом над созданием машины, в которой поршень внутри трубы подымался при помощи взрыва порохового заряда, помещаемого под цилиндром, в 1690 г. решил заменить пороховой заряд водой, выпариваемой с помощью нагрева. Не так важно, удалось ли ему достичь практических результатов с помощью этой или какой-либо иной тепловой машины, приписываемой ему. Известно, что в процессе этих исследований он обнаружил увеличение температуры кипения воды с ростом давления и применил это открытие для получения воды при температуре выше 100° С, нагревая ее в закрытом котле. Во избежание возможного взрыва котла из-за слишком большого давления он применил изобретенный им предохранительный клапан. Англичанин Эдуард Сомерсет (1601 —1667) изобрел тепловую машину для подъема воды; это изобретение повторил позднее, в 1698 г., Томас Сэвери 164
Джемс. Уатт. К. Ф. Бреда. Портрет работы (1650—1715). Рисунок этой машины в 1705 г. Лейбниц послал Папену. Но как раз в том году слесарь Томас Ньюкомен (1G70— 1730) получил патент на тепловую машину — первую машину, которая с успехом применялась для подъема воды. В машине Ньюкомена получаемый в котле пар поступал через клапан в цилиндр и поднимал в нем поршень. Затем клапан закрывался и пар конденсировался при охлаждении цилиндра водой. При этом поршень опускался вниз под действием атмосферного давления. Движение поршня через балансир передавалось насосу. Эта весьма несовершенная машина применялась десятилетиями, потребляя огромное количество тепла, главным образом из-за необходимости охлаждения цилиндра струями воды после каждого подъема поршня. Методическое экспериментальное изучение паровой машины предпринял Джемс Уатт (1736 —1819), изготовлявший математические и механические инструменты в университете в Глазго. Он намеревался прежде всего исключить потерю тепла за счет охлаждения цилиндра. В 1765 г. ему пришла идея выводить пар из цилиндра, соединив в надлежащий момент цилиндр с пустым резервуаром, куда пар сам бы устремился. Так был изобретен третий элемент тепловой машины — конденсатор. Воодушевленный первым успехом, Уатт продолжал вносить в машину дальнейшие важные усовершенствования: он переделал ее в машину двойного действия (т. е. пар поступал по обе стороны от поршня), ввел центробежный регулятор ввода пара, золотник, паровую рубашку вокруг цилиндра, индикатор давления. Все это — существенные элементы современного теплового двигателя, так что можно считать, что Уатт не усовершенствовал, а фактически изобрел паровую машину. 10. УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ. В гл. 5 мы уже упоминали, что члены Академии опытов первыми ввели понятие тепловой емкости тел. Но эта часть их трудов оставалась неизданной до 1841 г., так что в течение всего XVII века температура и теплота не различались. В трудах того времени часто встречались утверждения, что термометры измеряют «абсолютное» количество теплоты. Трудность, с какой начинающие изучать физику различают понятия температуры и теплоты, отражает этот исторический факт. Только в 1729 г. Клингенстерна в своей критике трактата по физике Мушенбрека утверждает, что температура и теплота — это не одно и то же. А в 1750 г. петербургский физик Георг Вильгельм Рихман (1711—1753) установил на опыте, что если смешать равные количества воды, имеющие 165
Паровая машина Уатта начала XIX века, соединенная с гидравлическим насосом (справа). различную температуру, то температура смеси будет равна среднему арифметическому температур обеих частей, тогда как при смешивании различных количеств воды это не имеет места. В этом случае конечная температура равна среднему взвешенному температур обеих частей. Еще больший отклик вызвали не менее важные опыты Джозефа Блэка (1728—1799) по плавлению и испарению, проведенные им в 1757 г. До пего считалось, что достаточно довести твердое тело до температуры плавления, чтобы исчезли силы сцепления между частицами и твердое тело превратилось в жидкость. Однако Блэк установил на опыте, что для того, чтобы растопить лед, недостаточно довести его до температуры 32° F (что соответствует 0° С); после достижения этой температуры нужно еще на каждую единицу веса льда добавить единицу веса воды при температуре 172° F' (~ 77,8° С). Следовательно, существует некий агент, который пс только действует на чувство осязания и ощущается как температура тела, но вызывает также изменение состоянии тела. Блэк показал, что этот агент, названный теплородом, к которому мы вернемся в следующем параграфе, необходим и при испарении тела: если поместить сосуд с водой при 100° С на горелку, то для того, чтобы выпарить эту воду, требуется продержать сосуд на огне столько времени, сколько требуется для нагрева на один градус в 445 раз большего количества воды. Итак, из опытов Рихмаиа и Блэка был сделан вывод, что термометр не измеряет количества «теплорода», и были произведены первые измерения теплоты плавления и теплоты парообразования. Опыты Рихмана были повторены в 1772 г. Иоганном Карлом Вильке (1732—1796), который проверил формулу для температуры смеси и ввел единицу измерения тепла — количество тепла, соответствующее уменьшению температуры единицы веса воды на один градус Цельсия. Это определение лежит в основе современного определения калории. 166
Г. В. Рихман. В еятие жения, то время появилось по- «теплоемкости» — выра- применявшегося тогда в двух совершенно различных значениях, что может дезориентировать современного читателя. Одни применяли его для обозначения полного количества тепла, «содержащегося» в теле, которое ни тогда, ни сейчас не поддается никаким способам измерения. Другие, и таких было большинство, применяли его в современном смысле для обозначения количества тепла, необходимого для нагрева или охлаждения тела на один градус (по выбранной шкале температур). От этого понятия легко перейти к понятию удельной теплоемкости, т. е. теплоемкости единицы массы тела. Ее исследование начал Вильке в своей работе 1781 г., в которой произвел первые измерения теперь хорошо известным «методом смешения». Вильке ввел также понятие «водяного эквивалента» и заметил, что удельную теплоемкость можно определить и по количеству льда, растопленного исследуемым горячим телом. Метод смешения применялся физиками в последующем столетии бесконечное число раз. К этому методу прибегли Дюлонг и Пти (1819 г.), чтобы определить удельные теплоемкости большого числа твердых тел, что привело их к знаменитому закону постоянства произведения удельной теплоемкости на атомный вес — закону, весьма ценному для химии и доставившему столько хлопот более чем через столетие теоретической физике (см. гл. 13, § 11). Другой метод измерения удельной теплоемкости, рекомендованный Вильке и основанный на растоплении льда, был применен в совместной работе двух титанов науки — Антуана Лавуазье (1743—1794) и Пьера Симона Лапласа (1749—1827). Сведения о ней приведены в исследовании, опубликованном в 1784 г. в «Мемуарах Парижской Академии наук» (датированных 1780 г.). Лавуазье и Лаплас сконструировали прибор, названный ими калориметром (это название до сих пор осталось в науке), который состоял из трех концентрических резервуаров. Во внутреннем, металлическом резервуаре помещалось нагретое тело, в промежуточном — лед, в наружном — вода или лед, служащие для обеспечения постоянной температуры 0° С в промежуточном резервуаре. По количеству растаявшего льда, учитывая водяной эквивалент внутреннего сосуда, Лавуазье и Лаплас определили удельные теплоемкости многих тел, твердых и жидких. Они открыли, что удельная теплоемкость тела не постоянна, а зависит от температуры, и даже утверждали, что она всегда растет с температурой, что, как известно, не всегда верно. 167
tosp щщмтчил irtiiwlininiliitiiii Калориметр (1852 г.) Пьера Фавра и Иоганна Зильберманна — предшественник калориметра Бунзена (М. Pouillet, Elements de physique experimentale et de meteorologie, 1853.) Сосуд а, наполненный 8—10 кг ртути, заканчивается длинной калиброванной трубкой df. По перемещению ртути в трубке судят о количестве тепла, отданном исследуемым телом, находящимся в металлической трубке Ь. Основной недостаток калориметра Лавуазье и Лапласа заключается в том, что часть воды прилипает ко льду и не может быть собрана. Было предпринято много попыток улучшить этот прибор, уменьшив потери воды. Однако устранен этот недостаток полностью был только в 1870 г., когда Бунзен предложил свой известный калориметр, в котором количество растаявшего льда определяется по уменьшению объема. 11. ПРИРОДА ТЕПЛОТЫ. Еще со времен античности существовали две теории природы теплоты. Согласно одной, теплота — это вещество; согласно второй — это состояние тела. Но представления о теплоте зачастую бывали весьма неясными. Так, у философов ионийской школы четвертым элементом был огонь. И тогда, и позже многие отождествляли огонь с теплотой, другие же считали огонь лишь источником тепла, а тепло считали неким состоянием тел. Роджер Бэкон, а затем Кеплер определили это состояние как состояние движения внутренних частей тел. Еще более явно Бойль рассматривал теплоту как состояние движения молекул. Именно это представление и было, пожалуй, господствующим в XVII веке. Оно было так распространено среди ученых первой половины XVIII века, что, когда Парижская Академия наук объявила конкурс на лучшую работу о природе тепла, Леонард Эйлер, принимавший участие в конкурсе и получивший премию, писал: «То, что теплота заключается в некотором движении малых частиц тела, теперь уже достаточно ясно» *. Но во второй половине XVIII века одержала верх субстанциальная, или, как еще часто говорят, материальная, теория теплоты, и прежде всего благодаря работам Блэка. Успеху этой теории способствовала также химическая теория «флогистона», яростно поддерживаемая Георгом Эрнестом Шталем (1670—1734), и тенденция натурфилософии того времени выдвигать модельные гипотезы картезианского типа. К тому же успехи экспериментов, полученные в соответствии с предсказаниями этой теории и описанные * Recueil des pieces qui ont remporte les prix de l'Academie Royale de Sciences, IV, 1752, p. 13. 168
в предыдущем параграфе, были бесспорны. Субстанциальная теория теплоты постулировала существование флюида специального рода, ответственного за тепловые явления, так называемого «теплорода», считавшегося невесомым, рассеянным по всей материи, способным проникать в тела, «сочетаться» с ними и превращать твердые тела в жидкие, а жидкие в газообразные. В то время писались равенства такого типа: лед + теплород = вода, вода + -f- теплород = водяной пар. Теплота, «сочетавшаяся» с телом, не обнаруживалась термометром, это «скрытая теплота», на термометр действует лишь «свободная теплота». В 1780 г. Марат, в будущем известный революционер, развил полную теорию теплорода. И все же механическая концепция теплоты полностью не исчезла даже во второй половине XVIII века. Достаточно привести следующий отрывок из уже цитированных выше мемуаров Лавуазье и Лапласа: чУ физиков нет согласия в отношении теплоты. Многие us них рассматривают ее как флюид, рассеянный по всей природе... Другие же считают ее лишь результатом невидимых движений молекул, их колебаний ев всех направлениях, возможных благодаря пустым промежуткам между молекулами. Это невидимое движение и есть теплота. На основе закона сохранения живой силы можно, следовательно, дать такое определение: теплота это есть живая сила, т. е. сумма произведений масс всех молекул на квадрат их скорости» *. Ученые-естествоиспытатели не вмешивались в спор сторонников этих двух представлений, ограничиваясь замечаниями типа «возможно, обе теории верны». То, что в этот период преимущество отдавалось флюидной теории, вероятно, объясняется тем, что для слабо развитой науки наглядная гипотеза, соответствующая непосредственной интуиции и допускающая простые аналогии, есть если не более мощное, то более удобное эвристическое средство, нежели более опосредствованное математическое представление. Следует также помнить, что субстанциальная теория, какой бы грубой она ни казалась, позволяла количественное измерение тепла, тогда как механическая теория была еще в начальной фазе, исключительно качественной. ЭЛЕКТРИЧЕСТВО 12. ЛЕЙДЕНСКАЯ БАНКА. Один эксперимент, электрическая природа которого была достоверно доказана лишь во второй половине XIX века, дал новый импульс исследованию электрических явлений. В 1676 г. астроном Жан Пикар, перенося ночью барометр, заметил, что время от времени пустая часть трубки со ртутью начинает светиться. Это явление, замеченное и другими, было описано в небольшой книжечке, попавшей в руки Иоганна Берыулли. Заинтригованный необычайностью явления, он предпринял тщательное исследование и в результате построил небольшой прибор, вскоре распространившийся по всей Европе и вызывавший восхищение и изумление всего ученого и неученого мира. Прибор этот состоял из стеклянной трубки, из которой удален воздух и которая частично наполнена ртутью. Если в темноте встряхнуть такую трубку, то она таинственным образом начинает светиться, как если бы была «полна огня». Это явление напоминало Бернулли свечение фосфора, поэтому свет этих трубок он назвал «фосфорическим светом», хотя фактически фосфор к этому не имеет никакого отношения и явление это электрического происхождения. * Histoire de l'Academie Royale des Sciences de Paris, Memoires, 1780, p. 357. 169'
Опыт Грея. Гравюра, 1754 г. Мужчина, стоящий справа, приближает наэлектризованную стеклянную трубку к руке дамы, сидящей на качелях, подвешенных на шелковых веревках, а мужчина слева прикасается к другой руке дамы и извлекает из нее искру. В 1705 г. за изучение фосфорического света взялся неутомимый английский экспериментатор Френсис Хоксби (? — 1713), который получал его, прикасаясь руками к вращающемуся стеклянному шару, из которого удален воздух. Хоксби не только получил фосфорическое свечение, но и убедился в том, что стеклянный шар сильно электризуется. Последовали многочисленные эксперименты с электричеством, основное значение которых состоит в том, что Хоксби ввел в употребление применяющуюся и поныне стеклянную палочку, электризуемую при натирании тканью. Тем самым опыты с электричеством стали общедоступными, дешевыми и весьма развлекательными. Этим воспользовался в 1729 г. другой англичанин, Стивен Грей (1670— 1735), проводивший эксперименты, вероятно, для заполнения своего досуга в те последние годы, когда он уже отошел от дел. Он показал, что электричество может распространяться по некоторым телам, и ввел, таким образом, в науку понятие проводника и изолятора, если воспользоваться терминами, введенными несколькими годами позже (в 1739 г.) Жаном Теофи- лем Дезагюлье (1683—1744). Грей открыл также явление электростатической индукции и подтвердил его многочисленными опытами, из которых наибольшее восхищение вызвал опыт с ребенком, которого подвешивали горизонтально на веревках и наэлектризовывали приближением заряженной стеклянной палочки к его ногам. Опыты Грея возбудили любопытство одного французского ученого с энциклопедически широким диапазоном интересов — Шарля Франсуа де Систерне Дюфэ (1698—1739). После бесчисленных опытов, проведенных с искусством, достойным восхищения, Дюфэ пришел в 1733 г. к фундаментальному открытию существования двух видов электричества, которые он назвал «стеклянным» и «смоляным» просто в память о том, что стекло и копал позволили ему открыть это явление. Не только те немногие вещества, которые были указаны Гильбертом и его последователями, но и все тела, за исключением металлов и влажных тел (это ограничение было впоследствии снято Ингенгоузом в 1778 г.), электризуются при трении. Это убедительно показали опыты Дюфэ с версором, который он сделал значительно более 170
Опыты по электричеству. XVIII иск1.
Электрическая машина, применявшаяся еще в 1750 г. Вращающийся стеклянный шар G электризуется от прикосновения рук. Человек, стоящий на изолирующей скамеечке, дотрагивается до железного стержня JVX, держа в руке ыиску с подогретым винным спиртом, который вспыхивает от искры, исходящей из руки дамы. чувствительным, закруглив его острие и установив на подставку из сухого- стекла. Каждое натертое тело приобретает один из видов электричества. Для определения вида электричества, приобретенного телом, Дюфэ предложил те же методы, которые применяются и сейчас. Вращающийся шар Хоксби вскоре был усовершенствован, особенно Иоганном Винклером (1703—1770), профессором латинской литературы Лейпцигского университета. Винклер заменил шар стеклянной трубкой, вращавшейся с помощью педального механизма и натиравшейся уже не руками, а кожаными подушечками, отделанными конским волосом. Подушечки были соединены с землей с помощью проводящих столбиков. Эта машина давала столь сильные искры, что они были способны воспламенять эфир. Уже значительно позже, между 1755 и 1766 гг., цилиндр был заменен более удобным стеклянным диском. Приоритет этого изобретения оспаривают Мартин Планта (1727—1802), Джон Ингенгоуз (1730—1799) и Джессе Рамсден (1735—1800). Сейчас эта машина известна как машина Рамсдена, который построил ее и распространил. Но еще до того, как появилась дисковая машина, интерес к новым явлениям, который до 1740 г. был ограничен лишь научными кругами, распространился среди широкой публики. Сеансы демонстрации электрических явлений проводились почти повсюду — на площадях и при королевских дворах, учеными и фокусниками, нашедшими в них еще один способ заработка. Интерес публики привлек к исследованию этих новых явлений большое число ученых, несмотря на насмешки многих скептиков, которые, осуждая, вновь и вновь ставили обычный вопрос: зачем это нужно? К новым исследованиям обратились не только физики, но и медики. В Венеции, в Турине, в Болонье были предприняты первые попытки применения электричества в медицине. Несколькими годами позже появляются первые публикации — небольшая книжечка анонимного автора Well'elettricismo» («Об электричестве»), вышедшая в Венеции в 1746 г., и письмо Франческо Пивати 172
Машина Рамсдена конца XVIII века (М. G u у о t, Nouvelles recreations physiques et mathematiques, 1800.) (1689 —1764) «DelVelettricita medicaft («О медицинском электричестве»), опубликованное в 1747 г. Результатом такой популяризации электрических опытов было открытие явления, реализуемого в «лейденской банке», как ее назвал французский физик Жан Нолле (1700—1770). В 1745 г. немецкий каноник Эвальд Юрген фон Клейст, пытаясь, по- видимому, изготовить себе электризованную воду, которая считалась полезной для здоровья, и независимо от него лейденский физик Мушенбрек, продев в горлышко банки с водой гвоздь, дотронулись им до проводника действующей электрической машины; затем, прервав контакт, они притронулись другой рукой к гвоздю и испытали очень сильный удар, вызвавший онемение руки и плеча, а у Мушенбрека даже «все тело содрогнулось, как от молнии». Весть об этом опыте быстро распространилась. Его стали повторять во многих местах. Серия опытов Нолле началась с опыта по «содроганию» целой цепи державшихся за руки монахов в картезианском монастыре в Париже. Затем он начал опыты на птицах, пользуясь простым, но полезным приспособлением — разрядником, применяющимся вплоть до наших дней. Нолле, который всегда следил за модой и стремился к театральным эффектам (его публичные опыты были настоящими представлениями для парижского света), убил с полющыо разряда несколько птичек, после чего призывал обращаться с осторожностью с этой новой вещью, которая «может оживать и раздражаться». Уже в следующем году бутылка с водой была заменена банкой с обкладками из металлической фольги с обеих сторон — внутри и снаружи. Был создан плоский конденсатор, а для увеличения эффекта Винклер в Германии, а Франклин в Америке соединили банки в параллель, получив мощные «батареи», как их назвал Франклин. 173
Бенджамин Франклин. Гравюра ра~ боты М. Чемберлина и Э. Фишера. 13. БЕНДЖАМИН ФРАНКЛИН. Бенджамин Франклин (1706—1790) занялся исследованиями электрических явлений почти случайно. Когда он приступил к этим опытам, ему был» 40 лет, и менее чем в три года он достиг изумительных успехов. Одним из первых поразивших его фактов было, выражаясь его словами, «...удивительное свойство остроконечных тел как притягивать, так и отталкивать электрический огоны *. Это наблюдение, как мы знаем, не было новым (см. гл. 5, § 22), но новой была систематичность экспериментов, с помощью которых ему удалось установить, как говорят сейчас, «свойство острия» — способность, как думал Франклин, острия притягивать и отталкивать электрический флюид. Но как же разумно объяснить этот факт? Франклин попытался это сделать, но сам почувствовал недостаточность своего объяснения. Ну и что? Разве обязательно физику знать внутреннюю сущность явлений? И американский ученый с откровенно прагматистской ориентацией, которая всегда, определяла его научные исследования, отвечает: «Для нас наиболее важным является не знание способа, которым природа осуществляет свои законы; достаточно знать сами эти законы. Реальную пользу представляет знание того, что если отпустить в воздухе ничем не поддерживаемое фарфоровое изделие, то оно упадет и неминуемо разобьется. Знать же, как оно упадет и почему разобьется,— это уже чисто умозрительный вопрос. Приятно, конечно, знать истину, однако обеспечить целость- фарфорового изделия мы можем и без этого»**. Качественное сходство между электрической искрой и молнией было замечено сразу уже при первых экспериментах. Но применение лейденских банок позволило установить дополнительные сходные стороны: искра убивает животных, плавит металлы, вызывает запах фосфора. Франклин отмечает это сходство, но замечает также, что есть по крайней мере один факт, не- позволяющий пока утверждать, что искра и молния — это одно и то же: электрический флюид притягивается острием, тогда как для молнии это не установлено. «Надо бы поставить опыт», записывает Франклин в своей * Oeuvres de M. Franklin, Traduites de l'Anglois sur la quatrieme edition par M. Barbeu,. Dubourg, Paris, 1773, I, p. 3. (На русском языке работы Фрапклниа по электричеству опубликованы в книге: В. Франклин, Опыты и наблюдения над электричеством,, М., 1956.—Прим. перев.) ** Там же, р. 59. 174
«Электрические развлечения» второй ■ половины XVIII века. (М. G u у о t, Nouvelles recreations physiques et ; mathemaliques, 1800.) j Ha рис. 1 изображено «электрическое ко- \ лесо» Франклина. : | I записной книжке. 29 июля 1750 г. . в письме к своему другу Питеру Коллинсону (1694—1768)— ! письма были одной из форм рас- ; пространения научных трудов ! в то время — Франклин сообщает об опыте, который он намерен поставить: установить на высокой башне или на коло- ' кольне в Филадельфии длинный железный шест с острием и наблюдать, не удастся ли из него извлечь искры при прохождении над острием грозовых облаков. Коллинсон был членом Королевского общества и пытался опубликовать работы Франклина в «Philosophical transactions» («Философских трудах»), но эти работы были отвергнуты как недостойные публикации, а проект извлечения искр из облаков ju--—~——~—-~™-. - был признан фантастическим. Некоторые историки видят в этом отказе отражение политических взаимоотношений между Англией и ее непокорной колонией, стремившейся получить свободу. Может быть, и так, но, пожалуй, большую роль сыграл консервативный дух, который на всех этапах развития науки сдерживал и тормозил авантюристические устремления, которые могут сбить с пути, а порой и сбивают с пути научные исследования, но без которых научный прогресс представляется почти невозможным. Получив отказ от Королевского общества, Коллинсон опубликовал письма Франклина за свой счет. Их успех был огромен, они почти сразу же были переведены на французский язык и вызвали во Франции восхищение ученого мира и одобрение двора. Поощряемые королем, Бюффон, Далибар и Делор поставили опыт, предложенный Франклином. В одном из садов в Марли, в шести лье от Парижа, 10 мая 1752 г. из шеста, воздвигнутого вертикально, приставленный к его охране солдат извлек искру во время прохождения грозовых облаков. Весть об опыте в Марли быстро распространилась по Европе и сделала знаменитым имя Франклина, который до того не был известен по эту сторону океана. Опыт почти сразу же и с тем же результатом повторили Джузеппе Вератти и Томмазо Марино в Болонье. Обрадованный полученными из Европы известиями, Франклин повторил опыт, запустив змей с железным острием, связанный с землей бечевкой. Позже он повторил эти опыты в более удобной форме, установив над своим домом высокий шест. В результате 175
многочисленных наблюдений Франклин пришел к выводу, что грозовые облака заряжены большей частью отрицательно, хотя несколько раз они оказывались и положительно заряженными. Во Франции Луи Гийом Лемонье в том же 1752 г. открыл новое явление — наэлектризованность атмосферы даже при ясной погоде. А в Петербурге Георг Вильгельм Рихман, который, как мы рассказывали ранее, произвел ценные калориметрические измерения, экспериментируя с молнией, нашел свою «завидную смерть», по выражению Пристли. Как мы увидим позднее, в Италии эти исследования послужили причиной нового подъема в науке. Экспериментальное подтверждение наличия атмосферного электричества способствовало франклиновскому проекту громоотвода. Несмотря на возражения ряда физиков и некоторых местных властей, уже в 1753 г. громоотвод был сооружен Винклером. В 1769 г. великий герцог Тосканский приказал оборудовать громоотводами все склады пороха в герцогстве. В 1770 г. Джироламо Мариа Фонда предложил конструкцию громоотвода со щеточкой, справедливо полагая, что предохраняющее действие острия будет сильнее при большом числе острий. 14. ТЕОРИИ ЭЛЕКТРИЧЕСТВА. В годы с 1745 по 1750 был предложен ряд теорий электричества, объединяемых одной общей чертой, унаследованной от картезианской философии: наличием некоторого характерного флюида, которому ученые в полете фантазии приписывали самые необыкновенные свойства и качества, стараясь объяснить электрические явления механическими процессами. Довольно известны были теории Нолле и Уильяма Уотсона (1707 — 1787), вскоре уступившие место теории Франклина, сформулированной им в 1747 г. Эта теория сразу покорила ученых. Исходит она из следующего явления: если человек стоит на изолирующей скамеечке и натирает голой сухой рукой стеклянную трубку, то другой человек, стоящий на полу, может извлечь искру, приблизив свой палец либо к стеклянной трубке, либо к человеку, натиравшему трубку. Это явление можно варьировать, и оно прекрасно объясняется, если, согласно Франклину, принять, что существует лишь один-единственный электрический флюид, содержащийся во всех телах. Каждый процесс электризации состоит в извлечении из одного тела части находящегося в нем флюида и его переходе в другое тело. Получающийся при этом недостаток или избыток электрического флюида в теле проявляется в характерных электрических явлениях. Таким образом, тело наэлектризовано либо потому, что у него имеется избыток электрического флюида по сравнению с нормальным состоянием, либо потому, что у него оказывается меньше электрического флюида, нежели в нормальном состоянии. В первом случае Франклин называет тело положительно (плюс), во втором — отрицательно (минус) электризованным. Эта терминология сохранилась до наших дней. Для объяснения электрических явлений Франклин приписывает электрическому флюиду три основных свойства: чрезвычайную тонкость, взаимное отталкивание его частей, сильное притяжение электрической материи к обычной материи. Если тело заряжено положительно, то избыток электрического флюида размещается на его поверхности и образует «электрическую атмосферу». Это выражение применялось почти до середины XIX века, причем не всегда в переносном смысле, как более или менее образное выражение, а подчас в строго физическом смысле. Часто говорили о «толщине» электрической атмосферы в геометрическом смысле. Через такое словоупотребление уже в XVIII веке пробило себе дорогу понятие плотности электрического флюида, которое справедливо использовалось для объяснения «свойства острия». 176
Джамбаттиста Беккариа. Портрет из его книги (G. В е с с а г i a, Dell'- elettricisme, Macerata, 1793). Но как же, принимая существование электрической атмосферы, объяснить понде- ромоторное взаимодействие тел, электризованных отрицательно и, следовательно, лишенных электрической атмосферы? И далее, идет ли речь о действии на расстоянии или об опосредствованном действии? Франклин благоразумно хранит молчание по этим вопросам. Впрочем, построенной им теоретической модели оказалось достаточно, чтобы привести Франклина к созданию плоского конденсатора, названного в его честь, и к выяснению того факта, что сила удара лейденской банки заключена в стекле банки, а не в ее двух проводящих обкладках.* Неспособность теории Франклина объяснить пондеромоторные действия привела к появлению дуалистической теории, постоянно противостоявшей теории Франклина с переменным успехом. Поводом к возникновению этой теории были некоторые странные явления, привлекшие в 1759 г. внимание англичанина Роберта Симмера (? — 1763), а еще шестью годами раньше вызвавшие интерес Джамбаттисты Беккариа. Симмер замечал характерное потрескивание и проскакивание маленьких искр каждый раз, когда он снимал первую из двух пар шелковых чулок, которые одновременно носил. Чем обусловлена противоположная электризация чулок? Занявшись исследованием этого вопроса, Симмер пришел к выводу, что электрические явления обусловлены двумя различными электрическими субстанциями, которые, будучи обе активными и положительными, действуют, так сказать, противоположно. В каждом теле имеются оба эти флюида, но в нейтральном, т. е. неэлектризованном, состоянии оба флюида присутствуют в равном количестве, так что внешний эффект отсутствует. Тело кажется наэлектризованным положительно или отрицательно в зависимости от того, какого флюида в нем больше. По правде говоря, экспериментальные факты, приведшие Симмера к выдвижению своей теории, весьма скудны и не очень убедительны. Самым веским фактом была, несомненно, форма отверстий в бумаге, образующихся при электрическом разряде: выгиб краев отверстия наружу по обе стороны от поверхности бумаги, согласно Симмеру, наглядно свидетельствует о том, что два различных флюида пересекают бумагу в противоположных направлениях. 15. ДЖАМБАТТИСТА БЕККАРИА. Значение, приписывавшееся в то время лейденской банке, которая рассматривалась как великая победа науки, было, Марио Льоцци 177
конечно, сильно преувеличено. Однако это преувеличение оказалось благотворным, так как именно оно способствовало образованию целой армии физиков, убежденных в том, что исследование электрических явлений — достойное занятие для ученого. Еще больший психологический эффект оказало- доказательство Франклином электрической природы молнии: электрические явления перестали быть лишь развлечениями и превратились в мощное средство проникновения в тайны природы. Энтузиазму, охватившему физиков, способствовали опубликованные Коллинсоном письма Франклина. Через 18 лет после их появления Джозеф Пристли (1733—1804), более известный своими работами по химии, писал: «Нет ничего написанного об электричестве, что читали и чем восхищались бы во всей Европе больше, чем этими письмами. Почти не было такого европейского языка, на который бы их не перевели; и как будто этого было недостаточно, они были в конце концов переведены и на латинский язык» *. Этот научный энтузиазм распространялся понемногу все шире и шире, охватив и Королевское общество, которое через три года после того, как сочло письма Франклина недостойными публикации, присудило ему Коп- леевскую медаль, а в 1756 г. избрало его членом общества. Не имея возможности «воздать всем сполна», мы остановимся здесь- лишь вкратце на вышедшей в 1753 г. в Турине, безусловно, наиболее цельной и полной в то время работе по электричеству. Называлась она «DelVelettrl- cismo artificiale e naturale libri due» («Об электричестве искусственном и природном»), а автором ее был Джамбаттиста Беккариа (1716—1781), который, после того как посвятил себя математическим и геодезическим исследованиям, был назначен в 1748 г. профессором Туринского университета. Первая книга касалась «электричества искусственного», т. е., по нашей современной терминологии,— электростатики, вторая — «электричества природного», или, иначе, атмосферного электричества. Метод изложения напоминает книги по геометрии. Здесь мы ограничимся упоминанием лишь нескольких наиболее важных открытий, содержащихся в работе. Впервые дано описание прибора, который иногда упоминается и сейчас как «термометр Киннерсли». Прибор представляет собой две сообщающиеся трубки, содержащие вино. В одной из них, верхний конец которой запаян, с помощью двух железных проволочек выше уровня вина вызывается искра; одновременно наблюдается повышение уровня жидкости в другой трубке. К сожалению, Беккариа не смог правильно интерпретировать это явление- и приписал образование разности уровней механическому влиянию вторжения «электрического пара» в момент разряда. Друг Франклина Эбенезер Киннерсли (1712—?), тоже увлекавшийся исследованием электричества, вновь вернулся к рассмотрению этого' явления в 1761 г. и объяснил его нагреванием воздуха, вызванным искрой. В подтверждение этого объяснения он показал, что проводники, через которые происходит разряд, нагреваются до красного каления. Узнав об открытии своего друга, Франклин внимательно исследовал влияние молнии, ударившей в дом, и обнаружил обгоревший пол. Тем самым он окончательно развенчал легенду, в которую ранее и сам верил и которая в течение многих веков повторялась в философских трудах, о том, будто молния плавит металлы, не нагревая их: «холодное плавление»— так тогда это называли. До Беккариа физики различали два класса тел: проводники, все в равной степени проводящие, и изоляторы, все в равной степени изолирующие. * J.Priestley, The history and present state of electricity, with original experiments, London, 1767, p. 154. 178
Большой заслугой Беккариа было доказательство того, что столь четкого разграничения в действительности нет. Тем самым он ввел в физику понятие «электрического сопротивления» и положил начало его исследованию, показав, что вода менее проводящая, нежели твердые металлы и ртуть. Кроме того, Беккариа в 1772 г. установил следующий существенный факт: «.Металлы, хотя они много более податливы (т. е. проводящи), чем все другие тела, все же оказывают некоторое сопротивление, пропорциональное длине пути, который пробегает в них искра» *. Опыты Беккариа были повторены в том же году английским физиком Джоном Кантоном (1718—1772), который подтвердил различие в сопротивлении разных тел. Генри Кавендиш произвел первые измерения электрического сопротивления, описанные в его докладе 1776 г. и еще лучше в других, не изданных работах. Во второй части своего труда Беккариа приводит весьма искусные опыты с атмосферным электричеством и приходит к выводу, что электризация облаков может быть как положительной, так и отрицательной. Но самый важный вклад Беккариа в исследование электрических явлений содержится в его «Lettere al Beccari» («Письмах к Беккари»), изданных в Болонье в 1758 г. и рассматривавшихся современниками как научный шедевр. Повторив опыты Франклина 1751 г., в которых с помощью разряда батареи через проводник осуществляется намагничивание железной проволоки или изменение полярности магнита, Беккариа выдвинул гипотезу о существовании тесной связи между «циркуляцией» электрического флюида и магнетизмом и задался вопросом «...не обусловливает ли электрический флюид неким универсальным неощутимым непрерывным периодическим циркулирующим движением... во всех случаях возникновения и поддержания магнитных свойств» **. Эта гениальная мысль вызвала восхищение Пристли: «это действительно великая мысль, и если она верна, она в высшей степени упростит наши представления о законах природы» ***. В 1756 г. Франц Эпинус (1724—1802), немецкий физик, проживавший в Петербурге, ввел в употребление воздушный конденсатор, носящий его имя. С помощью этого прибора он намеревался показать, что стекло в лейденской банке или в плоском конденсаторе Франклина обладает накапливающим действием не потому, что это стекло, а просто потому, что это изолятор. Конденсатор Эпинуса имеет существенное историческое значение, потому что до его появления верили, что стекло, возможно, вызывает накопление электричества благодаря своей особой внутренней структуре. Эпинус же показал, что тот же эффект достигается с любым изолятором, препятствующим течению электрического флюида. Но Беккариа еще в 1754 г. учил в Турине, что стекло может быть заменено другим изолятором, и построил плоские конденсаторы с прокладками из различных материалов — сургуча, серы, смолы, смолы с канифолью. Он пошел дальше Эпинуса, показав, что конденсирующее действие для разных изоляторов различно. В пятом письме к Беккари Беккариа предпринимает первые опыты в этом направлении. Можно предположить, что именно это письмо послужило Кавендишу толчком к его гениальным экспериментальным исследованиям, оставшимся несправедливо пеизданными до 1879 г., когда их публикацией занялся Максвелл. * G. Beccari a, Ellettricismo artificiale, Torino, 1772, p. 134. ** G. В е с с а г i a, Opere, Macerata, 1793, v. II, t. II, p. 139. *** J. Priestley, цит. выше, р. 331. 12* 179
В дальнейшем мы вновь вернемся к рассмотрению работ Беккариа, активнейшего пьемонтского ученого, который был учителем Лагранжа, вдохновлял исследования молодого Вольты и деятельность которого есть свидетельство возобновления научных исследований в Италии после векового затишья. 16. ПИРОЭЛЕКТРИЧЕСТВО. Турмалин, минерал с кристаллами ромбоэдрической системы, довольно распространенный в Европе, стал известен лишь с 1717 г. благодаря химику Луи Лемери (1677—1743), который описал его как особенный камень, привозимый с Цейлона, обладающий способностью притягивать легкие частицы и потому названный Линнеем в 1747 г. «электрическим камнем» (lapis electricus). Никто не занимался им до 1756 г., пока он не попал в руки Эпинуса, окрестившего его «турмалином» и начавшего исследовать его особые свойства. Целый ряд опытов, проведенных с исключительным умением, сразу убедил Эпинуса в том, что странная способность турмалина связана с электричеством, но совершенно отличается от общеизвестного явления электризации трением. Турмалин электризовался при нагреве, причем один конец его заряжался положительно, а другой — отрицательно. Публикация Эпинуса вызвала жаркую полемику, в которой приняли участие, в частности, Бенджамин Уилсон (1708?—1788), Мушенбрек, Вильке, оспаривавшие результаты экспериментов Эпинуса главным образом потому, что им не удалось их повторить с той точностью, с которой ставил свои опыты сам Эпинус (подобные опыты и сейчас требуют тщательной постановки, если только не прибегать к электроскопическому порошку). Конец этой полемике положил Джон Кантон (1718—1772), который в прекрасном докладе, зачитанном Королевскому обществу в 1759 г., не только подтвердил результаты Эпинуса, но, кроме того, установил, что электризация получается и при охлаждении. В следующем, 1760 г. Кантон обнаружил, что свойством турмалина обладает также бразильский топаз, а Уилсон нашел его затем и У других драгоценных камней. В 1762 г. Кантон показал, кроме того, что возникающие при нагревании турмалина заряды равны по величине и противоположны по знаку. К этому выводу он пришел, погрузив образец турмалина в металлический сосуд с кипящей водой, соединенный с электрометром; электрометр не обнаружил никакого заряда. Заметим, что электрометр Кантона, введенный им в употребление с 1753 г. и бывший в течение многих лет одним из необходимейших приборов, представлял собой модификацию первого электроскопа с пробковыми шариками, описанного тем неизвестным автором, который в 1746 г. опубликовал первую работу по «медицинскому электричеству». Электроскоп Кантона состоял из двух почти соприкасающихся пробковых шариков, подвешенных в небольшой коробочке на двух льняных нитях. Возвращаясь к свойствам турмалина, укажем, что минералог Рене Аюи (1743—1822) в своем учебнике по физике 1802 г. и в последующих изданиях вплоть до 1821 г. привел в порядок данные об этом явлении и представил их, по сути дела, в том же виде, в каком они известны сейчас, если не считать теоретических вопросов, отнюдь не решенных и в наше время. Кроме того, Аюи сделал важное открытие, что пироэлектрические кристаллы могут электризоваться не только при нагреве, но и под действием давления, и опираясь на это явление, позднее получившее название пьезоэлектричества, создал чувствительный электроскоп. Пьезоэлектричество исследовалось в течение всего XIX века и имеет сейчас многочисленные технические применения. 17. ЭЛЕКТРОФОР. В одной из своих работ 1759 г. Эпинус описывает следующий весьма важный опыт. Если к одному из двух концов бронзовой 180
линейки приблизить наэлектризованную стеклянную палочку или серный цилиндр, то на ближнем конце линейки возникнет заряд, знак которого противоположен знаку заряда на электризующем теле, а на дальнем конце возникнет заряд того же знака. До этого, следуя Грею, считали, что тело, находящееся вблизи другого, наэлектризованного тела, или, как говорили, погруженное в электрическую атмосферу другого тела, воспринимает электрическое состояние этого тела; по существу эта ошибочная идея и послужила источником понятия «электрической атмосферы». Эпинус же показал, что явление электростатического влияния имеет совсем иной характер, настолько иной, что это явление можно было рассматривать как веский аргумент в пользу теории двух электрических флюидов, выдвинутой в том же году (см. § 14). В эту полемику в 1766 г. включился Джован Франческо Чинья (1734— 1790), родственник и ученик Беккариа, физик, известный в свое время тем, что вместе с Лагранжем и графом Луиджи ди Салуццо основал в 1757 г. то самое «Частное туринское общество», которое в 1783 г. было преобразовано в теперешнюю Туринскую Академию наук. Из опытов Чинья интересен следующий. Если изолированную свинцовую пластину поднести к наэлектризованной шелковой ленте и к пальцу, то палец извлекает искру из пластины, а шелковая лента прилипает к пластине. Если затем отделить ленту от пластины, то лента остается заряженной, как и раньше, а пластина оказывается заряженной противоположным знаком. Из пластины можно снова извлечь искру и повторять это неограниченное число раз. Таким образом, Чинья смог зарядить лейденскую банку с помощью серии искр, попеременно отрывая ленту и вновь прикасаясь ею к пластине. Из этих опытов (на основании которых он впоследствии отстаивал свое авторское право на электрофор) Чинья сделал вывод, что электрические явления могут объясняться как теорией Франклина, так и теорией Симмера. Эти опыты Чинья вновь привлекли внимание Беккариа к исследованию электрических явлений (с 1758 г. он был вынужден забросить их и заняться другими работами, относившимися к гидравлике и геодезии). В 1769 г. Беккариа опубликовал небольшую работу под названием «Experimenta atque observationes quibus electricitas vindex late constituitur atque explicatur» («Опыты и наблюдения, которые устанавливают и объясняют охраняющее электричество»), в которой утверждал, что при соприкосновении двух противоположно наэлектризованных пластин их противоположное электричество взаимно уничтожается, но при последующем отрыве пластин друг от друга оно появляется вновь. Поэтому он и назвал это электричество «охраняющим» (vindex), поскольку оно «охраняет себе свое место». Против этой теории смело восстал молодой Вольта в своей первой работе 1769 г. «De vi attractiva ignis electrici ас phaenomenis inde pendentibus» («О притягательной силе электрического огня и о зависящих от него явлениях»), написанной в виде письма к Беккариа. Эта работа важна для понимания эволюции взглядов Вольты. Теперь, оглядываясь назад, можно, пожалуй, сказать, что в этом письме в зародышевой форме заключены все его последующие открытия. Здесь прямо утверждается наличие зарядов в изолирующих слоях и наблюденные Беккариа явления объясняются как явления электростатической индукции. Все эти явления рассмотрены весьма тщательно и с новой точки зрения. Результаты новой постановки проблемы не заставили себя долго ждать. 10 июня 1775 г. Вольта уже мог написать Пристли: «Я представляю Вам тело, которое, будучи лишь однажды наэлектризовано в течение самого непродолжительного времени и совсем не сильно, 181
Приборы Вольты. Второй и третий приборы слева — первоначальная форма электрофоров, предложенная Вольтой. Последний прибор справа — конденсаторный электроскоп. никогда не теряет своего электричества, упорно сохраняя живую силу своего действия, несмотря на бесконечно повторяющиеся прикосновения к нему» *. Таким образом, Вольта описывает здесь прибор, названный им «постоянным электрофором» (elettroforo perpetuo). Этот прибор общеизвестен, так что описывать его, по-видимому, излишне. Успех прибора Вольты был поистине громаден. Всюду начали изготовлять электрофоры: одни — небольшие разборные, хранящиеся в футлярах, удобные для транспортировки; другие — мастодонты, в которых щиты (достигавшие двух метров в диаметре!) приходилось поднимать с помощью системы блоков. Электрофор был прототипом электростатической машины нового типа, индукционной машины, более эффективной, чем машина, основанная на трении. Первой индукционной машиной был «дупликатор», предложенный Джузеппе Белли (1791—1860) в 1831 г. В 1865 г. появилась более удобная машина Августа Тёплера (1836—1912), а в следующем году — машина Вильгельма Гольца (1836—1913), известная под названием «вимсхурт». Уже в нашем столетии была разработана значительно более мощная электростатическая машина Ван-де-Граафа, основанная на тихом разряде (см. гл. 16.) Из новых работ, тотчас последовавших за созданием электрофора, упомянем открытие Георгом Христофором Лихтенбергом (1744—1799) фигур, до сих пор носящих его имя, и введение им в употребление электростатического порошка, применяемого и поныне. Укажем также «дупликатор» Абрагама Беннета (совершенно отличный от дупликатора Белли), который после критических замечаний Тиберио Кавалло (1749—1809), известного неаполитанского физика, жившего в Лондоне, был усовершенствован Уильямом Никольсоном (1753 — 1815) в 1788 г. и превращен «...в инструмент, который с помощью вращения рукоятки создает оба состояния электричества без всякого трения или соединения с землей». * Alessandro V о 1 t a, Le ореге, Ediz. naz., Milano, 1918—1930, III, p. 95. 182
Электроскоп, сконструированный Петербургской Академией наук по приказу императрицы Екатерины II. (Труды Петербургской Академии наук, 1777). Щит представляет собой прямоугольник с закругленными краями, подвешенный на шелковых веревках, подъем и опускание которого производятся с помощью показанной на рисунке системы блоков. Этот прибор, который лучше, чем индукционная машина, может служить чувствительным датчиком малого заряда, оказался весьма полезным Вольта при его исследованиях контактного электричества. Свои исследования емкости конденсаторов Вольта начал с электрофора. В то время ни у кого не было столь ясных, как у Вольты, представлений о емкости и потенциале, или «напряжении» (согласно его терминологии). Достаточно прочесть его письмо к де Соссюру, датированное 20 августа 1778 г., под названием «Osservazioni sulla capacita del conduttori elettricU («Наблюдения емкости электрических проводников») или, еще лучше, его «Lettere sulla metrologia elettrica» («Письма об электрической метрологии»), адресованные Лихтенбергу, поражающие оригинальностью постановки экспериментов, проницательностью наблюдений и ясностью представлений. Он нашел соотношение между емкостью, зарядом и напряжением изолированного проводника, установил ряд тонких методов сравнения различных электрометров, сконструировал сам весьма точные электрометры, предложил единицу измерения напряжения (равную примерно 13,350 в). Короче говоря, Вольта был основателем электрической метрологии. Наиболее известным результатом этих исследований был конденсаторный электроскоп, описанный в докладе Королевскому обществу от 14 марта 1782 г. Это всем известный сейчас прибор: к головке электроскопа прикреплена металлическая пластина с покрытой лаком верхней поверхностью, на которой расположена другая металлическая пластина с изолирующей ручкой. Если зарядить нижнюю пластину, заземлив верхнюю, а затем, разорвав контакт, приподнять верхнюю пластину, то уменьшение емкости нижней пластины приведет к увеличению ее напряжения, а следовательно, к расхождению шариков электроскопа. Иными словами, этот прибор для изменения емкости проводника основан на связи между электрическим зарядом, •емкостью и напряжением, которую Вольта ясно формулировал следующим .образом: 183
«Я хочу лишь сказать, что когда емкость больше, то данное количество электричества вызывает меньшее напряжение или, что то же самое, требуется большее количество электричества для доведения действия до заданной величины интенсивности. Короче говоря, емкость и электрическое действие, или напряжение, находятся в обратном отношении. Заметим с самого начала, что я обозначаю термином напряжение (которым я часто заменяю слово „интенсивность") усилие, производимое каждой точкой наэлектризованного тела, чтобы избавиться от имеющегося в ней электричества и передать его другим телам, каковому усилию соответствуют, вообще говоря, проявления притяжения, отталкивания и т. д., ив частности степень расхождения электрометра» *. Добавим, что в приложении к этому докладу о конденсаторах Вольта сообщает о проведенных им сначала в Париже в 1782 г. вместе с Лавуазье и Лапласом, а затем в Лондоне в присутствии Беннета, Кавалло, Кирвана и Уокера опытах по электричеству, которое возникает «от простого испарения воды и различных химических реакций». Эти опыты, известные еще Франклину, привели впоследствии (1843 г.) к недолго просуществовавшей паровой электрической машине Уильяма Армстронга (1810—1900). Самому же Вольта они послужили для построения его теории атмосферного электричества. Несколькими годами позже Вольта усовершенствовал электрометр Кантона, заменив пробковые шарики двумя легкими соломинками. Но наибольшей возможной в то время чувствительности этот прибор достиг, когда в 1787 г. Беннет и Антон Мариа Вассали Эанди (1761—1825) независимо заменили шарики Кантона или соломинки Вольта тончайшими металлическими листочками, придя, таким образом, к известному теперь «электроскопу с золотыми листочками». 18. ШАРЛЬ ОГЮСТБН КУЛОН. Если рассмотреть направление исследований по электричеству в течение тридцатилетия, последовавшего за работами Франклина, то можно легко заметить проявление нового образа мышления. Электрические явления теряли свой первоначальный характер отдельных разрозненных забавных явлений природы и постепенно образовывали некое единство, которое существующие теории пытались охватить несколькими основными принципами. Чувствовалось, что от качественных исследований необходимо переходить к количественным, различать и определять количественные величины, нужно связать их математическими соотношениями, начать измерять их с помощью приборов, которые становились все более точными и чувствительными. Такое направление исследований проявилось, как мы уже упоминали, в первых опытах Беккариа, более отчетливо выражено в работе Эпинуса чТеШатеп theoriae electricitatis et magnetismi»**, вышедшей в Петербурге в 1761 г., и вполне осознано у Вольты. Эпинус в основу своего математического рассмотрения кладет следующие принципы: каждое тело обладает в своем естественном состоянии вполне определенным количеством электричества; частицы электрического флюида взаимно отталкиваются и притягиваются к обычной материи; электрические эффекты проявляются, когда количество электрического флюида в теле больше или меньше того, которое должно быть в естественном состоянии. Далее Эпинус переходит к аналитическому рассмотрению, предполагая, что силы между электрическими зарядами пропорциональны самим зарядам, * Alessandro V о 1 t а, цит. выше, III, р. 285. ** Есть русский перевод в книге: Ф. У. С. Э п и'н у с, Теория электричества и магнетизма, Л., 1951. 184
. V 4 с- Кшт Jfc*4 ^ Жт^ f 55?** длв*,|'|*""Л|Г " ■ »"». ##/~#>^ £^л, J&jrr^*-^ ^f^Lpgy^ *&&) •&fv? ,&y »■ л-уу v^«v 4/rj Jfcr пъ>**Г' " £ф* лА* чгг /*/*?■■¥< :/£?** у'"' л>»*^ !.■*- t*rfr *f<*J"l*' УЭ VOO Tb^f Sfrtr ^, VcLVt /^Xf-'fj^ _л.^*- gs<>> j», UJfjt*m. «ia»r i'mmm/ /fl, „ . «.^ '"^ *;/*■ ££*'r-v; /*• у* '•****в.*Лг"\ »'^ у i <("■*»( Art. У1Г»% #S*» <***•''*#?//« •Л»*/^ #%»il Л»л Страница письма Вольта, адресованного Бэнксу, от 20 марта 1800 г., в котором он сообщает об изобретении нового аппарата. 185-
но не зависят от расстояния между ними и от их распределения по проводникам. Эпинус хорошо знал, что в действительности силы зависят от расстояния, о том говорят простейшие наблюдения, но он сознательно не учитывал этого, так как не знал закона изменения сил с расстоянием, хотя и предполагал, исходя из экономии и гармонии в природе, что это должен быть закон обратных квадратов. Понятно, что построенная на таких предположениях теория Эпинуса в наше время потеряла всякую ценность. Однако в свое время ее значение было весьма велико, ибо она давала направление исследованиям. И действительно, по пути Эпинуса пошел Генри Кавендиш (1731—1810), который в своей статье от 1771 г. принимает гипотезы Эпинуса с одним изменением: притяжение двух электрических зарядов считается обратно пропорциональным некоторой степени расстояния, пока не уточняемой. Эта гипотеза предполагает, что электрическое взаимодействие простирается вплоть до бесконечно больших расстояний, тогда как, согласно теоретическим представлениям того времени, исходившим из обыденного опыта, электрическое воздействие считалось проявляющимся лишь в «электрической атмосфере», окружающей наэлектризованное тело, в пределах которой допускалось, правда, изменение этой силы по какому-то закону. Из этой новой гипотезы Кавендиш вывел ряд математических следствий и, исключив те, которые ему представлялись бессмысленными, пришел к выводу, что силы электрического взаимодействия должны быть обратно пропорциональны расстоянию в степени, меньшей третьей. Во второй части своего доклада Кавендиш рассматривает эту же задачу с другой, совершенно новой точки зрения. Он исследует, как распределяется электрический заряд по проводящей заряженной сфере или по диску, поскольку чувствует, что это распределение должно зависеть от законов притяжения и расталкивания частей электрического флюида. Из принятых в первой части доклада гипотез и из вытекающих из них следствий Кавендиш с помощью интересных математических рассуждений делает вывод, что если сила взаимодействия электрических зарядов подчиняется закону обратных квадратов, то «почти весь» электрический заряд сосредоточен на самой поверхности проводника. Тем самым намечается косвенный путь установления закона взаимодействия зарядов. Опыты по определению распределения зарядов на проводниках уже проводились раньше, и Кавендиш должен был об этом знать. Еще в 1753 г. Беккариа вслед за Греем заметил, что сплошной куб и полый куб, одинаково наэлектризованные, притягивают одинаково. Франклин придумал •опыт с цепочкой, который до сих пор ставится в некоторых школах. Он же сообщил в 1755 г. о другом интересном опыте: если ввести в наэлектризованный серебряный сосуд, покоящийся па изолированной подставке, электрический пробник, то он не испытывает притяжения к стенкам сосуда и не приобретает заряда при прикосновении к его основанию. Франклин не смог объяснить этого факта. Пристли тоже не смог его объяснить, но высказал предположение, что второй опыт можно объяснить, приняв, что электрическое действие подчиняется закону обратных квадратов. В связи с этим английские физики, а особенно историки, сильно преувеличивая роль Пристли, называют закон притяжения и отталкивания электрических зарядов «законом Пристли». Первым опыт Франклина объяснил Беккариа (позже, независимо от Вольта, он добавил еще одно наблюдение: наэлектризованный пробник, соприкасаясь с дном вазы, теряет свой заряд) в своей работе«De atmosphaera electrica» («Об электрической атмосфере»), написанной в виде письма Королевскому обществу и опубликованной в «Philosophical Transactions» за 1770 г. ■Это объяснение без изменения повторяется в его «Elettricismo artijiciale» 186
{«Искусственное электричество»). Сконструировав «электрический колодец» и «пробник»— электроскоп, образованный двумя кусочками бумаги, подвешенными на сургучной палочке, Беккариа наблюдал, что даже при сильной электризации «колодца» пробник не обнаруживал электризации при его соприкосновении с внутренними стенками и с дном колодца, откуда справедливо заключил, как и Фарадей впоследствии в аналогичных опытах (см. гл. 10, § 15), что «...все электричество сосредоточивается на свободной поверхности тел, не распределяясь по внутренним точкам вещества»*. Кавендиш не мог не знать об этих опытах, но в своей неизданной работе 1772 г. хотел подтвердить их новым опытом, представлявшимся ему более убедительным. Этот опыт до сих пор описывается во всех курсах физики: две полые изолированные металлические полусферы, наложенные на изолированную металлическую сферу, полностью лишают ее заряда. Кроме закона взаимодействия электрических зарядов, физики второй половины XVIII века пытались найти также закон магнитного действия. Из многих физиков, принимавших участие в этих исследованиях, следует специально упомянуть Джованни Антонио Далла Белла (1730—1823), итальянского физика, проживавшего в Лиссабоне. Далла Белла поставил опыты <; не очень оригинальным приспособлением, представлявшим собой сферический магнит, расположенный на одной из чашек весов, с помощью которых определялось его притяжение к другому магниту, располагавшемуся на полу на различных расстояниях от первого. Прибор был весьма ординарен, но зато весьма ценной была идея Далла Беллы считать расстоянием между полюсами не расстояние между поверхностями магнитов, а расстояние между некоторыми точками внутри магнитов, из которых, как он считал, исходит магнитная сила, точно так же как при расчете ньютоновского притяжения, испытываемого каким-либо телом, мы определяем расстояние до центра Земли. Неудача предыдущих попыток определения закона магнитного действия объясняется, помимо экспериментальных трудностей, также отсутствием такого представления. Считая верным и для магнитов ньютоновский закон притяжения, Далла Белла поставил опыты, чтобы рассчитать, на каком расстоянии от поверхности каждого применявшегося магнита должен располагаться центр, который можно считать источником магнитной силы. Таковы были достигнутые наукой знания, когда в 1784 г. Шарль Огюстен Кулон (1736—1806) довел до конца свои блестящие исследования упругого кручения нитей, до сих пор упоминаемые в физической литературе. Кулон обнаружил, что сила закручивания нити зависит от вещества нити, пропорциональна углу закручивания и четвертой степени диаметра нити и обратно пропорциональна ее длине. Это давало новый, исключительно чувствительный метод измерения силы путем ее сравнения с силой, возникающей при закручивании нити. Новый прибор, представлявший собой весы «для измерения мельчайших степеней силы», был назван самим Кулоном крутильными весами — название, сохранившееся до настоящего времени. После использования этих весов для исследования трения между жидкостями и твердыми телами Кулон счел, что другой областью применения этого нового прибора может быть исследование малых электрических и магнитных сил. Таким образом, 48-летний французский военный инженер, никогда специально не занимавшийся электричеством и магнетизмом (известна лишь одна его заметка о способе намагничивания железных стрелок), в качестве побочного занятия проводил исследования, обессмертившие его имя. Кулон начал с измерения зависимости силы отталкивания одноименных * G. Beccaria, Elettricismo artificiale, цит выше, р. 193. 187
Крутильные весы. (Memoires de mathematique et de physique de l'Academie Royale, 1785.) зарядов от расстояния и провел многочисленные эксперименты. Он приводит результаты трех измерений, при которых расстояния между зарядами относились как 36 : 18 : 17/2, а соответствующие силы отталкивания — как 36 : 144 : 5751, т. е. силы почти точно обратно пропорциональны квадратам расстояний. В действительности экспериментальные данные несколько отличаются от теоретического закона. Кулон объясняет причины расхождения, среди которых, помимо принятых при расчете некоторых упрощений, играет роль и утечка электричества за время опыта. Более трудной оказалась задача измерения силы притяжения, поскольку интуитивно было ясно (и расчет подтверждает это), что весьма сложно помешать подвижному шарику весов войти в соприкосновение с другим зарядом противоположного знака. Все же Кулону, как он сообщает, неоднократно 188
Шарль Огюстен Кулон. удавалось добиться равновесия между силой притяжения двух шариков и противодействующей «й силой действия закрученной нити. Полученные экспериментальные данные, не приведенные Кулоном, указывали на то, что сила притяжения также подчиняется закону обратных квадратов. Но Кулон не удовлетворился этими результатами. Для подтверждения этого закона, который, как он предчувствовал, сыграет фундаментальную роль в учении об электричестве, Кулон прибег к новому оригинальному методу измерения малых сил, примененному уже ранее для измерения магнитной силы стального острия. Этот метод оказался весьма эффективным и известен сейчас как «метод колебаний». Он основан на том факте, что, подобно тому как частота колебаний маятника зависит от величины силы тяжести в данном месте, так же и частота колебаний наэлектризованной стрелки, колеблющейся в горизонтальной плоскости, зависит от интенсивности действующей на нее электрической силы, так что по числу колебаний в секунду можно найти эту силу. Для осуществления этого замысла Кулон заставил колебаться изолирующий стерженек, снабженный на конце маленькой вертикальной заряженной пластинкой и находящийся перед изолированным металлическим шаром, заряженным противоположно заряду пластинки и расположенным так, что один из его горизонтальных диаметров проходит через центр пластинки, когда она находится в равновесии. Этим путем также был полностью подтвержден закон обратных квадратов. Неизвестно, знал ли Кулон об исследованиях Далла Беллы (доложенных Лиссабонской Академии наук в 1782 г., но опубликованных лишь в 1797 г.), но он понимал, что эти методы нельзя непосредственно применить для исследования магнитных сил по причине, которую указал еще Далла Белла: из-за трудности локализации магнитных масс, могущих находиться на стрелке. Кулон преодолел эту трудность значительно более оригинальными методами, чем Далла Белла, и экспериментально установил, что магнитное воздействие также подчиняется закону обратных квадратов. Установив основные законы электрического и магнитного воздействий, Кулон продолжал свои экспериментальные и теоретические исследования, положившие начало количественной электростатике. Его внимание привлекло прежде всего явление утечки электричества, которое так сильно мешало измерениям в предшествовавших исследованиях. Согласно Кулону, утечка происходит через подставки, которые никогда не бывают абсолютно изолирующими, и из-за конвекции воздуха, частицы которого, приходя в соприкосновение с проводником, принимают на себя часть его заряда, после чего отлетают от проводника под действием отталкивания. Тщательные 189
экспериментальные исследования привели Кулона к заключению, что убывание количества электричества на проводнике, расположенном в воздухе, происходит по экспоненциальному закону в зависимости от времени. В качестве постулата, как уже до него сделал Эпинус, Кулон принял, что сила взаимодействия двух электрических зарядов пропорциональна произведению этих зарядов. Попытки некоторых последующих авторов доказать этот постулат оказались совершенно иллюзорными, они лишь создают путаницу в умах приступающих к изучению физики, а не вносят ясность, потому что при этом постулат Кулона выводится из других, значительно- менее очевидных. Сформулировав этот постулат, Кулон исследовал распределение электричества на проводниках с помощью введенной им в употребление «пробной плоскости», представляющей собой кружок из позолоченной бумаги на изолирующей ручке, который он прикладывал к различным участкам поверхности проводника для определения плотности электричества. Таким способом он установил, что электричество распределяется по поверхности проводника (чтобы убедиться в этом, он повторил, в частности, опыт Кавендиша с двумя полусферами). Основывг <сь на законе обратных квадратов, он доказал это свойство теоретически. Далее он показал, что электричество распределяется равномерно по поверхности изолированной проводящей сферы; исследовал распределение на нескольких проводящих сферах, примыкающих друг к другу, а затем на цилиндре; строго показал, что наэлектризованное тело индуцирует на проводнике равные количества электричества противоположного знака. Итак, за четыре года интенсивного и методического труда, с 1785 по- 1789 г., Кулон заложил фундамент современной электростатики. Поскольку электрические силы оказались того же типа, что и ньютоновские, в электростатику можно было сразу перенести все свойства полей ньютоновских сил, найденных в теоретической механике. Эйлер ввел в механику понятие потенциала и нашел замечательное свойство этого потенциала (1756 г.) — так называемое «уравнение Лапласа». В 1811 г. Симон Пуассон (1781—1840) распространил математическое понятие потенциала на электрическое и магнитное поля. В 1828 г. появилось классическое исследование электрического потенциала «Essay on the application of mathematical Analysis to the theorie of Electricity and Magnetism-» («Опыт приложения математического анализа к теории электричества и магнетизма») Джорджа Грина (1793—1841). Весь этот быстрый прогресс теории электричества был бы невозможен без предварительного' развития идей и аналитических методов теоретической механики. 19. ЛУИДЖИ ГАЛЬВАНИ. После первых же случаев поражения электрическим разрядом возникли, как мы видели, обоснованные предположения и надежды, что новое вещество окажется способным облегчать или вылечивать болезни страждущего человечества. Открытие лейденской банки подтвердило предположения и еще больше подкрепило надежду. А когда Франклину наконец удалось извлечь электричество из облаков, а несколько позже Лемонье получил электричество при ясной погоде, стало казаться, «что вся природа стала электрической». А если вся природа электрическая, то и жизнь человека, как физическая, так и духовная, должна определяться течением по жилам и по мускулам этого таинственного вещества. Таким образом возникло представление о животном электричестве, главном регуляторе жизни животных вообще и людей в частности. В 1773 г. появился мемуар Джона Уолша (?—1795), в котором доказывается электрическая природа известного свойства рыбы, называемой с тех пор электрическим скатом. Вильгельм Гравезанд и Мушенбрек, не удовлетворенные существовавшим ранее механическим объяснением действия этой рыбы, также выдвигали предположение о его электрической природе, но» 190
Луиджи Гальвани. Портрет кисти неизвестного художника. не подтвердили его никакими опытами. Некоторые опыты в этом направлении проделал Байен (1745— 1798), но они прошли незамеченными. Таким образом, мемуар Уолша воспринимался как открытие и произвел сильное впечатление. В нем экспериментально показано, что явление удара от электрического ската можно воспроизвести с помощью искусственного электричества. Мемуар Уолша, написанный в виде письма Франклину, кончается так: «С удовольствием направляю Вам эти сообщения. Те, что предсказывали и показали связь электричества со страшными атмосферными молниями, со вниманием узнают о том, что в глубине океана электричество- существует в виде кроткой молнии, молчаливой и невидимой. Те, что анализировали заряженные банки, с удовольствием увидят, что их законы справедливы и для живых банок. Те, кто стал электриком благодаря разуму, с уважением отнесутся к электрику по инстинкту, которого природа с самого рождения одарила чудесным аппаратом и способностью пользоваться им» *. За мемуаром Уолша последовало много других работ, посвященных физическому и анатомическому исследованию электрического ската; среди них выделяется мемуар Кавендиша (1776 г.), в котором помимо некоторых данных по интересовавшему его вопросу об измерении электрического сопротивления описан «искусственный электрический скат», где электричество поставляется батареей лейденских банок. Это забавное приспособление было погружено в подсоленную воду той же степени солености, что и море. При этом наблюдались те же эффекты, что и при действии ската. В период максимального обилия публикаций, последовавшего за работой Уолша, физики разделились на два лагеря: одни считали животное электричество свойственным лишь «электрическим рыбам», другие же приписывали его вообще всем животным. Физиологи того времени в свою очередь придумали себе без всяких экспериментальных оснований «животные эссенции», подобные электрическому флюиду, но в остальном не определенные. Эссенции, протекая по нервам, ответственны за перенос ощущений к мозгу и произвольное сокращение мышц в результате волевых импульсов. На фоне этого океана необоснованных гипотез, путаных идей, ошибочных аналогий, смутных предчувствий начались исследования Луиджи Гальвани, родившегося в Болонье 9 сентября 1737 г. и умершего там же 4 декабря 1798 г. * John Walsh, Of the electric Property of Torpedo, Phil. Transactions of the Roy. Soc. of London, 1809, XIII, 477 (1773). 191
Первые опыты Гальвани. (Memorie ed esperimenti inediti di Luigi Galvani, 1937.) Еще в 1773 г. Гальвани, будучи профессором анатомии в Болонском университете, начал анатомическое исследование мышечных движений лягушек, а в 1780 г. произвел на них свои первые электро-физиологические опыты. После 11 лет исследований и опытов он опубликовал свои результаты в знаменитом трактате «De viribus electricitatls in motu musculari commentarius» («Трактат о силах электричества при мышечном движении»), помещенном в «Комментариях» Болонской академии и переизданном в следующем году племянником Гальвани Джованни Альдини, добавившим к трактату некоторые замечания и одну работу. В 1937 г. Энрико Бенасси выпустил первый итальянский перевод этого трактата с параллельным латинским текстом *. Гальвани так рассказывает об обстоятельствах своего открытия: «Я разрезал и препарировал лягушку, как указано на фигуре Q, и поместил ее на стол, на котором находилась электрическая машина, при полном разобщении от кондуктора последней и на довольно большом расстоянии от него. Когда один из моих помощников острием скальпеля случайно очень легко коснулся внутренних бедренных нервов этой лягушки, то немедленно все мышцы конечностей начали так сокращаться, что казались впавшими в сильнейшие тонические судороги. Другой же из них, который помогал нам в опытах по электричеству, заметил, как ему казалось, что это удается тогда, когда из кондуктора машины извлекается искра. Удивленный новым явлением, он тотчас же обратил на него мое внимание, хотя я замышлял совсем другое и был поглощен своими мыслями. Тогда я зажегся страстным желанием исследовать зто явление и вынести на свет то, что было в нем скрытного» **. * Memorie ed esperimenti inediti di Luigi Galvani, Bologna, 1937, p. 83—192. ** De viribus electricitatis in motu musculari commentarius, в книге бреге edite cd inedite del Professore Luigi Galvani raccolte e publicate per cura dell'Accademia delle Scienze dell'Istituto di Bologna, Bologna, 1841, p. 63. (Есть русский перевод в книге: Л. Г а л ь- ва'ни, А. Вольта, Избранные работы о животном электричестве, М.—Л., 1937.) 192
Многочисленные последующие эксперименты Гальвани подтвердили, что явление происходит именно так, как заметил его ассистент: как только из машины извлекается искра, каждый раз лягушку охватывает судорожная дрожь, если к ее нервам в этот момент экспериментатор прикасается проводником. Такие же результаты получались и на других животных, как холоднокровных, так и теплокровных, а также в тех случаях, когда искра извлекалась из лейденской банки или электрофора. Надо было теперь установить, продолжает Гальвани во второй части своей работы, не вызывает ли атмосферное электричество те же эффекты, что и искусственное. С этой целью он протянул над своим домом длинный проводник и подвешивал к нему за бедренные нервы лягушек, к лапкам которых была присоединена другая весьма длинная проволока, опущенная в воду в колодезь, и наблюдал, что «...сколько раз вспыхивала молния, столько же раз все мышцы в тот же момент, впадали в сильнейшие и многократные сокращения».* Более того, сокращения мышц происходили не только в момент вспышки молнии, но и при грозовом небе, когда облака близко проходили над местом нахождения проводника. Из этих опытов, продолжает Гальвани в третьей части работы, возникает желание определить экспериментально, не вызывается ли сокращение мышц лягушки не только бурными проявлениями атмосферного электричества, но и «спокойным электричеством и при ясном небе». С этой целью он приготовил несколько лягушек и подвесил их на медных крючках к железной решетке, окружавшей висячий садик его дома. Несколько раз он наблюдал при этом сокращения мышц и приписывал их изменению состояния атмосферного электричества: «...легко ошибиться в исследовании и считать виденным и найденным то, что мы желаем увидеть и найти».* Но вскоре он увидел, что ни одно из этих сокращений в действительности не объяснялось изменением состояния атмосферы. Тогда он решил продолжить опыты в доме: приготовил лягушку, положил ее на стол, прикрепил к ее спинному мозгу крючок, а другим концом дотрагивался до других частей, и вот «появились такие же сокращения, такие же движения». Гальвани различным образом менял условия опыта, приходя все время к тем же результатам. «Подобный результат вызвал в нас немалое удивление и начал возбуждать в нас некоторое подозрение об электричестве, свойственном самому животному. Мне представлялось, что при этом явлении от нервов к мышцам как бы протекает флюид и образуется цепь, как в лейденской банке». * Последующие опыты превратили это предположение в уверенность: каждый раз, как металлической дугой соединялись мышцы и нервы только что убитой и препарированной лягушки, тотчас же происходило сокращение мышц. Одно экспериментальное обстоятельство настолько привлекло внимание Гальвани, что он специально упоминает о нем: сокращения значительно более сильны, если металлическая дуга составлена из двух различных металлов. «Так, например, если дуга железная и крючок железный, то чаще всего сокращения либо отсутствуют, либо весьма незначительны. Если, однако, один из этих предметов, например, железный, а другой медный или оке, что * Там же, р. 70—80. 13 Марио Льоцци 193
Различные опыты Гальвани. (Memorie ed esperimenti inediti di Luigi Galvani, 1937.) гораздо лучше, серебряный (серебро по сравнению с другими металлами представлялось нам наиболее подходящим для проведения животного электричества), то сокращения немедленно становились гораздо энергичнее и гораздо продолжительнее)»* Исходя из этих опытов Гальвани считает себя вправе так начать четвертую и последнюю часть своего труда: «Из того, что мы до сих пор узнали и исследовали, можно, я полагаю, с достаточным основанием заключить, что животным присуще электричество, которое мы позволили себе обозначить вместе с Бертолонием и другими некоторым общим названием «животного».* Таким образом, цель четвертой части его труда — показать, что животное электричоство имеет ту же природу и то же свойства, что и «машинное» электричество. Позже, в работе 1795 г., опубликованной в 1797 г. и написанной в виде письма Спаланцапн, Гальвани изложил более полно теорию животного электричества: это электричество накапливается в неравновесном состоянии в мышечных тканях; через нерв, соприкасающийся с мышцей, оно переходит в металлическую дугу, а через нее вновь возвращается в мышцу. Иными словами, мышцы и нервы, согласно Гальвани, образуют как бы две обкладки лейденской банки. 20. АЛЕССАНДРО ВОЛЬТА. Алессандро Вольта (родился в Комо 18 февраля 1745 г., умер там же 5 марта 1827 г.) относился с недоверием к так называемому «животному электричеству». Он принадлежал к той группе физиков, которая считала, что такого электричества вообще не существует, за исключением случаев «электрических рыб». И вот сторонник таких взглядов Вольта ознакомился с работой Гальвани. Описанные в третьей части работы Гальвани опыты показались Вольте столь необычными и поразительными, что он, * Там же, р. 84, 100. 194
Алессандро Вольта. возможно, не стал бы повторять их, если бы не настояния его коллег но Па- вийскому университету. Вольта начал повторять опыты Гальвани 24марта 1792 г., и скептицизм его стал рассеиваться. 3 апреля 1792 г. он пишет Гальвани: «Итак, вот я, наконец, обращен; с тех пор как я стал сам очевидцем и наблюдал эти чудеса, я, пожалуй, перешел от недоверия к фанатизму» *. К фанатизму, но к благоразумному: 5 мая в публичной лекции в университете Вольта рассказывает об опытах Гальвани, превозносит их, поет хвалу важности этого открытия и возможностям дальнейшего его развития, но вместе с тем начинает выдвигать требования большей количественной строгости при исследовании этого явления, ибо «...что хорошего можно сделать с вещами, не приведенными к степени и мере, особенно в физике? Как можно определить причину, если не определить не только качество, но и количество и интенсивность явлений?»* От себя он замечает, что лягушка может представлять собой а...электрометр, в десятки раз более чувствительный, чем даже самый чувствительный электрометр с золотыми листочками». Тем самым, сознательно или бессознательно, он начал выдвигать мысль о том, что лягушка представляет собой просто измерительный прибор. С помощью тонких опытов, выполненных с электрометром своей конструкции и с электрометром Беннета, Вольта приходит к выводу, что ели действительно мышцы и нервы являются обкладками конденсатора, то нервы представляют собой отрицательпую обкладку, а мышцы — положительную, т. е. как раз обратно тому, что утверждал Гальвани. Наконец, описывая, как ему удалось добиться сокращения мышц у еще живой и целой лягушки, Вольта настойчиво привлекает внимание к одной физической особенности гальванического опыта: образующие дугу металлы, прикладываемые к частям тела животного, чтобы вызвать сокращение мышц, должны быть различными. Через несколько дней после университетской лекции он, продолжая свои опыты, замечает: «Факт... суть которого я еще не мог понять, что меня нисколько не удовлетворяет, заключается в необходимости применения неодинаковых провод- * Le opere di Alcssandro Volta, Ediz. naz., I, Milano, 1918, p. 26. (Переводы работ Вольты о природе животного алоктричества на русский язык опубликованы в книге: Л. Гальвани, А. Вольта, Избранные работы о животном электричестве, М.—Л., 1937.— Прим. перев.) 13* 195
никое... У меня вызывает иногда сомнение, действительно ли различные или по-разному приложенные к двум точкам животного металлические проводники служат лишь для того, чтобы, соприкасаясь друг с другом, установить связь, предоставляющую электрическому флюиду путь, по которому тот естественно стремится перейти из одного места в другое, как представляется естественным думать. Одним словом, действительно ли они чисто пассивны или же они являются положительными активными агентами, приводящими в движение электрический флюид животных, нарушая его спокойствие и равновесие и заставляя его входить через проводник одного типа и выходить через проводник другого типа».* Мы уже говорили, что целесообразность применения различных металлов заметил еще Гальвани, причем это было не случайное наблюдение, как пишут некоторые историки, а многократное. Гальвани специально его подчеркивал как одно из условий, необходимых для успешности эксперимента, поскольку заметил, как он пишет в черновике одной неизданной работы, что опыт не удается или очень плохо получается, если дуга состоит из одного- единственного металла. В одной анонимной работе, несомненно принадлежащей Гальвани и опубликованной в 1794 г., он пытается объяснить большую активность разнородной дуги. Объяснение его, надо признать, довольно формальное и сводится к тому, что животное электричество отличается от искусственного своими свойствами и первое отличие заключается в том, что оно «более эффективно действует через разнородные проводники» **. В этом проявляется различный образ мышления обоих ученых: физиолог Гальвани ищет причину явления только в физиологических фактах, физик Вольта видит причину в чисто физических явлениях. Но вернемся к Вольте. 5 мая он превозносил Гальвани, а 14 мая в своей второй университетской лекции уже проводит сопоставления в чисто полемическом плане. Он показывает, что мышцы по существу не участвуют в создании самого явления: их сокращение вызывается, как вторичный эффект, возбуждением нерва. Для доказательства он ставит знаменитый опыт, в котором обнаруживается «кисловатый» привкус на языке при приложении к его кончику оловянной или свинцовой пластинки, а к середине языка серебряной или золотой монеты и при образовании проводящей дуги этими металлическими предметами. При этом ощущается тот же вкус, что и при приближении языка «к кончику искусственно наэлектризованного проводника на такое расстояние, что искра еще не проскакивает» ***. Кисловатый вкус переходит в «щелочной, т. е. отдающий горечью», если поменять на языке местами металлические предметы. Вольта нашел, что язык представляет собой чувствительнейший индикатор электричества, и это оказало ему ценную помощь в дальнейших исследованиях. В июне 1792 г., через три месяца после того, как Вольта начал повторять опыты Гальвани, у него уже не оставалось былых сомнений: «Таким образом, металлы не только прекрасные проводники, но и двигатели электричества; они не только предоставляют легчайший путь прохождению электрического флюида... но сами же вызывают такое нарушение равновесия тем, что извлекают этот флюид и вводят его, подобно тому как это происходит при натирании идиоэлектриков» ****. Это известный закон контактных напряжений; два разнородных металла вызывают «нарушение равновесия» (сейчас говорят — создают разность * Там же, р. 39—40. ** Opere di Luigi Galvani, цит. выше, р. 272. *** Alessandro Volt a, Le ореге, цит. выше I, p. 62. **** -рам ;кв! р ц/_ (Идиоэлектриками в то время назывались тела, электризующиеся при трении. — Прим. перев.) 196
потенциалов) между обоими металлами. Установив этот закон, Вольта в результате длительной серии опытов располагает] металлы в ряд, построенный так, что больший эффект соответствует металлам, более удаленным друг от друга в этом ряду. Один из первых его «рядов напряжений» таков: цинк, оловянная фольга, обычное олово в пластинах, свинец, железо, латунь и различные сорта бронзы, медь, платина, золото, серебро, ртуть, графит, древесный уголь. Против этого чисто физического объяснения явлений, наблюдаемых в опытах с лягушками, возражал Гальвани, поддержанный своим племянником Джованни Альдини (1762—1834) и Эудженио Валли (1762—1816). В последующем Гальвани пытался исключить из опытов металлические проводники, т. е. добиться сокращения мышц лягушки без применения физических средств. Вольта же искал способы исключить лягушку, т. е. найти физический метод обнаружения контактного электричества. Интересно, что оба они достигли цели и поэтому каждый считал себя победителем в споре. Гальвани в одном из опытов, упрощенном впоследствии Валли и описанном в наделавшей много шуму брошюре (1794 г.), препарировал лягушку так, что к ее телу остались присоединенными лишь бедренные нервы, а обе половинки лягушки затем были изогнуты так, что нервы касались голых бедренных мышц; каждое касание вызывало вздрагивание тела лягушки. Вольта сначала пытался отрицать это явление, а потом ответил обобщением собственной теории: нарушение электрического равновесия наступает не только при контакте проводников первого класса, т. е. металлов, но и при контакте проводников второго класса. Короче говоря, нарушение равновесия наступает при контакте любых двух различных проводников, а следовательно, и при соприкосновении двух различных частей лягушки. И если даже разнородность соприкасающихся частей ни в чем ином не проявляется, сам факт нарушения электрического равновесия уже свидетельствует об этом. Иными словами, Вольта произвольно обратил закон контактных напряжений, утверждая, что нарушение электрического равновесия означает наличие контакта между разнородными проводниками. Все же эта удобная позиция в споре была довольно шаткой и, несомненно, была бы разбита, если бы Вольта не нашел способа не только заменить лягушку другой гальванической цепью (собственным языком), как это было сделано в его поразительных опытах, но и вообще исключить все не чисто физические элементы из опыта. В 1796 г. Вольте удается наконец-то обнаружить контактное электричество чисто физическими методами с помощью дупликатора Никольсона. За первой изящной серией опытов с дупли- катором последовали его классические опыты с конденсаторным электроскопом, описываемые сейчас во всех учебниках. Из гальванической цепи была исключена лягушка, но зато и Гальвани исключил из цепи все физические факторы. С этого момента два направления исследования — физическое и физиологическое — разделились. По одному общему вопросу споры еще продолжались и особенно ожесточились в XIX столетии, пока в 1844 г. Карло Маттеуччи (1811—1868) не опубликовал серию работ, доказывающих существование «животного электричества», отрицаемого «вольтианцами», но обладающего теми же свойствами, что и обычное электричество, а не отличного от него по природе, как утверждали «гальванианцы». Теперь, уже уверенный в том, что свел гальваническое явление к чисто физическому, Вольта продолжал свои теоретические и экспериментальные исследования с вполне определенной целью — найти способ увеличения эффекта, который слишком слабо выражен при контакте только двух металлов. Так он начал исследовать «цепи» из проводников, т. е. явления, возникающие при приведении в соприкосновение нескольких проводников. 197
Виды «столбов», описанных Вольтой в письме к Бэнксу. Сверху — «цепочка чашек». Буквой А обозначены серебряные пластины, буквой Z — цинковые. В 1796—1797 гг. Вольта обнаружил, что в цепи из металлических проводников напряжение между крайними металлами равно напряжению, которое устанавливается при непосредственном контакте этих металлов. G точки зрения поставленной цели это был по существу отрицательный ответ, ; потому что он означал, что с помощью чисто металлических контактов нельзя достичь больших напряжений, чем при непосредственном контакте только двух металлов. Но в конце 1799 г. ему удается добиться желаемого. Расположив столбиком одинаковые контактные пары металлов, ориентированные одинаково и разделенные влажными дисками из ткани, Вольта получил между крайними металлами напряжение, пропорциональное количеству примененных пар. 20 марта Вольта пишет Джозефу Бэнксу (1743—1820), президенту Королевского общества: «После долгого молчания, в котором я и не пытаюсь оправдываться, имею удовольствие сообщить Вам, Синьор, а через Ваше посредство и Королевскому обществу о некоторых поразительных результатах, полученных мною... Главный из этих результатов, содержащий в себе почти все остальные, это создание прибора, который по своим действиям, то есть по сотрясению, испытываемому рукой и т. п., сходен с лейденской банкой или, еще лучше, со слабо заряженной электрической батареей, но который, однако, действует непрерывно, то есть его заряд после каждого разряда восстанавливается сам собой; одним словом, этот прибор создает неуничтожаемый заряд, дает непрерывный импульс электрическому флюиду».* Так начинается длинное письмо Вольты, из которого мир узнал об изобретении нового прибора, названного автором «искусственный электрический орган» по аналогии с естественным электрическим органом у электрического ската, но потом переименованный им в «электродвижущий аппарат» или «колонну», что диктовалось его формой. Позже французы стали называть этот прибор «гальваническим столбом» или «вольтовым столбом», исходя из формы первых образцов. Человечеству пришлось ждать еще 142 года появления атомного котла — аппарата, рождение которого по своим последствиям можно сравнить с изобретением вольтова столба. * Там же, р. 565
ГЛАВА 8 • ОПТИКА ФРЕНЕЛЯ ВОЛНОВАЯ ТЕОРИЯ 1. ПРИНЦИП ИНТЕРФЕРЕНЦИИ. Томас Юнг (1773-1829), врач по про фессии, человек с весьма разносторонними интересами, известный также как египтолог, стал заниматься теорией света в связи со своими исследованиями человеческого голоса. Эта тема была еще предметом его диссертации по медицине. Его критическому уму теория Ньютона представлялась совершенно неудовлетворительной. Особенно неприемлемым он считал постоянство скорости световых частиц независимо от того, испущены ли они таким крошечным источником, как тлеющий уголек, или таким громадным источником, как Солнце. А более всего представлялась ему неясной и недостаточной ньютоновская теория «приступов» (см. гл. 6), с помощью которой Ньютон пытался объяснить окрашивание тонких пластин. Воспроизведя это явление и поразмыслив над ним, Юнг пришел к гениальной мысли о возможности интерпретации этого явления как наложения света, отраженного от первой поверхности тонкой пластины, и света, прошедшего в пластину, отраженного от второй ее поверхности и вышедшего затем через первую; такое наложение могло привести к ослаблению или к усилению падающего монохроматического света. Точно не известно, каким образом Юнг пришел к своей идее наложения; возможно, это произошло в результате исследования звуковых биений (см. гл. 6, § 8), при которых наблюдается периодическое усиление и ослабление звука, воспринимаемого ухом. Как бы то ни было, в четырех докладах, представленных Королевскому обществу с 1801 по 1803 г., объединенных несколько лет спустя в обобщающей работе «A course of lectures on natural philosophy and the mechanical arts» («Курс лекций по естественной философии и механическому искусству»), вышедшей в Лондоне в 1807 г., Юнг приводит результаты своих теоретических и экспериментальных исследований. Он несколько раз приводит цитату из XXIV предложения третьей книги «Начал» Ньютона, в которой аномальные приливы, наблюдавшиеся Галлеем на Филиппинском архипелаге, объясняются Ньютоном как результат наложения волн. Исходя из этого отдельного примера, Юнг вводит общий принцип интерференции. «П ред ставьте себе ряд одинаковых волн, бегущих по поверхности озера с определенной постоянной скоростью и попадающих в узкий канал, ведущий к выходу из озера. Представьте себе далее, что по какой-либо иной аналогичной причине возбуждена другая серия волн той же величины, приходящих к тому же каналу с той же скоростью одновременно с первой системой волн. Ни одна из этих двух систем не нарушит другой, но их действия сложатся: если они подойдут к каналу таким образом, что вершины одной системы волн совпадут с вершинами другой системы, то они вместе образуют совокупность волн большей величины; если же вершины одной системы волн будут расположены в местах провалов другой системы, то они в точности заполнят эти провалы и поверхность воды в канале останется ровной. Так вот, я полагаю, что подобные явления имеют место, когда смешиваются две порции света; и это наложение я называю общим законом интерференции света» *. * Thomas Young, An Account of some case of the productions of Colours not hitherto described, Phil. Transactions of the Roy. Soc. of London, 92, 387 (1802). 199
Для получения интерференции нужно, чтобы оба световых луча исходили из одного и того же источника (чтобы у них был совершенно одинаковый период) и после прохождения различного пути попадали в одну и ту же точку и шли там почти параллельно. Значит, продолжает Юнг, когда две части света общего происхождения попадают в глаз по различным путг^,,,7,[,:,. почти в одинаковом направлении, луч приобретает максимальную, г ,е,'г^:.бНость при условии, что разность путей лучей р;< vла"» ~л-у т..л .. торой определенной длины, и имеет минимальп•■ j-- ..интенсивность ь j>p •■ >,уточном случае. Эта характерная длина различна для света различных цветов. В 1802 г. Юнг подкрепил свой принцип интерференции классическим опытом «с двумя отверстиями», возможно поставленным под влиянием аналогичного опыта Гримальди, который, однако, не привел к открытию интерференции из-за особенностей применявшейся установки. Опыт Юнга общеизвестен: в прозрачном экране кончиком булавки прокалываются два близко расположенных одно к другому отверстия, которые освещаются солнечным светом, проходящим через небольшое отверстие в окне. Два световых конуса, образующихся за непрозрачным экраном, расширяясь благодаря дифракции, частично перекрываются, и в перекрывающейся части, вместо того чтобы давать равномерное увеличение освещенности, образуют серию чередующихся темных и светлых полос. Если одно отверстие закрыто, то полосы исчезают и появляются лишь дифракционные кольца от другого отверстия. Эти полосы исчезают и в том случае, когда оба отверстия освещаются (как это было в опыте Гримальди) непосредственно солнечным светом или искусственным источником света. Привлекая волновую теорию, Юнг очень просто объясняет это явление: темные полосы получаются там, где провалы волн, прошедших через одно отверстие, налагаются на гребни волн, прошедших через другое отверстие, так что их эффекты взаимно компенсируются; светлые каемки получаются там, где два гребня или два провала волн, прошедших через оба отверстия, складываются. Этот опыт позволил Юнгу измерить длину волны для различных цветов: он получил длину волны в ^звооо Дюйма (0,7 микрона) для красного света nVeoooo дюйма (0,42 микрона) для крайнего фиолетового. Это первые в истории физики измерения длины волны света, и, учитывая, что они первые, следует отметить их поразительную точность. Иэ своего принципа интерференции Юнг вывел целый ряд разнообразных следствий. Он рассмотрел явления окрашивания тонких слоев и объяснил их вплоть до мельчайших деталей по существу так, как это делается сейчас в курсах физики; он вывел эмпирические законы, найденные Ньютоном, и, считая неизменной частоту света заданного цвета, объяснил уплотнение колец в опыте Ньютона при замене воздушной прослойки между линзами водой (см. гл. 6, § 3) уменьшением скорости света в более преломляющей среде. Тем самым гипотеза Ферма и Гюйгенса получила свое первое экспериментальное подтверждение. Интересно заметить, что Юнгу принадлежит термин «физическая оптика», применяемый для обозначения исследований «...источников света, скорости его распространения, его прерывания и затухания, его расщепления на различные цвета, влияния на пего различной плотности атмосферы, метеорологических явлений, относящихся к свету, особенных свойств некоторых веществ по отношению к свету-» *. Работы Юнга, представляющие собой наиболее существенный вклад в теорию оптических явлений со времен Ньютона, были восприняты физи- * Thomas Young, A course of lectures in natural philosophy, etc., 2nd cd., London, 1845, p. 340. 200
ками того времени с недоверием, а в Англии они подвергались даже грубым насмешкам. Объяснялось это отчасти тем, что Юнг пытался применять принцип интерференции и к явлениям явно не интерференционным, отчасти некоторой неясностью изложения, которая чувствуется и сейчас и которая должна была еще больше чувствовался в те времена, и отчасти, как упрекал Юнга впоследствии Лаплас, -■ - ч. Юнг иногда удовлетворялся недостаточно строгими, а порой повер . ■ л ^гат^м-тгитег'-'ттми доказательствами. 2. ПОЛЯРИЗАЦИЯ СВЕТА. В гл. 6 говорилось об открытом Гюйгенсом явлении, объяснения которого, как он искренне сам заявил, он дать не смог. Луч света, прошедший сквозь кристалл исландского шпата, приобретает какое-то особое свойство, благодаря которому он, попадая на второй кристалл исландского шпата с главным сечением, параллельным первому, уже испытывает не двойное лучепреломление, а обычное. Если же этот второй кристалл шпата повернуть, то вновь возникнет двойное лучепреломление, но интенсивность обоих преломленных лучей будет зависеть от угла поворота. В первые годы XIX столетия исследованием этого явления занялся французский военный инженер Этьенн Малюс (1775—1812), который в 1808 г. обнаружил, что свет, отраженный от воды под углом 52°45', обладает тем же свойством, что и свет, прошедший через кристалл исландского шпата, причем отражающая поверхность как бы является главным сечением кристалла. Это явление наблюдалось и при отражении от любого другого вещества, но требуемый угол падения менялся в зависимости от показателя преломления вещества. В случае отражения от металлической поверхности картина получалась более сложной. В следующей работе, написанной в том же году, Малюс, экспериментируя с полярископом, описываемым до сих пор в учебниках физики под названием «полярископа Био» и состоящим из двух зеркал, расположенных под углом, приходит к формулировке известного закона, носящего его имя. Как раз в то время, когда Малюс проводил свои исследования, Парижская Академия наук объявила конкурс (1808 г.) на лучшую математическую теорию двойного лучепреломления, подтверждаемую опытом. Малюс принял участие в этом конкурсе и получил премию за свой имеющий историческое значение труд «Theorie de la double refraction de la lumiere dans les substances cristalisees» («Теория двойного лучепреломления света в кристаллических веществах»), опубликованный в 1810 г. В нем Малюс описывает свое открытие и найденный им закон; для его объяснения он принимает точку зрения Ньютона «не в качестве неоспоримой истины», а лишь как гипотезу, позволяющую рассчитать явление. Объявив себя, таким образом, сторонником корпускулярной теории света, Малюс пытается найти объяснение в полярносш световых корпускул, о которой бегло упоминает Ньютон в 26 вопросе (см. гл. 6, § 13). В естественном свете, как он теперь называется, корпускулы света ориентированы по всем направлениям, при прохождении же двоякопреломляющего кристалла или при отражении они ориентируются определенным образом. Свет, в котором корпускулы имеют определенную ориентацию, Малюс назвал поляризованным; это слово и его производные остались в физике и до наших дней. Исследования поляризации света, начатые Малюс ом, продолжили во Франции Био и Араго, а в Англии Брюстер, который в свое время был больше известен благодаря изобретенному им калейдоскопу (1817 г.), нежели важным открытиям в области кристаллооптики. В 1811 г. Малюс, Био и Брюстер независимо открыли, что отраженный луч также частично поляризован. 201
Поляризационный прибор Иоганна Нёренберга (1787—1862). Свет, падающий на стекло g, поляризуется, отражаясь на зеркало т, которое посылает затем свет в анализатор, прикрепленный к кольцу s. Справа показаны различные типы анализаторов. В 1815 г. Дэвид Брюстер (1781—1868) дополнил эти исследования открытием закона, носящего его имя: отраженный луч полностью поляризован (а соответствующий преломленный луч имеет максимальную поляризацию), когда отраженный и преломленный лучи перпендикулярны друг другу. Доминик Франсуа Араго (1786—1853) установил поляризацию' света лунного серпа, комет, радуги, еще раз подтвердив тем самым, что все это отраженный солнечный свет. Поляризованным является также свет, испускаемый под косыми углами раскаленными жидкими и твердыми телами, что доказывает, что этот свет исходит иэ внутренних слоев вещества и преломляется, выходя наружу. Но наиболее важным и наиболее известным открытием Араго является обнаруженная им в 1811 г. хроматическая поляризация. Помещая на пути поляризованного луча пластинку из горного хрусталя толщиной 6 мм и наблюдая прошедший сквозь нее луч через кристалл шпата, Араго получил два изображения, окрашенных в дополнительные цвета. Окраска обоих изображений при ловороте пластинки не менялась, но менялась при повороте кристалла шпата, причем оба цвета все время оставались дополнительными. Так, если одно из изображений было сначала красным при определенном положении кристалла шпата, то при его повороте оно становилось последовательно оранжевым, желтым, зеленым и т. д. Био повторил этот опыт в 1812 г. и показал, что угол поворота кристалла шпата, необходимый для получения определенного цвета изображения, пропорционален толщине пластинки. Кроме того, в 1815 г. Био обнаружил явление круговой поляризации и наличие правовращающих и левовращающих веществ. В том же году Био установил, что турмалин обладает двойным лучепреломлением и свойством поглощать обыкновенный луч и пропускать лишь необыкновенный. На этом явлении были основаны сконструированные Гершелем в 1820 г. известные «турмалиновые щипцы»— простейший поляризационный прибор, оставшийся неизменным до наших дней. Наибольшим неудобством этого прибора было окрашивание луча. Этого недостатка лишена 202
Огюстен Френель. призма, предложенная в 1820 г. английским физиком Уильямом Николем (1768—1851). Призма Николя также пропускает только необыкновенный луч. Комбинация двух таких «николей», как теперь называются эти двоякопреломляющие призмы, в один прибор, имеющий и •сейчас широчайшее применение, •была осуществлена самим Николем в 1839 г. Таким образом, основные явления поляризации света, представляющие собой обширный и интересный раздел физики, включаемый теперь во все учебники, ■были открыты французскими физиками за семь лет, с 1808 по 1815 г. И поскольку открытие столь интересных явлений происходило под флагом корпускулярной теории, казалось, что она получает в этих явлениях еще одно подтверждение. 3. ВОЛНОВАЯ ТЕОРИЯ ФРЕНЕЛЯ. Этот прилив жизненных сил в корпускулярную теорию длился недолго. Молодой дорожный инженер Огюстен Френель (1788—1827), присоединившийся волонтером к роялистским войскам, которые должны были преградить дорогу Наполеону во время •его возвращения с острова Эльба, в период Ста дней был уволен со службы и вынужден был удалиться в Матье, близ Казна. Молодой инженер, почти не сведущий в оптике, находясь в Казне, посвятил себя исследованию дифракции, имея в своем распоряжении лишь случайное и примитивное экспериментальное оборудование. Два мемуара, представленных им 15 октября 1815 г. Парижской Академии наук, были первым результатом этих трудов. Араго, которому вместе с Пуансо поручили рассмотреть их и прореферировать, нашел их настолько интересными, что добился для Френеля, который ■с наступлением реставрации был вновь принят на службу, приглашения в Париж для повторения своих опытов в более благоприятных условиях. Френель начал исследовать тени, отбрасываемые небольшими препятствиями на пути лучей, и обнаружил образование полос не только снаружи, но и внутри тени, что до него уже наблюдал Гримальди и о чем умолчал Ньютон. Исследование тени, образуемой тонкой проволокой, привело Френеля ко вторичному открытию принципа интерференции. Его поразило, что, если край экрана был расположен вдоль одной стороны проволоки, внутренние полосы исчезали. Итак, подумал он сразу, раз прерывание света от одного из краев проволоки приводит к исчезновению внутренних полос, значит, для их образования необходимо совместное действие лучей, приходящих с обеих сторон проволоки. «Внутренние каемки не могут образовываться от простого смешения этих лучей, потому что каждая сторона проволоки в отдельности направ- 203
ляет в тень только непрерывный поток света; следовательно, каемки образуются в результате перекрещивания этих лучей. Этот вывод, который представляет собой, так сказать, перевод явления на понятный язык, полностью противоречит гипотезе Ньютона и подтверждает теорию колебаний. Легко можно догадаться, что колебания двух лучей, которые скрещиваются под очень малым углом, могут действовать в противоположные стороны в тех случаях, когда узлы одних волн соответствуют пучностям других» *. Идея Френеля ясна из этой цитаты, хотя ее формулировка недостаточно точна и была впоследствии исправлена самим Френелем: колебания ослабляются, когда «узлы разрежения» одной системы лучей совпадают с «узлами уплотнения» другой системы, и усиливаются, когда оба движения находятся «в гармонии». В общем, приняв принцип интерференции, Френель повторяет путь Юнга. В частности, он дает объяснение окрашиванию тонких слоев. В Париже Френель узнал об опытах Юнга с двумя отверстиями, которые, по его мнению, были вполне подходящими для иллюстрации волновой природы света. Тем не менее для исключения всякой возможности истолкования этого явления как действия краев отверстий Френель придумал известный «опыт с двумя зеркалами», о котором он сообщает в 1816 г., а затем в 1819 г. «опыт с бипризмой», ставший с тех пор классическим методом демонстрации принципа интерференции. В 1837 г. Хэмфри Ллойд показал, что оптическая интерференция может быть получена и с помощью одного зеркала, если заставить интерферировать прямой свет и отраженный от зеркала. Однако существенный прогресс был достигнут лишь в 1856 г., когда Жюль Жамен (1818—1886), развивая исследования Брюстера 1831 г., построил свой известный «интерференционный рефрактометр», образуемый двумя параллельными стеклянными пластинками, которые в 1867 г. Квинке предложил серебрить с внешней стороны. Как известно, в этом приборе интерференция происходит за счет разности оптических путей. Добавим здесь, кстати, что именно опыт с двумя зеркалами подсказал в 1833 г. Джону Гершелю (1792—1871) идею аналогичной установки для исследования интерференции акустических волн, в которой использовалась двойная трубка; эта установка была усовершенствована в 1866 г. Георгом Квинке (1834—1924), в честь которого она получила название, дошедшее до настоящего времени. Применение манометрического пламени для объективных наблюдений было предложено в 1864 г. Карлом Рудольфом Кенигом (1832—1901), заменившим резиновые трубки Квинке металлическими трубками, которые могли удлиняться, как в тромбоне. Вернемся к работам Френеля. Взяв на вооружение принцип интерференции, волновая теория располагала теперь тремя принципами: принципом элементарных волн, принципом огибающей и принципом интерференции. Это были три отдельных принципа, которые Френель гениально решил слить воедино. Таким образом, для Френеля огибающая волн не просто геометрическое понятие, как для Гюйгенса. В произвольной точке волны полный эффект представляет собой алгебраическую сумму импульсов, создаваемых каждой элементарной волной; полная сумма всех этих импульсов, складывающихся согласно принципу интерференции, может быть, в частности, равна нулю. Френель произвел такой расчет, хотя и не вполне строгим способом, и пришел к выводу, что влияние сферической волны во внешней точке сводится к влиянию небольшого сегмента волны, центр которой нахо- * Oeuvres completes d'Augustin Fresnel, I, Paris, 1866, p. 17. (Переводы работ Френеля по оптике на русский язык вошли в книгу: О. Френель, Избранные труды по оптике,, М., 1955.—• Прим. перее.) 204
дится на линии, соединяющей источник света с освещенной точкой; остальная часть волны дает в сумме нулевой эффект в рассматриваемой точке. Тем самым было преодолено препятствие, стоявшее в течение веков на пути утверждения волновой теории — согласование прямолинейного распространения света с его волновым механизмом. Каждая точка вне волны получает свет лишь от очень небольшой ее области, прилегающей к точке, ближайшей к рассматриваемой; все происходит так, как если бы свет распространялся по прямой линии от источника к освещенной точке. Действительно, волны должны огибать препятствия, но это утверждение не следует понимать грубо качественно, поскольку отклонение волны за препятствием зависит от длины волны. Зная длину волны, можно рассчитать, как и насколько отклонится свет за препятствием. Рассматривая явление дифракции, Френель произвел такой расчет, и его результаты прекрасно совпали с экспериментальными данными. Первые статьи Френеля о дифракции вследствие их недостаточной математической строгости были неодобрительно встречены Лапласом, Пуассоном и Био, утонченными аналитиками, для которых математическая строгость была культом. После нескольких лет перерыва в исследованиях Френель вновь излагает свою теорию в обширном мемуаре о дифракции, представленном в 1818 г. на конкурс Парижской Академии наук. Этот мемуар рассматривался комиссией, состоявшей из Лапласа, Био, Пуассона, Араго и Гей-Люссака. Трое первых были убежденные ньютонианцы, Араго был настроен в пользу Френеля, а Гей-Люссак, по существу, не был компетентен в рассматриваемом вопросе, но был известен своей честностью. Пуассон заметил, что из теории Френеля можно вывести следствия, находящиеся как будто в явном противоречии со здравым смыслом, поскольку из расчета следует, что в центре геометрической тени непрозрачного диска надлежащих размеров должно наблюдаться светлое пятно, а в центре конической проекции небольшого круглого отверстия на определенном легко вычисляемом расстоянии должно наблюдаться темное пятно. Комиссия предложила Френелю доказать экспериментально выводы из его теории, и Френель блестяще это выполнил, доказав, что «здравый смысл» в этом случае ошибается. После этого по единодушному предложению комиссии Академия наук присудила ему премию, а в 1823 г. он был избран ее членом. После установления теории дифракции Френель перешел к исследованию явления поляризации. Корпускулярная теория, вынужденная для интерпретации многочисленных явлений, открытых в первое пятнадцатилетие XIX века, вводить одну за другой различные гипотезы, совершенно необоснованные и порой противоречивые, к этому времени невообразимо усложнилась. В своем опыте с двумя зеркалами, расположенными под углом, Френель получил с помощью одного источника света два мнимых источника, всегда строго когерентных. Он попытался также видоизменить этот прибор, используя два луча, получающихся при двойном лучепреломлении одного луча, и компенсируя надлежащим образом разность оптических путей обоих лучей. Однако ему никак не удавалось добиться интерференции этих поляризованных лучей. В сотрудничестве с Араго он продолжал экспериментально исследовать возможность интерференции поляризованного света, и им удалось установить, что два луча света, поляризованные в параллельных плоскостях, всегда интерферируют, а два луча света, поляризованные перпендикулярно, никогда не интерферируют (в том смысле, что не гасят друг друга). Как объяснить этот факт? Как объяснить все остальные явления поляризации, не имеющие никакой аналогии в акустике? Тот факт, что луч, поляризованный при отражении, обладает двумя плоскостями симметрии, ортогональными друг другу и проходящими через луч, 205
мог натолкнуть на мысль о том, что колебания эфира происходят в этих плоскостях перпендикулярно направлению луча. Эта идея была высказана Френелю Ампером еще в 1815 г., но Френель не воспользовался ею. Юнгу.. едва лишь он узнал об опытах Френеля и Араго с поляризованным светом., тоже пришла мысль о поперечных колебаниях, однако то ли из-за неуверенности, то ли из благоразумия он говорил об этом как о «воображаемом поперечном движении», т. е. как о понятии чисто фантастическом,— столь бессмысленными с механической точки зрения представлялись ученым тоге* времени поперечные колебания эфира. После того как в течение многих лет Френель пользовался языком теории продольных колебаний, в 1821 г. он, не найдя другого пути интерпретации поляризационных явлений, решился принять теорию поперечности колебаний. В том же году он пишет: «Лишь несколько месяцев тому назад, размышляя с большим вниманием по этому поводу, я признал весьма вероятным, что колебательные движения световых волн осуществляются только в плоскости волн как для простого, так и для поляризованного света... Я постараюсь показать, что гипотеза, которую я представляю, не содержит ничего физически невозможного и что она уже может служить для объяснения основных свойств поляризованного света...»* То, что эта гипотеза может объяснить основные свойства поляризованного света, было детально показано Френелем; что же касается того, что в этой гипотезе нет ничего физически невозможного,— это уже совсем другое дело. Из поперечности колебаний следовало, что эфир, будучи тончайшим и невесомым флюидом, должен одновременно быть наитвердейшим телом, тверже стали, ибо только твердые тела передают поперечные колебания. Эта гипотеза представлялась исключительно смелой, почти безумной. Араго, физик явно не склонный к предрассудкам, тот самый Араго, который был другом, советчиком и защитником Френеля во всех случаях, не нашел возможным разделить ответственность за эту странную гипотезу и отказался подписать представленную Френелем статью. Таким образом, с 1821 г. Френель продолжал свой путь в одиночку, и это был путь, полный побед. Гипотеза о поперечности колебаний позволила ему построить свою механическую модель света. Основой ее является эфир, заполняющий всю Вселенную и пронизывающий все тела, причем эти тела вызывают изменение механических характеристик эфира. Из-за этих изменений, когда упругая волна переходит из свободного эфира в эфир, содержащийся в веществе, на поверхности раздела часть волны поворачивает обратно, а часть проникает в вещество. Тем самым было дано .механическое объяснение явления частичного отражения, остававшегося в течение нескольких веков тайной для физиков. Выведенные Френелем формулы, носящие теперь его имя, сохранили свой вид до наших дней. Скорость распространения колебаний в среде зависит от длины волны, а при заданной длине волны тем меньше, чем более преломляющей является среда. Отсюда вытекают как следствие преломление света и его дисперсия. В изотропных средах волны имеют сферическую форму с центром в точечном источнике излучения: в анизотропных средах форма волны описывается, вообще говоря, поверхностью четвертого порядка. В теории Френеля все сложнейшие явления поляризации интерпретируются в удивительном согласии о экспериментальными данными и предстают как частные случаи общего закона сложения и разложения скоростей. Исследование двойного лучепреломления повлекло за собой анализ сил, возникающих в упругой среде благодаря малым молекулярным неремеще- * Там же, р. 630. 206
ниям. В результате этого исследования Френель сформулировал ряд теорем, которые, как заметил Эмиль Верде (1824—1866), редактор трудов Френеля, легли в основу новой отрасли науки — общей теории упругости, развитой вскоре после появления трудов Френеля работами Копта, Грина, Пуассона и Ламе. В период с 1815 по 1823 г. благодаря Френелю было воздвигнуто величественное здание волновой оптики, которое, как, впрочем, все творения человека, не было свободно от недостатков. Молодой инженер подходил к различным проблемам и разрешал их, полагаясь больше на свою могучую интуицию, нежели на математический расчет. Поэтому иной раз он допускал ошибки, а чаще всего лишь давал схему решения. Но все же его идеи, несмотря на противодействие старых физиков, очень быстро увлекли молодежь, восхищенную наглядностью и простотой теоретической модели. Джордж Эйри (1801 — 1892), Джон Гершель (1792—1871), Франц Нейман (1798- 1895) и многие другие физики упорядочили и скорректировали теорию Френеля и вывели из нее ряд следствий. С 1823 г. Френель, уже больной, начинает по долгу службы заниматься исследованием маяков (университетской кафедры ему не удалось получить). Эти исследования, которые он проводил до самой смерти, наступившей в 1827 г., привели его к изобретению ступенчатых линз и существенному усовершенствованию мигающих маяков. 4. ОПТИКА ГАМИЛЬТОНА — ЯКОБИ. Когда в 1830 г. ирландец Уильям Роуан Гамильтон (1805—1865) начал заниматься оптикой, волновая теория света еще не была общепринятой. Пуассон был еще последователем корпускулярной теории. Био, самый консервативный из великих физиков XIX века, остался верен ей до самой смерти, последовавшей в 1862 г. Брюстер волновой теории не принимал, поскольку считал невозможным приписывать творцу «столь грубую идею, как заполнение всего пространства эфиром для того,, чтобы создать свет». Трудно поверить, но и Араго, согласно свидетельству Верде, заявил в 1851 г., что не может более следовать идеям Френеля с тех пор, как тот стал говорить о поперечных колебаниях эфира. В этих условиях Гамильтон задался целью создать формальную теорию- известных оптических явлений, которая была бы приемлема как с точкрг зрения волновой интерпретации, так и с точки зрения корпускулярной,, и была бы построена по образцу принципа наименьшего действия (саг. гл. 7, § 3). Гамильтон заявил, что ставит перед собой цель — создать формальную теорию оптических явлений, которая обладала бы такой же «красотой, эффективностью и гармонией», как аналитическая механика Лагранжа. Согласно Гамильтону, мы можем рассматривать законы распространения световых лучей сами по себе, независимо от объясняющих их теорий и прийти таким образом к «математической оптике». Более того, идя по этому путиу Гамильтон вывел отсюда целую научно-философскую доктрину. В эволюции каждой науки Гамильтон различает две стадии: в первой ученый восходит от отдельных фактов к законам, пользуясь индукцией и анализом, во второй он от законов нисходит к следствиям, пользуясь дедукцией и синтезом. Иными словами, человек собирает и группирует отдельные явления до тех пор, пока научное воображение не даст ему возможность вскрыть внутренние законы, позволяющие возвыситься до понимания единства всего разнообразия. После этого из единства человек вновь получает разнообразие, проникая с помощью открытых законов в будущее. В этом состоит метод Гамильтона. Он замечает, что принцип наименьшего действия, хотя и выведен из метафизических соображений о наличии экономии в природе, следует рассматривать (по крайней мере в известных случаях) как принцип экстремального действия, и поэтому он говорит о ста- 207
ционарном или варьируемом действии. Таким образом, Гамильтон пришел к формулировке носящего его имя принципа, согласно которому некоторая физическая величина, точно определенная математически, стационарна при распространении света. Этим путем ему удается рационализировать геометрическую оптику, превратив ее в формальную теорию, позволяющую интерпретировать опытные данные без необходимости выбора между корпускулярной и волновой гипотезами. В 1834—1835 гг. Гамильтон обобщил свою теорию оптических явлений на динамику и систематически развил ее, сведя решение общей задачи динамики к системе двух уравнений в частных производных. В этих работах Гамильтона достигнут чудесный синтез проблем оптики и механики, который был впоследствии вновь найден Луи де Бройлем и который непосредственно вдохновил Шредингера в его исследованиях (см. гл. 15). Интересно заметить, что наиболее мощные математические средства квантовой механики были заимствованы именно из аналитической механики, сложившейся в рамках классической физики. Созданная теория позволила Гамильтону предсказать, что если на плоскопараллельную пластину, вырезанную в двуосном кристалле перпендикулярно оптической оси, направить пучок естественного света так, чтобы он преломился в кристалле параллельно оптической оси, то на выходе из пластины образуется светящееся кольцо, диаметр которого меняется с изменением толщины пластины. Как известно,— это явление внутренней конической рефракции, которое было подтверждено экспериментально Хемфри Ллойдом (1800—1881) в опытах с арагонитом. Однако наиболее общее применение теории Гамильтона было дано Карлом Густавом Якоби (1801—1854) в его знаменитых работах, начатых в 1842 г. Одновременно Якоби упростил и обобщил теорию Гамильтона, придав ей современную форму, ставшую классической. Вот почему эту теорию часто называют теорией Гамильтона — Якоби. 5. СКОРОСТЬ СВЕТА. Как мы уже упоминали не раз, корпускулярная теория приписывает свету большую скорость в более плотных средах, тогда как волновая теория приписывает ему в этом случае меньшую скорость. Араго, противник корпускулярной теории и не совсем последовательный приверженец волновой, полагал, что измерение скорости света в материальных средах было бы лучшим способом, experimentum crucis, установить, которая же из этих теорий справедлива. И вот в 1838 г. он предлагает соответствующий опыт, выполнение которого, однако, из-за слабости зрения он был вынужден предоставить другим. Таким образом, Араго особенно подчеркнул решающую роль этого опыта для окончательного подтверждения волновой теории, так что задача измерения скорости света наземных источников приобрела особую необходимость и важность в глазах молодых физиков. Первым удалось справиться с ней в 1849 г. Арману Ипполиту Физо (1819—1896). В принципиальном отношении опыт Физо был подобен опыту Галилея (см. гл. 4, § 12). Физо смонтировал установку, в которой луч света проходил в щели между соседними зубцами колеса, вращающегося с большой скоростью, и попадал по нормали на плоское зеркало, находящееся на расстоянии 8633 м. Отраженный луч шел обратно по направлению падающего луча. Если зубчатка была неподвижна, то отраженный луч проходил обратно через ту же щель, через которую он прошел в прямом направлении, и наблюдателю зеркало представлялось освещенным. Если же зубчатка достаточно быстро вращалась, то за время, необходимое свету для прохождения от зубчатки до зеркала и обратно, на место щели перемещался зубец, преграждавший путь отраженному лучу, так что поле зрения казалось наблюдателю 208
темным. Если скорость вращения зубчатки еще больше возрастала, так что отраженный луч попадал уже в следующую щель, то поле зрения вновь становилось светлым. Физо получил для скорости света значение 313 274 304 м/сек. Эти опыты были повторены Альфредом Корню (1841—1902), который в качестве среднего из 1000 опытов дал в 1873 г. значение 298 400 км/сек с возможной ошибкой в 1/300. В усовершенствованном виде этот метод был применен в 1882 г. Джемсом Юнгом (1811—1883) и Джорджем Форбсом, а в 1928 г. А. Каролюсом и О. Миттельштедтом, заменившими вращающуюся зубчатку ячейкой Керра, значительно более точным электрооптическим прибором, позволившим уменьшить расстояние до зеркала до нескольких метров. В таком виде опыты были снова повторены А. Хуттелем в 1940 г. и У. Андерсоном в 1941 г. Однако прибор Физо не позволял измерять скорость света в различных средах. В 1834 г. для измерения длительности электрической искры Уитстон ввел вращающееся зеркало и сразу же стал думать о возможности его применения для измерения скорости света. Однако здесь ему не удалось добиться успеха. Его проект был подхвачен Араго, предложившим очень сложный опыт, о котором мы упоминали в начале параграфа. Физо и Леон Фуко (1810—1868) взялись упростить его и практически осуществить. Сначала они работали вместе, но потом разделились, вступив в соревнование, кто быстрее достигнет цели. Это удалось сделать в 1850 г. Фуко, применившему приспособление, описываемое во всех учебниках физики. Суть опыта заключается в следующем. Время, необходимое для прямого и обратного прохождения светом расстояния между двумя зеркалами, одно из которых быстро вращается, определялось по углу поворота зеркала за это время, который оценивался по отклонению светового луча после его отражения от вращающегося зеркала. Для определения числа оборотов вращающегося зеркала в секунду Фуко применил (по-видимому, впервые в физических исследованиях) стробоскопический метод, т. е. метод кажущегося замедления периодического движения, позволяющий удобно проводить наблюдение. Помещая между обоими зеркалами, находящимися одно от другого на расстоянии нескольких метров, различные вещества, отличные от воздуха, можно было определить скорость света в них. Опыты, проведенные Фуко в 1850 г., позволяли лишь сравнивать значения скоростей света. Поместив трубу с водой между двумя зеркалами, он показал, что скорость света в воде составляет 3/4 скорости света в воздухе. К тому же результату пришел несколько позже Физо, поставивший опыт совместно с Луи Бреге (1804—1883). В 1862 г. Фуко, отвлекшись от других исследований (см. гл. 12), вновь предпринял измерение скорости света и нашел ее равной 298 000 км/сек с максимальной ошибкой ±500 км/сек. Измерения скорости света повторялись с последующими улучшениями методики Фуко Симоном Ньюкомбом (1835—1909) в 1881—1882 гг., Альбертом Майкельсоном в период 1878 — 1882 гг. и еще раз в 1924—1926 гг. и У. Андерсоном в 1937 г. Измерения Андерсона дают для скорости света значение 299 764 км/час с возможной ошибкой 15 км1сек. Все приведенные значения относятся к распространению света в пустоте. Наземные измерения систематически дают для скорости света значение больше полученного с помощью астрономических методов (см. гл. 5); причина этого неизвестна. Все эти измерения согласуются также в том, что в более преломляющих средах скорость света оказывается меньшей. Но эти измерения вскрыли еще одну важную особенность: показатель преломления среды не равен точно отношению скоростей света в пустоте и в рассматриваемой среде, как того требует теория Френеля, причем наблюдаемое отклонение намного превы- 14 Марио Льоцци 209
шает величину ошибки эксперимента. Это расхождение в 1881 г. объяснил Рэлей, который ввел понятия «фазовой скорости», т. е. (не наблюдаемой указанными методами) скорости строго монохроматической волны, и «групповой скорости»— скорости гребня волны, получающегося в результате наложения большого числа монохроматических волн. В диспергирующей среде групповая скорость, которая как раз и измеряется в описанных опытах, не совпадает с фазовой. В 1850 г. опыты Физо и Фуко представлялись решающим триумфом волновой теории. Карло Маттеуччи, один из крупнейших итальянских физиков того времени, в том же году писал: «Прямое экспериментальное доказательство уменьшения скорости света в более плотных средах, о котором мы только что говорили, полностью отвергает ньютоновскую гипотезу и великолепно подтверждает справедливость волновой» *. Однако физические теории никогда не бывают окончательными. Теория Френеля спокойно просуществовала еще около двадцати лет, после чего начались всякие неприятности. 6. НЕПОДВИЖЕН ЛИ ЭФИР ИЛИ ЖЕ ОН УВЛЕКАЕТСЯ ПРИ ДВИЖЕНИИ ТЕЛ? Гипотеза упругих колебаний эфира сразу ставила проблему: неподвижен эфир или же движется? В частности, движется ли эфир, сконцентрированный в теле, вместе с этим телом? Прекрасные опыты Араго доказали, что движение Земли не оказывает никакого ощутимого воздействия на преломление света, приходящего от звезд. Этот результат был несовместим с корпускулярной теорией, поэтому Араго обратился к Френелю с вопросом, укладывается ли он в рамки волновой теории. В одном из своих писем 1817 г. Френель ответил, что этот результат легко объясняется волновой теорией, как и явление аберрации, если только принять частичное увлечение эфира, т. е. принять, что движущееся тело увлекает с собой не весь содержащийся в нем эфир, а лишь избыточную часть эфира по сравнению с равным объемом пустого пространства, С помощью этой гипотезы Френелю удалось объяснить все явления, проистекающие из-за быстрого движения преломляющего тела. Влияние движения тел, испускающих свет или звук, было исследовано теоретически в 1842 г. австрийским физиком Христианом Допплером (1803—1853), который показал, что при приближении источника света к наблюдателю период колебаний представляется наблюдателю меньшим, чем при неподвижном источнике, т. е. цвет излучения смещается в сторону ультрафиолета. Если же источник удаляется от наблюдателя, то цвет смещается в красную сторону спектра. Аналогично если источник звука приближается к наблюдателю, то звук воспринимается более высоким, а если удаляется — более низким; в этом явлении теперь легко убедиться, наблюдая изменение высоты звука гудка паровоза, проходящего мимо наблюдателя. В 1848 г. Физо предложил воспользоваться этим явлением, получившим название эффекта Допплера, или эффекта Допплера — Физо, для измерения радиальной составляющей скорости звезд по смещению их спектральных линий. Уже сам Допплер заметил, что этот же метод можно применить для измерения скоростей двойных звезд; однако это измерение никому не удавалось провести, в том числе и Максвеллу. Применение допплеровского метода в астрофизике стало возможным лишь после появления в 1860 г. призмы прямого зрения, которую предложил астроном Джован Баттиста Амичи * Carlo Matteucci, Lezioni di fisicaj 4 ediz., Pisa, 1850, p. 549. 210
А. Майкельсон. (1780 —1863), известный конструктор оптических инструментов большой точности. Помимо этой призмы, как известно из учебников физики, он ввел в употребление еще другую призму (полного внутреннего отражения), названную в его честь, усовершенствовал микроскоп и предложил идею иммерсионного микроскопа. Призма прямого зрения Амичи состоит из призмы из флинтгласа, расположенной между двумя призмами из кронгласа; она дает спектр в направлении падающего луча. В 1869 г. Фридриху Цолльнеру (1834 —1882) пришла в голову счастливая идея применить пару противоположно трасположенных призм прямого зрения Амичи, чтобы получить два противоположных спектра. Таким образом был создан так называемый реверсионный спектроскоп, который позволял уже использовать эффект Допплера. С этого момента значение эффекта Допплера в астрофизике чрезвычайно возросло. Эффект Допплера тоже как будто подтверждал идею Френеля о частичном увлечении эфира; тем не менее эту гипотезу оспаривал Джордж Габриэль Стоке (1819 —1903), один из наиболее блестящих продолжателей дела Френеля, известный прежде всего открытием в 1852 г. явления флюоресценции и закона, определяющего флюоресценцию, который и сейчас называется «законом Стокса». В известной работе, относящейся к 1845 г., Стоке отстаивает идею о полном увлечении эфира, находящегося в непосредственной близости от Земли, которое переходит постепенно в частичное увлечение, все более уменьшающееся по мере удаления от Земли. В 1851 г. Физо пытался решить этот вопрос, заставив интерферировать два луча света, один из которых проходил столб воды в направлении ее течения, а второй — против течения. Если эфир увлекается при движении воды, то интерференционные полосы должны сместиться по отношению к тому положению, которое они занимают в опыте с неподвижной водой. Экспериментальные результаты, полученные Физо, подтвердили гипотезу Френеля. К тому же выводу привели исследования Эдуарда Кеттелера (1836 —1900). проведенные в 1871 г., и исследования Майкельсона и Морли в 1886 г. Но еще пятью годами раньше Майкельсон в своем ставшем впоследствии знаменитом опыте пытался экспериментально обнаружить движение Земли относительно эфира, принимаемого за неподвижный, т. е. обнаружить так называемый «эфирный ветер». Примененный Майкельсоном метод можно назвать «методом двух путей»: один луч света, падая на слегка посеребренную пластину, расщеплялся на два взаимно перпендикулярных луча; эти лучи отражались по нормали от двух зеркал, расположенных на одинаковом расстоянии от пластины, возвращались обратно по тому же пути, сливались вместе и направлялись в оптическую систему. Если Земля движется относительно эфира, то из-за различия времен, требуемых для прохождения обоими лучами своих взаимно перпендикулярных путей, должна наблюдаться интерференционная кар- 14* 211
тина. Хотя линейная скорость обращения Земли вокруг Солнца (30 км/сек) довольно мала по сравнению со скоростью света, экспериментальная установка была способна обнаружить даже в 100 раз меньший эффект. Этот опыт, многократно повторенный для различной ориентации прибора и в разное время года, давал у Майкельсона все время чисто отрицательный результат. Критика этого опыта со стороны Лоренца привела к тому, что Майкель- сон вновь повторил его в 1887 г. вместе с Эдуардом Уильямом Морли (1838—1923) — и с тем же результатом. Таким образом, Майкельсон мог утверждать, что, согласно его опытам, эфир движется вместе с Землей. Однако явление аберрации света указывает на то, что эфир неподвижен. Эти два вывода резко противоположны один другому. В гл. 12 мы увидим, как это противоречие привело к появлению теории относительности. Опыты Майкельсона были повторены с некоторыми усовершенствованиями Морли и Миллером в 1904 г. с тем же результатом. Позже, с 1921 по 1925 г., Миллер производил непрерывные наблюдения, которые привели его к выводу, что Земля движется по отношению к эфиру со скоростью 9 км/час. Однако этот вывод был опровергнут последующими опытами Джозефа Кеннеди и многими другими, вплоть до нового опыта Майкельсона, проведенного совместно с Пизом и Пирсоном в 1929 г. 7. НЕВИДИМЫЕ ИЗЛУЧЕНИЯ. В первое тридцатилетие XIX века исследования поляризации и природы света оттеснили на второй план другие важные открытия в области световых явлений. Тот факт, что световые лучи связаны с тепловыми лучами, ясный из непосредственного наблюдения, был известен, конечно, еще со времен античности. Само применение слова «фокус» к вогнутым зеркалам и к линзам показывает, что здесь внимание обращалось больше на концентрацию тепловых лучей, а не световых *. Но различение световых и тепловых лучей мы встречаем впервые, по-видимому, в «Magia naturalis» («Натуральная магия») Порты (1589 г.), где выражается удивление, почему вогнутое зеркало концентрирует не только тепло, но и холод. Это наблюдение было предметом тщательного экспериментального исследования Академии опытов, причем было замечено ощутимое охлаждение в фокусе вогнутого зеркала, перед которым помещен большой кусок льда. А Паоло дель Буоно (1625 — 1659), корреспондент этой же Академии, заметил, что лучи, проходящие через линзу из льда, фактически не теряют своей тепловой способности. Еще более ясно различие между световыми и тепловыми лучами выявил Мариотт, который с помощью вогнутого зеркала из льда показал, что тепловые лучи отражаются от него без ослабления, так что в фокусе удается создать интенсивность, достаточную для того, чтобы воспламенить порох. В 1777 г. Ламберт показал, что тепловые лучи, как и световые, распространяются прямолинейно. В 1800 г. Вильгельм Гершель произвел фундаментальное открытие. Желая проверить, действительно ли тепло, как принято было считать, распределено равномерно по солнечному спектру, Гершель перемещал чувствительный термометр вдоль солнечного спектра и обнаружил, что показываемая им температура не только непрерывно повышалась при перемещении от ультрафиолетового конца спектра к красному, но ее максимум вообще достигался в области, лежащей за красной частью спектра, т. е. там, где глаз ничего не различает. Вот пример того, насколько «в естествознании * Focus на латинском языке или fuoco на итальянском означают огонь, костер, очаг.— Прим перее. 212
полезно сомневаться в общепринятых вещах»,— замечает по этому поводу Гершель. Он тут же объясняет это явление невидимым тепловым излучением, исходящим из Солнца и отклоняемым призмой слабее красного цвета, почему оно и получило название «инфракрасного излучения». Затем Гершель исследовал это невидимое излучение, испускаемое земным источником, представлявшим собой железный цилиндр, нагретый, но не светящийся, и показал преломление этого излучения в линзах. Юнг понимал важность открытия Гершеля и в своих лекциях в 1807 г. назвал его самым крупным открытием со времен Ньютона. Правда, Джон Лесли (1766—1832), весьма аккуратный экспериментатор, пытался объяснить опыты Гершеля воздушными течениями, однако его теоретические возражения не нашли сторонников. Более удачными были его экспериментальные исследования (1804 г.), и сейчас еще приводимые в курсах физики. С помощью дифференциального термометра, носящего его имя, но описанного еще в 1685 г. Иоганном Христофором Штурмом (1635 — 1703), и с помощью своего «куба», одни грани которого были зачерненными, а другие зеркальными, Лесли показал, что испускание и поглощение телом теплового излучения зависят от характера его поверхности. За несколько лет до работ Лесли немецкий физик Иоганн Риттер (177(3—• 1810) сделал другое открытие, «симметричное» открытию Гершеля и столь же важное. Повторив в 1802 г. опыты Гершеля, он задался целью исследовать химическое действие различных участков светового спектра. Для этого он применял хлористое серебро, почернение которого под действием световых лучей было обнаружено Иоганном Генрихом Шульце (1687 —1744) еще в 1727 г., и установил, что химическое действие излучения возрастает постепенно по спектру от красного конца к фиолетовому и достигает максимума за фиолетовой областью, там, где глаз уже не воспринимает никакого света. Таким образом было найдено в спектре новое излучение, присутствующее в солнечном свете и преломляемое призмой сильнее, чем фиолетовое, в связи с чем оно и получило название «ультрафиолетового излучения». Томас Юнг с большей точностью повторил опыты Риттера и произвел также измерения интенсивности, а Уильям Волластон (1766 —1828) подтвердил полученные Юнгом результаты в опытах с раствором гуммигута, который под действием света меняет свой цвет с желтого на зеленый. За этим последовали работы многих других физиков, в том числе де Сос- сюра и Пикте, Гей-Люссака и Тенара, Зеебека и Берара, каждый из которых внес свой вклад в исследование этого явления. Эти исследования привели также к одному важному применению — фотографии, играющей столь большую роль и для самой физики. Мы не можем здесь, однако, останавливаться на истории фотографии. Достаточно лишь упомянуть, что в 1839 г. Луи Дагерр (1789 —1851) сообщил об изобретенном им процессе, названном «дагерротипией», являющемся усовершенствованием метода получения фотографических изображений на металле, предложенного в 1827 г. Жозе- фом Ньепсом (1765 —1833), сотрудником которого был Дагерр. В 1840 г. Дрейпер сфотографировал Луну, а в 1842 г. — линии Фраунгофера; в том же году Алессандро Майокки (1795 —1854) сфотографировал Солнце. Фундаментальный вклад в эти исследования внес Мачедонио Меллони (1798 —1854). Меллони, один из крупнейших итальянских экспериментаторов, занялся исследованием «лучистого тепла» с помощью инструмента, значительно более чувствительного, чем бывшие тогда в употреблении обычные термометры. Он применял «термо-мультипликаторы», состоящие из термоэлектрического столбика (см. гл. 10), связанного с гальванометром Нобили, чувствительным элементом экспериментального приспособления, известного сейчас как оптическая скамья Меллони. При поддержке Араго Меллони провел свои главные опыты в Париже, где вынужден был искать полити- 213
Мачедонио Меллони. ческого убежища с 1831 по 1839 г., ибо оказывал помощь парижским студентам, принявшим участие в революции 1830 г. После анализа результатов, полученных в области исследования лучистого тепла предшествующими физиками, и исправления некоторых из них Меллони начинает самостоятельные исследования с изучения поглощения лучистого тепла различными телами и обнаруживает, что каменная соль весьма прозрачна для тепла, так что особенно подходит для изготовления призм и линз, предназначенных для исследования инфракрасного излучения. Меллони показал различную преломляемость тепловых лучей, которая до того отрицалась, и «химических», т. е. ультрафиолетовых лучей; он доказал, что лучистое тепло поляризовано, и с помощью остроумного опыта, приписываемого теперь Тиндалю, показал, что интенсивность лучистого тепла убывает обратно пропорционально квадрату расстояния. Еще в 1833 г. Карло Маттеуччи показал, что тепловые лучи интерферируют между собой, а вслед за ним Форбс (1809 —1868) подтвердил интерференцию тепловых лучей на приборе с двумя зеркалами Френеля. Большое значение имеет работа Меллони, вышедшая в Неаполе в 1842 г., куда он был приглашен в Школу искусств и ремесел (должность эту он был вынужден оставить в 1848 г. тоже по политическим соображениям) . В этой небольшой работе (всего 47 страниц) он разъясняет понятия лучистого тепла, света и химических лучей (ультрафиолета) как сходных явлений излучения, различающихся лишь длиной волны. Это было одним из крупнейших достижений науки того времени и существенным стимулом к выработке единых теорий, характерных для прогресса физики в XIX веке. В своей новой работе, вышедшей годом позже, Меллони показал, что поглощение инфракрасного излучения происходит так же, как и поглощение видимого излучения, и подобно тому как при определенной толщине тела бывают прозрачны или непрозрачны для света, так и для тепла они бывают «теплопрозрачны» и «теплонепроницаемы». Как и свет, тепло может испытывать избирательное поглощение в телах, так что оптически прозрачное тело не всегда «теплопрозрачно», как, например, стекло, которое слабо поглощает свет и сильно поглощает тепло. Все эти явления, а также различная преломляемость тепловых лучей позволили Меллони говорить в фигуральном смысле о «тепловых цветах». В 1845 г. Меллони показал, что тепловое излучение — это не чисто поверхностное явление, в нем участвуют и внутренние слои излучающего тела. В своей работе «La thermocrose ou la coloration calorique» («О тепловых цветах»), опубликованной в Неаполе в 1850 г. (и переизданной в 1954 г. 214
«Скамья» Меллони. Слева - термоэлектрический столб Нобили, далее расположены экраны, линзы, призмы, источник тепла, укрепленные на металлических стержнях, которые могут перемещаться вдоль линейки (Парма, Институт физики им. Меллони). в Болонье в ого собрании сочинений), Меллони дает захватывающее по форме цельное изложение своей теории лучистого тепла и своих классических экспериментов. После введения, носящего автобиографический характер, Меллони описывает сначала приборы для измерения лучистого тепла и источники теплового излучения, потом переходит к экспериментальным исследованиям теплового излучения в пустоте и в воздухе, а затем — к распространению лучистого тепла в различных веществах. В этой классической работе было положено начало исследованию излу- чательной и поглощающей способности различных тел (и в частности, сажи, что привело к понятию черного тела) и показано, что законы, которым подчиняются классические явления оптики, совпадают с законами, определяющими аналогичные явления в области теплового излучения. Исследования Меллони были продолжены Джоном Тиндалем (1820—1893), в частности в области поглощения в газах. Тиндаль показал, что сухой воздух плохо поглощает тепловые лучи, и после долгой полемики с Генрихом Густавом Магнусом (1802—1870) продемонстрировал в 1881 г. сильное поглощение тепловых лучей водяным паром, что имеет, конечно, большое значение для метеорологии. Так же как применение термоэлектрической батареи обусловило возможность фундаментальных открытий Меллони, применение нового чувствительного термометра — болометра — сделало возможным дальнейшее продвижение в исследовании лучистой энергии. Этот новый прибор был описан в 1881 г. американским физиком Самюэлем Ленгли (1834—1906). Тончайшая полоска платины, покрытой сажей, служащая термочувствительным элементом, является частью электрического контура. Если на полоску падает излучение, то ее температура меняется, и вследствие этого меняется электрическое сопротивление; по изменению сопротивления можно судить об изменении температуры. Болометр — исключительно чувствительный прибор, позволяющий установить изменения температуры с чрезвычайно высокой точностью. Этот новый прибор позволил Ленгли сделать ряд открытий. Он показал, что максимум излучения солнечного спектра находится в области оранжевого цвета, а не инфракрасного, как думали раньше; что инфракрасное излучение сравнительно легко проходит сквозь атмосферу; что количество энергии, необходимое для того, чтобы вызвать видимый эффект, очень силь- 215
Йозеф Фраунгофер. но зависит от цвета. Наконец, Ленг- ли измерил для наземных источников очень большие длины волн излучения вплоть до 0,05 мм. 8. СПЕКТРАЛЬНЫЙ АНАЛИЗ. Большой вклад в исследование дисперсии и создание ахроматических линз, начатое еще Доллондом, внес Йозеф Фраунгофер (1787—1826), в ком редкое искусство экспериментатора дополнялось незаурядными способностями теоретика. В своем предисловии к собранию сочинений Фраунгофера Э. Ломмель так подытоживал его вклад в практическую оптику: «Благодаря введению своих новых и*усовершенствованных методов, механизмов и измерительных инструментов для вращения и полировки линз... ему удалось получить достаточно большие образцы флинтгласа и кронгласа без всяких прожилок. Особенно большое значение имел найденный им метод точного определения формы линз, который совершенно изменил направление развития практической оптики и довел ахроматический телескоп до такого совершенства, о котором раньше нельзя было и мечтать» *. Чтобы произвести точные измерения дисперсии света в призмах, Фраунгофер в качестве источника света использовал свечу или лампу. При этом он обнаружил в спектре яркую желтую линию, известную теперь как желтая линия натрия. Вскоре установили, что эта линия находится всегда в одном и том же месте спектра, так что ее очень удобно использовать для точного измерения показателей преломления. После этого, говорит Фраунгофер в своей первой работе 1815 г., «...я решил выяснить, можно ли видеть подобную светящуюся линию в солнечном^ спектре. И я с помощью телескопа обнаружил не одну линию, а чрезвычайно большое количество вертикальных линий, резких и слабых, которые, однако, оказались темнее остальной части спектра, а некоторые из них казались почти совершенно черными»**. Линии в солнечном спектре были обнаружены еще в 1802 г. Уолласто- ном, наблюдавшим непосредственно через призму щель в камере-обскуре, сильно освещенную солнечными лучами. Уолластон заметил семь таких линий, из которых пять особенно отчетливых, и, приняв их за линии, разделяющие цвета спектра, больше о них не думал. Фраунгофер открыл сотни таких линий и внимательно их исследовал. Наиболее резко выраженные линии он обозначил большими и малыми буквами латинского алфавита {А, В, . . ., Z, а, Ъ, . . .) и зафиксировал их постоянное положение в спектре, ясно понимая их значение для измерения показателей преломления. Он установил, что линия D солнечного спектра * J. von Fraunhofer's gesammelte Schriften, Miinchen, 1888 S 7 ** Там же, S. 10. ' 216
находится в том же положении, что и яркая линия натрия в спектре лампы. Его спектроскоп состоял из коллиматора, призмы и зрительной трубы, т. е. по существу из тех же элементов, что и современные спектроскопы. Фраунгофер направил спектроскоп на Венеру и обнаружил, что свет этой планеты содержит те же темные линии, что и солнечный спектр. Исследование спектра электрических искр позволило обнаружить большое число ярких линий. Заслугой Фраунгофера является введение решеток для исследования спектров. Решетки применялись еще более 100 лет назад Клодом Дешалем (1621 —1678), повторившим опыты Гримальди с полированными металлическими пластинами, на которые Деталь нанес серию близко расположенных параллельных полос. Если тонкий пучок света направить в темной камере на такую пластинку, то он образует спектр на белом экране. Такой же результат был получен и со штрихованной стеклянной пластинкой. Фраунгофер изготовлял решетки из тончайших близко расположенных параллельных нитей или же наносил на стеклянной пластинке параллельные штрихи алмазом. Изготовление решетки требует большого искусства, потому что* для получения спектра необходимо по крайней мере 40 линий на миллиметре поверхности. Фраунгоферу удалось изготовить решетки, содержащие свыше 300 линий на миллиметре. Этот результат был далеко превзойден в 1883 г. американским физиком Генри Роулендом (1848—1901), изготовившим решетки с 800 штрихами на миллиметре; в настоящее время изготовляют решетки, содержащие даже 1700 штрихов на миллиметре. Решетки были предметом теоретического исследования Оттавиано Фабрицио Моссотти (1791 —1863), крупнейшего представителя математической физики в Италии в первой половине XIX века. Моссотти указал на удобство применения решеток для легкого и точного определения длин волн. Именно для этого, как известно, они применяются сейчас наряду с получением чистого спектра, называемого также нормальным, в котором фиолетовый цвет менее отклонен, чем красный, в противоположность спектру, создаваемому призмой. Опыты Фраунгофера по исследованию спектров испускания были продолжены в Англии Брюстером, Джоном Гершелем и Фоксом Тальботом (1800—1877). В 1834 г. после многочисленных опытов с пламенем спирта, в котором были растворены различные соли, Тальбот пришел к такому выводу: «Когда в спектре пламени появляются какие-нибудь определенные линии, они характеризуют металл, содержащийся в пламени» *. А в следующем году Чарльз Уитстон (1802—1875), исследуя спектр электрической искры, пришел к заключению, что линии спектра зависят лишь от материала электродов и не зависят от газа, в котором проскакивает искра. В 1855 г. Андорс Ангстрем (1814 — 1874) показал, однако, что, понижая давление газа, можно исключить влияние электродов и получить чистый спектр газа. Удачное содружество конструктора физических приборов Генриха Гейслера (1814—1879) и немецкого физика и математика Юлиуса Илюк- кера (1801—1868) привело к почти одновременному появлению (1855 г.) трубок Гейслера и трубок Плюккера, весьма удобных для изучения спектра газов. Несколькими годами раньше Уильям Аллен Миллер (1817—1870), продолжая опыты, начатые Гершелем, исследовал спектр солнечных лучей после их прохождения через различные газы (пары иода, брома и др.) и наблюдал в спектре темные линии, откуда заключил (1845 г.), что наблю- * The Philosophical Magazine and Journal of Science (3), 4, 114 (1834).
даемьте линии — это линии поглощения и соответствуют они только окрашенным, а не бесцветным парам. Этот вывод противоречил утверждению французского астронома Пьера Жансена (1824—1907), известного своими астрофизическими исследованиями, который нашел линии поглощения и в опытах с водяным паром. По поводу интерпретации этих линий развернулась долгая дискуссия, закончившаяся в конце концов признанием того, что это действительно линии поглощения. Впервые связь между линиями поглощения и линиями испускания была явно показана в 1849 г. Фуко, который наблюдал в спектре электрической дуги между угольными электродами многочисленные яркие линии, среди которых особенно выделялась линия D натрия. Но пропустив сквозь дугу интенсивный пучок солнечного излучения и наблюдая его спектр, он заметил, что линия D стала темной. Отсюда он заключил, что дуга, испускающая линию D, поглощает ее, когда излучение исходит из другого источника. Это интересное наблюдение не было, однако, развито. Истинными основателями спектрального анализа были немецкие ученые Густав Кирхгоф (1824—1887) и Роберт Бунзен (1811—1899). Многочисленные претензии других авторов на приоритет, выдвинутые вскоре после того, как выяснилась важность этого открытия, следует считать необоснованными. Экспериментальным работам Кирхгофа и Бунзена, проведенным с 1859 по 1862 г., весьма способствовало появление скромного приспособления — «горелки Бунзена», описанной Бунзеном и англичанином Генри Роско (1833—1915) в 1857 г. в связи с началом их фотохимических исследований. Новая горелка давала высокотемпературное несветящееся пламя, что позволяло переводить в парообразное состояние различные химические вещества и наблюдать их спектры, не осложненные собственными линиями пламени (во многих случаях эти линии приводили к ошибочным выводам в предшествующих экспериментах). В 1859 г. Кирхгоф и Бунзен опубликовали свою первую экспериментальную работу, а в следующем году Кирхгоф пришел к выводу, подтвержденному также и термодинамическими соображениями, что все газы поглощают в точности те же длины волн, которые они способны излучать. Этот закон называют сейчас законом «инверсии спектра» или законом Кирхгофа. В гл. 13 мы встретимся с применением этого закона в проблеме излучения абсолютно черного тела. Кирхгоф и Бунзен, кроме того, на основании своих и чужих экспериментов достаточно уверенно установили справедливость идеи Тальбота, что каждая светлая линия в спектре излучения характерна для излучающего ее элемента. Вооруженные этими двумя закономерностями, они приступили к спектральному анализу земных источников излучения, что привело их в 1861 г. к открытию рубидия и цезия — двух металлов, названных ими так по характерным для них красной и голубой линиям спектра *, позволившим их открыть. В том же году Крукс открыл таллий, в 1865 г. Райх и'Рихлер открыли индий, и т. д. После того как Кирхгоф применил спектральный анализ к свету земных источников, он объяснил остававшиеся до того непонятными линии Фраун- гофера как линии поглощения солнечной атмосферы (а также земной, влияние которой легко, однако, отличить), что явилось важной вехой в истории физики, особенно астрофизики. В 1888 г. Гельмгольц писал, что это открытие вызвало восхищение всех людей и возбудило их фантазию в большей мере, чем какое-либо другое открытие, потому что оно позволило заглянуть в миры, представлявшиеся нам совершенно недоступными. Как известно, ученые действительно «заглянули» в эти миры, сопоставив линии поглощения в спектрах света, приходящего от звезд, с яркими * Rubeus — красный, caesius — голубой (лат.).— Прим. перев. 218
линиями излучения элементов, известных на Земле, с тем чтобы установить, из каких элементов состоит атмосфера звезд. Такое сопоставление позволило уже Кирхгофу утверждать, что в солнечной атмосфере присутствуют натрий, железо, магний, медь, цинк, бор, никель. Общий вывод, к которому привели многочисленные последующие наблюдения, заключается в том, что элементы, существующие на Земле, распространены повсюду. Иными словами, вся Вселенная построена из одних и тех же материалов. После Кирхгофа и Бунзена физики в результате огромной экспериментальной работы установили спектры всех известных элементов, измерив длины волн линий и их относительные интенсивности. Картина, которую представляет собой спектр какого-либо элемента, скажем железа или неона, по своему богатству, сложности, разнообразию, интенсивности, цветовой игре не менее величественна, нежели звездное небо. Как и звезды, линии кажутся распределенными беспорядочно. И так же как астрономы каталогизируют тысячи звезд, давая каждой из них описание, необходимое, чтобы ее отличить и характеризовать, так и спектроскописты каталогизируют линии, характеризуя каждую длиной волны, интенсивностью и экспериментальными условиями, при которых она наблюдается. Применение спектрального анализа практически ограничивается сложностью и разнообразием спектров, которые еще более возросли после того, как в конце прошлого столетия было впервые обнаружено, что многие спектральные линии в сильных спектроскопах расщепляются на большое число расположенных рядом отдельных линий, образующих в своей совокупности «тонкую структуру» спектра.
ГЛАВА 9 • УЧЕНИЕ О ТЕПЛОТЕ ПОВЕДЕНИЕ ТЕЛ ПРИ НАГРЕВАНИИ 1. ТЕПЛОВОЕ РАСШИРЕНИЕ. Экспериментальные исследования теплового расширения в XVIII веке (см. гл. 7) привели к характерной путанице понятий, царившей почти до середины XIX столетия. Говорили, например, что «ртуть расширяется равномерно», забывая добавить, по отношению к какому эталону определяется это расширение. Между тем в качестве мерила неявно предполагалась та же ртуть, поскольку за равные интервалы температуры принимались интервалы, дававшие равные значения расширения ртути. При этих условиях утверждение о том, что ртуть расширяется равномерно, лишено смысла, точно так же как нет смысла и в утверждении, что видимое движение неподвижных звезд «равномерно», если само это движение служит для определения равных интервалов времени. Уже в начале столетия некоторые опыты Дэви показали необходимость принятия эталонной шкалы. Дэви сконструировал различные термометры — со ртутью, со спиртом, с чистой водой, с соленой водой. Каждый термометр он градуировал по Цельсию обычным способом с обычными двумя постоянными точками. Сопоставив показания этих термометров, он обнаружил полное их расхождение. Так, когда ртутный термометр показывал 50° С, спиртовой показывал 43°, термометр с оливковым маслом 49°, с чистой водой 25,6°, а с соленой водой 45,37°. Точное сопоставление показаний ртутного и воздушного термометров было произведено в 1815 г. Дюлонгом и Пти, которые пришли к заключению, что если расширение ртути считать равномерным, то расширение воздуха не будет равномерным, и наоборот. Однако полное выражение эти идеи получили лишь в знаменитом мемуаре Уильяма Томсона (лорда Кельвина), опубликованном в 1848 г., где вводится термодинамическая температурная шкала, не зависящая от применяемого термометрического вещества, почему она и получила название «абсолютной шкалы». Дюлонг и Пти в упомянутой работе считали, что два ртутных термометра дают всегда согласованные показания. Однако в 1808 г. Анджело Беллани (1776 —1852) смог показать ложность этого предположения, исходя из весьма незначительного на первый взгляд наблюдения, которое оказалось тем не менее весьма существенным, поскольку указало причину многих ошибок в проведенных измерениях температуры. Речь идет о смещении нуля в ртутных термометрах, обусловленном изменением с течением времени емкости стеклянного шарика. Изучение расширения различных сортов стекла, проведенное Реньо в 1842 г., берет свое начало от другого фундаментального труда Дюлонга и Пти (1818 г.) по "определению абсолютного теплового расширения ртути с помощью весьма остроумного метода двух температур и двух уровней, до сих пор описываемого в учебниках физики. Заметим кстати, что в связи с этим Дюлонг и Пти изобрели катетометр — точный прибор для определения разности уровней (в барометрах, капиллярах и т. д.) между двумя точками, не обязательно находящимися на одной вертикали. Знание абсолютного теплового расширения ртути позволило Дюлонгу и Пти экспериментально исследовать тепловое расширение других жидкостей и твердых тел с помощью методов, описываемых в курсах физики. Исследователи пришли к общему выводу, что по отношению к тепловому расширению ртути тепловое расширение других тел, твердых и жидких, оказывается 220
неравномерным, изменяющимся с температурой и подверженным большим аномалиям вблизи точек плавления. Из этого следует, что для каждого твердого или жидкого вещества нужно определять значения коэффициента теплового расширения теоретически для каждой температуры, а практически — для различных интервалов температур. Отсюда следует указанная Фридрихом Вильгельмом Бесселем (1784—1846) необходимость учета температурной поправки при определении удельных весов и составления таблицы поправок для барометрических отсчетов. Первой такой таблицей .мы обязаны Карлу Людвигу Винклеру, составившему ее в 1820 г. В области теплового расширения твердых тел Эйльгард Мичерлих (1794 —1863) в 1825 г. установил, что все кристаллы (за исключением кристаллов кубической системы) расширяются неравномерно в разных направлениях и, следовательно, изменяют свою форму с изменением температуры. Это явление было подтверждено Френелем и основательно исследовано Физо в многочисленных работах 1864—1869 гг., где он применял очень чувствительный метод, основанный на изменении формы колец Ньютона при изменении толщины слоя воздуха между двумя поверхностями. Одна поверхность изучаемого тела делалась слегка выпуклой и опиралась на плосковыпуклую линзу; с помощью оптической системы наблюдались образуемые отраженными лучами кольца Ньютона при освещении монохроматическим светом. При подогреве картина колец изменялась, и это позволяло определять изменение толщины воздушной прослойки. Этот метод пригоден также для изучения некристаллических тел и обладает столь высокой точностью, что Международный комитет мер и весов принял его для определения деформации металлического стержня эталонного метра. С помощью этого прибора Физо установил, что наряду с водой некоторые другие вещества (алмаз, изумруд и др.) также обладают максимумом плотности и что йодистое серебро сжимается при нагреве в интервале от —10е до +70° С. Еще Академия опытов установила, что вода обладает определенным максимумом плотности. Это явление отрицалось Гуком, но принималось некоторыми другими учеными. В 1772 г. Делюк провел систематическое исследование нерегулярности расширения воды и нашел, что вода имеет максимальную плотность при температуре 41° F и что при изменении температуры от 41 до 32° F ее расширение такое же, как и при нагреве от 41 до 50° F. Эти эксперименты были повторены в 1804 г. Румфордом, в 1805 г. Томасом Хоупом (1766—1844), а затем воспроизводились в течение всего столетия. В 1868 г. Франческо Россетти (1833—1881) установил максимум плотности между 4,04 и 4,07° С, в 1892 г. Карл Шеель (1866 — 1936) нашел, что он лежит при 3,960° С, а Хаппиус через год после этого установил значение 3,98° С. Температура в 4° С, которой, согласно всем учебникам физики, соответствует максимум плотности воды, представляет собой округленную и потому несколько условную величину. Влияние температуры на период колебаний маятника, на которое еще в 1670 г. указал Пикар, было в 1726 г. скомпенсировано лондонским изготовителем хронометров Джорджем Грехемом (1675 —1751) с помощью известной системы стержней из различных металлов, различающихся по коэффициенту теплового расширения. В 1765 г. Джон Гаррисон (1693 —1776) ввел метод компенсации для карманных часов, основанный на том, что пара пластин из различных металлов, наложенных одна на другую и спаянных, при изменении температуры выгибается. Из многочисленных применений явлений и законов теплового расширения твердых и жидких тел, рассматриваемых в курсах физики, мы упомянули компенсаторы маятников потому, что их идеей руководствовался французский конструктор Абрам Луи Бреге (1747 —1823) при создании своего извест- 221
ф Воздушный термометр, открытый в точке С, заполнен до деления 100 вскипяченным маслом и опущен в воду, содержащуюся в стеклянном сосуде D. Меняя температуру ванны, измеряемую ртутным термометром Ь, Вольта исследовал расширение воздуха. (Le Opere di A. Volta, VII, 1929.) М to -Ш и? -ко - i6o т У с ного быстродействующего биметаллического термометра (1817 г.), который и сейчас оказывает большую услугу физике, особенно как регистрирующий термометр (термограф). _ 190 МО 2. ТЕПЛОВОЕ РАСШИРЕНИЕ ГАЗООБРАЗНЫХ ВЕЩЕСТВ. Исследования теплового расширения воздуха, проведенные Амонтоном (см. гл. 7, § 8), были продолжены многими другими физиками XVIII века (Деля- гиром, Станкари, Хоксби, Соссюром, Делюком, Ламбертом, Монжем, Бертоле, Вандермондом и др.), но их данные находились в удручающем несоответствии друг с другом. Одни приходили к выводу, что воздух расширяется равномерно, другие — что неравномерно, и на все это накладывалась путаница представлений, о которой мы говорили в начале предыдущего параграфа. Между сторонниками первого утверждения расхождение также было очень велико, как видно из основополагающей работы Вольты (1793 г.): значения величины расширения при нагреве на один градус стоградусной шкалы, даваемые различными экспериментаторами, лежали в диапазоне от 1/85 у Пристли до 1/2зь У Соссюра. Длинное заглавие работы Вольты указывает на важный вывод, к которому пришел автор: «Delia uniforme Dilatazione dell'Aria per ogni grado di colore, cominciando sotto la temperatura del ghiaccio fin sopra quella della ebollizione delVacqua; e di cio, che sovente fa parere поп equabile tal dilatazione, entrando ad accrescer a dismisura il volume dell'Aria». («О равномерном расширении воздуха на каждом градусе тепла, начиная с температуры таяния льда и вплоть до температуры кипения воды, и о том, что часто обусловливает кажущуюся неравномерность расширения, приводя к увеличению ошибок измерения объема воздуха») *. Вольта показал, что расхождение между экспериментальными данными, как предполагал еще Станкари, обусловлено тем, что предшествующие экспериментаторы работали не с сухим воздухом, а с влажным и наличие паров воды искажало ход явления. Вольта пользовался воздушным термометром, причем ему пришла в голову счастливая мысль изолировать объем воздуха столбиком льняного или оливкового масла, предварительно хорошо прокипяченного. После многочисленных тщательных экспериментов, сопровождавшихся параллельными контрольными опытами с влажным воздухом, Вольта пришел к следующему утверждению: «При нагреве на каждый градус термометра Реомюра объем воздуха увеличивается приблизительно на V216 объема, занимаемого воздухом при нуле градусов; таким образом, воздух испытывает одинаковое увеличение объема как в самом начале, вблизи температуры таяния льда, так и при- приближении к точке кипения воды».** * Le Opere di A. Volta, Ediz. naz., VII, Milano, 1929, p. 345. ** Там же. р. 370. 222
Найденное Вольта значение коэффициента расширения равно, таким образом, 1/270 = 0,0037037 на градус Цельсия. Однако работа Вольты была опубликована в «Annali di chimica» — журнале, который имел весьма ограниченное распространение, и поэтому была мало известна в научных кругах, да и сам Вольта не старался ее распространить, по-видимому, потому, что в те годы был поглощен своей полемикой с Гальвани (см. гл. 7). Гей-Люссаку (1778—1850) явно не была известна эта работа Вольты, когда в 1802 г. в своей ставшей потом классической работе он предпринял исследование теплового расширения газов. Из исторического введения к этой статье следует, что пятнадцатью годами раньше исследования этого вопроса были без какой бы то ни было публикации предприняты Жаком Шарлем (1746—1823). Шарль прославился в свое время тем, что первым поднял в воздух в 1783 г. близ Парижа воздушный шар, наполненный водородом (новым газом, открытым Кавендишем в 1776 г.), а не горячим воздухом, который применяли братья Монгольфье в 1773 г. Судя по этой работе Гей-Люссака, Шарль нашел, что кислород, азот, углекислый газ и воздух расширяются одинаково в интервале температур между 0 и 100° С. Гей-Люссак дополнил и обобщил работу Шарля и пришел к следующему фундаментальному утверждению: «Если полное увеличение объема разделить на число градусов, вызвавших это увеличение, то есть на 80, то мы получим, принимая объем при нулевой температуре равным единице, что увеличение объема на каждый градус составляет 11213,33, или 11266,66 на каждый градус стоградусной шкалы» *. По существу здесь речь идет об исследованиях, отличающихся от упомянутых ранее исследований Вольты. Вольта показал, что воздух расширяется равномерно (если пользоваться ртутной шкалой), тогда как Гей-Люссак доказал, что для всех газов полное расширение в интервале температур от 0 до 100° С одинаково, и, принимая, что это расширение происходит равномерно, рассчитал коэффициент расширения для всех газов. Позже Гей- Люссак заметил, что предположение о равномерности расширения необоснованно, и для его доказательства провел еще одну серию опытов. Об этих опытах и применявшейся для них аппаратуре стало известно лишь после выхода в 1816 г. курса физики Био. Сейчас они описаны во всех учебниках по физике. Международный конгресс физиков, созванный в Колю в сентябре 1927 г. по случаю столетия со дня смерти Вольты, выпустил обращение, призывающее в разделе о расширении газов давать в учебниках физики формулировки двух законов: закона Вольты о постоянстве коэффициента расширения воздуха и закона Гей-Люссака о том, что коэффициент расширения всех газов одинаков. Однако это предложение, имевшее целью напомнить о заслуге Вольты в этом вопросе, оказалось, по-видимому, не очень жизненным. Данное Гей-Люссаком значение коэффициента расширения 1/266,66 =- = 0,00375 было подтверждено Био, принято Лапласом и в течение 35 лет рассматривалось как одна из наиболее точно известных физических констант. Но в 1837 г. Фридрих Рудберг (1800—1839) предпринял новое определение этой постоянной и нашел для нее меньшее значение. В связи с этим Магнус, приписав расхождение различию примененных экспериментальных методов, повторил опыты Гей-Люссака и получил значение постоянной, совпадающее с данными Рудберга. Ошибку Гей-Люссака он приписал тому, что тот (в отличие от Вольты) применял для ограничения исследуемой массы * L. Gay L u s s а с, Recherches sur la dilatation des gas et des vapeurs, Annalos tie- ."himie, XLII1, 1802, p. 165. 22,4
воздуха ртуть, которая значительно менее пригодпа для газоизоляции чем масло. Но в том же, 1841 г., когда Магнус произвел свои измерения, появилась классическая работа Реньо, которая дала для коэффициента расширения значение 0,0036706, оставшееся почти неизменным до наших дней. Достаточно сопоставить со значением коэффициента Реньо значения, найденные Вольтой и Гей-Люссаком, чтобы заметить большую точность значения Вольты, несмотря на скромные экспериментальные средства, которыми он располагал. В соответствии с уже ранее полученными Магнусом результатами Реньо установил (1842 г.), что коэффициенты расширения газов не в точности постоянны. Те газы, которые легко сжижаются, имеют больший коэффициент расширения, причем, как заметил Дэви, он даже увеличивается с ростом плотности газа. В 1847 г., вводя поправку в утверждение Дюлонга и Араго, считавших закон Бойля точным, Реньо, на основании проведенных опытов с давлением до 30 атм, показал, что при обычных температурах все газы (кроме водорода) сжимаются сильнее, а водород сжимается слабее, чем того требует закон Бойля. Эти выводы, к которым пришел также Л. Баччелли в 1812 г., впоследствии были подтверждены и дополнены другими физиками (Шаппюи, Рэлеем, Сачердоте и др.). 3. ПАРЫ. Начиная с 1789 г. Вольта, как это видно из его многочисленных неизданных рукописей, свыше пятнадцати лет интенсивно занимался исследованием поведения паров, не опубликовав, однако, ни одной законченной работы. О своих исследованиях он сообщал друзьям (Вассали, Ландриани, Маскерони), говорил о них в своих университетских лекциях, и порой эти лекции вызывали академические дискуссии. Вольта принадлежит опыт, и сейчас повторяемый в курсах физики, с четырьмя барометрическими трубками, в которых производится испарение воды, спирта и эфира и наблюдается различное давление в них. Он же установил, что давление пара при 0° С не равно нулю, т. е. что лед испаряется. Вольта полагал, что по данным измерений при различных температурах давления пара в барометрической трубке, погруженной в ванну с изменяемой температурой, можно сформулировать три закона поведения паров. Но очень скоро обнаружилось, что первые два закона (при увеличении температуры в арифметической прогрессии давление пара растет в геометрической прогрессии; давление паров всех жидкостей одинаково при одинаковом расстоянии от точки кипения) неверны; третий закон гласил, что давление пара одинаково независимо от того, какое пространство он занимает — пустое или же заполненное воздухом любой плотности. К этим же выводам пришел независимо Джон Дальтон (1766 —1844) в своей работе, опубликованной в 1802 г. Из упомянутого выше третьего закона, ныне называемого законом Дальтона, он, повторяя ранее приведенные рассуждения Вольты, пришел к заключению, что никакая теория (в то время они были очень в моде) не может объяснить испарение как химическое явление, т. е. как соединение воды с воздухом. В 1816 г. Гей-Люссак распространил закон Дальтона на случай смеси паров. Однако в 1836 г. Магнус показал, что закон Дальтона верен лишь для паров несмешивающихся жидкостей (например, вода и масло). Если же жидкости смешиваются (например, эфир и спирт), то для таких паров полное давление смеси паров меньше суммы давлений компонент. Этот результат был затем подтвержден и развит Реньо. Все большее распространение паровой машины вызвало особый интерес к исследованиям давления водяного пара при больших температурах. Уже в 1813 г. Иоганн Арцбергер (1778—1835) произвел довольно грубые измере- 224
ния для давлений до 8 атм. В 1829 г. Дюлонг и Араго по поручению Парижской Академии наук приступили к систематическому измерению давления водяпого пара и достигли 24 атм. Их данные, как и данные их предшественников, не были абсолютно точными, поскольку в опыте недостаточно гарантировалась одинаковость температуры всей массы газа, так что измеренное давление оказывалось соответствующим давлению в самой холодной области согласно «принципу холодной стенки», приписываемому часто Уатту, но в действительности сформулированному Фонтана (1730—1805) в 1779 г. Первые тщательные измерения были выполнены в 1844 г. немецким физиком Эрнестом Густавом Магнусом (1802 —1870). Он применял изолированный тремя слоями воздуха калориметр, в который вводились U-образные трубки с газом и воздушный термометр. Но наиболее фундаментальное исследование, выполненное новыми методами и с большим мастерством, было проведено Анри Виктором Реньо (1810—1878) и описано в его знаменитой работе «Сообщение об опытах, предпринятых по распоряжению министра общественных работ и по предложению Центральной комиссии паровых машин, с целью определения основных законов и численных величин, применяемых при расчете паровых машин», Париж, 1847. В этом больпгом труде Реньо ввел поправки в результаты Дюлонга и Араго и нашел значения давления водяного пара при температурах от —32 до 100° С и от 110до232°С. Тепловым измерениям, представляющим интерес для практики, Реньо посвятил всю жизнь. Применяя новые методы, обеспечивающие ранее недостижимую точность, он повторял опыты предшествующих ученых. Его достойные восхищения тщательность и искусство экспериментатора позволили получить результаты, которые и сейчас, спустя столетие, относятся к разряду наиболее надежных. Помимо сказанного, следует напомнить об исследованиях Реньо по тепловому расширению твердых и жидких тел, сжимаемости воды, определению удельных теплоемкостей тел, измерению скорости звука в газах и термоэлектричеству. Существует мнение, что Реньо не хватало того творческого духа, который открывает новые пути в физике, однако внесенный им вклад в технику эксперимента и прикладную физику составил целую эпоху. 4. СЖИЖЕНИЕ ГАЗОВ. Опытный факт охлаждения вещества при испарении был известен издавна и даже практически использовался (например, применение пористых сосудов для сохранения свежести воды). Но первое научное исследование этого вопроса предпринял Джан Франческо Чинья и описал в работе 1760 г. «De frigore ex evaporatione» («О холоде вследствие испарения»). Чинья доказал, что чем быстрее происходит испарение, тем интенсивнее остывание, а Меран показал, что если дуть на влажный шарик термометра, понижение температуры окажется больше, чем при таком же опыте с сухим шариком термометра. Антуан Боме (1728 —1804) обнаружил, что при выпаривании серного эфира охлаждение происходит сильнее, чем при испарении воды. Основываясь на этих фактах, Тиберио Кавалло создал в 1800 г. холодильную машину, а Волластон построил в 1810 г. свой известный криофор, применяемый и в наше время. На основе этого прибора в 1820 г. был создан гигрометр Даниэля. Холодильная машина стала практически применимой лишь после 1859 г., т. е. после того, как Фернан Карре (1824— 1894) опубликовал свой метод получения льда с помощью испарения эфира, впоследствии замененного аммиаком. В 1871 г. Карл Линде (1842—1934) описал созданную им холодильную машину, в которой охлаждение достигается за счет расширения газа. В 1896 г. он скомбинировал эту машину с противоточньш теплообменником, описываемым в курсах физики, и это позволило ему получить жидкий водород. Достигнутые к тому времени 1° Марио Льоццп 225
физиками экспериментальные результаты начали внедряться в промышленность. Проблема сжижения газов имеет вековую историю, берущую свое начало во второй половине XVIII столетия. Началось все с сжижения аммиака простым охлаждением, которое произвел ван Марум, серного ангидрида — Монж и Клуэ, хлора — Нортмор (1805 г.) и сжижения аммиака компрессионным методом, предложенным Баччелли (1812 г.). Определяющий вклад в решение этой проблемы одновременно и независимо внесли Шарль Каньяр де Латур (1777—1859) и Майкл Фарадей (1791 — 1867). В серии работ, опубликованных в 1822 и 1823 гг., Каньяр де Латур описал опыты, проведенные им для определения существования для жидкости (как это чувствуется интуитивно) некоторого предельного расширения, дальше которого независимо от приложенного давления вся она переходит в парообразное состояние. С этой целью де Латур положил в папинов котел, заполненный на одну треть спиртом, каменный шар и начал постепенно разогревать котел. По шуму, производимому шаром, поворачивавшимся внутри котла, де Латур пришел к выводу, что при определенной температуре весь спирт испарился. Опыты были повторены с небольшими трубками; из трубок удалялся воздух, а затем они заполнялись на 2/5 исследуемой жидкостью (спирт, эфир, бензин) и нагревались в пламени. По мере увеличения температуры жидкость становилась все более подвижной, а граница раздела жидкости и пара все более нечеткой, пока при определенной температуре совсем не исчезала и вся жидкость казалась превратившейся в пар. Соединив эти трубки с манометром со сжатым воздухом, Каньяр де Латур сумел измерить давление, устанавливающееся в трубке в момент, когда исчезает граница раздела между жидкостью и паром, и соответствующую температуру. Вопреки бытующему представлению Каньяр де Латур не только не определил в этих опытах критическую температуру для воды, ему не удалось даже полностью испарить воду, потому что трубки всегда лопались раньше, чем достигался желаемый эффект. Более конкретный результат содержали опыты Фарадея, проведенные в 1823 г. с загнутыми стеклянными трубками, более длинное плечо которых было запаяно. В это плечо Фарадей помещал вещество, которое при нагреве должно было давать исследуемый газ, затем закрывал второе, короткое плечо трубки и погружал трубку в охлаждающую смесь. Если, проделав это, нагревать вещество в длинном плече трубки, то образуется газ, давление которого постепенно увеличивается, причем во многих случаях в короткой трубке у Фарадея происходило сжижение газа. Так, нагревая бикарбонат натрия, Фарадей получил жидкую углекислоту; таким же способом он получал жидкий сероводород, хлористый водород, серный ангидрид и др. Опыты де Латура и Фарадея показали, что можно добиться сжижения газа, подвергая его высокому давлению. В этом направлении начали работать многие физики, в частности Иоганн Наттерер (1821—1901). Однако некоторые газы (водород, кислород, азот) сжижить таким путем не удавалось. В 1850 г. Вертело подверг кислород давлению в 780 атм, но не смог добиться сжижения. Это заставило Вертело присоединиться к мнению Фарадея, который, уверенный, что рано или поздно удастся получить твердый водород, полагал, что одного давления недостаточно для сжижения некоторых газов, прозванных тогда «перманентными» или «неукротимыми». В том же 1845 г., когда Фарадей высказал это соображение, Реньо, заметив, что при низкой температуре углекислый газ обладает аномальной сжимаемостью, а при приближении к 100° С начинает следовать закону Бойля, выдвинул предположение, что для каждого газа существует некая область температур, где он подчиняется закону Бойля. В 1860 г. эту идею Реньо развил и модифицировал Дмитрий Иванович Менделеев (1834—1907), соглас- 226
но которому для всех жидкостей должна существовать «абсолютная температура кипения», выше которой она может существовать лишь в газообразном состоянии, каково бы ни было давление. Исследование этого вопроса было возобновлено в 1863 г. в новой форме Томасом Эндрюсом (1813—1885). В 1863 г. Эндрюс ввел в капиллярную трубку углекислый газ, заперев объем газа столбиком ртути. С помощью винта он произвольно устанавливал давление, под которым находился газ, одновременно меняя постепенно температуру. Добившись с помощью одного лишь увеличения давления частичного сжижения газа и затем медленно нагревая трубку, Эндрюс наблюдал те же явления, которые за 30 лет до него исследовал Каньяр де Латур. Когда температура углекислоты достигала 30,92° С, граница раздела между жидкостью и газом исчезала и никаким давлением нельзя было уже получить обратно жидкую углекислоту. В своей обстоятельной работе 1869 г. Эндрюс предложил назвать температуру 30,92° С «критической точкой» для углекислоты. Таким же методом он определил критические точки для хлористого водорода, аммиака, серного эфира, окиси азота. Термин «пар» он предложил сохранить для газообразных веществ, находящихся при температуре ниже критической точки, а термин «газ» применять к веществам, находящимся при температуре выше критической точки. Подтверждением этой точки зрения Эндрюса являлись упомянутые уже опыты Наттерера, проведенные им с 1844 по 1855 г., в которых перманентные газы подвергались давлению до 2790 атм, так и не сжижаясь, и многочисленные аналогичные опыты, начатые в 1870 г. Эмилем Амага (1841—1915), в которых достигалось давление до 3000 атм. Все эти отрицательные результаты опытов подтверждали гипотезу Эндрюса о том, что перманентные газы — это вещества, для которых критическая температура ниже достигнутых в тот момент значений, так что их сжижение можно было бы осуществить с помощью предварительного глубокого охлаждения, возможно с последующим сжатием. Эта гипотеза была блестяще подтверждена в 1877 г. Луи Кальете (1832—1913) и Раулем Пикте (1846—1929), которым независимо друг от друга удалось после предварительного сильного охлаждения добиться сжижения кислорода, водорода, азота, воздуха. Работы Кальете и Пикте были продолжены другими физиками, но лишь появление холодильной машины Линде, о которой мы уже упоминали, сделало методы сжижения практически доступными, позволив получать сжиженные газы в больших количествах и широко применять их при научных исследованиях и в промышленности. 5. УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ ГАЗОВ. Методы определения удельной теплоемкости, описанные в гл. 7, трудно было применить к газообразным веществам вследствие малого удельного веса газов и паров. Поэтому в начале XIX века Парижская Академия наук объявила конкурс на лучший метод измерения удельной теплоемкости газа. Премия была присуждена Франсуа Деларошу (? — 1813?) и Жаку Берару (1789—1869), предложившим поместить в калориметр змеевик, по которому при известной температуре проходил бы газ при фиксированном давлении. Этот метод фактически не был новым; он был предложен еще за 20 лет до того Лавуазье. Как бы то ни было, результаты, полученные Деларошем и Бераром, приводились в курсах физики в течение полувека. Заслуга этих ученых прежде всего в том, что было привлечено внимание к необходимости различать удельные теплоемкости при постоянном давлении и при постоянном объеме. Последняя величина очень трудно поддается измерению из-за малой величины теплоемкости газа по сравнению с теплоемкостью содержащего его резервуара. Но за несколько лет до появления работ Делароша и Берара началось исследование любопытного явления, отмеченного Эразмом Дарвином 15* 227
(1731—1802) в 1788 г., а затем в 1802 г. Дальтоном и заключающегося в том, что сжатие воздуха вызывает его разогрев, а расширение приводит к охлаждению. Началом исследования этого явления обычно считают опыт Гей- Люссака (1807 г.), повторенный Джоулем в 1845 г. Гей-Люссак соединил трубкой два баллона, подобно тому как это делал Герике (см. гл. 5); один из баллонов был наполнен воздухом, а второй пустой; из наполненного баллона воздух мог свободно перетекать в пустой. В результате было установлено понижение температуры первого баллона и повышение температуры второго. Такое тепловое поведение воздуха заставляло считать, что удельная теплоемкость при постоянном давлении должна быть больше, чем при постоянном объеме, какой бы теории природы тепла мы ни придерживались. Действительно, если, расширяясь, газ охлаждается, то, позволяя ему при нагреве расширяться, необходимо сообщить ему дополнительное тепло, чтобы скомпенсировать сопутствующее расширению охлаждение. Исходя из этих экспериментальных фактов, Лаплас в 1816 г. пришел к гениальной идее о том, что известное несоответствие между значением скорости звука, пвлучающимся из опыта, и его теоретическим значением, получающимся из закона Ньютона (см. гл. 6, § 8), можно объяснить изменением температуры, которое испытывают слои воздуха при чередующихся сжатиях и разрежениях. На основе этих теоретических предпосылок Лаплас испраг вил формулу Ньютона, введя в нее коэффициент, равный отношению удельных теплоемкостей при постоянном давлении и при постоянном объеме для воздуха. Сопоставление экспериментального значения скорости звука в воздухе и теоретического значения, получающегося по формуле Ньютона, позволило найти отношение удельных теплоемкостей. Таким косвенным путем физикам удалось получить первые данные о значении этого отношения и тем самым, поскольку значение удельной теплоемкости при постоянном давлении было известно, оценить удельную теплоемкость воздуха при постоянном объеме. Несколькими годами позже (1819 г.) Никола Клеману (1779—1841) и Шарлю Дезорму (1777—?) удалось в опытах по расширению газов, многократно повторяющихся другими учеными вплоть до наших дней и вошедших во все учебники по физике, непосредственно определить отношение теплоемкостей, которое в пределах экспериментальных ошибок совпало с найденным Лапласом. В 1829 г. в результате тонких и кропотливых исследований Дюлонг определил отношение теплоемкостей для различных газов, для чего вызывал звук в трубке с помощью потоков различных газов. Эти эксперименты заставили его прийти к выводу, что в газах и парах при равных условиях (объем, давление, температура) образуется при одинаковом относительном сжатии или расширении одинаковое количество теплоты. К этому вопросу мы еще вернемся в гл. 13, а здесь заметим только, что метод Дюлонга был существенно улучшен в 1866 г. Кундтом (1839—1894), который ввел специальную трубку (эта трубка называется теперь трубкой Кундта). Метод Кундта до сих пор считается одним из лучших методов определения отношения удельных теплоемкостей. ПРИНЦИПЫ ТЕРМОДИНАМИКИ 6. КРИЗИС НАЧАЛА XIX ВЕКА. В гл. 7 мы говорили, что во второй половине XVIII столетия теория флюидов после многовекового мирного сосуществования с механической теорией теплоты одержала победу. Однако к концу этого столетия борьба обострилась и вступила в решающую фазу. Среди сторонников флюидной теории в конце XVIII века можно назвать Адера Кроуфорда (1749—1795), Иоганна Майера (1752—1830) и Фридриха 228
Грена (1760—1798). Сторонниками механической теории теплоты среди прочих были Пьер Макке (1718—1784), Дэви, Румфорд, Юнг, Ампер. Поэтому нельзя считать верным часто встречающееся утверждение, будто представление о теплоте как о молекулярном движении было введено американцем Бенджамином Томпсоном (получившим в Европе титул графа Румфорда) в его известных опытах, проведенных в 1798 г. в Мюнхене. Румфорд (1753—lSl^) рассверливал тупым сверлом орудийный ствол и с помощью термометра, вставленного в отверстие в стволе, измерял температуру металла, равную вначале 16,7° С. После 360 оборотов сверла образовалось 837 гран стружек и температура повысилась до 54,4° С. Опустив ствол в воду с температурой 15,6° С, Румфорд добился того, что через два с половиной часа работы сверла вода закипела. В своем докладе Королевскому обществу 25 января 1798 г. Румфорд говорил: «Обдумывая результаты всех этих опытов, мы, естественно, подходим к кардинальной проблеме, являющейся часто предметом философских построений: что же такое теплота? Может быть, это что-то подобное огненной жидкости? Что-то, что можно назвать теплородом?.. Размышляя по этому поводу, мы не должны упускать из виду весьма примечательное обстоятельство, а именно то, что источник тепла, возникающего при трении в этих опытах, представляется, по-видимому, неисчерпаемым. Было бы излишним добавлять, что то, что может непрерывно поставляться в неограниченном количестве изолированным телом или системой тел, не может быть материальной субстанцией, так что мне представляется исключительно трудным, если не полностью невозможным, иное представление об этих явлениях, которое не было бы представлением о движении» *. Получение теплоты при трении не было новым явлением, да и сами опыты Румфорда тоже были отнюдь не новыми. За два столетия до этого еще Джован Баттиста Бальяни с помощью быстро вращающегося железного диска, на который опирался железный сосуд с плоским дном, заставлял кипеть воду в сосуде. Однако опыты Бальяни, описанные им в письме Галилею от 4 апреля 1614 г., но опубликованные лишь в 1851 г., тогда еще не были известны, так что опыты Румфорда произвели большое впечатление, причем не столько сам факт получения теплоты трением, сколько огромное количество тепла, которое можно таким образом получить. Как бы то ни было, эти опыты не были столь уж убедительными, как считают сейчас. Сторонники теплорода возражали, что в опытах Румфорда теплород, соединенный с твердым веществом, частично высвобождается при разрушении твердого вещества и потому может вызывать нагрев. Что касается последних опытов Румфорда, имевших целью показать, что образовавшийся при сверлении разогретый металлический порошок обладает той же теплоемкостью, что и сплошной металл, то их оспорить было бы трудно, если бы под теплоемкостью тогда понимали то же, что и сейчас, но, как мы уже видели в гл. 7, под теплоемкостью тогда понимали полное количество тепла, содержащегося в теле, а при таком понимании эти новые опыты Румфорда ничего не доказывали. Иными словами, Румфорд должен был показать, что по крайней мере какая-то часть теплоты, выделяющейся при трении, отнюдь не представляет собой теплоту, скрытую в сплошном металле и освобождающуюся при его превращении в порошок, однако этого он не сделал. Явления нагрева и охлаждения газа при сжатии и расширении также истолковывались сторонниками теплорода как подтверждение их теории. * B.Thompson, An enquiry concerning the source of the heat which is excited by friction, в книге J. Tyndall, Heat a mode of motion, 3rd ed., London, 1868, p. 57—58. (Есть русский перевод: Д. Т и н д а л ь, Теплота, рассматриваемая как вид движения, М., 1888.) 229
Сади Карно. Гравюра по портрету Буайи (1813). Теплород, говорили они, содержится в газе, как сок в апельсине. Сожмешь апельсин — из него потечет сок. Точно так же при сжатии газа из него выделяется теплород, что проявляется в виде нагрева. Подправляемая таким образом теория продержалась около 30 лет, так что еще в 1829 г. Био во втором издании своего учебника, самого авторитетного и самого пол-: и ого общего курса физики того нремени, писал, что причина возникновения теплоты при трении все еще неизвестна. 7. ПРИНЦИП КАРНО. Мы уже имели случай заметить, что наиболее важные исследования теплоты в первой половине XIX века проводились с практической целью улучшить работу паровой машины. Дальтон сокрушался по поводу такого направления научных исследований, которое представлялось ему слишком техническим. Уатт сформулировал задачу с предельной практичностью: сколько угля требуется, чтобы получить определенную работу, и какими способами при заданной величине работы можно свести к минимуму количество расходуемого горючего? За исследование этой практической проблемы взялся молодой инженер Сади Карно (1792—1832), сын Лазара Карно. Результаты своих исследований он подытожил в работе, вышедшей в 1824 г. под названием «Reflexions sur la puissance motrice du feu et sur les machines propres a developper cette puissance» («Размышления о движущей силе огня и о машинах, способных развивать эту силу»). Появление этой небольшой работы являет собой начало нового этапа в истории физики не только благодаря полученным в ней результатам, но и благодаря примененному методу, который впоследствии использовался бесчисленное множество раз. В основу своего рассмотрения Карно положил невозможность осуществления вечного двигателя. Хотя этот принцип уже использовался Стевином (см. гл. 3), он еще не стал научным принципом и отражал лишь настроения ученых. Можно, пожалуй, сказать, что применение паровой машины в известном смысле усилило и подтвердило такие настроения, показав, что для достижения полезного эффекта необходимо чем-то поступиться. Для доказательства этого принципа Карно даже не прибег к примеру паровой машины. Он обосновал его лишь кратким замечанием об электрических батареях, которые вначале давали основание для несколько поспешного заключения о возможности вечного двигателя. Свое исследование Карно начинает с восхваления паровых машин. Он констатирует, что теория этих машин развита очень слабо, и замечает, что, для того чтобы продвинуть ее, нужно несколько оторваться от чисто прикладного аспекта и рассмотреть движущую силу огня в общем виде. 230
С помощью мысленного эксперимента Карно доказал, что если исходить из невозможности вечного двигателя, то для получения работы необходимо иметь в машине два тела с различными температурами, причем теплород должен переходить от тела с более высокой температурой к телу с более низкой. Уподобляя теплород воде, а разность температур — разности уровней воды, Карно заключает, что как при падении воды работа измеряется произведением веса воды на разность уровней, так и в паровой машине работа независимо от природы рабочего вещества (вода, спирт и т. д.) измеряется произведением количества теплорода на разность температур. Иными словами, отдача тепловой машины ограничена значениями температур нагревателя и холодильника. Как подчеркивает Карно, холодильник — столь же необходимый элемент, как и котел, причем если в машине не предусмотрен специальный охлаждающий элемент, то его роль играет окружающая среда. Все это и представляет собой суть «принципа Карно», или второго начала термодинамики, как он стал называться позже, после того как этому разделу физики было придано аксиоматическое построение. Уже после опубликования своей работы (более точная дата не установлена) Карно отказался от теории теплорода в пользу механической теории теплоты. Это видно из следующего отрывка, взятого из его рукописей и опубликованного в 1878 г. в приложении к новому изданию его «Размышлений»: «.Тепло — это не что иное, как движущая сила, или, вернее, движение, изменившее свой вид. Это движение частиц тел. Повсюду, где происходит уничтожение движущей силы, возникает одновременно теплота в количестве, точно пропорциональном количеству исчезнувшей движущей силы. Обратно, всегда при исчезновении теплоты возникает движущая сила. Таким образом, можно высказать общее положение: движущая сила существует в природе в неизменном количестве; она, собственно говоря, никогда не создается, никогда не уничтожается; в действительности она меняет форму, то есть вызывает то один род движения, то другой, но никогда не исчезает».* Не указывая, каким путем он нашел механический эквивалент теплоты, Карно приводит, между прочим, в примечании его значение, которое при переводе в наши единицы — килограммометры и большие калории — оказывается равным 370, т. е. 370 килограммометров при полном превращении в теплоту дают одну большую калорию. Работа Карно прошла почти незамеченной. Отсутствие интереса к ней можно объяснить лишь новизной выраженных в ней идей, поскольку написана она чрезвычайно ясно и изящно. Только через десять лет, в 1834 г., на эту работу обратил внимание Бенуа Клапейрон (1799—1864), заменивший первоначальный цикл Карно другим, известным теперь каждому циклом из двух изотерм и двух адиабат, который ошибочно приписывается сейчас во всех учебниках Карно. Именно в связи с этим Клапейрон и ввел уравнение состояния газа, устанавливающее простую связь между давлением, объемом и температурой заданной массы газа и объединяющее законы Бойля, Вольты и Гей-Люссака. 8. ПРИНЦИП ЭКВИВАЛЕНТНОСТИ. Со времен Румфорда и до 1842 г. не появилось ни одной существенной работы по термодинамике, не считая упомянутых стоявших особняком работ Карно и Клапейрона. Опыты, проведенные в 1822 г. Джузеппе Морози (1772—1840) и положенные затем Доменико Паоли (1783—1853) в основу теории непрерывного движения, в котором участвуют также молекулы твердых тел, были простым повторе- * S. С а г п о t, Reflexions sur la puissance motrice du feu, Paris, 1878, p. 89. (Есть русский перевод в сб. «Второе начало термодинамики», М.— Л., 1934.) 231
Юлиус Роберт Майер. нием опытов Румфорда, так что ничего не добавляли нового, но все же лишний раз привлекали внимание к механическому пониманию теплоты. Изменение взглядов происходило в первую очередь среди молодых ученых, далеких от академических' кругов, где груз традиций и авторитет учителей подчас препятствовали принятию новых идей. Этим можно объяснить, почему идея эквивалентности теплоты и работы была выдвинута независимо и одновременно целым рядом молодых ученых, не связанных с официальной наукой: военным инженером, тридцатилетним Кар- но, немецким врачом, двадцативосьмилетним Робертом Майером (1814—1878) и владельцем лондонского пивоваренного завода, двадцатипятилетним Джемсом Джоулем (1818—1889). К ним можно еще присоединить Карла Фридриха Мора (1805—1879), Людвига Августа Кольдинга (1815—1888) и Марка Сегена (1786—1875), которые все оспаривали, и не без оснований, приоритет этого открытия. Наиболее известны из них по справедливости Майер и Джоуль. Мысль об этом законе пришла Майеру внезапно в июле 1840 г.; она стала для него как бы религиозным откровением, и развитию и защите своей идеи он посвятил всю жизнь, вкладывая в это столько духовных и физических сил, что это привело его в психиатрическую больницу. В 1841 г. Майер написал свою первую работу, которую Поггендорф, редактор журнала «Annalen der Physik», отказался публиковать. Впоследствии не было недостатка в саркастических замечаниях в адрес Поггендорфа, между тем как этот отказ Пог- гендорфа по существу послужил на благо, потому что в первой редакции статья содержала столько ошибок, что могла бы серьезно скомпрометировать саму идею, лежащую в ее основе. Второй, исправленный вариант статьи был опубликован годом позже в химическом журнале Либига. Это один из важнейших документов в истории физики, так что на нем следует остановиться несколько подробнее. Майер начинает свою работу, задаваясь вопросом, что мы понимаем под словом «сила» и как различные силы относятся друг к другу (чтобы понять статью Майера, современный читатель должен вместо слова «сила» подставлять слово «энергия»). Чтобы можно было исследовать природу, понятие силы должно быть столь же ясным, как понятие материи. И Майер продолжает: «Силы суть причины, следовательно, к ним имеет полное применение аксиома causa aequat efectum (причина равносильна действию.)» *. * Robert M а у е г, Bemerkungen iiber die Krafte der unbelebten Natur, Annalen der Chemie und Pharmacie, 42 (1842), S. 233. (Есть русский перевод в книге: Р. Майер, Закон сохранения и превращения энергии. Четыре исследования, 1841—1851, М., 1933.) 232
PI далее, продолжая развивать эти метафизические положения, он приходит к выводу, что силы — это неразрушимые, способные к превращению, невесомые «объекты», и «если причиной является вещество, то и в качестве действия получается таковое же; если же причиной является некоторая сила, то в качестве действия будет также некоторая сила».* Отсюда следует: «Если мы будем, например, тереть две металлические пластинки друг о друга, то мы будем наблюдать, как исчезнет движение и, наоборот, возникнет тепло, и вопрос теперь может быть только в том, является ли движение причиной тепла. Чтобы дать ответ, мы должны обсудить вопрос: не имеет ли движение в бесчисленных случаях, в которых при применении движения налицо оказывается тепло, другое действие, чем тепло, и тепло другую причину, чем движение?» * В результате рассуждений Майер приходит к заключению, что было бы неразумно отрицать причинную связь между движением (или, если пользоваться современной терминологией, работой) и теплотой, что допускать причину (движение) без действия (теплоты) столь же неразумно, как для химика, наблюдающего исчезновение кислорода и водорода с образованием воды, говорить, что газы исчезли, а вода появилась каким-то необъяснимым образом. Майер предпочитает более разумное объяснение, принимая, что движение превращается в теплоту, а теплота — в движение. «Локомотив с его поездом может быть сравнен с перегонным аппаратом; тепло, разведенное под котлом, превращается в движение, а таковое снова осаждается на осях колес в качестве тепла» *. Майер считает удобным закончить свои рассуждения «...практическим выводом: ...как велико количество тепла, соответствующее определенному количеству движения или силе падения!» С поистине гениальной интуицией он выводит этот эквивалент из данных об удельной теплоемкости газов при постоянном давлении и при постоянном объеме. Этот «метод Майера», как известно, по существу состоит в том, что разница удельных теплоемкостей приравнивается работе, совершаемой при расширении газом, находящимся при постоянном давлении. Пользуясь данными Дюлонга по удельной теплоемкости, Майер получает с помощью расчетов, лишь бегло упомянутых в статье, что большая калория эквивалентна 365 килограммометрам, и заключает: «Если с этим результатом сравнить полезное действие наших лучших паровых машин, мы увидим, что лишь очень малая часть подводящегося к котлу тепла действительно превращается в движение или поднятие груза».* С помощью этого метода Реньо, используя свои более точные значения удельных теплоемкостей газов, нашел значение эквивалента равным 424 килограммометрам иа калорию. В 1843 г. Джемс Джоуль, не зная еще о работе Майера, определил экспериментально механический эквивалент теплоты в связи с исследованиями теплового действия тока, приведшими его к открытию закона, носящего теперь его имя (см. гл. 10). Применявшаяся Джоулем установка стала классической. Идея опыта состоит в нагреве воды в калориметре с помощью вращающегося колесика с лопастями и определении соотношения между совершенной при этом работой и образовавшейся теплотой. Усредняя по данным 13 экспериментов, Джоуль приходит к выводу: * Там же, S. 237 — 240. 233
Джемс Прескотт Джоуль. «Количество тепла, способное увеличить температуру одного фунта воды на один градус Фаренгейта, равно и может быть превращено в механическую силу, которая в состоянии поднять 838 фунтов на высоту в один фут»*. По этим данным легко определить, что найденный Джоулем механический эквивалент калории равен 460. Впоследствиипроизводились многочисленные экспериментальные определения этой «универсальной постоянной», как ее называл Гельмгольц. Мы ограничимся лишь указанием на опыты Густава Адольфа Гирна (1815—1890), который, исследуя в 1860— 1861 гг. соударение двух свинцовых тел, нашел значение эквивалента равным 425, и на работу Роуланда (1880 г.), который методом Джоуля получил значение эквивалента 427, что считается точным и по настоящее время. В 1940 г. Международный комитет мер и весов установил эквивалент одной большой калории при 15° G равным 4,18605 -Ю10 эрг. 9. ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ. После опубликования работ Майера и Джоуля прошло несколько лет, прежде чем физики осознали всю важность принципа эквивалентности. В 1847 г. Герман Гельмгольц (1821—1894), не зная еще о работе Майера, опубликовал свою знаменитую работу (ее Пог- гендорф тоже отказался печатать) «Uber die Erhaltung der Kraft».** В своей статье Гельмгольц не ограничивается рассмотрением только механической и тепловой «силы» (т. е. «энергии», если пользоваться термином, применявшимся еще Томасом Юнгом и вновь предложенным лордом Кельвином в 1849 г.); он рассматривает и другие виды энергии. По существу Гельмгольц, развивая подход Майера, называет энергией некую величину, которая может переходить из одной формы в другую, и, как и Майер, приписывает ей свойство неразрушимости, так что она ведет себя подобно веществу, т. е. не может быть ни создана, ни уничтожена. Теперь, когда мы привыкли к понятию энергии, а еще больше, пожалуй, к самому слову «энергия», нам может показаться, что работа Гельмгольца ничего не добавляет к тому, что утверждали Майер и Джоуль. Но чтобы понять новизну подхода Гельмгольца, достаточно вспомнить, что Майер и Джоуль рассматривали лишь частный случай, пусть даже и очень важный, тогда как Гельмгольц ввел в физику величину, ранее неизвестную или смешиваемую с понятием силы, величину, участвующую во всех физических явлениях, способную меняться по форме, но неуничтожимую, невесо- * James Prescott Joule, The scientific papers, I, London, 1884, p. 156. ** Есть русский перевод: Г. Гельмгольц, О сохранении силы, М.—Л., 1934. 234
Рудольф Клаузиус. ~% мую, но определяющую форму существования материи. Вся физика второй половины XIX века покоится на двух различных сущностях — материи и энергии, подчиняющихся каждая своему закону сохранения. Характерным различием этих сущностей является то, что материя обладает весом, тогда как энергия невесома. Особенно энергично защищал и распространял взгляды JBt?t'.'£&& Гельмгольца Джон Тиндаль. Они вдохновили школу «энергетиков», начало которой было положено в Англии работами Уильяма Ранкина (1820—1872). Программа этой школы заключалась в отказе от механической концепции мира, согласно которой все явления должны объясняться с помощью понятий материи и силы. Вместо этой концепции выдвигается другая, в которой все явления объясняются взаимодействием различных форм энергии, актуальных или потенциальных, заключенных в телах. Для энергетической школы энергия — единственная физическая реальность, материя — лишь кажущийся носитель ее. 10. МЕХАНИЧЕСКАЯ ТЕОРИЯ ТЕПЛОТЫ. Основателем механической теории теплоты был Рудольф Клаузиус (1822—1888), начавший в 1850 г. свои классические исследования принципа эквивалентности теплоты и работы и закона сохранения энергии. Клаузиус заметил, что постоянство соотношения между затраченной работой и полученной теплотой соблюдается лишь при циклических процессах, т. е. при таких процессах, при которых исследуемое тело после ряда изменений возвращается в первоначальное состояние. Так, в простейшем калориметре Джоуля постоянство соотношения не соблюдается, потому что в начале опыта вода в нем холодная, а в конце — горячая. Именно для обеспечения цикличности первоначальный калориметр Джоуля был заменен калориметром Бунзена. Если процесс не циклический, то это отношение не постоянно, т. е. разность между затраченным теплом и полученной работой или наоборот (измеренными в одних и тех же единицах) не равна нулю. Например, при испарении определенного количества воды, поддерживаемой при постоянной температуре, сообщенное ей количество тепла значительно больше, чем работа расширения газа. Куда же ушла остальная энергия? Клаузиусу пришла в голову счастливая идея уравнять счет, введя внутреннюю энергию. В рассматриваемом случае теплота, подводимая к воде, частично преобразуется во внешнюю работу расширения пара (и воды), а частично — во внутреннюю энергию, которую пар возвращает в виде тепла при конденсации. Введением понятия внутренней энергии (причем реальное 235
значение имеет лишь ее изменение) Клаузиус придал принципу эквивалентности точную математическую форму и в случае нециклических процессов *. Клаузиусу пришлось защищать принцип Карно (второе начало термодинамики) от многочисленных атак. Он вывел его из другого постулата, который представляется интуитивно более очевидным, чем принятый Карно. Новый постулат Клаузиуса гласит, что теплота не может самопроизвольно переходить от более холодного тела к более нагретому. Слово «самопроизвольно» стоит здесь, чтобы указать, что если иногда такой переход имеет место, как, скажем, в растворах, в холодильных машинах и т. п., то он в известном смысле «вынужденный», т. е. сопровождается другим, компенсирующим явлением. Этому новому постулату Клаузиуса вскоре были даны другие эквивалентные формулировки: явления природы необратимы; явления происходят так, что энергия всегда вырождается, и т. п. Все эти форму-, лировки не соответствуют традиционным законам динамической обратимости. К этому вопросу мы еще вернемся. В 1865 г. Клаузиус ввел новую величину, которая сыграла фундаментальную роль в последующем развитии термодинамики. Эта новая величина — энтропия — математически строго определена, но физически мало наглядна. Клаузиус показал, что абсолютное значение энтропии остается неопределенным, определены лишь ее изменения в термически изолированных необратимых системах; в идеальном случае обратимых процессов энтропия остается постоянной. Введению этой новой величины физики противодействовали весьма энергично, особенно из-за ее таинственного характера, обусловленного главным образом тем, что она не действует на наши органы чувств. Поскольку ее изменение равно нулю для идеальных обратимых процессов и положительно для реальных обратимых процессов, то энтропия есть мера отклонения реального процесса от идеального. Этим объясняется данное Клаузиусом название этой величины, которое этимологически означает «изменение». Механическая теория теплоты, приоритет создания которой оспаривался Ранкином на основе представленной им в 1850 г. Королевскому обществу работы, где рассматривался лишь принцип эквивалентности, прожила трудную жизнь и окончательно приобрела права гражданства в науке лишь к концу XIX столетия, прежде всего благодаря работам Макса Планка 1887-1892 гг. КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ 11. ПРИРОДА ТЕПЛОТЫ. Основоположники принципов термодинамики — Майер, Джоуль, Кольдинг, а в известном смысле и сам Карно — в сущности не интересовались природой теплоты. Они ограничивались лишь утверждениями, что теплота может при определенных условиях переходить в работу и наоборот. Дальше этого фундаментального представления механическая теория теплоты не шла. Основоположники теории никогда не считали необходимым рассматривать вопрос, какова же внутренняя связь между механическими процессами и тепловыми явлениями. Гельмгольц первым выдвинул в своей работе 1847 г. гипотезу о том, что внутреннюю причину взаимной превращаемости теплоты в работу можно * Как известно, установленное Клаузиусом фундаментальное соотношение записывается в виде dQ = A{dU + pdv), rjifidQ — количество тепла, сообщенное телу; А — тепловой эквивалент единицы работы; U = / (v, р) — внутренняя энергия; pdv = dL — внешняя работа. 236
найти (каким путем — он не указал), сведя тепловые явления к механическим, т. е. к явлениям движения. Путь, каким это можно сделать, был найден в 1856 г. Августом Крё- нигом (1822—1879), а годом позже — Клаузиусом. Основное положение теории было сформулировано еще Даниилом Бернулли в разделе X «Гидродинамики» (1738 г.) и развито в работе Даниила и Иоганна Бернулли, удостоенной в 1746 г. премии Парижской Академии наук. Согласно Бернулли, теплота — это внешнее проявление колебательного движения молекул. На основе этой гипотезы Даниил Бернулли истолковывал давление газа как результат действия его молекул на стенки сосуда в результате соударений. Эта теория выдвигалась много раз и после Бернулли. В частности, мы знаем, что ее придерживались Лавуазье и Лаплас (см. гл. 7). В 1848 г. даже Джоуль объяснял давление газа по методу Бернулли. Однако рассмотрение этих ученых оставалось исключительно качественным, в частности и потому, что для углубленного количественного рассмотрения нужна более надежная теория атомного строения вещества. К середине XIX столетия атомистика так шагнула вперед, что физики уже могли с доверием ее использовать и она начала сливаться с механической теорией теплоты в единую кинетическую теорию газов. Достаточно напомнить лишь основной закон, сформулированный Авогадро в 1811 г.: равные объемы газа при одинаковых давлении и температуре содержат одинаковое число молекул. Добавим, что в период создания основ кинетической теории значение этого числа еще не было известно (см. гл. 13). 12. КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ. Согласно Крёнигу, газ состоит из совокупности молекул, которые он уподоблял идеально упругим шарикам, находящимся в абсолютно беспорядочном непрерывном движении (молекулярный хаос). Крёниг предположил также, что объем молекул пренебрежимо мал по сравнению с полным объемом газа и что взаимодействия молекул нет. В результате непрерывного движения молекулы сталкиваются между собой и соударяются со стенками сосуда, меняя соответственно при этом свою скорость. На основе этой гипотезы и учитывая закон Авогадро, Крёнигу удалось объяснить закон Бойля с помощью рассуждения, используемого и сейчас в курсах физики и приводящего к выводу, что произведение давления на объем единицы массы газа равно двум третям кинетической энергии поступательного движения всех молекул газа. Таким образом, указанное произведение остается постоянным, пока остается постоянной кинетическая энергия поступательного движения молекул. Но согласно уравнению состояния газа это произведение меняется с изменением температуры, так что кинетическая энергия зависит от температуры. Отсюда возникает мысль определить температуру через среднюю кинетическую энергию, установив между этими двумя величинами вполне определенное математическое соотношение. Таковы основы кинетической теории Крёнига, развитой Клаузиусом сначала в работе 1857 г., а затем в большом исследовании 1862 г. Вскоре кинетической теории удалось объяснить многие явления (диффузию, растворение, теплопроводность и ряд других), рассчитать сначала относительные, а затем и абсолютные значения средних скоростей молекул различных газов при различных температурах, пайти средний свободный пробег молекулы (Максвелл, 1866 г.), определенный как среднее значение длины прямолинейного пути, проходимого молекулой между последовательными соударениями. Исходя из этого нетрудно найти среднее число соударений каждой молекулы в определенное время (получаются громадные числа: при обычных условиях — порядка 5 миллиардов соударений в секунду). 237
Приведенная выше схема несколько упрощена, так что полученные выводы могут соответствовать опыту лишь в первом приближении. В частности, уравнение состояния, которое эта теория выводит для всех условий, в действительности справедливо лишь для сильно разреженных газов; мы уже говорили о первых экспериментальных наблюдениях отклонения реальных газов от этого уравнения состояния. В 1873 г. появилась первая работа Ван дер Ваальса (1837—1923), в которой показано, что достаточно исправить изложенную выше теорию лишь в двух пунктах, чтобы прийти к выводам, применимым к реальным газам. Во-первых, надо учесть, что объем молекул не равен нулю, так что при неограниченном увеличении давления объем газа стремится не к нулю, а к определенному конечному значению, называемому «коволюмом» и связанному с полным объемом молекул газа. Во-вторых, нужно учесть взаимное притяжение молекул, т. е. силы сцепления (когезия), что приводит к некоторому уменьшению давления, потому что каждая молекула газа в момент ее соударения со стенкой как бы тормозится притяжением остальных молекул. Учитывая эти две поправки, Ван дер Ваальс дал уравнение состояния газа, носящее сейчас его имя и применимое даже к не очень плотной жидкости (например, к воде) в подтверждение заголовка оригинальной статьи Ван дер Ваальса «О непрерывности состояния жидкости и газа». 13. СТАТИСТИЧЕСКИЕ ЗАКОНЫ. Мы уже говорили, что утверждение второго начала термодинамики в формулировке Клаузиуса не соответствовало традиционным механическим представлениям. Механика всегда рассматривала процессы природы как обратимые, тогда как второе начало термодинамики считает их необратимыми. Кинетическая теория превращает это несоответствие в противоречие: если теплота сводится к движению отдельных молекул, подчиняющемуся обратимым динамическим законам, то как же можно совместить обратимость отдельных процессов с необратимостью в целом? По-видимому, одной из причин острой борьбы между представителями энергетического направления — Ранкином, Гельмгольцем, Оствальдом, Махом— и сторонниками атомистики, которую «энергетики» считали слишком грубой и наивной, является именно вопрос о противоречии между обратимостью динамических процессов и вторым началом термодинамики. Согласно энергетической школе, противоречие может быть снято, если отказаться от одной из посылок, поэтому они были склонны отказаться от кинетической теории и вернуться к агностической концепции Майера. Однако это противоречие было преодолено совсем иным путем. Первым пошел по этому пути Максвелл, поставив перед собой конкретную задачу кинетической теории газов: если молекулы газа находятся в непрерывном движении, то какова скорость определенной молекулы в определенный момент? Максвелл начинает с замечания, что предположение Бернулли о равенстве скоростей всех молекул принять нельзя. Действительно, если бы даже в какой-либо определенный момент все молекулы газа имели одну и ту же скорость, то такое идеальное состояние тотчас нарушилось бы в результате взаимных соударений молекул. Так, если молекула А налетает на молекулу В перпендикулярно направлению ее движения, то легко рассчитать, что молекула В ускоряется, а молекула А замедляется. Но проследить мысленно или рассчитать судьбу каждой отдельной молекулы из бесчисленного количества молекул, содержащихся в объеме газа, не представляется возможным. Можно, согласно Максвеллу, лишь определить статистическое распределение их скоростей, т. е. ответить не на вопрос о том, какова скорость отдельной определенной молекулы, а на вопрос, 238
Один из первых паровозов. (М. Pouillet, Elements de physique, 1853.)
Людвиг Больцман. сколько молекул имеют определенную скорость в заданный момент. В основу своего расчета Максвелл положил следующие интуитивные предпосылки: ни одно направление движения не является привилегированным; ни одно значение скорости не является привилегированным или запрещенным (т. е. молекула может принимать все значения скорости от нулевой до максимальной); каждый газ, предоставленный самому себе, приходит в конце концов в стационарное состояние, в котором статистическое распределение скоростей остается постоянным во времени. Иными словами, если две молекулы со скоростями а и Ъ сталкиваются и после соударения приобретают скорости р и q, то одновременно две другие молекулы со скоростями р и q сталкиваются и приобретают соответственно скорости а и Ь, так что число молекул, имеющих скорости а, Ъ, . . ., р, д, . . ., остается постоянным. Исходя из этих гипотез и некоторых других, менее существенных, к которым он прибегает по ходу рассуждений, Максвелл пришел к известной формуле для распределения скоростей молекул газа. Эта формула вызвала длительную дискуссию, утихшую лишь в последние годы, когда молекулярные насосы позволили произвести ее экспериментальную проверку. Не прослеживая всей дискуссии, достаточно подчеркнуть огромное значение введения статистических законов. На место причинных динамических законов становятся статистические законы, позволяющие предвидеть эволюцию природы не с абсолютной достоверностью, а лишь с большой степенью вероятности. Понятие вероятности физического явления, неявно введенное Максвеллом, было применено в 1878 г. Людвигом Больцманом (1844—1906) для преодоления трудностей, связанных со вторым законом термодинамики. В связи с этим находится классический мысленный эксперимент Максвелла (1871 г.): пусть газ разделен на две части диафрагмой с небольшим отверстием, которое может перекрываться задвижкой, и пусть некий «демон», способный видеть молекулы и стерегущий этот проход, открывает задвижку для молекул, движущихся в одном направлении, и закрывает ее для молекул, движущихся в противоположном направлении. Через некоторое время произойдет сжатие всего газа в одной из половинок объема, и второе начало термодинамики будет нарушено. Эти трудности были преодолены Больцманом с помощью радикального нововведения: второе начало термодинамики рассматривается не как достоверный закон природы, а лишь как в высшей степени вероятный. Вот известное рассуждение Больцмана, приведенное им для иллюстрации такого понимания. Пусть мы имеем, говорит Больцман, два сосуда, соединенных небольшим отверстием, и пусть сначала в каждом из сосудов имеется по одной молекуле. Вследствие движения молекул может случиться, что одна из молекул 240
пройдет сквозь отверстие между сосудами и окажется в другом сосуде. При этом произойдет самопроизвольное сжатие газа вопреки утверждению второго закона термодинамики. Но если бы в каждом из сосудов было первоначально не по одной, а по две молекулы, то ясно, что такое сжатие менее вероятно; еще менее вероятным оно становится для 4, 8, 16, . . . молекул в каждом сосуде. Так вот, второе начало термодинамики утверждает не об абсолютной достоверности, а о высокой степени вероятности. Вероятность отклонения от термодинамического закона была рассчитана, и для иллюстрации полученной величины, несоизмеримой с вероятностями событий, встречающихся в обычной жизни, придумывалось множество примеров. Приведем один из них. Допустим, обезьяна долбит по клавишам пишущей машинки с непрерывной подачей бумаги. Какова вероятность, что она напечатает «Божественную комедию» Данте? Ясно, что рассчитать ее нетрудно; полученная при этом вероятность еще во много раз больше термодинамических вероятностей. Но поскольку мы практически совершенно уверены, что обезьяна никак не сможет написать «Божественную комедию», тем больше оснований быть уверенными в справедливости термодинамических законов. Но практическая справедливость закона представляет интерес для инженера, а ученые видят, что второй закон термодинамики из ранга достоверных законов переходит в ранг вероятных. Между достоверностью и вероятностью, пусть даже и очень большой, ученый видит непроходимую пропасть. Таким образом, классическая физика оказалась перед лицом неизбежного дуализма. Имея перед собой какой-либо закон, претендующий на описание явления, физика должна теперь задавать себе вопрос: что это — динамический, причинный закон или же статистический, вероятностный? Перед лицом такого дуализма физики разделились на два лагеря. Меньшинство хотело преодолеть этот дуализм, отрицая существование достоверных законов и придавая всем законам вероятностный характер. Большинство же стремилось свести все статистические законы к элементарным, динамическим. Статистические законы, говорили они,— это синтез отдельных динамических причинных законов, которые наше сознание не в состоянии проследить в их совокупности. Вероятность, возникающая в статистических законах, это, как говорил Пуанкаре, просто мера нашего незнания. Наука не может опираться на статистические законы, она должна добраться до индивидуальных динамических законов, лежащих в основе статистических, потому что только таким образом наше мышление сможет следовать за причинными связями в природе. Эти физики, очевидно, полностью придерживались строгого детерминизма явлений природы, провозглашенного Лапласом фундаментальным принципом в его известном утверждении: «Мы должны рассматривать существующее состояние Вселенной как следствие предыдущего состояния и как причину последующего. Ум, который в данный момент знал бы все силы, действующие в природе, и относительное положение всех составляющих ее сущностей, если бы он еще был столь обширным, чтобы ввести в расчет все эти данные, охватил бы одной и той же формулой движения крупнейших тел Вселенной и легчайших атомов. Ничто не было бы для него недостоверным, и будущее, как и прошедшее, стояло бы перед его глазами» *. Этим детерминистским подходом вдохновлялся Бьеркнес, когда в начале XX столетия излагал грандиозную программу исследований, направленных на то, чтобы свести свою метеорологическую статистику к отдельным динамическим законам. Но в то время, когда Бьеркнес составлял эти грандиозные планы, уже стала складываться современная физика, которой предстояло, как мы увидим в гл. 15, революционизировать традиционные схемы. * Theorie analytique des probability par M. le Compte Laplace, 2 ed., Paris, 1814, p. 2. (Первое издание вышло в 1812 г. без «Введения».)
ГЛАВА 10 • ЭЛЕКТРИЧЕСКИЙ ТОК ПЕРВЫЕ ИССЛЕДОВАНИЯ 1. ГАЛЬВАНИЗМ. Весть об изобретении электрической батареи (см. гл. 7, § 20) стремительно распространилась, вызывая такой интерес, какого- не вызывало, пожалуй, ни одно открытие со времен Ньютона. 17 ноября 1801 г. Вольта из Парижа, куда его пригласил Наполеон, чтобы он повторил свои опыты во Французском институте, пораженный и обрадованный, писал брату: «Я сам... поражаюсь тому, что мои старые и новые открытия так называемого гальванизма, которые являются лишь демонстрацией чистого- и простого электричества, получающегося от контакта различных металлов, вызвали столько энтузиазма. Оценивая их беспристрастно, я сам тоже вижу в них все же некоторую ценность: они проливают новый свет на теорию электричества; открывают новые пути для химических исследований с помощью некоторых частных явлений, вызываемых этими моими электромоторными аппаратами, как-то: разложения воды, окисления металлов и т. п., а также находят применение в медицине... Уже более года все газеты Германии, Франции и Англии полны сообщениями об этом. В Париже же они, можно сказать, вызвали фурор, потому что здесь к ним, как и к прочемуТ примешивается крик моды» *. Однако это не было криком моды. Многочисленные обнаруженные явления были действительно поразительны. Научные изыскания стали проводиться сразу по трем направлениям, взаимно перекрещивающимся и взаимообусловленным: изучение природы этого нового явления, изготовление все более мощных батарей и изучение новых явлений. Уже во времена полемики между Вольтой и Гальвани возникало сомнение в том, что в гальванических опытах появляется флюид особого рода. В 1796 г. Грен высказал предположение, что это тот же флюид, который проявляется в вольтовых контактных явлениях, и поэтому предложил назвать гальванизмом весь комплекс явлений, связанных с вольтовыми контактными явлениями. Этот неологизм понравился, быстро распространился и был одной из причин, продливших полемику относительно идентичности электричества и гальванизма, потому что всем известно, какой неотразимой силой обладает новое слово, вошедшее в общее употребление. С появлением батареи Вольты, после того как стали известны получаемые с ее помощью эффекты, и особенно химические, вновь живо разгорелся спор о том, можно ли отождествить это новое явление, связанное с действием батарей, с электрическим флюидом, появляющимся в электростатических машинах. Особенно три факта усиливали сомнение в тождественности этих явлений: в батареях присутствие электричества совсем не проявлялось или же проявлялось очень слабо, значительно слабее, чем в электростатических машинах (например, электрический удар, заряд электрометра и т. п.); некоторые тела, являвшиеся проводниками флюидов от электростатических машин, казались изоляторами по отношению к флюидам от батареи; представлялось, далее, необъяснимым, каким образом флюид от батареи, столь слабый в своих электрических проявлениях, оказывался способным * Alessandro V о 11 a, Epistolario, Ediz. naz., IV, Bologna, 1953, p. 92—93. 242
производить химические эффекты: разложение некоторых жидкостей и окисление некоторых металлов, эффекты, которые электричество электростатических машин, «гораздо более сильное и грозное», не способно было производить. К этим сомпениям Вассалли Эанди прибавлял еще не поддававшееся в то время объяснению различие физиологических реакций па разряды электростатических машин и на ток от батареи: так, некоторые животные оставались лишь несколько оглушенными разрядом лейденской банки или электростатической машины, тогда как ток батареи убивал их. На все эти возражения Вольта ответил статьей «SulV identitd del fluido elettrico col fluido galvanico» («Об идентичности флюида электрического и флюида гальванического»), прочитанной во Французском институте в присутствии Наполеона, на заседании 11 фримера X года (1801 г.). Вольта отмечает, что причины и признаки тождественности обоих флюидов «... столь очевидны и явны, что было бы упрямством и просто неприличием стремиться все еще отрицать такую тождественность или хотя бы сомневаться в нейь. Далее он показывает, что различия в характере действия этих двух флюидов следует искать в различном «напряжении» электростатических машин и батареи. Эту статью Вольты мы можем рассматривать сегодня как конец полемики, но тогда она все еще продолжалась, потому что у ученых еще не сложилось ясного представления о «напряжении». По их мнению, эти явления можно было бы считать тождественными лишь тогда, когда с помощью батареи были бы получены те же эффекты, что и при посредстве электростатических машин, и такой же интенсивности. С этой целью были предприняты многочисленные исследования, и такое стимулирующее действие нужно считать положительной стороной полемики. Из многочисленных опытов, предпринятых с целью разрешить этот спор, упомянем здесь наиболее важные. В 1801 г. Волластону удалось разложить воду с помощью электрических разрядов, подобно тому как это уже ранее делалось при помощи батареи. В 1804 г. Б. Можону (1784—1849), профессору химии в Генуе, и независимо от него К. Л. Мороццо (1744—1804) в Турине удалось намагнитить стальную иголку с помощью тока от батареи, подобно тому как Беккариа и другие намагничивали иголки разрядами электростатических машин или лейденской банки. Вильгельм Крюкшенк в 1800 г. получил от батареи видимые при свете дня искры, вызывавшие взрывы смесей. В том же году Антуану Франсуа Фуркруа (1755—1809) удалось с помощью батареи раскалить железную спираль; она даже сгорала, если ее помещали в резервуар с чистым кислородом, как в знаменитом опыте Лавуазье. Христиан Пфафф (1773—1852) заметил притяжение, действующее на кованый золотой листочек, помещенный между двумя проводниками, соединенными с полюсами батареи. Этот опыт был с большей точностью повторен Риттером и в 1806 г. навел Томаса Беренса (1775—1813) на мысль сконструировать свой электрометр, называемый теперь электрометром Боненберга и состоящий из двух одинаковых батарей, соединенных противоположными полюсами с двумя металлическими пластинками, помещенными под стеклянным колпаком, между которыми подвешен тонкий золотой листочек. В 1811 г. Жан Андре Делгок (1727—1817) заменил две батареи одной, и, наконец, в 1850 г. Вильгельм Ханкель (1814—1899) придал этому инструменту его нынешний вид. Именно теории гальванического флюида, отличного от электрического, а вовсе не памяти Гальвани, как пишут некоторые историки, обязаны своим существованием введенные в употребление в первые годы XJX века и дошедшие до наших дней научные термины и вошедшие в живой язык слова, образованные от имени Гальвани, например слово «гальванометр», 16* 243
введенное С. Робертсоном (1763—1837) в 1801 г. для обозначения измерителя интенсивности гальванизма по его химическому действию. Этот термин понравился Амперу, и он с 1820 г. стал прибегать к нему, но уже в нынешнем его значении. Спор о гальванизме был практически закончен Фарадеем в 1833 г., о чем мы будем говорить в дальнейшем. 2. ХИМИЧЕСКОЕ ДЕЙСТВИЕ ТОКА. Одним из первых явлений, наблюдавшихся Вольтой в его батарее, особенно в ее чашечном варианте, было разложение солей и окисление металлических пластинок, в частности цинка. Это явление было подтверждено в начале апреля 1800 г. Луиджи Бруньятелли (1761—1818) из Университета в Павии, первым из ученых, кому Вольта показал свой новый прибор. Однако в своем письме к Бэнксу (см. гл. 7) Вольта не упоминает об этих явлениях, быть может потому, что собирался заняться их более обстоятельным изучением. Поэтому Энтони Карлейль (1768—1840) и Уильям Никольсон (1753—1815), которым Бэнкс показал это письмо, прежде чем зачитать его (18 июня 1800 г.) в Королевском обществе, ничего не знали об этих опытах Вольты, когда, собрав батарею, начали свои исследования. Спустя несколько месяцев эти английские ученые открыли явление разложения воды. Они придумали приспособление для сбора отдельно водорода и кислорода, известное и сейчас. В две закрытые с одной стороны трубки, наполненные водой и опрокинутые над сосудом, также наполненным водой, они поместили платиновые концы цепи. Электрохимические явления, собственно говоря, не были новостью. Еще в 1769 г. Беккариа восстанавливал окислы металлов с помощью электрических разрядов. Повторив некоторые опыты Пристли, у которого не хватило терпения довести их до конца, Кавендиш, использовав искровой разряд в воздухе, получил азотистый ангидрид и азотный ангидрид. С помощью построенной в Гаарлеме грандиозной электростатической машины Ван Марум разложил целый ряд веществ (в 1785 г. и позже), а в 1790 г. Адриан Ван Трооствик (1752—1837), тоже голландец, успешно разложил воду, пропуская через нее многочисленные искры (не менее 600). Однако все предыдущие эксперименты не получили должной оценки из-за трудности их выполнения и незначительности полученных эффектов. Применение батареи значительно упрощало выполнение этих опытов, а получающиеся при этом эффекты были весьма впечатляющими. Поэтому известие об опытах Карлейля и Никольсона дало толчок многочисленным аналогичным исследованиям. В том же 1800 г. Уильям Генри сообщил о том, что ему удалось разложить аммиак; Вильгельм Крюкшенк за несколько месяцев до смерти успел сконструировать свою «батарею-корыто» и заметить, что в растворах солей металлов, через которые пропускается ток, металл отлагается на том проводнике, на котором при разложении кислотных растворов освобождается водород. Бруньятелли удалось первому осуществить посеребрение, оцинкование и омеднение электродов: «Я часто наблюдал, как с серебряного проводника серебро устремлялось на платину или на золото и прекрасно серебрило их... В других аналогичных опытах я наблюдал, как оцинковывалось и покрывалось медью золото или серебро при пропускании электрического тока, если в одном и том же сосуде находились проводники из золота или серебра вместе с цинком и медью» *. Несколько лет спустя ему удалось позолотить две большие серебряные медали, погрузив каждую из них в насыщенный раствор аммиачного золота и подключив их к отрицательному полюсу батареи. * Annali di cliimica e storia naturale, 18, 152 (1800). 244
Систематические исследования химических эффектов электрического тока провел Хемфри Дэви (1778—1829). Яркий язык и точный отшлифованный стиль его изложения сделали гальванические явления популярными. Дэви доказал, что вода непосредственно не разлагается под действием электрического тока, вызывающего, однако, разложение кислот и солей, растворенных в воде. После долгих и терпеливых попыток в 1807 г. Дэви удалось разложить с помощью тока едкий калий, а немного спустя и едкий натр, получив два новых металла, названных им калием и натрием. Это событие имело широчайший резонанс и важнейшие последствия, отмеченные историей химии. От Дэви ведет свое начало новая ветвь науки — электрохимия, которая на протяжении XIX века постепенно все более отдаляется от физики, чтобы в конце века, как мы это увидим позднее, вновь сблизиться с ней. Факт быстрого окисления металлов при контакте, который Оствальд рассматривает как важнейший факт научной электрохимии, был открыт Джованни Фаббропи (1752 —1822) и сформулирован им в докладе, зачитанном в 1792 г. во Флорентийской Академии земледелия (Accademia dei Georgofili), труды которой были изданы, однако, лишь в 1801 г. Запоздание этой публикации ввело в заблуждение итальянских историков, которые приписывают Фабброни первую формулировку химической теории действия электрической батареи, поскольку Фабброни считал еще до того, как появилась батарея, что причину судорог лягушки в опытах Гальвани надо искать не в движении гальванического или электрического флюида, а в тепловом или химическом действии за счет контакта различных металлов. Тем не менее несомненно, что работы Фабброни вдохновили как француза Никола Готро (1753—1803), так и англичанина Волластона, которые в 1801 г. почти одновременно, но независимо друг от друга сформулировали химическую теорию вольтова столба. Согласно этой теории, источником электродвижущей силы является химическое взаимодействие металлов с жидкостью, в которую они погружены. Спор о природе электродвижущей силы вольтова столба продолжался на протяжении всего века; химическая теория наконец взяла верх, но ведь нельзя отрицать и «эффекта Вольты», т. е. наличия электрического напряжения при простом контакте двух металлов. В 1799 г. с помощью опытов, аналогичных опытам Фабброни, Иоганн Риттер (1776—1810) также пришел к открытию основного явления электрохимии. Большое значение имеют и его исследования свойств вольтова столба. Риттер заметил, что если в течение некоторого времени пропускать ток через золотые проводники, погруженные в трубку, наполненную водой, а затем отключить проводники от полюсов батареи и соединить их между собой, то процесс химического разложения будет продолжаться в трубке, но в обратном направлении — на конце проводника, где вначале выделялся водород, теперь выделяется кислород и наоборот. Эффект этот становился еще более наглядным в опыте со столбиком, составленным из кружков из одного и того же металла, отделенных один от другого влажными картонными кружками. Риттер объяснил это явление тем, что столбик из кружков как бы поглощал флюид, исходящий из вольтовой батареи, а затем возвращал его внешней цепи; поэтому Эрстед назвал это приспособление Риттера «вторичным столбом». Суть этого явления ясно понял лишь Вольта. Наблюдая химические явления, происходящие во вторичном столбе, он пришел к выводу, что это меняющийся, а не заряжающийся столб. Теория Вольты была подтверждена опытами, проведенными Стефаном Марианипи (1790—1866) в 1826 г., хотя Бруньятелли еще в 1802 г. заметил, что на проводнике, соединенном с отрицательным полюсом, выделяются пузырьки водорода. Обычные школьные опыты, с помощью которых демонстрируется поляризация двух платиновых 245
электродов, были описаны в 1824 г. Антуаном Сезаром Беккерелем (1788-1878). Вторичные столбы практического интереса не представляли до тех пор, пока не был найден способ получения электрических токов от источников, отличных от вольтова столба. Это объясняет факт их столь позднего усовершенствования. Лишь в 1859 г. Гастон Планте (1834—1879) предложил свой хорошо известный тип свинцового аккумулятора, и только в 1881 г., т. е. после появления динамо-машины, Камилл Фор (1840—1898) улучшил его и придал ему тот вид, который известен и по сей день. Вплоть до открытия электромагнитной индукции (см. § 11) единственными генераторами тока были батареи Вольта и (с 1823 г.) термоэлектрическая батарея. Самым простым способом получения все более мощных батарей казалось последовательное соединение все большего числа элементов. Но чашечные батареи были слишком громоздкими, а батареи-столбы не только неудобны, но и ненадежны, потому что под тяжестью металлических кружков жидкость, которой были пропитаны прокладочные кружки, выдавливалась и батареи выходили из строя. Поэтому Вольта надеялся, что рано или поздно удастся создать батареи совсем без жидкости. Это представление приводит в смущение современных критиков, потому что в нем неявно заключено отрицание принципа сохранения энергии, провозглашенного лишь через полвека после Вольта. Однако именно эту цель имел в виду Джузеппе Дзамбони (1776—1846), когда в 1812 г. предпринял первые попытки создания батареи из сухих проводников. После многих попыток Дзамбони убедился в том, что тело, помещенное между металлическими пластинками, должно быть непременно влажным; достаточно было, однако, и того, чтобы тело обладало своей естественной влажностью. Тогда Дзамбони пришла счастливая мысль заменить медные и цинковые пластинки кружками так называемой «золотой» или «серебряной» бумаги, которую сейчас применяют для оберток шоколадных конфет (листочки бумаги, покрытые тонким слоем меди или олова). Естественной влажности этой бумаги достаточно, чтобы обеспечить функционирование батареи, которая в небольшом объеме может содержать тысячи пар обкладок. Дзамбони получил таким образом «сухую батарею», которая так и называлась столбом Дзамбони и сыграла большую роль в науке. Дзамбони сразу увидел, что от этой батареи нельзя было ожидать ши химических, ни физиологических эффектов, а только физических т. е. чистого электрического напряжения» *. Вскоре он заменил бумагу пастой из смеси угольной пыли с водой, а затем, по совету Вольта, перекисью марганца. В 1831 г. Дзамбони применил свою батарею "в конструкции электрических часов, один экземпляр которых находится в Институте физики Моденского университета. Эти часы идут почти непрерывно е 1839 г., и по наблюдениям, проводившимся на протяжении почти целого века, батарея Дзамбони, постепенно разрушаясь, кроме того, поляризуется, хотя и очень медленно. В вопрос о механизме химического разложения при прохождении электрического тока, который пытались объяснить Монж, Бертоле и другие французские ученые, вскоре внес блестящий вклад Кристиан Гроттгус (1785—1822), двадцатилетний ученый. В 1805 г. он опубликовал в Риме, где находился для прохождения курса наук, статью, перепечатанную в следующем году одним из самых распространенных и авторитетных научных журналов того времени — парижским «Annales de chimie». * G. Zamboni, L'elettromotore perpetuo, II, Verona, 1822, p. 36. 246
Поляризация молекул воды по Гроттгусу (Annales dc chimio, 1806). Гроттгус уподобляет вольтов столб магниту и соответственно вводит термины положительный полюс и отрицательный полюс для обозначения даух концов батареи. Он распространяет эту аналогию также на «элементарные молекулы воды», т. е. на атомы водорода и кислорода, объединенные в каждой частице воды. При прохождении тока происходит отделение атомов и, может быть, вследствие трения между двумя частицами водород приобретает положительный заряд, а кислород — отрицательный. В результате цепочка молекул между полюсами располагается в порядке, указанном на рисунке. Атом о молекулы oh притягивается к положительному полюсу и отдает ему свой заряд, тогда как атом h благодаря процессу, которого Гроттгус ле объясняет, объединяется с кислородом о' следующей молекулы, чей водород h' объединяется с кислородом г следующей молекулы, и т. д. Подобный же процесс происходит и с атомами водорода тех молекул, которые находятся рядом с отрицательным полюсом. Так с помощью этих последовательных разложений и соединений, согласно Гроттгусу, объясняется тот факт, что водород освобождается всегда на одном конце, а кислород — на другом. Несмотря на свою примитивность, теория Гроттгуса просуществовала более полувека, с небольшими последующими усовершенствованиями. Она представляет собой одну из основных вех в развитии научной мысли, потому что вводит в науку понятие о том, что молекулы, по крайней мере молекулы некоторых соединений, состоят из двух противоположно заряженных частей; другими словами, теория Гроттгуса подготовила почву для ионных теорий. 3. ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА. Среди тепловых эффектов, производимых током батареи, самым наглядным, без сомнения, была дуга между двумя угольными проводниками. Уже в 1802 г. Кюрте заметил, что в момент замыкания цепи батареи с помощью железного проводника, соприкасающегося с куском древесного угля, появлялись искры настолько яркие, что они освещали окружающие предметы. Несколько лет спустя Джон Чилдрен (1778—1852) обнаружил, что некоторые кусочки угля, помещенные в цепь, «распространяли такой яркий свет, что даже сияние солнечного диска казалось слабым по сравнению с ним». 247
Но поистине эффектное явление продемонстрировал в 1810 г. Дэви с помощью большой батареи, состоявшей из 2000 элементов и построенной им на средства Королевского института. Помимо различных опытов по быстрому накаливанию и расплавлению металлов, которыми он поражал публику на своей первой лекции, проведенной после сооружения этой колоссальной батареи, Дэви также провел опыт с кусками угля длиной с дюйм и толщиной в шестую часть дюйма, включенными в цепь батареи. После того как цепь была замкнута, проскочила ярчайшая искра и куски угля накалились добела более чем на половину своей длины, «...когда же оба куска угля стали удалять друг от друга, образовался непрерывный разряд через раскаленный воздух на расстоянии по крайней мере в четыре дюйма в виде необыкновенно яркой широкой световой дуги конической формы, обращенной выпуклостью вверх» *. Дэви сразу же проверил, насколько высока температура этой дуги, которая плавила платину, «как будто то был воск в пламени свечи». Длину дуги можно было увеличивать, помещая ее под колпак пневматической машины и разрежая воздух, и если разреженность была достаточно сильной, удавалось получать дугу очень эффектного пурпурного цвета длиной в шесть или семь дюймов. Ясно, что опыт Дэви, для которого требовалась мощная батарея, повторить было нелегко. Поэтому, когда десять лет спустя, в июле 1820 г., Де ла Риву удалось повторить этот опыт перед Женевским Научным Обществом, это показалось вещью настолько новой, что вплоть до сегодняшнего дня некоторые историки приписывают это открытие женевскому физику. Если опыт с дугой поражал своей эффектностью, то другие тепловые явления казались весьма запутанными. Так, проведя по совету Волластона опыт с двумя платиновыми проволоками, Чилдрен (1815 г.) обнаружил, что из двух платиновых проволок одинаковой длины, но разного диаметра, подключенных в цепь последовательно, раскалялась только более тонкая, тогда как при параллельном включении раскалялась только более толстая. Дэви (1821 г.), нагревая лампой часть цепи, добивался уменьшения температуры другой ее части, а охлаждая ее льдом, получал увеличение температуры другой части. Вплоть до 1841 г. все попытки объяснить эти и многие другие странные явления оказывались несостоятельными, но все более укреплялось мнениеу что нагревание проводников связано с сопротивлением, которое они оказывают проходящему через них току, так что большему сопротивлению соответствует большее выделение тепла. Это мнение было высказано еще Киннерсли по поводу тепла, выделяемого разрядом лейденской банки. Основываясь на упомянутых выше опытах, Дэви пошел дальше, утверждая, что «...проводящая способность металлов меняется с изменением температуры и уменьшается в том же отношении, в каком растет температура» **. Этот закон сейчас хорошо известен; гораздо менее известно, кто открыл его. МАГНИТНОЕ ДЕЙСТВИЕ ТОКА 4. ОПЫТ ЭРСТЕДА. Возможное существование тесной связи между электричеством и магнетизмом предполагали уже самые первые исследователи^ пораженные аналогией электростатических и магнитостатических явлений притяжения и отталкивания. Это представление было настолько распространено, что сначала Кардан, а затем и Гильберт считали его предрассудком * Н. Davy, Elements of Chemical Philosophy, London, 1812. ** The Philosophical Transactions of the Royal Soc. of London, 111, 431 (1821). 248
и всячески старались показать различие этих двух явлений. Но это предположение снова возникло в XVIII веке уже с большим основанием, когда было установлено намагничивающее действие молнии, а Франклину и Беккариа удалось добиться намагничивания с помощью разряда лейденской банки. Законы Кулона, формально одинаковые для электростатических и магнито- статических явлений, вновь выдвинули эту проблему. После того как благодаря батарее Вольта появилась возможность получать электрический ток в течение долгого времени, попытки обнаружить связь между электрическими и магнитными явлениями стали более частыми и более интенсивными. И все же, несмотря на интенсивные поиски, открытие заставило себя ждать целых двадцать лет. Причины такой задержки следует искать в научных представлениях, господствовавших в те времена. Все силы понимались только в ньютоновском смысле, т. е. как силы, которые действуют между материальными частицами по соединяющей их прямой. Поэтому исследователи старались обнаружить силы именно этого рода, создавая приспособления, с помощью которых они надеялись обнаружить предполагаемое притяжение или отталкивание между магнитным полюсом и электрическим током (или, выражаясь более общим образом, между «гальваническим флюидом» и магнитным флюидом) или же пытались намагнитить стальную иглу, направляя по ней ток. Взаимодействие между гальваническим и магнитным флюидом пытался обнаружить и Джан Доменико Романьози (1761 —1835) в опытах, описанных им в статье 1802 г., на которую Гульельмо Либри (1803 — 1869), Пьетро Конфильякки (1777—-1844) и многие другие ссылались потом, приписывая Романьози приоритет этого открытия. Достаточно, однако, прочесть эту статью, чтобы убедиться, что в опытах Романьози, проводившихся с батареей с незамкнутой цепью и магнитной иглой, вообще нет электрического тока, и поэтому самое большее, что он мог наблюдать,— это обычное электростатическое действие. Когда 21 июля 1820 г. в одной очень лаконичной статье на четырех страничках (на латинском языке), озаглавленной «Experimenta circa effectum conflictus electrici in acum magneticam»,* датский физик Ганс Христиан Эрстед (1777—1851) описал фундаментальный опыт по электромагнетизму, доказывающий, что ток в прямолинейном проводнике, идущем вдоль меридиана, отклоняет магнитную иглу от направления меридиана, интерес и удивление ученых были велики не только потому, что было получено столь долго разыскивавшееся разрешение проблемы, но и потому, что новый опыт, как сразу же стало ясно, указывал на силу неныотоновского типа. В самом деле, из опыта Эрстеда ясно было видно, что сила, действующая между магнитным полюсом и элементом тока, направлена не по соединяющей их прямой, а по нормали к этой прямой, т. е. она, как тогда говорили, является «силой поворачивающей». Значение этого факта чувствовалось уже тогда, хотя полностью оно было осознано лишь много лет спустя. Опыт Эрстеда вызвал первую трещину в ньютоновской модели мира. О том затруднении, в которое попала наука, можно судить, например, по замешательству, в котором находились итальянские, французские, английские и немецкие переводчики, переводившие на родной язык латинскую статью Эрстеда. Часто, сделав буквальный перевод, представлявшийся им неясным, они приводили в примечании латинский оригинал. Действительно неясным в статье Эрстеда еще и сегодня остается объяснение, которое он пытается дать наблюдавшимся им явлениям, обусловленным, по его мнению, двумя противоположно направленными спиральными * Есть русский перевод: Г. X. Эрстед, Опыты, относящиеся к действию электрического конфликта на магнитную стрелку, в книге А. М. Ампер, Электродинамика. Л., 1954. 249
Ганс Христиан Эрстед. движениями вокруг проводника «электрической материи, соответственно положительной и отрицательной». Исключительность явления, открытого Эрстедом, сразу же привлекла к нему большое внимание экспериментаторов и теоретиков. Араго, вернувшись из Женевы, где он присутствовал при аналогичных опытах, повторенных Де ла Ривом, рассказал о них в Париже, а в сентябре того же 1820 г. собрал свою известную установку с вертикальным проводником тока, проходящим сквозь горизонтально расположенный кусок картона, посыпанный железными опилками. Но окружностей из железных опилок, которые мы обычно замечаем при проведении этого опыта, он не обнаружил. Экспериментаторы видят ясно эти окружности с тех пор, как Фарадей выдвинул теорию «магнитных кривых», или «силовых линий». Действительно, нередко, чтобы увидеть что-то, нужно очень желать этого! Араго же видел только, что проводник, по его выражению, «облепливается железными опилками так, как если б это был магнит», из чего он сделал заключение, что «ток вызывает магнетизм в железе, которое не подвергалось предварительному намагничиванию» *. Все в том же 1820 г. Био зачитал два доклада (30 октября и 18 декабря), в которых сообщал о результатах проведенного им вместе с Саваром экспериментального исследования. Пытаясь открыть закон, определяющий зависимость величины электромагнитной силы от расстояния, Био решил воспользоваться методом колебаний, которым раньше пользовался уже Кулон (см. гл. 7, § 18). Для этого он собрал установку, состоящую из толстого вертикального проводника, расположенного рядом с магнитной стрелкой: при включении тока в проводнике стрелка начинает колебаться с периодом, зависящим от электромагнитной силы, действующей на полюса при различных расстояниях от центра стрелки до проводника с током. Измерив эти расстояния, Био и Савар вывели носящий теперь их имя хорошо известный закон, который в своей первой формулировке не учитывал интенсивности тока (ее тогда не умели еще измерять). Узнав о результатах опытов Био и Савара, Лаплас заметил, что действие тока можно рассматривать как результат отдельных действий на полюса стрелки бесконечного числа бесконечно малых элементов, на которые можно разделить ток, и заключил из этого, что каждый элемент тока действует на каждый полюс с силой, обратно пропорциональной квадрату расстояния этого элемента от полюса. О том, что Лаплас принял участие в обсуждении этой Annales de chimie et de physique, (2), 15, 82 (1820). 250
проблемы, говорится у Био в его работе «Precis elementaire de physique ехрё- rimentale» (2-е изд., II, Париж, 1821, стр. 122). В сочинениях же Лапласа, Насколько нам известно, нет никакого намека на такое замечание, из чего можно заключить, что он, видимо, высказал это в устной дружеской беседе с самим Био. Чтобы пополнить свои сведения об этой элементарной силе, Био попытался, на этот раз один, определить опытным путем, изменяется ли и если изменяется, то каким образом действие элемента тока на полюс с изменением угла, образуемого направлением тока и прямой, соединяющей середину элемента с полюсом. Опыт состоял в сравнении того, какое действие оказывает на одну и ту же стрелку параллельный ей ток и ток, направленный под углом. Из данных опыта Био путем расчета, которого он не опубликовал, но который, безусловно, был ошибочным, как это показал в 1823 г. Ф. Савари (1797 —1841), определил, что эта сила пропорциональна синусу угла, образуемого направлением тока и прямой, соединяющей рассматриваемую точку с серединой элемента тока. Таким образом, то, что сейчас называют «первым элементарным законом Лапласа», в значительной мере является открытием Био. 5. ГАЛЬВАНОМЕТР. Упомянутый уже нами опыт Араго, объяснявшийся многими физиками того времени тем, что провод, по которому проходит ток, намагничивается, был сразу правильно понят Ампером, тотчас же предсказавшим, а затем вскоре и подтвердившим экспериментально, что стальной брусок, помещенный внутри спирали, по которой проходит ток, приобретает постоянную намагниченность. Таким образом, был найден новый метод намагничивания, гораздо более эффективный, простой и удобный, нежели прежние. Но самое главное, этим был дан толчок для создания простого, но очень ценного приспособления — электромагнита, который используется в многочисленных научных и технических приборах. Первый подковообразный электромагнит сделал в 1825 г. американец Уильям Стерджен (1783 — 1850); этот электромагнит немало удивил исследователей быстротой намагничивания и размагничивания бруска мягкого железа при включении или выключении тока в проводнике, которым был обмотан брусок. Конструкцию Стерджена улучшили одновременно и независимо друг от друга в 1831 г. Молль (1785—1838) и американец Джозеф Генри (1797—1878). За первой, написанной на латинском языке статьей Эрстеда последовала вторая, написанная по-немецки, которая тем не менее осталась малоизвестной. В ней Эрстед показал взаимность открытого им электромагнитного явления. Он подвешивал к проволоке маленькую батарейку, замыкал цепь и регистрировал ее вращение при приближении к ней магнита. То же самое, независимо от Эрстеда, обнаружил и Ампер, которому обычно это открытие и приписывается. Еще проще продемонстрировал действие магнита на подвижный элемент тока Дэви, приблизив по совету Араго полюс магнита к электрической дуге. Стерджен видоизменил опыт Дэви и придал своему эксперименту тот вид, в каком и сегодня он демонстрируется на уроках физики, когда дуга непрерывно вращается в магнитном поле. Но первым физиком, которому удалось получить вращение проводника с током в магнитном поле, был Фарадей. В 1821 г. он сконструировал очень простое приспособление: конец подвешенного проводника был опущен в резервуар с ртутью, в который снизу входил слегка выступающий над поверхностью ртути вертикальный магнит. При пропускании тока через ртуть и проводник последний начинал вращаться вокруг магнита. Опыт Фарадея, блестяще модифицированный Ампером, бесчисленными способами варьировался затем на протяжении всего XIX века. Здесь мы укажем лишь на описанное в 1823 г. «колесо Барлоу», потому что оно представляет собой разно- 251
бидность электрического мотора, который вполне может служить еще и сегодня педагогам для учебных целей. Это металлическое колесо с горизонтальной осью, край которого погружен в ванночку с ртутью и находится между полюсами подковообразного железного магнита. Если от оси колеса к его периферии и далее через ртуть течет ток, колесо вращается. Правила Эрстеда об отклонении магнитной стрелки и соответствующее правило Ампера указывали на то, что отклонение возрастает, если тот же ток пропускать и над магнитной стрелкой и под ней. Это явление, предсказанное Лапласом и хорошо изученное Ампером, было использовано в 1820 г. Иоганном Швейггером (1779—1857) при конструировании мультипликатора, представлявшего собой прямоугольную рамку, обмотанную несколько раз проводом, по которому протекал ток. В середине рамки помещалась магнитная стрелка. Почти одновременно Авогадро и Микелотти построили другой тип мультипликатора, несомненно, гораздо менее удачный, чем швейггеров- ский; описание его опубликовано в 1823 г. Однако в мультипликаторе Авогадро и Микелотти имелось одно новшество: магнитная стрелка, подвешенная на нити, вращалась над разграфленным сектором, а весь аппарат помещался под стеклянным колпаком. Вначале казалось, что мультипликатор представляет собой предельно чувствительный гальванометр, но вскоре обнаружили, что его можно значительно улучшить. Уже в 1821 г. Ампер сконструировал «астатический аппарат», как он его назвал, подобный тому, который применял Вассалли Эандиг а еще раньше, в 1797 г., Джон Тремери. Прибор состоял из двух параллельных жестко связанных магнитных стрелок с полюсами, направленными в противоположные стороны. Вся система подвешивалась на острие, и можно было наблюдать, как она поворачивалась при пропускании электрического тока через параллельный проводник, расположенный очень близко к нижней стрелке. Таким способом Ампер доказал, что магнитная стрелка, когда она не подвержена магнитному влиянию Земли, располагается перпендикулярно току. Леопольдо Нобили (1784—1835) пришла удачная мысль сочетать астатический аппарат Ампера с подвеской на нити, как у Авогадро и Микелотти; таким образом он пришел к своему известному астатическому гальванометру, первое описание которого он представил на заседании Моденской Академии наук 13 мая 1825 г. Чтобы дать представление о чувствительности этого инструмента, Нобили замечает, что, если соединить концы провода гальванометра железной проволокой, достаточно согреть один из стыков пальцами, чтобы стрелка отклонилась на 90°. Гальванометр Нобили в течение нескольких десятилетий оставался самым чувствительным измерительным прибором в физических лабораториях, и мы уже видели (см. гл. 8, § 7), какую ценную помощью он оказал Меллони в его исследованиях. В 1828 г. Эрстед решил улучшить его, применив вспомогательный подковообразный магнит. Эта попытка успехом не увенчалась, но о ней все же следует упомянуть как о первом приборе с вспомогательным полем. Эти измерительные приборы были значительно усовершенствованы лишь с появлением в 1837 г. тангенс-буссоли Клода Пуйе (1790—1868) и синус- буссоли, употреблявшейся уже за год до того тем же Пуйе. Возможно, Пуйе и сам не знал точно теории действия своего инструмента, которая была дана в 1840 г. Вильгельмом Вебером (1804—1891). В 1837 г. А. С. Беккерель изобрел «электромагнитные весы», получившие распространение лишь во второй половине столетия. Затем появились другие типы тангенс-буссолей: Гельмгольца (1849 г.), Гогэна (1853 г.), Кольрауша (1882 г.). Тем временем Поггендорф с 1826 г. ввел метод зеркального отсчета, развитый затем Гауссом (1832 г.) и примененный в зеркальном гальванометре Вебером в 1846 г. 252
Тангенс-буссоль Клода Пуйе (М. Р о u i 11 е t, Elements de physique experimental et de meteorologie, 1853.) Ток через рсофоры d и с проходит через большое кольцо диаметром 40—50 си. Маленькая магнитная стрелка в центре кольца прикреплена к длинной легкой медной стрелке, концы которой движутся по делениям разделенного па градусы круга. С большим энтузиазмом был принят гальванометр, изобретенный в 1886 г. Д'Арсонвалем (1851—1940), в котором, как известно, измеряемый ток проходит через легкую подвижную катушку, помещенную в магнитном поле. 6. ЭЛЕКТРОДИНАМИКА АМПЕРА. Одновременно с работами Био и Сава- ра, и даже на несколько месяцев раньше, провел свои теоретические и экспериментальные исследования Ампер. 18 сентября 1820 г. он сообщил Парижской Академии наук о своем открытии пондеромоторных взаимодействий токов, которые он назвал электродинамическими. Точнее говоря, в этом своем первом докладе Ампер назвал эти действия «вольтаическими притяжениями и отталкиваниями», но потом стал именовать их «притяжениями и отталкиваниями электрических токов». В 1822 г. он ввел термин «электродинамический». Ампер был плодовитым и искусным изобретателем неологизмов. Именно ему мы обязаны такими словами, как электростатический, реофор, соленоид, и многими другими. Говорят, что, когда Ампер зачитал свой доклад об электродинамических действиях токов, один из его коллег по окончании чтения спросил: «Но что же, собственно, нового в том, что вы нам сказали? Само собой ясно, что если два тока оказывают действие на стрелку, то они оказывают действие также и друг на друга». Ампер, захваченный врасплох, не знал, что ответить. По ему на помощь пришел Араго. Он вынул из кармана два ключа и сказал: «Вот каждый из них тоже оказывает действие на стрелку, однако же они никак не действуют друг на друга». Такой случай, но-видимому, действительно был, потому что Ампер в своей большой работе «Memoire sur la theorie mathematique des phenomenes electro-dynamiques uniquement deduite de I'expe- rience»* («О математической теории электродинамических явлений, однозначно выведенной из опыта») считает нужным заметить, что из опыта Эрстеда нельзя было логически заключить о взаимодействии двух токов, как из действия двух кусков железа на стрелку нельзя сделать вывода об их взаимо- * Есть русский перевод в книге: Л. М. Ампер, Электродинамика, Л. 1954. 253
Андре Мари Ампер. действии. Но рассказывают еще и о другом случае. Лаплас присутствовал на первой публичной демонстрации опыта Ампера. Публика уже расходилась, и Лаплас у выхода стал ждать ассистента, Даниэля Кол- ладона; увидев его, он хлопнул его по плечу и, пристально глядя на него, спросил: «А не вы ли это, молодой человек, подталкивали провод?» * Сразу же после открытия Эрстеда физикам показалось вполне естественным объяснить его тем, что при прохождении электрического тока через проводник последний становится магнитом. Такое объяснение было принято Араго, который приступил к опыту, упомянутому в § 4, исходя именно из этого представления. Оно было принято также и Био **, который упорно придерживался его еще много лет. Его придерживались также Дэви и Берцелиус. Последний уточнял, что каждое поперечное сечение проводника, по которому проходит ток, становится двойным магнитом с противоположными полюсами. Однако Ампер предложил другое объяснение, которое и является самым гениальным его вкладом в науку: не проводник, по которому течет ток, становится магнитом, а, наоборот, магнит представляет собой совокупность токов. В самом деле, говорит Ампер, если мы предположим, что в магните присутствует совокупность круговых токов, текущих в плоскостях, точно перпендикулярных его оси, в одном и том же направлении, то ток, идущий параллельно оси магнита, окажется направленным под углом к этим круговым токам, что и вызовет электродинами- * Raoul de P i с t e t, 'Etude critique du materialisme et du spiritualisme par la physique experimentale, Geneve, 1896, p. 101—105. Однако этот случай, о котором многие рассказывают, скорее всего, вымышлен, ибо маловероятно, что Лаплас ждал публичной демонстрации опыта, чтобы узнать об открытии Ампера. Ведь сам Ампер вспоминает о полученных от Лапласа советах, как увеличить эффект в опыте Эрстеда, изогнув проводник так, чтобы он проходил и над стрелкой и под нею. И потом совершенно неверно, будто первая публичная демонстрация опыта была проведена, как пишет Пикте, в 1823 или 1824 г. с несовершенными приборами, которые не позволили добиться желаемого эффекта, разочаровав публику и огорчив Ампера. Уже в феврале 1821 г. Ампер построил свою «скамью», использовав при этом многочисленные приспособления, изготовленные знаменитым Пиксием. Этой «скамьей» воспользовался затем Деламбр, когда 2 апреля 1821 г. повторил перед Парижской Академией наук основные опыты Ампера. ** В 1820 г. Био утверждал, что когда прямолинейный ток действует на магнитную молекулу, то «природа этого действия та же, что и для намагниченной стрелки, помещенной на периферии проводника в определенном направлении, постоянном по отношению к направлению вольтаического тока?,. Био и другие физики, разделявшие его мнение, объясняли электродинамическое действие взаимодействием элементарных магнитов, возникающих под действием тока в каждом проводнике: каждый проводник, по которому проходит ток, превращается в магнитную трубку. Био оставался твердым в этом своем убеждении, хотя уже в 1820 г. Гей-Люссак и Вельтер придумали эксперимент, повторенный с тем же результатом Дэви и Эрмаиом, в котором показано, что два сильно намагниченных трубчатых кольца не проявляют взаимодействия. 254
ческое взаимодействие, стремящееся сделать все токи параллельными и направленными в одну сторону. Если прямолинейный проводник закреплен, а магнит подвижен, то отклоняется магнит; если же магнит закреплен, а проводник подвижен, то движется проводник. Легко понять, что в то время, в 1820 г., гипотеза Ампера казалась исключительно смелой, и не удивительна поэтому та сдержанность, с которой она была встречена. Гипотеза Био и Араго казалась куда более правдоподобной. Но когда в 1821 г. Фарадой установил вращение токов в магнитном ноле, Ампер заметил, что такой эффект нельзя объяснить никаким распределением магнитиков в проводЕШке, через который проходит ток; такое распределение могло вызвать лишь силы притяжения или отталкивания, но никак не вращающую пару сил. Ампер заботился больше о том, чтобы найти опытное подтверждение своей собственной гипотезы, нежели о критике чужих теорий. Он подумал, что если магнит понимать как систему круговых параллельных токов, направленных в одну сторону, то спираль из металлической проволоки, по которой проходит ток, должна вести себя как магнит, т. е. должна принимать определенное положение под воздействием магнитного поля Земли и иметь два полюса. Опыт подтвердил предположеЕшя относительно поведения такой спирали под действием магнита, но не совсем ясны были результаты опыта, относящиеся к поведению спирали под действием магнитного поля Земли. Тогда Ампер решил взять для выяснения этого вопроса один- единственный виток проводника с током; оказалось, что виток ведет себя точно как магнитный листок. Таким образом обнаружилось непонятное явление: один-единствеиный виток ведет себя как магнитная пластина, а спираль, которую Ампер считал в точности эквивалентной системе магнитных пластинок, вела себя не совсем как магнит. Пытаясь разобраться, в чем тут дело, Ампер с удивлением обнаружил, что в электродинамических явлениях спиральный проводник ведет себя точно как прямолинейный проводник с теми же концами. Из этого Ампер заключил, что в отношении электродинамических и электромагнитных действий элементы тока можно складывать и разлагать по правилу параллелограмма. Поэтому элемент тока можно разложить на две составляющие, из которых одна направлена параллельно оси, а другая — перпендикулярно. Если суммировать результаты действия разных элементов спирали, то результирующая окажется эквивалентной прямолинейному току, идущему по оси, и системе круговых токов, расположенных перпендикулярно оси и направленных в одну сторону. Поэтому, чтобы спираль, по которой проходит ток, вела себя точно как магнит, нужно скомпенсировать действие прямолинейного тока. Этого Ампер, как известно, добился очень просто, выгнув вдоль оси концы проводника. Но все же существовало различие менаду спиралью, по которой проходит ток, и магнитом: полюса спирали находились только на концах, тогда как полюса магнита — во внутренних точках. Чтобы устранить и это последнее различие, Ампер оставил свою первоначальную гипотезу о токах, прямо перпендикулярных, оси магнита, и принял, что они расположены в плоскостях, находящихся под разными углами к оси. Сразу же после своих первых электродинамических опытов Ампер решил вывести формулу для величины силы, возникающей между двумя элементами тока, чтобы из этой формулы можно было найти силу, действующую между двумя частями проводников данной формы и положения. Не имея возможности проводить опыты с элементами тока, Ампер в 1820 г. попытался сначала использовать следующий метод: провести тщательные и многочисленные измерения действия двух конечных токов разной формы и положения, затем принять какую-либо гипотезу о взаимодействии двух элементов тока, вывести из нее взаимодействие двух конечных токов и далее 255-
модифицировать эту гипотезу до тех пор, пока теоретические и экспериментальные результаты не окажутся в полном соответствии. Это классический путь, многократно испробованный в подобных исследованиях, однако Ампер вскоре убедился в том, что этот способ в данном случае был бы построен на сплошных догадках и желаемые результаты можно получить более прямым путем. Установив, что подвижный проводник находится точно в равновесии под действием равных сил, вызываемых неподвижными проводниками, размеры и форму которых можно без нарушения равновесия изменять при соблюдении условий, допустимых опытом, Ампер получил возможность непосредственно рассчитать, каково должно быть взаимодействие двух элементов тока, чтобы равновесие при таких условиях действительно не зависело от формы и размеров неподвижных проводников. Он смог успешно применить этот гораздо более узкий критерий, потому что опытным путем было определено четыре случая равновесия, два из которых еще и сегодня приводятся в курсах физики (равенство абсолютной величины сил, действующих на одинаковые токи, текущие в противоположных направлениях; одинаковое действие на прямолинейный подвижный проводник двух неподвижных проводников, прямого и изогнутого, одинаково удаленных и имеющих концы в одних и тех же точках). Исходя из этих четырех экспериментальных постулатов, Ампер путем довольно сложного доказательства вывел первую из формул электродинамического взаимодействия элементов тока, за которой последовали многие другие формулы, выведенные рядом ученых (Грассманн, Вебер, Риман и др.). Все эти формулы применялись для расчета, и все они подвергались критике. Эти формулы давали величину силы, действующей между двумя элементами тока, в зависимости от сил токов, расстояния между элементами и их взаимного положения. В ходе теоретических исследований выяснилось, что части одного и того же проводника должны взаимно отталкиваться. Этот факт представлялся Амперу настолько важным, что он счел возможным положить его в основу всей электродинамики и поэтому решил найти ему непосредственное экспериментальное подтверждение. Таковое Ампер получил в сентябре 1822 г. с помощью приспособления, упоминаемого еще в некоторых современных курсах физики. Это сосуд, разделенный перегородкой на два отделения, наполненных ртутью и соединенных подвижным проводником, плавающим в ртути. При прохождении тока по проводнику из одного отделения в другое подвижный проводник смещается. Из своей формулы взаимодействия элементов тока, рассматривая магнит как систему молекулярных токов, Ампер вывел первый закон Лапласа, а из него способом, описываемым во всех современных учебниках,— закон Био и Савара. Ампер вывел также закон Кулона для магнитостатического взаимодействия двух магнитов, рассматриваемых как две токовые системы. Другое благоприятное для своей теории обстоятельство Ампер видел в том факте, что незадолго до того выведенная Пуассоном формула для силы действия магнитного элемента на элемент северного или южного флюида совпадает с формулой, получающейся из его теории для очень маленькой замкнутой плоской петли тока. Отсюда сразу же следует, что если замкнутый малый плоский контур тока эквивалентен элементарному магнитику, то, разлагая, как это рекомендуется и сейчас в учебниках, конечный контур на отдельные кольца, можно показать, что замкнутый контур действует точно так же, как элементарные магнитики, которые равномерно распределены по ограниченной этим контуром произвольной поверхности так, что их оси нормальны поверхности. Это знаменитая теорема эквивалентности Ампера. Ампер понимал, что к тем же проверяемым опытом выводам можно 256
прийти, исходя и из других законов взаимодействия элементарных токов, поэтому особенно подчеркивал другое достоинство своей теории — ее способность сводить к единой причине (взаимодействию двух элементов тока) три вида взаимодействий, кажущихся совершенно различными: магнито- статические, электромагнитные и электродинамические. Но главное достоинство своей формулы (единственной, которая, по его мнению, имеет право называться действительно элементарной) он видел в том, что она изгнала из физики «вращательные силы», сведя все силы природы к взаимодействию частиц вдоль соединяющей их прямой. Таким образом, в этой большой работе, опубликованной в 1827 г. и охарактеризованной Максвеллом как «совершенная по форме и непревзойденная по точности», Амперу удалось восстановить механистическую концепцию, сильно поколебленную опытом Эрстеда. Но как раз работы того же Максвелла позволили установить, что это всего лишь «заплата». Вебер положил в основу своей теории электрического тока, рассматриваемого как истинный поток заряженных частиц, электромагнитное действие движущегося заряда; Максвелл также принял эту концепцию. По совету Гельмгольца Роуланд в 1876 г. с помощью классического эксперимента, вызвавшего длительную дискуссию, прекратившуюся практически лишь в 1903 г. благодаря Пуанкаре, доказал, что движущийся по окружности электрический заряд оказывает на магнитную стрелку точно такое же действие, как и круговой ток. Более того, при увеличении скорости заряда растет и сила, действующая на каждый полюс стрелки, т. е. величина силы зависит от скорости заряда. Между тем для механистической концепции характерно объяснение всех явлений силами, зависящими лишь от расстояния между частицами. Опыт Роуланда не только подтверждал существование «вращательных сил», но вводил новый элемент, совершенно чуждый механистической концепции и потому сильно ее поколебавший. Однако вернемся еще раз к работе Ампера. Оставив в стороне его резкую полемику с Био, полную личных выпадов, мы хотим заметить, что Ампер объясняет, как это он уже делал и в 1821 г., земной магнетизм существованием внутренних токов в земном шаре — это одна из многочисленных и малоудовлетворительных теорий, пытающихся объяснить земной магнетизм. В 1822 г. Леопольд Нобили подкрепил взгляд Ампера, создав «прибор», состоящий из «...сферического шара, обмотанного металлической проволокой в направлении параллелей, которая соединяется концами с цинковым и медным электродами вольтова столба» *. ■ '•;••. Этот прибор в некоторых курсах физики называют «шаром Барлоу», хотя Барлоу представил его описание в Королевский институт лишь 26 мая 1824 г., т. е. через два года после опубликования статьи Нобили. ЗАКОН ОМА 7. ПЕРВЫЕ ИССЛЕДОВАНИЯ СОПРОТИВЛЕНИЯ ПРОВОДНИКОВ. Что такое проводник? Это чисто пассивная составная часть электрической цени, отвечали первые исследователи. Заниматься его исследованием — значит попросту ломать себе голову над ненужными загадками, ибо только источник тока представляет собой активный элемент. Такой взгляд на вещи объясняет * L. N о b i 1 i, Sul confronto del circuiti elettrici col circuiti magnetici, Modena, 1822, в кн. Memorie ed osservazioni edite ed inedite del cavaliereLeopoldo Nobili... colla descrizi- one ed analisi de'suoi apparati ed istrumenti, Firenze, 1834, II, p. 23. 17 MaDno Льпппи rirn
Георг Симон Ом. нам, почему ученые, по крайней мере до 1840 г., почти не проявляли интереса к тем немногим работам, которые проводились в этом направлении. Так, на втором съезде итальянских ученых, состоявшемся в Турине в 1840 г. (первый собирался в Пизе в 1839 г. и приобрел даже некое политическое значение), выступая в прениях по докладу, представленному Марианини, Де ла Рив утверждал, что проводимость большинства жидкостей не является абсолютной, «а скорее относительной и изменяется с изменением силы тока». А ведь закон Ома был опубликован за 15 лет до этого! Среди тех немногих ученых, которые первыми стали заниматься вопросом проводимости проводников после изобретения гальванометра, был Стефано Марианини (1790—1866). К своему открытию он пришел случайно, изучая напряжение батарей. Он заметил, что с увеличением числа элементов вольтова столба электромагнитное воздействие на стрелку не увеличивается заметным образом. Это заставило Марианини сразу же подумать, что каждый вольтов элемент представляет собой препятствие для прохождения тока. Он делал опыты с парами «активными» и «неактивными» (т. е. состоящими из двух медных пластинок, разделенных влажной прокладкой) и опытным путем нашел отношение, в котором современный читатель узнает частный случай закона Ома, когда сопротивление внешней цепи не принимается во внимание, как это и было в опыте Марианини. Георг Симон Ом (1789—1854) признавал заслуги Марианини, хотя его труды и не оказали Ому непосредственной помощи в работе. Ом вдохновлялся в своих исследованиях работой «La theorie analytique de la chaleun («Аналитическая теориятепла»,Париж, 1822 г.)Жана Батиста Фурье (1768—1830)—одной из самых значительных научных работ всех времен, очень быстро получившей известность и высокую оценку среди математиков и физиков того времени. Ому пришла мысль, что механизм «теплового потока», о котором говорит Фурье, можно уподобить электрическому току в проводнике. И подобно тому как в теории Фурье тепловой поток между двумя телами или между двумя точками одного и того же тела объясняется разницей температур, точно так же Ом объясняет разницей «электроскопических сил» в двух точках проводника возникновение электрического тока между ними. Придерживаясь такой аналогии, Ом начал свои экспериментальные исследования с определения относительных величин проводимости различных проводников. Применив метод, который стал теперь классическим, он подключал последовательно между двумя точками цепи тонкие проводники из различных материалов одинакового диаметра и изменял их длину так, чтобы получалась определенная величина тока. Первые результаты, которые ему удалось получить, сегодня кажутся довольно скромными. 258
Историки порая^аются, например, тем, что по измерениям Ома серебро обладает меньшей проводимостью, чем медь и золото, и снисходительно принимают данное впоследствии самим Омом объяснение, согласно которому опыт проводился с серебряной проволокой, покрытой слоем масла, и это вводило в заблуждение относительно точного значения диаметра. В то время имелось множество источников ошибок при проведении опытов (недостаточная чистота металлов, трудность калибровки проволоки, трудность точных измерений и т. п.). Важнейшим же источником ошибок была поляризация батарей. Постоянные (химические) элементы тогда еще не были известны, так что за время, необходимое для измерений, электродвижущая сила элемента существенно менялась. Именно эти причины, вызывавшие ошибки, привели к тому, что Ом на основании своих опытов пришел к логарифмическому закону зависимости силы тока от сопротивления проводника, включенного между двумя точками цепи. После опубликования первой статьи Ома Поггендорф посоветовал ому отказаться от химических элементов и воспользоваться лучше термопарой медь — висмут, незадолго до этого введенной Зеебеком (§ 9). Ом прислушался к этому совету и повторил свои опыты, собрав установку с термоэлектрической батареей, во внешнюю цепь которой включались последовательно восемь медных проволок одинакового диаметра, но разной длины. Силу тока он измерял с помощью своего рода крутильных весов, образуемых магнитной стрелкой, подвешенной на металлической нити. Когда ток, параллельный стрелке, отклонял ее, Ом закручивал нить, на которой она была подвешена, пока стрелка не оказывалась в своем обычном положении; сила тока считалась пропорциональной углу, на который закручивалась нить. Ом пришел к выводу, что результаты опытов, проведенных с восемью различными проволоками, «могут быть выражены очень хорошо уравнением где X означает интенсивность магнитного действия проводника, длина которого равна х, а а и Ъ — константы, зависящие соответственно от возбуждающей силы и от сопротивления остальных частей цепи» *. , , Условия опыта менялись: заменялись сопротивления и термоэлектрические пары, но результаты все равно сводились к приведенной выше формуле, которая очень просто переходит в известную нам, если заменить X силой тока, а—электродвижущей силой и Ъ + х— общим сопротивлением цепи. Получив эту формулу, Ом пользуется ею для изучения действия мультипликатора Швейггера на отклонение стрелки и для изучения тока, который проходит во внешней цепи батареи элементов, в зависимости от того, как они соединены — последовательно или параллельно. Таким образом он объясняет (как это делается теперь в учебниках), чем определяется внешний ток батареи,— вопрос, который был довольно темным для первых исследователей. Ом надеялся, что его экспериментальные работы откроют ему путь в университет, чего он так желал. Однако статьи прошли незамеченными. Тогда он оставил место преподавателя в кельнской гимназии и отправился в Берлин, чтобы теоретически осмыслить полученные результаты. В 1827 г. в Берлине он опубликовал свой главный труд «Die galvanische Kette, mathe- matisch bearbeitet» («Гальваническая цепь, разработанная математически»). * Journal fur Chemie und Physik, 46, 160 (1826). 17* 259
Эта теория, при разработке которой он вдохновлялся, как мы уже указывали, аналитической теорией теплоты Фурье, вводит понятия и точные определения электродвижущей силы, или «электроскопической силы», как ее называет Ом, электропроводности (Starke der Leitung) и силы тока. Выразив выведенный им закон в дифференциальной форме, приводимой современными авторами, Ом записывает его и в конечных величинах для частных случаев конкретных электрических цепей, из которых особенно важна термоэлектрическая цепь. Исходя из этого, он формулирует известные законы изменения электрического напряжения вдоль цепи. Но теоретические исследования Ома также остались незамеченными, а если кто-нибудь и писал о них, то лишь для того, чтобы, высмеять «болезненную фантазию, единственной целью которой является стремление принизить достоинство природы». И лишь лет десять спустя его гениальные работы постепенно начали пользоваться должным признанием: в Германии их оценили Поггендорф и Фехнер, в России — Ленц, в Англии — Уитстон, в Америке — Генри, в Италии — Маттеуччи. Одновременно с опытами Ома во Франции проводил свои опыты А. Бек- керель, а в Англии — Барлоу. Опыты первого особенно замечательны введением дифференциального гальванометра с двойной обмоткой рамки и применением «нулевого» метода измерения. Опыты же Барлоу стоит упомянуть потому, что они экспериментально подтвердили постоянство силы тока во всей цепи. Этот вывод был проверен и" распространен на внутренний ток батареи Фехнером в 1831 г., обобщен в 1851 г. Рудольфом Кольраушем (1809—1858) на жидкие проводники, а затем еще раз подтвержден тщательными опытами Густава Нидмана (1826—1899). 8. ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ. Беккерель применил дифференциальный гальванометр для сравнения электрических сопротивлений. На основе проведенных им исследований он сформулировал известный закон зависимости сопротивления проводника от его длины и сечения. Эти работы были продолжены Пуйе и описаны им в последующих изданиях его известных «Elements de physique experimentale» («Основы экспериментальной физики»), первое издание которых появилось в 1827 г. Сопротивления определялись методом сравнения. Уже в 1825 г. Марианини показал, что в разветвляющихся цепях электрический ток распределяется по всем проводникам независимо от того, из какого материала они сделаны, вопреки утверждению Вольты, который полагал, что если одна ветвь цепи образуется металлическим проводником, а остальные — жидкими, то весь ток должен проходить по металлическому проводнику. Араго и Пуйе популяризировали во Франции наблюдения Марианини. Не зная еще закона Ома, Пуйе в 1837 г. воспользовался этими наблюдениями и законами Беккереля, чтобы показать, что проводимость цепи, эквивалентной двум разветвленным цепям, равна сумме проводимо- стей обеих цепей. Этой работой Пуйе положил начало изучению разветвленных цепей. Пуйе установил для них целый ряд терминов, которые живы и до сих пор, и некоторые частные законы, обобщенные Кирхгофом в 1845 г. в его известных «принципах»: в «узле» алгебраическая сумма сил токов равна нулю; в «петле» сумма произведений сопротивления каждого участка на соответствующую силу тока равна алгебраической сумме электродвижущих сил, действующих на участках этой петли. Самый большой толчок для проведения электрических измерений, и в частности измерений сопротивления, был дан возросшими потребностями техники, и в первую очередь проблемами, возникшими с появлением электрического телеграфа. Впервые мысль об использовании электричества для передачи сигналов на расстояние родилась еще в XVIII веке. Вольта описал 260
проект телеграфа, а Ампер еще в 1820 г. предлагал использовать электромагнитные явления для передачи сигналов. Идея Ампера была подхвачена многими учеными и техниками: в 1833 г. Гаусс и Вебер построили в Геттин- гене простейшую телеграфную линию, соединявшую астрономическую обсерваторию и физическую лабораторию. Но практическое применение телеграф получил благодаря американцу Самуэлу Морзе (1791—1872), которому в 1832 г. пришла удачная мысль создать телеграфный алфавит, состоящий всего из двух знаков. После многочисленных попыток Морзе в 1835 г. наконец удалось построить частным образом первую грубую модель телеграфа в Нью-Йоркском университете. В 1839 г. была проведена экспериментальная линия между Вашингтоном и Балтиморой, а в 1844 г. возникла организованная Морзе первая американская компания по коммерческой эксплуатации нового изобретения. Это было также первое практическое применение результатов научных изысканий в области электричества. В Англии изучением и усовершенствованием телеграфа занялся Чарльз Уитстон (1802—1875), бывший мастер по изготовлению музыкальных инструментов. Понимая важность измерений сопротивления, Уитстон стал искать наиболее простые и точные методы таких измерений. Бывший в то время в ходу метод сравнения, как мы видели, давал ненадежные результаты, главным образом из-за отсутствия стабильных источников питания. Уже в 1840 г. Уитстон нашел способ измерения сопротивления независимо от постоянства электродвижущей силы и показал свое устройство Якоби. Однако статья, в которой это устройство описано и которую вполне можно назвать первой работой в области электротехники, появилась лишь в 1843 г. В этой статье дано описание знаменитого «мостика», названного затем в честь Уитстона. Фактически такое устройство было описано еще в 1833 г. Гюнтером Кристи и независимо от него в 1840 г. Мариа- нини; оба они предлагали метод сведения к нулю, но их теоретические объяснения, при которых не учитывался закон Ома, оставляли желать лучшего. Уитстон же был поклонником Ома и очень хорошо знал его закон, так что данная им теория «мостика Уитстона» ничем не отличается от приводимой сейчас в учебниках. Кроме того, Уитстон, чтобы можно было быстро и удобно изменять сопротивление одной стороны мостика для получения нулевой силы тока в гальванометре, включенном в диагональное плечо мостика, сконструировал три типа реостатов (само это слово было предложено им по аналогии с «реофором», введенным Ампером, в подражание которому Пекле ввел также термин «реометр»). Первый тип реостата с подвижной скобкой, применяемый и сейчас, был создан Уитстоном по аналогии со схожим приспособлением, применявшимся Якоби в 1841 г. Второй тип реостата имел вид деревянного цилиндра, вокруг которого была намотана часть подключенного в цепь провода, который легко перематывался с деревянного цилиндра на бронзовый. Третий тип реостата был похож на «.магазин сопротивлений», который Эрнст Вернер Сименс (1816—1892), ученый и промышленник, в 1860 г. улучшил и широко распространил. «Мостик Уитстона» дал возможность измерять электродвижущие силы и сопротивления. Создание подводного телеграфа, пожалуй, еще более, нежели воздушного телеграфа, потребовало разработки методов электрических измерений. Опыты с подводным телеграфом начались еще в 1837 г., и одной из первых проблем, которую предстояло разрешить, было определение скорости распространения тока. Еще в 1834 г. Уитстон с помощью вращающихся зеркал, о чем мы уже упоминали в гл. 8, произвел первые измерения этой скорости, но полученные им результаты противоречили результатам Латимера Кларка, а последние в свою очередь не соответствовали более поздним исследованиям других ученых. 261
В 1855 г. Уильям Томсон (получивший впоследствии титул лорда Кельвина) объяснил причину всех этих расхождений. Согласно Томсону, скорость тока в проводнике не имеет определенной величины. Подобно тому как скорость распространения тепла в стержне зависит от материала, так и скорость тока в проводнике зависит от произведения его сопротивления на электрическую емкость. Следуя этой своей теории, которая в'его времена подверглась ожесточенной критике, Томсон занялся проблемами, связанными с подводным телеграфом. Первый трансатлантический кабель, соединивший Англию и Америку, функционировал около месяца, но затем испортился. Томсон рассчитал новый кабель, провел многочисленные измерения сопротивления и емкости, придумал новые передающие аппараты, из коих следует упомянуть астатический отражательный гальванометр, замененный «сифонным регистратором» его же изобретения. Наконец, в 1866 г. новый трансатлантический кабель успешно вступил в действие. Созданию этого первого большого электротехнического сооружения сопутствовала разработка системы единиц электрических и магнитных измерений. Основа электромагнитной метрики была заложена Карлом Фридрихом Гауссом (1777—1855) в его знаменитой статье «Intensitas vis magneticae ter- restris ad mensuram absolutam revocata» («Величина силы земного магнетизма в абсолютных мерах»), опубликованной в 1832 г. Гаусс заметил, что различные магнитные единицы измерения несоотносимы между собой, по крайней мере в большей своей части, и поэтому предложил систему абсолютных единиц, основанную на трех основных единицах механики: секунде (единице времени), миллиметре (единице длины) и миллиграмме (единице массы). Через них он выразил все остальные физические единицы и придумал ряд измерительных приборов, в частности магнетометр для измерения в абсолютных единицах земного магнетизма. Работу Гаусса продолжил Вебер, который построил много собственных приборов и приборов, задуманных еще Гауссом. Постепенно, особенно благодаря работам Максвелла, проводившимся в созданной Британской ассоциацией специальной комиссии по измерениям, которая издавала ежегодные отчеты с 1861 по 1867 г., возникла идея создать единые системы мер, в частности систему электромагнитных и электростатических мер. Мысли о создании таких абсолютных систем единиц были подробно изложены в историческом отчете за 1873 г. второй комиссии Британской ассоциации. Созванный в Париже в 1881 г. Международный конгресс впервые установил международные единицы измерения, присвоив каждой из них название в честь какого-нибудь великого физика. Большая часть этих названий сохраняется до сих пор: вольт, ом, ампер, джоуль и т. д. После многих перипетий в 1935 г. была введена международная система Джорджи, или MKSQ, которая принимает за основные единицы метр, килограмм-массу, секунду и ом. С «системами» единиц связаны «формулы размерностей», примененные впервые Фурье в его аналитической теории тепла (1822 г.) и распространенные Максвеллом, которым и установлены применяемые в них обозначения. Метрология прошлого века, основывавшаяся на стремлении объяснить все явления с помощью механических моделей, придавала большое значение формулам размерностей, в которых она хотела видеть не больше и не меньше как ключ к тайнам природы. При этом выдвигался ряд утверждений почти догматического характера. Так, чуть ли не обязательным догматом было требование, чтобы основных величин было непременно три. Но к концу века начали понимать, что формулы размерностей — это чистая условность, вследствие чего интерес к теориям размерностей стал постепенно падать. 262
ТЕПЛОТА И ЭЛЕКТРИЧЕСКИЙ ТОК 9. ТЕРМОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ. Начиная с 1794 г. Вольта многократно проводил такой опыт: он помещал лягушку, препарированную по методу Гальвани, таким образом, чтобы ее задние лапки были опущены в воду одной банки, а спинка и позвоночный столб погружались в другую банку с водой. Если цепь замыкалась железной проволокой, один конец которой опускался на несколько минут в кипящую воду, то наблюдались сильные конвульсии лягушки, продолжавшиеся до тех пор, пока конец проволоки не остывал. Этот опыт прошел незамеченным, и о нем, вероятно, ничего не знал также Томас Зеебек (1770—1831), выступивший в 1821 г. с докладами в Берлинской Академии наук. На основе этих докладов Зеебеком впоследствии была написана известная работа, вышедшая лишь в 1825 г. Открытое им явление теперь хорошо известно. Сам Зеебек описывает один из своих многочисленных опытов следующим образом. Небольшой кусок висмута был припаян с обоих концов к медной спирали. Если один конец нагревался с помощью лампы, а другой оставался холодным, то магнитная стрелка, заключенная внутри спирали, поворачивалась, указывая на прохождение тока, который в холодном спае шел от меди к висмуту. Это явление стало известно в 1823 г. благодаря Эрстеду, который и дал ему название, укоренившееся до наших дней. В том же 1823 г. Фурье и Эрстед доказали, что термоэлектрический эффект обладает свойством суперпозиции, и построили первую термоэлектрическую батарею, состоявшую из трех пластин сурьмы, чередовавшихся с тремя пластинами висмута и спаянных на концах так, что они образовывали шестиугольник. Эта батарея была значительно усовершенствована в 1829 г. Нобили, который расположил биметаллические палочки, соединив их не торцами, а плоскостями, в наклонном положении, почти вертикально, по краям цилиндрической поверхности и поместил в сосуд, залитый камедью, так что одна группа спаев •была погружена в камедь, а другая выступала наружу. Дальнейшее усовершенствование было внесено через год Меллони, сконструировавшим призматическую модель, используемую и сейчас. На основе батареи Меллони и гальванометра своей конструкции Нобили построил в том же 1830 г. термомультипликатор такой чувствительности, что он реагировал на тепло человеческого тела на расстоянии 18—20 локтей. В 1834 г. в ходе экспериментальных исследований проводимости сурьмы и висмута Жан Шарль Пельтье (1785—1845) намеревался определить, как изменяется температура вдоль однородного или разнородного проводника, по которому проходит ток. В связи с этим Пельтье исследовал температуру в разных точках термоэлектрической цепи с помощью термопары, соединенной ■с гальванометром, причем обнаружил, что в местах спаев разных металлов температура резко меняется, имеются даже случаи охлаждения. Наибольшего эффекта ему удалось добиться с парой висмут — сурьма. Таким образом, электроток может вызывать и охлаждение. Беккерель, Де ла Рив и другие физики отнеслись с недоверием к опытам Пельтье, отчасти, вероятно, потому, что он был в науке, так сказать, случайным человеком — до тридцати лет Пельтье был часовщиком. Чтобы исключить всякие сомнения, Пельтье подтвердил открытое им явление непосредственно с помощью воздушного термометра. Именно этот метод и сейчас описывается в учебниках. В других ■своих опытах Пельтье спаивал накрест два куска металла, затем, подключив гальванометр, пропускал через два последовательных конца креста и через гальванометр термоэлектрический ток, а спустя некоторое время цепь разъединял и подсоединял тот же гальванометр, но к другим двум концам креста — 263
и гальванометр показывал ток, вызывавшийся либо нагреванием, либо охлаждением спая креста. В каких случаях получается нагревание, а в каких охлаждение в месте спая, точно определил в 1838 г. Поггендорф и независимо от него в 1840 г. Луиджи Пачинотти (1807—1889), отец Антонио Пачинотти, изобретателя динамо-машины постоянного тока. 10. ЗАКОН ДЖОУЛЯ. В течение первых сорока лет после изобретения батареи предпринималось множество попыток, частью неудачных, а частью незавершенных, выяснить, какому закону подчиняется выделение тепла электрическим током. Неудачи этих попыток можно объяснить недостаточной ясностью понятий силы тока и электрического сопротивления и как следствие — отсутствием точно определенных единиц измерения. К тому же из-за незнания закона Ома исследователи подключали в цепь последовательно провода с разным сопротивлением, считая, что они тем самым изменяют только сопротивление, а не силу тока. Этим объясняется неудача некоторых исследований, таких, как исследования Уильяма Харриса (1791 — 1867), которые, как стало ясно теперь, вполне могли привести к желаемой цели. В 1841 г. Джоуль начал экспериментальное исследование теплоты, выделяемой проводником. Ему пришла удачная мысль прокалибровать сначала свою тангенс-буссоль в цепи с вольтаметром, как это предлагал делать Фарадей. Нагревающее приспособление состояло из исследуемого проводника, обмотанного спиралью вокруг тонкой стеклянной трубки, погруженной в стеклянный резервуар с определенным количеством воды, и чувствительного термометра. В трех проводившихся опытах, в каждом из которых последовательно соединялись два сопротивления, погруженные в одинаковые калориметры, Джоуль установил, что при одной и той же силе тока количество выделяемой теплоты пропорционально сопротивлениям проводников. Этот первый результат привел его к формулировке гипотезы о влиянии силы тока. Он выразил ее в таком не очень ясном рассуждении: «Размышлял над вышеуказанным законом, я подумал, что действие тока должно изменяться при увеличении силы электрического тока как квадрат силы тока, потому что ясно, что в таком случае сопротивление должно изменяться в двойном отношении: из-за увеличения количества проходящего' электричества в данный промежуток времени, а также из-за увеличения самой его скорости» *. Джоуль, вероятно, хотел сказать, что теплота, выделяемая током, вызывается ударами частиц электрического флюида о частицы проводника. Поэтому, если увеличивается сила тока, увеличивается скорость частиц электрического флюида и удары получаются более сильными, а также более частыми вследствие увеличения количества электрического флюида, проходящего за данный промежуток времени через сечение проводника. Но как бы там ни было, Джоуль подверг свою гипотезу опытной проверке и обнаружил, что количество тепла, измеренное калориметром, в который была погружена медная спираль, столь мало отличалось от расчетного, что можно было признать закон вполне подтвержденным, по крайней мере для металлических проводников. Гораздо более оригинальными были опыты,проведенные Джоулем для проверки этого закона для токов в электролитах и для токов индукции. Результаты этих исследований были изложены в работе 1843 г., которую мы уже упоминали в гл. 9. В этой работе устанавливается, что в любом случае, с любым * James Prescott Joule, The scientific papers^ I, London, 1884, p. 64. 264
проводником, при любом токе выделяемое тепло пропорционально сопротивлению проводника и квадрату силы тока. Естественно, чго многие ученые повторили опыты Джоуля, видоизменяя их, и подтвердили полученные Джоулем результаты, выведя из них первые следствия. Среди этих следствий мы упомянем лишь результат, полученный в 1844 г. в Петербурге Ленцем и независимо от него в 1845 г. профессором физики в Турине Доменико Ботто (1791 —1865). Эти исследователи установили, что генератор может отдать во внешнюю цепь максимальное количество тепла, если сопротивление цепи равно внутреннему сопротивлению генератора. Именно в этой связи Ленц начал нелегкую работу по определению зависимости температуры нагрева проводника от проходящего по нему тока и от среды, в которой он находится. РАБОТЫ МАЙКЛА ФАР АДЕН 11. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ. То, что все физические явления представляют собой лишь различные проявления одной и той же сущности, или, говоря словами Анджело Секки (1818—1879), идея «единства физических сил», было основной философской предпосылкой физики прошлого века. Систематическое применение этого принципа мы постоянно находим в работах одного из самых проницательных исследователей всех времен — Майкла Фарадея (1791—1867). Какова связь между электричеством и магнетизмом? Можно ли превратить одно в другое? Эти вопросы ставил перед собой Фара- дей, начиная в 1822 г. свои экспериментальные исследования и вновь безуспешно возвращаясь к ним в 1825 г. Эксперименты, поставленные после открытия Эрстеда, показали, что электрический ток сильно изменяет намагниченность магнита. В связи с этим Фарадей ожидал, что и магнит должен влиять на силу тока. В конце концов в 1831 г. Фарадей сделал свое самое великое открытие — явление электромагнитной индукции. Наиболее наглядное проявление электромагнитной индукции было получено Фарадеем с помощью нехитрого прибора. На железное кольцо наматывались две отдельные спирали, из коих одна соединялась. с батареей, а другая — с гальванометром. При замыкании первой цепи наблюдалось резкое отклонение стрелки гальванометра, при размыкании цепи наблюдалось отклонение противоположного знака. Этот важный опыт, всячески видоизменявшийся, позволил Фарадею «получить электричество- из магнетизма» простейшим, сейчас хорошо известным способом: достаточно- вводить магнит в спиральный проводник, соединенный с гальванометром, чтобы получить отклонение стрелки в одну сторону; при выводе магнита из спирали стрелка отклоняется в противоположную сторону. В 1824 г. Араго заметил, что массивный медный корпус довольно сильно замедляет колебания стрелки компаса. Это наблюдение навело его на мысль поставить свой знаменитый опыт, в ходе которого обнаружилось отклонение магнитной стрелки при вращении медного диска, расположенного над или под нею. Придуманные для объяснения этого явления теории были столь искусственны, что для большинства ученых опыт Араго так и остался загадкой. После открытия явления электромагнитной индукции Фарадей подумал, что обнаруженное Араго явление может также объясняться появлением индуктивных токов в диске. Чтобы убедиться в этом, Фарадей стал вращать медный диск между полюсами магнита, подсоединив концы цепи гальванометра один к оси, а другой к краю диска. При вращении диска гальванометр указывал на наличие тока постоянного направления, величина которого менялась в зависимости от скорости вращения диска. Этим опытом Фарадей не только установил новое физическое явление, но и дал первый образец 265»
Майкл Фарадей. Портрет кисти Т. Филлипса. генератора электрического тока, отличного от батареи, т. е. дал этим первый толчок к развитию мощной современной электротехнической промышленности с ее всевозможнейшими практическими применениями. Однако Фарадея не интересовали практические применения. Проведенный опыт позволял выявить качественные законы явления индукции. Из этого опыта Фарадей вывел правило, позволяющее определить направление тока в прямолинейном проводнике, движущемся перед полюсом магнита. Именно в связи с этим Фарадей впервые говорит о «магнитных кривых»: «Под магнитными кривыми я понимаю линии магнитных сил, хотя и искаженные соседством полюсов; эти линии вырисовываются железными опилками: к ним касательно располагались бы весьма маленькие магнитные стрелочки» *. Фарадей видоизменял свои опыты самыми различными способами: ■применял и нитеобразные проводники, и дискообразные, вращал то магнит по отношению к электрическому контуру, то контур относительно магнита или земли. В результате он пришел к выводу, что электродвижущая сила индукции не зависит от природы проводника, и выдвинул следующую теорию •относительно этого явления, в общих чертах оставшуюся неизменной с 1831 г. до наших дней: «Когда через провод проходит электрический ток, то этот провод во всех своих точках окружен магнитными кривыми, интенсивность которых убывает с расстоянием; мысленно можно уподобить их кольцам, расположенным в плоскостях, перпендикулярных проводу, или, вернее, протекающему я нем току. Хотя и отличные по форме, эти кривые являются совершенно аналогичными тем, которые существуют между двумя обращенными друг к другу разноименными полюсами. Когда второй провод, параллельный тому, * Michael Faraday, Experimental Researches in Electricity, § 114. (Есть русский перевод; M. Фарадей, Экспериментальные исследования по электричеству, т. 1 и 2, М., 1947—1951.) Эта книга содержит самые важные научные работы Фарадея в области электричества, которые он постепенно, одну за другой, представил в тридцати сериях Лондонскому Королевскому обществу с 24 ноября 1831 г. по 24?октября 1855 г. и которые затем публиковались в Philosophical Transactions. Сам Фарадей. объединил их в два тома: первый (1839 г.) содержит четырнадцать первых серий, а второй (1855 г.)— остальные. Все серии подразделяются на параграфы с единой нумерацией, поэтому мы, следуя общей традиции, будем также указывать параграфы. 266
в Прибор Фарадея для исследования индуктивных токов. (Philosophical Transactions, 1832). который несет ток, приближают к последнему, то он проходит через магнитные кривые точно того же рода, которые он пересекал бы при своем перемещении в некотором направлении между противоположными полюсами» (§232). Если нет перемещения индуцирующего проводника относительно проводника, в котором индуцируется ток, то ток не появляется, потому что тогда ■силовые линии не пересекаются. Когда индуцирующий проводник удаляется от второго проводника, силовые линии пересекаются в противоположном направлении и возникающий ток также идет в обратном направлении. Если оба проводника неподвижны, то при включении тока в индуцирующем проводнике происходит то же самое, как если бы магнитные кривые двигались ■«...с момента, когда они начинают развиваться, и вплоть до того момента, когда магнитная сила тока достигает наибольшего значения; они как бы распространяются в стороны от провода и, следовательно, оказываются по отношению к неподвижному, индуцируемому проводу в том же положении, как если бы он двигался в противоположном направлении поперек них или по направлению к несущему ток проводу» (§ 238). В этих немногих словах заключаются очень важные и новые мысли: первое описание электромагнитного поля, мысль о зависимости интенсивности поля от числа магнитных кривых, распространение во времени магнитных возмущений. Исследованиями в этом новом направлении, указанном Фарадеем, занялись многие физики: Джозеф Генри (1797—1878), который, как считают американцы, еще до Фарадея открыл явление индукции, обнаружил также явление самоиндукции, независимо от него открытое в 1833 г. Саль- ваторе даль Негро (1768—1839), а в следующем году — одновременно Уильям Дженкин и Антуан Массой (1806—1858). Особенно важными были работы Генри (1838 г.) по исследованию «токов высшего порядка», т. е. токов, индуцированных другими индуцированными токами. Это явление за год до того экспериментально установил Марианини. Явление это вовсе не так уж само собой очевидно, как может показаться сегодня. Исследования токов высшего порядка привели Генри в 1842 г. к выводу, что разряд лейденской банки состоит не из одного перехода электричества с одной обкладки на другую, а из целой серии быстро затухающих электрических колебаний. К этому же выводу в 1847 г. пришел Гельмгольц в своей статье «О сохранении силы», о которой мы уже упоминали в гл. 9. 267
В 1834 г. петербургский академик Эмиль ХристиановичЛенц (1804—1865) заметил, что правила Фарадея и Нобили, служащие для определения направления индуктивных токов, предусматривали слишком много различных случаев, тогда как, учитывая электродинамический закон Ампера, их можно было легко свести к одному-единственному правилу, применимому во всех случаях. Исходя из этого, Ленц сформулировал правило, носящее сейчас его имя. Франц Нейман (1798—1895) положил в основу своей теории индукции,, изложенной в двух замечательных работах 1845 и 1847 гг., закон Ленца, применимость закона Ома также к индуктивным токам и выдвинутый им новый принцип, согласно которому индукция, возникающая в определенный момент времени, пропорциональна скорости, с которой передвигается проводник. На вопрос, поставленный Ампером, ответ был найден Гауссом, но не был им опубликован. Взаимодействие двух электрических зарядов зависит не только от расстояния между ними, но и от скорости, с которой они перемещаются относительно друг друга. Закон же Кулона действителен только для двух неподвижных зарядов. В 1846 г. Вильгельм Вебер, развивая идею своего учителя, вывел формулу, заменяющую формулу Кулона в случае двух движущихся зарядов. Из этой формулы следовало, что взаимодействие двух элементов тока подчиняется закону Ампера, и выводилась вся теория индукции, целиком согласующаяся с теорией Неймана. Более оригинальной представлялась теория Гельмгольца, изложенная в уже несколько раз упоминавшейся нами работе «О сохранении силы» (1847 г.) и дополненная затем Томсоном. Гельмгольц показал, что индукция электрических токов может быть математически выведена из электромагнитных явлений Эрстеда и электродинамических явлений Ампера, если только принять принцип сохранения энергии. Но законы Неймана, Вебера, Гельмгольца и аналогичные исследования Абриа и Генри, казалось, заключали в себе теоретические предпосылки, не целиком основывающиеся на опыте, поэтому Риккардо Феличи (1819— 1902) поставил перед собой задачу выявить законы электромагнитной индукции, опираясь «только на данные опыта, с помощью метода, которым пользовался Ампер при выведении формулы взаимодействия элементов тока». Феличи проводил тщательные экспериментальные и теоретические исследования в этом направлении непрерывно с 1851 по 1856 г.; о результатах этих исследований он по ходу работ время от времени делал сообщения и, наконец, изложил их в большой работе, озаглавленной «Sulla teoria mate- matica delVinduzione elettrodinamica» («О математической теории электромагнитной индукции»), опубликованной в 1854 и 1857 гг. В этой работе теоретически рассмотрены явления индукции, наблюдающиеся при размыкании первичной цепи, при взаимном передвижении индуцируемого и индуцирующего токов, при движении проводника в магнитном поле и при взаимном движении двух частей одного и того же электрического контура. Теория Феличи была предметом оживленных споров на протяжении всего XIX века, но в конце концов стало ясно, особенно после разъясняющих работ Максвелла, что она эквивалентна теориям Неймана и Вебера, но имеет лишь, несколько более эмпирическое обоснование. 12. ЭЛЕКТРОЛИЗ. К электричеству, которое получается при трении, а также от химических и термоэлектрических батарей, прибавлялось еще электричество^ возникающее при электромагнитной индукции. Поэтому Фарадей считал необходимым вмешаться во все еще продолжавшиеся, хотя уже и не такие жаркие, как в начале века, споры относительно того, обладает ли электричества 268
«диной природой независимо от способа, каким оно получено. В начале этой главы мы уже упоминали о том, что Фарадею удалось окончательно устранить все сомнения, доказав опытным путем идентичность всех видов электричества. Доказав тождественность различных видов электричества, Фарадей счел необходимым установить общую единицу измерения. С этой целью, впервые применив баллистический гальванометр, он показал, что батарея из лейденских банок, заряженных определенным образом, и вольтов столб, работавший в течение определенного времени, одинаково воздействовали на стрелку гальванометра и вызывали одинаковые химические эффекты. На основе этого он вывел фундаментальный закон: «Химическая сила, подобно магнитной силе, прямо пропорциональна абсолютному количеству проходящего электричества» (§ 377). В ходе этих исследований, проводившихся им в начале 1833 г., Фарадей открыл химическое разложение безводных веществ. Он заметил, что кусочек льда, помещенный в цепь батареи, прерывает ток, который, после того как лед растает, вновь восстанавливается. Чтобы удостовериться в том, что это явление не связано с особыми свойствами льда, Фарадей последовательно провел опыты с хлористым свинцом, хлористым серебром и хлористым калием, представляющими собой при обычной температуре твердые тела, не проводящие электричества. Он убедился, что все эти тела в расплавленном состоянии проводят ток и разлагаются им. Подвергнув анализу многие сложные вещества, Фарадей пришел к выводу, что проводимость этих веществ связана с химическим разложением, отвергнув тем самым мнение, разделявшееся всеми исследователями, будто наличие воды есть необходимое условие для электрохимического разложения, а значит, и для конструирования батареи. Фарадей подтвердил свой вывод, сделанный на основе этих опытов, построив батареи с жидкостями, не содержащими воду (хлорат калия, различные хлористые и йодистые соединения и т. п.). Так Фарадей подошел к теории электрохимической диссоциации. По причинам, которые и сейчас излагаются в книгах по физике, он отказался •от представления о том, будто силы электрического поля вызывают расщепление молекул, и выдвинул свою собственную теорию, очень похожую на теорию Гроттгуса (см. § 2), но гораздо более искусственную. Интересно в этом исследовании его определение тока. Представляет ли ток движение двух электрических флюидов в противоположных направлениях или движение в одном направлении единого флюида? Смело опрокинув философские понятия науки своего времени, Фарадей отверг все представления о токе как о флюиде и определил электрический ток как «...ось сил, в которой силы, в точности равные по величине, направлены в противоположные стороны» (§ 517). Таким образом, величайший физик-экспериментатор прошлого века лишает понятие электрического тока возможности его представления в виде механической модели, а объявляет его чисто математическим. Химическое действие электрического тока в основном исследуется в седьмой серии работ Фарадея, появившейся в 1834 г. Этот раздел начинается с предложения установить новую терминологию для явлений электрохимического разложения. Посоветовавшись с известным историком науки Уильямом Уэвеллом (1794—1866), Фарадей предложил заменить термин «полюс», с которым связано представление о притяжении, термином электрод или, более конкретно, анод и катод. При выборе этих терминов он руководствовался не представлением о движении частей молекул, которого теория Фарадея не признавала, а направлением, которое должны иметь предполагаемые земные токи, если земной магнетизм действительно, как он думал, опреде- 269
ляется ими (см. § 4). Далее соответственно вводятся термины анион vr катион и более общий термин ион и, наконец, термины электролит для обозначения тела, которое подвергается химическому разложению, и электролиз для обозначения самого явления разложения. Собрав цепь, состоящую из главной ветви и двух побочных, как это описывается в современных учебниках, и поместив в каждую ветвь вольтаметр, он устранил всякие сомнения относительно того, что количество разложенного электролита «...в точности пропорционально количеству прошедшего электричества, несмотря на изменения на тысячи ладов тех обстоятельств и условий, в которые электролит в данный момент поставлен», так что «продукты разложения могут быть собраны с такой точностью, что дают превосходное и ценное средство для измерения количества электричества» (§ 732). Такие измерительные приборы Фарадей назвал «вольтаэлектрометрами» (впоследствии этот термин сократился в «вольтаметр»). Он описывает пять различных конструкций таких приборов и предлагает первую практическую единицу количества электричества: такое количество электричества, которое разлагает сотую часть кубического дюйма воды. Проводя опыты с несколькими последовательно соединенными вольтаметрами, содержащими различные растворы, Фарадей заметил, что при одном и том же количестве электричества количество разложенного электролита зависит от природы электролита, и после многочисленных проверок пришел к выводу, не всегда, однако, подтверждавшемуся на опыте, что, выражаясь современным языком, одно и то же количество электричества освобождает количество простого вещества, пропорциональное его химическому эквиваленту. Огромное значение этих исследований Фарадея было сразу же признано учеными того времени, свидетельством чего является блестящее развитие последующих исследований в этой области. Что же касается теории электролитической проводимости, теории Гротт- гуса, слегка измененной Фарадеем, как мы уже упоминали, а затем Вильгельмом Гитторфом (1824—1914), то она претерпела глубокое изменение- в 1857 г. благодаря работам Клаузиуса, который вновь вернулся к вопросу, поднимавшемуся еще Фарадеем: силы электрического поля не могут быть причиной разделения ионов в молекуле, ибо в этом случае процесс электролиза начинался бы только тогда, когда электродвижущая сила, приложенная к электродам, превосходила бы некий предел. Между тем опыт показывает, что процесс происходит всегда, независимо от электродвижущей силы. Чтобы преодолеть эту трудность, Клаузиус, опираясь на кинетическую теорию (см. гл. 9), предположил, что ионы или какая-то их часть не связаны постоянно, а существуют в растворе уже в отделенном, свободном состоянии. Однако эта теория, хотя ею и пользовались Квинке и Кольрауш, была встречена с недоверием и не получала признания вплоть до 1887 г., когда. Сванте Аррениус (1859—1927) привел многочисленные доказательства ее, основывавшиеся на явлениях осмотического давления и на теории разбавленных растворов Вант-Гоффа. Эти работы Аррениуса, продолженные затем! Оствальдом и Нернстом, знаменуют собой то сближение физики с химией, о котором мы говорили в § 2 и которое начиная с конца прошлого века становится постепенно все более тесным. 13. ПОСТОЯННЫЕ ЭЛЕКТРИЧЕСКИЕ ЭЛЕМЕНТЫ. «Ваши открытия в области электрохимии представляют собой одну из самых больших революций в химии и открывают эру новых исследований» *,— писал Даниэль. * The Philosophical Transactions of the Royal Society of London, 126, 107 (1836). 270
Фарадею в январе 1836 г., сообщая ему, что предметом своих университетских лекций выбрал электрохимические открытия Фарадея. В процессе подготовки своих лекций Даниэль заметил, что на медной пластинке элемента, остававшейся в цепи в течение некоторого времени, образовывались прилипшие к ней пузырьки водорода. Это наблюдение навело его на мысль, что, может быть, именно это отложение водорода на медной пластинке и служило причиной уменьшения активности батареи с течением времени. Проверить это можно было, помешав водороду отлагаться на меди, для чего его следовало вовлечь в химическую реакцию. Так после нескольких попыток был создан первый образец батареи с деполяризатором, описание которой можно найти в любом учебнике физики. Даниэль назвал его постоянным элементом. После этого по аналогии с элементом Даниэля были построены сотни других различных постоянных элементов. Мы упомянем здесь, не приводя их описания, которое легко можно найти во многих учебниках, лишь элемент Грове (1839 г.), элемент Бунзена (1841 г.), элемент Лекланше (1867 г.), элемент Кларка (1878 г.), принятый за международный эталон электродвижущей силы, которому Рэлей в 1884 г. придал Н-образную форму; элемент Чапского (1861—1907), предложенный им в 1884 г. и вновь предложенный и реализованный Вестоном в 1893 г. и заменивший элемент Кларка в качестве эталона. 14. ТЕОРИЯ ПОТЕНЦИАЛА. Историки обычно приписывают Лангранжу заслугу введения (в 1777 г.) в механику функции, которую Грин впоследствии назвал потенциалом. На самом же деле эта заслуга принадлежит Эйлеру, который еще в 1765 г. всвоей«Теории движения твердых тел», рассматривая такую функцию, хотя и несколько более простую, получил в 1767 г. так называемое «уравнение Лапласа», к которому сам Лаплас пришел позже, в 1796 г. В своей исторической работе 1811 г. Пуассон распространил теорию потенциала и на явления электростатики, сформулировав, в частности, важную теорему, согласно которой напряженность поля в точке у поверхности проводника пропорциональна плотности заряда на проводнике в этой точке. Из этой теоремы он легко вывел, что электростатическое давление, или «электростатическое напряжение», как его называли в прошлом веке, пропорционально квадрату плотности распределения заряда, или «густоты электрической атмосферы», как говорил Пуассон (см. гл. 7). Далее Пуассон переходит к исследованию распределения электричества по поверхности проводников и получает результаты, совпадающие с экспериментальными данными Кулона. В двух докладах, зачитанных в 1824 г., Пуассон распространяет теорию потенциала и на магнетизм. В основу своих исследований он положил концепцию Кулона, которая заменила теорию Эпинуса о строении магнитов. Согласно Эпинусу, в магнитах в одинаковом количестве существуют два магнитных флюида, отделенных друг от друга и сосредоточенных на концах намагниченного тела. Согласно Кулону, оба магнитных флюида заключены в каждой «молекуле» тела, из которой они не могут выйти, а могут лишь отделиться друг от друга и расположиться на ее концах. Поэтому любой магнит состоит из множества элементарных магнитиков, надлежащим образом ориентированных. Пуассон принимает эту гипотезу и основывает на ней математическую теорию, которая, хотя и была во многих отношениях раскритикована, имеет тем не менее громадное значение, потому что полученные результаты остаются справедливыми даже при изменении основной предпосылки, как это показал Томсон в 1851 г. 271
Не меньше и историческое значение теории Пуассона, непосредственно приведшей к теории диэлектриков. Среди многих следствий из теории Пуассона необходимо упомянуть следующее: в полом шаре из магнитного материала постоянной плотности при определенных условиях точки внутри шара не испытывают действия внешних магнитных масс, а внешние точки не испытывают действия магнитных масс внутри шара. Иными словами, Пуассон теоретически открыл магнитные экраны, известные из опыта еще со времен Джован Баттисты Порты (см. гл. 3). Полученный результат побудил Пуассона рассмотреть поведение полого проводящего шара в электрическом поле. Он показал, что и в этом случае шар обладает указанными экранирующими свойствами, но с некоторым отличием: в то время как для магнитного поля экранирующий эффект зависит от толщины стенок экрана, для электрического поля он от нее не зависит. Работы Пуассона были повторены и продолжены выдающимся английским математиком Джорджем Грином (1793—1841), который до сорокалетнего возраста был пекарем и мельником. В 1828 г. опубликовал свою первую и главную работу «An Essay on the Application of mathematical Analysis in the theories of Electricity and Magnetism» («Опыт применения математического анализа в теориях электричества и магнетизма»). Для этой работы характерно, что главную роль в ней играет математическая функция, которую Грин назвал «потенциальной функцией», как мы ее называем и до сих пор. Грин определяет ее как «сумму всех электрических частиц, действующих на данную точку, разделенных на их расстояния от этой точки». В центре внимания теории Грина находится установление соотношений между значениями потенциала и распределениями плотности зарядов, создающих потенциал. Выведенные Грином основные теоремы до сих пор приводятся в работах по математической физике. Мы ограничимся лишь указанием на то, что если мы рассмотрим некоторую проводящую оболочку и назовем «внутренней системой» совокупность всех тел, находящихся внутри оболочки, и внутреннюю поверхность этой оболочки, а «внешней системой» совокупность всех внешних тел и внешнюю поверхность, то для таких систем Грин формулирует следующую теорему: «Все электрические явления во внутренней системе, относящиеся к притяжению, отталкиванию и распределению плотности, происходят точно так, как если бы внешней системы вовсе не существовало, а внутренняя поверхность являлась бы совершенным проводником, соединенным с землей, а все явления во внешней системе происходят точно так, как если бы внутренней системы не существовало, а внешняя поверхность была бы совершенным проводником, содержащим количество электричества, равное сумме всего электричества, первоначально содержавшегося на оболочке и на всех внутренних телах» *. Итак, правильнее было бы считать, что открытие теоремы полной индукции принадлежит Грину, а не Фарадею. То, что Фарадей не был знаком с работой Грина, не вызывает сомнений, потому что работа Грина осталась совершенно незамеченной, не была опубликована в научном журнале и принадлежала малоизвестному автору. Лишь в 1850 г. Томсон обратил внимание на важность этой работы и перепечатал ее по частям в журнале Крелле. Мы не говорим уже о том, что Фарадей не мог читать работ математического характера. 15. ДИЭЛЕКТРИЧЕСКАЯ ПОЛЯРИЗАЦИЯ. Как осуществляется взаимодействие двух тел—на расстоянии или же через посредство среды? Этот вопрос * George Green, An Essay..., Journal fur die reine und angewandte Mathematik, 47, 167 (1854). 272
задавали себе физики и философы еще со времен Ньютона. Сам Ньютон, как мы видели (см. гл. 6), практически уклонился от решения этой проблемы, хотя и не верил в возможность действия на расстоянии. Представители математической физики склонялись к признанию действия на расстоянии, причем не столько потому, как это принято считать, что Ньютон в своих исследованиях предполагал действие «как бы» происходящим на расстоянии, сколько просто по той причине, что при отсутствии удовлетворительных теорий действие на расстоянии представлялось наиболее простой моделью для математического истолкования явлений. Изучение электрических и магнитных явлений снова выдвинуло эту старую проблему. В действие на расстоянии верили Эпинус, Кавендит, Кулон, Пуассоп. Фарадей занялся этим вопросом в 1837 г., считая, что эта проблема может быть решена экспериментальным путем. В самом деле, думал Фарадей, действие на расстоянии должно проявляться только по прямой линии, тогда как действие опосредствованное должно быть способным проявляться и по кривой; кроме того, если среда не участвует в процессе распространения электрического действия, то природа промежуточного вещества не должна влиять на это явление; если же действие опосредствовано, то такое влияние должно проявляться. Руководствуясь этими представлениями, он провел многочисленные и остроумнейшие эксперименты, из которых следовало, что электрическое действие проявляется также по кривым линиям и что промежуточная среда значительно влияет на это действие. В ходе этих исследований Фарадей провел свой знаменитый опыт с деревянной кабинкой, окруженной заземленной металлической сеткой («клетка Фарадея»), внутри которой нельзя было обнаружить ни малейшего признака электричества даже при очень большом заряде на стенках, и аналогичный опыт с «цилиндром Фарадея», представлявший собой более тщательное и более полно проведенное повторение эксперимента с «колодцем» Беккариа (см. гл. 7). Эти опыты Фарадея подтверждали то, что уже отмечали наблюдатели предшествовавшего века и что доказывалось, как мы видели, математической физикой. Проводя опыты с сферическими конденсаторами одинакового размера, но с различными изолирующими прокладками, Фарадей устранил всякие сомнения относительно существования некоторой удельной индуктивной способности (этот термин введен Фарадеем), развивая таким образом исследования, начатые Беккариа семьдесят лет назад (см. гл. 7). В результате этих опытов Фарадей сформулировал свою теорию диэлектрической поляризации. Как объяснить влияние диэлектрика в конденсаторе? Авогадро в 1806 г. предположил, что молекулы непроводящего тела поляризуются под воздействием заряженного проводника. Но Фарадей, по-видимому, не знал этой работы Авогадро и руководствовался двумя аналогиями: теорией магнетизма Пуассона (см. § 14) и теорией электролитического действия Гроттгуса (см. § 2). Он был поражен сходством вольтаметра с конденсатором: если к кусочку льда с двух сторон приложить два заряженных проводника, то получится конденсатор, если же лед растопить, то получится (см. § 12) вольтаметр, в котором, согласно гипотезе Гроттгуса, поляризованные молекулы ориентированы в направлении тока. Но, но мнению Фарадея, поляризация должна уже существовать в молекулах льда, жидкое состояние лишь позволяет ионам перемещаться. Поэтому, заключает Фарадей, обычная электростатическая индукция представляет собой «действие смежных частиц». Частицы тела, будь то изолятор или проводник, являются совершенными проводниками, которые в обычном состоянии не поляризованы, но могут поляризоваться под действием соседних заряженных частиц. Заряженное тело, помещенное в изолирующую среду, поляри- 18 Марио Льоцци 273
зует ее частицы слой за слоем. Теория магнетизма Кулона и Пуассона, таким образом, переносится целиком на теорию диэлектриков. На объявленный Итальянским научным обществом конкурс по разработке математической теории электростатической индукции, основанной, на идеях Фарадея, откликнулся Оттавиано Фабрицио Моссотти (1791—1863), один из крупнейших представителей математической физики прошлого века, чьи произведения теперь собраны и изданы в двух томах (Пиза, 1942—1951). Он представил замечательную работу «Discussione analitica suit'influenza che I'azione di un mezzo dielettrico ha sulla distribuzione dell'elettricita alia super- ficie di piii corpi elettrici disseminati in esso» («Аналитическое рассмотрение влияния диэлектрической среды на распределение электричества по поверхности расположенных в ней электрических тел»), Модена, 1850 г.* Моссотти представляет диэлектрик состоящим из множества проводящих частиц, погруженных в изолирующую среду, и применяет к этой системе пуассоновскую теорию магнетизма. Полученные выводы используются затем для исследования распределения электричества по поверхности проводников, погруженных в диэлектрик. Теория Моссотти была затем (в 1867 г.) применена и расширена Клаузиусом в его механической теории теплоты. Мы увидим в дальнейшем, как ее использовал Максвелл. Добавим еще, что к первоисточникам современной теории диэлектриков следует отнести и другую известную работу Моссотти (опубликованную в Турине в 1836г.), в которой, исходя из теории Эпинуса (см. гл. 7), он приходит к новой теории молекулярных сил и дает ее аналитическую разработку. 16. МАГНИТООПТИКА. Фарадей не раз задавал себе вопрос, существует ли связь между электричеством и светом, между магнетизмом и светом, и если да, то в чем она состоит. Другие физики тоже ставили перед собой эту проблему, которая соответствовала общей тенденции науки того времени, тяготевшей к унифицирующим теориям. Еще в 1812 г. Доменико Морикини (1773—1836) и в 1826 г. Гюнтер Кристи ошибочно считали, что им удалось добиться намагничивания под воздействием света. Но Фарадея убедили не опыты Морикини, который продемонстрировал их специально в 1814 г. в Риме, когда Фарадей, сопровождая Дэви, путешествовал по Италии. Большое влияние на него оказали идеи Джона Гершеля, который в отклонении магнитной стрелки под действием тока видел спиралевидную симметрию, аналогичную вращению плоскости поляризации светового луча при его прохождении через некоторые тела. Однако проведенные Фарадеем в 1834 г. и повторенные в 1838 г. опыты с целью обнаружения действия электрического поля на свет не дали желаемого результата. Оставив эти попытки электрооптических исследований, Фарадей в 1845 г. приступил к магнитооптическим опытам. После первых неудач, которые его, однако, не обескуражили, он обнаружил новое явление. Параллелепипед из тяжелого стекла (флинтгласа) был помещен между полюсами электромагнита и через него пропускался поляризованный луч света параллельно силовым линиям поля. При возбуждении электромагнита плоскость поляризации света поворачивалась. Фарадей сообщил об этом открытии в ноябре 1845 г. в девятнадцатой серии своих «Экспериментальных исследований по электричеству», озаглавленной «.Magnetization of light, and the illumination of the lines of magnetic force» («Намагничивание света и освещение магнитных силовых линий»). Еще до появления в печати этой статьи ее загла- * Некоторые отрывки из этой статьи были опубликованы еще в 184R г., а ее краткое изложение появилось в 1847 г. в Женевском «Archives des sciences physiques et naturelles» VI, 193 (1847). 274
вие было многими раскритиковано, особенно из-за выражения «освещение магнитных силовых линий». Поэтому уже в корректуре Фарадей добавил примечание, чтобы пояснить и оправдать это выражение: «Я полагаю, что в опытах, описываемых мною в настоящей статье, свет испытал на себе магнитное действие, то есть что магнитному действию подвергалось то, что является магнитным в силах материи, а последнее в свою очередь воздействовало на то, что является подлинно магнитным в силе света)} (§ 2146). Иначе говоря, Фарадей считал, что в свете присутствует некий магнетизм. Эти слова тогда, в 1845 г., казались физикам еще более непонятными, чем то выражение, которое они должны были пояснить, ибо но теории Френеля, которая тогда глубоко укоренилась, свет не имел ничего общего с магнетизмом. Убедившись в существовании этого явления, Фарадей приступил к изучению его свойств. Он обнаружил, что многие другие вещества, кроме тяжелого стекла, обладали тем же свойством. Однако обнаружить это явление в опытах с золотой пластинкой ему не удалось, и лишь много лет спустя, в 1884 г., Кундт установил, что металлические пленки в сильной степени обладают способностью магнитного вращения плоскости поляризации, чем можно объяснить магнитооптический эффект, открытый Керром в 1877 г. Заменив магнит спиралью, по которой проходит ток, Фарадей наблюдал вращение плоскости поляризации света в направлении тока и сразу же понял существенное различие между естественной вращательной способностью и магнитной вращательной способностью: симметрия первой — геликоидальная, а второй — цилиндрическая. Воспользовавшись этим различием, Фарадей экспериментально доказал, что вращение плоскости поляризации зависит от природы того тела, через которое проходит луч, и что оно пропорционально толщине проходимого тела и интенсивности магнитного поля. Вращение получается наибольшим, когда направление поля параллельно направлению луча,и исчезает, когда оба направления перпендикулярны друг другу. Таким образом, закон, называемый сейчас «законом Верде», открыт Фара- деем. Верде подтвердил эти закономерности своими многочисленными и разнообразными экспериментами, которые привели его в 1863 г. к выводу о приблизительной пропорциональности магнитного вращения плоскости поляризации квадрату длины волны. В своем «Трактате» 1873 г. Максвелл попытался создать теорию этого явления. Фарадей заметил, что вращение плоскости поляризации запаздывает по отношению к изменениям иптенсивности поля. Это явление в 1870 г. вновь подверг анализу Эмилио Виллари (1836—1904) при помощи очень простого по идее прибора. Он подтвердил наблюдение Фарадея и проделал первые количественные исследования этого явления. 17. СТРОЕНИЕ МАТЕРИИ. Заметив, что открытое им магнитооптическое явление проявляется, только когда свет проходит через определенные тела, а не в пустоте, Фарадей решил заняться рассмотрением многовековой проблемы строения материи, которой он, впрочем, уже не раз касался, особенно при исследовании диэлектриков (см. § 15). Начал он с того, что подверг суровой критике атомистическую теорию материи. Коротко говоря, он утверждал следующее: если атомы и пространство представляют собой две различные вещи, то следует признать непрерывность только пространства, потому что атомы представляют собой разные и отделенные друг от друга индивидуальности. Так что пространство пронизывает все тела, отделяя каждый атом от соседних с ним. Возьмем какой-нибудь изолятор, например сургуч. Если бы пространство было проводником, то изолятор должен был is* 275
бы проводить ток, потому что пространство служило бы как бы металлической сеткой; следовательно, пространство является изолятором. Теперь возьмем какой-нибудь проводник. Здесь, как и раньше, все атомы тоже как бы окружены пространством, но если пространство — изолятор, то ток не может проходить от одного атома к другому, и все же проводник проводит ток; получается, что пространство — проводник. Теория, приводящая к таким противоречиям, не может считаться верной сама по себе. Но если атомистическая гипотеза не выдерживает критики, чем же ее заменить, ведь какая-то гипотеза все же должна быть? И Фарадей, проанализировав различные гипотезы, объявил себя приверженцем доктрины Бос- ковича (см. гл. 7). «Мы знаем силы и наблюдаем их присутствие в каждом явлении, но отвлеченной материи мы не встречаем ни в одном из них. Почему же мы должны признавать существование некоей вещи, о которой мы не можем составить себе никакого представления, вещи, представление о которой вовсе не является необходимостью для нашего мышления"?» * По мнению Босковича и Фарадея, материя, т. е. системы сил, исходящих из центров сил, существует повсюду; нет такой области пространства, в которой бы их не было. «Такой взгляд на строение материи,— продолжает Фарадей в своей статье, которую мы только что цитировали,— с необходимостью приводит, очевидно, к заключению, что материя заполняет собой все пространство или по крайней мере все пространство, в котором действуют гравитационные силы, потому что гравитация — это свойство материи, зависящее от определенной силы, а эта сила как раз и представляет собой материю. При таком понимании материи она не только взаимопроницаема, но и каждый ее атом простирается, так сказать, через всю солнечную систему, сохра- однако, свой собственный центр силы». Итак, здесь доведена до логического конца, быть может, самая оригинальная идея Фарадея, идея, которая, по мнению Эйнштейна, была самым важным открытием со времен Ньютона: понятие поля. Пространство рассматривалось Ньютоном, а вслед за ним и другими учеными как пассивное безучастное вместилище тел и электрических зарядов. У Фарадея же пространство принимает участие в явлениях — оно как раз и представляет собой средоточие явлений. «Нужно было обладать могучим даром научного воображения,— говорит Эйнштейн,— чтобы распознать, что в описаниях электрических явлений не заряды и не частицы описывают суть явлений, а скорее пространство между зарядами и частицами» **. Такой ход мыслей Фарадея находит свое конкретное выражение в его известном письме 1846 г. к Ричарду Филлипсу (1778—1851), в котором выдвигается предположение, что колебания света представляют собой дрожание силовых линий. «Если допустить такую возможность,— говорит он,— то можно было бы обойтись без эфира, который, согласно другой точке зрения, является той средой, в которой совершаются эти колебания». * М. Faraday, A speculation touching Electric Conduction and the Nature of Matter, Philosophical Magazine, [3], 24, 136 (1844). ** A. E i n s t e i n, L. I n f e 1 d, The Evolution of Physics, New York, 1942. (Есть русский перевод: А. Эйнштейн, Л. Инфельд, Эволюция физики, Собр. научн. трудов А. Эйнштейна, т. IV.) 276
Но, может быть из опасения слишком далеко зайти в область фантазии, он так заканчивает свое письмо: «Я считаю вполне вероятным, что сделал на предыдущих страницах много ошибок, ибо даже мне самому мои представления по этому вопросу кажутся лишь как бы отражением тех построений в голове исследователя, часто мимолетных, которые, однако, могут иметь свою временную ценность как руководящая нить для нашего мышления и исканий. Те, кто работает в области экспериментальных исследований, знают, как многочисленны эти мысленные комбинации и как часто их кажущаяся пригодность и красота исчезают по мере того, как идет вперед и развивается познание настоящей естественнонаучной истины» *. 18. ДИАМАГНЕТИЗМ. Наблюдая магнитооптические явления, Фарадей пришел к убеждению, что изменяется сама внутренняя структура тела, помещенного в магнитное поле. Поэтому он решил исследовать, испытывают ли тела, помещаемые в магнитное поле, механические изменения и какие именно. В ходе этих исследований он в том же 1845 г. сделал еще одно большое открытие, последнее в его столь плодотворной научной деятельности,— обнаружил, что кусок тяжелого стекла (отлитого им в 1822 г. и содержащего борнокислый свинец), помещенный перед полюсом мощного электромагнита, испытывает слабое отталкивание. Чтобы яснее обнаружить это явление, Фарадей подвесил на нитке между полюсами мощного подковообразного электромагнита стерженек из тяжелого стекла. При включении электромагнита стерженек поворачивался, располагаясь перпендикулярно силовым линиям поля, или, как говорит Фарадей, экваториально. Стерженек из обычного магнитного вещества, помещенный точно таким же образом, располагается вдоль оси, т. е. вдоль силовых линий. Уитстон сообщил Фарадею, что наблюдавшееся им явление магнитного отталкивания не ново: его описал в 1778 г. А. Бругманс (1732—1789), наблюдая его в опытах с висмутом, а в 1827 г. аналогичное явление заметил А. Беккерель в опытах с сурьмой. Но то были отрывочные наблюдения, оставшиеся неизвестными большинству физиков, хотя некоторые эрудированные авторы того времени, как, например, Пуйе во втором издании своих «Elements de physique» («Элементы физики»), 1832 г., писали о них как о некоей диковинке. Открытие Фарадея также показалось некоторым лишенным интереса. Эдмон Беккерель, сын Антуана Беккереля, считал (и его поддерживал в этом Гальда), что в опытах Фарадея не было ничего нового, поскольку как Кулон, так и А. Беккерель обнаружили, что тела, содержащие в себе в рассеянном виде небольшое число частиц железа стреловидной формы, располагаются в магнитном поле экваториально. Но Маттеуччи справедливо возразил (1846 г.), что главным в открытии Фарадея было не экваториальное расположение тела, а отталкивание некоторых тел магнитным полюсом. Итак, критические замечания были легко опровергнуты, тем более что это свойство, как показал Фарадей, вовсе не было исключением: оно обнаружено и у многих других твердых тел, жидкостей и тканей человеческого тела; им обладают также многие газы. Последнее было доказано в 1847 г. Микеле Альберто Банкалари (1805—1864) и подтверждено Фарадеем в процессе дальнейших исследований. Все эти тела Фарадей назвал диамагнетиками. После долгих терпеливых исследований Фарадей установил, что все тела — либо парамагнетики, либо диамагнетики и что нейтральных тел не * М. Faraday, Thoughts on Ray-vibrations, Philosophical Magazine, [3], 28, 350(1846). 277
существует, т. е. нет таких тел, которые бы не притягивались и не отталкивались полюсом магнита достаточной силы. Теория диамагнетизма была одной из самых щекотливых проблем второй половины XIX века. Фарадей выдвинул две различные гипотезы. Согласно первой, молекулы диамагнитных веществ под действием поля намагничиваются в направлении, противоположном направлению намагничивания парамагнитных веществ; согласно второй гипотезе, отталкивание диамагнитных тел магнитным полюсом лишь кажущееся и обусловлено разностью притяжений, т. е. тем, что среда, в которой тело находится, притягивается сильнее, чем само тело. Но принимая вторую гипотезу, приходится также предположить, что пустота или некая среда, заполняющая пустоту, обладает магнитными свойствами. Фарадей склонялся к первой гипотезе, потому что не считал возможным приписывать пространству свойство притягиваться или представлять его заполненным весьма проблематичным эфиром. В течение нескольких десятилетий как та, так и другая теория имели своих сторонников. Большинство, следуя за Вебером, который в 1852 г. сконструировал свой диамагнетометр, принимало первую гипотезу Фара- дея. Но в 1889 г. Дж. Паркер заметил, что такая интерпретация явления находится в противоречии со вторым началом термодинамики, что было затем подтверждено и П. Дюэмом. Это замечание было сделано как раз в момент расцвета термодинамики, поэтому привело к резкому кризису, в результате чего в конце прошлого века физики склонялись к теории влияния среды. Однако теория, которой придерживались Фарадей и Вебер, по существу довольно скоро (в 1905 г.) вновь возродилась в теории Ланже- вена,—самой простой и всеобъемлющей из всех доквантовых электронных теорий. Прежде чем перейти к другим вопросам, упомянем следующее: в ходе^своих исследований диамагнетизма Фарадей заметил, что медный стержень, подвешенный в магнитном поле, не совершал колебаний, даже если его подталкивали, как если бы он испытывал в среде сильное сопротивление трения. Фарадей понял, что причиной являются токи, индуцируемые в стержне, и получил подтверждение своего предположения в опытах с медным кубом, который, будучи приведен во вращение между полюсами электромагнита, при включении магнитного поля останавливается. Фуко повторил в 1855 г. опыт Фарадея, придав ему более эффектный вид. Он применил маятник, качающийся между полюсами электромагнита, который был уже ранее использован Стердженом в 1825 г. при опытах с «вращательным магнетизмом» (см. § 11). Таким образом, в вопросе о индуцируемых в металлических массах токах, наблюдавшихся и Джоулем в 1843 г., Фуко принадлежит лишь способ их уменьшения посредством разбиения сплошной массы на тонкие пластины. 19. ПРИМЕНЕНИЯ. О теоретическом значении открытий Фарадея мы уже говорили. С их последующим развитием мы встретимся еще в дальнейшем, здесь же подчеркнем лишь их практическое значение, ограничившись промышленным использованием открытия электромагнитной индукции. Все машины современной электропромышленности — генераторы, трансформаторы, электромоторы — основаны на явлении электромагнитной индукции. Как мы уже видели (см. § 11), первый генератор тока был построен самим Фарадеем. В 1832 г. Ипполит Пиксий, парижский конструктор физических инструментов, построил небольшую электромагнитную машину, в которой подковообразный магнит вращался перед электромагнитом в виде U-образного куска железа, обвитого длинным (30 м) медным проводом в шелковой изоляции. Концы провода шли в две чашечки, с которых начиналась внешняя цепь 278
Опыт Фуко с индуктивными токами в металлических массах. (A. G а г п о t, Traite elemenlaire de physique experimental et appliquee, 1857.) Диск D, приведенный в быстрое вращательное движение, почти мгновенно останавливается, как только включаются электромагниты. Вращение диска при включенных электромагнитах вызывает сильное его нагревание. Электромотор П. А. Фромана (1815—1865) мощностью в одну лошадиную силу (1835 г.). (A. Gar not, Traite elementaire de physique experimentale et appliquee, 1857.) v v При надлежащих- направлениях токов электромагниты А я В тянут перекладины М всегда в одном направлении.
«Земно-электрическая машина» (1845 г.) Луиджи Пальмьери. (G. Majocchi, Elementi di fisica, Torino, 1853.) В желобок эллиптической рамы уложено 210 витков медной проволоки, концы которой соединены с металлическими цилиндрами h, h. Если ось вращения машины расположена перпендикулярно магнитному меридиану, при быстром вращении катушки возникает индуктивный ток, вызывающий физические, физиологические и химические действия. переменного тока. Машина Пиксия имеет историческое значение, поскольку показала, что получающийся за счет нового явления электромагнитной индукции ток обладает значительной силой, о чем свидетельствовали опыты с химическим разложением и образованием искр. Но то, что ток во внешней цепи все время менял свое направление, казалось недостатком этой машины, поэтому Пиксий сразу же стал работать над тем, чтобы получить однонаправленный ток, и подсоединил к машине известный коммутатор Ампера, который автоматически менял соединения концов внешней цепи при каждой перемене направления тока. В 1844 г. появилось описание «земно-электрической машины» (или «круга») Луиджи Пальмьери (1807—1896) как генератора переменного тока. Уже во второй половине прошлого века авторы учебников присоединили к ней в дидактических целях коллектор, превратив ее таким образом в прототип генератора постоянного тока. Возможность производить механическую работу с помощью электрического тока была известна до открытия электромагнитной индукции. Мы уже видели (см. § 5), как колесо Барлоу преобразовывало электрическую энергию в механическую. В 1831 г. Сальваторе даль Негро (1768—1839) построил первый электромотор, а в 1838 г. в Петербурге Б. С. Якоби (1801—1874) впервые с помощью электромотора привел в движение лодку. В обоих случаях использовалось притяжение неподвижными электромагнитами подвижных. Позже подвижные электромагниты были заменены якорями, а переменное движение превратилось во вращательное, как в паровых машинах. Однако эти электромоторы широкого распространения не получили, потому что стоимость производимой ими работы (согласно опытам, проведенным на Парижской выставке 1855 г.) была примерно в двадцать раз больше 280
Антонио Пачинотти. стоимости работы, производимой паровыми машинами. И применение этих моторов ограничилось областью маломощных точных приборов. Но вернемся к генератору Пиксия, конструкцию которого улучшили Кларк, Пэйдж, Молле и другие, после чего этот генератор получил первое практическое применение в гальванопластике, а с 1862 г. в Англии стал использоваться для электрического освещения маяков. Индукционные машины с прерыванием тока нуждались в быстром прерывателе тока, первая модель которого была изобретена в 1837 г. АнтуаномМассоном (1806—1860) и состояла из зубчатого колеса, ударявшего своими зубцами по язычку, замыкавшему таким образом цепь. По высоте получаемого звука Массой определял частоту прерываний. Так ему удалось получить индукционный ток высокого напряжения, применявшийся, в частности, в ^лечебных целях. В 1851 г. Генрих Даниил Румкорф (1803—1877), известный парижский конструктор физических аппаратов, заметил, что аппарат Массона мог бы быть более эффективным, если бы имел более длинный индуктивный провод и частота прерываний была бы больше. Так возникла «индукционная катушка», названная в честь Румкорфа его именем. Начиная с 1838 г. американец Чарльз Пэйдж (1812 — 1868) постепенно совершенствовал конструкцию индукционных катушек, но в Европе о- его работах ничего не было известно. Первые модели индукционных катушек Румкорфа давали искры длиной до 2 см, но в 1859 г. Ритчи получил в воздухе искры длиной 35 см, а вскоре после этого Румкорфу удалось получить, в воздухе искры длиной 50 см. Применение генераторов, как мы уже сказали, было весьма ограничено, особенно из-за несовершенства коммутаторов. Устранение этих несовершенств стало одной из главных задач электротехники того времени. В 1860 г. Антонио Пачинотти (1841—1912) дал гениальное решение этой задачи, применив свою «машинку», представлявшую собой мотор постоянного тока с коллектором. Эта машинка описана в статье в 1864 г., где указывается также возможность превращения мотора в динамомашину постоянного тока. С изобретения Пачинотти, получившего начиная с 1871 г. широкое распространение после внесения кое-каких практических изменений Зиновием. Граммом (1826—1901), с введения трансформатора, который был предложен Голаром в 1882 г., с изобретения мотора с вращающимся магнитным полем,. 28i
«Машинка» Пачинотти. Хранится в Галипеевском музее в Пизе. Мотор с вращающимся магнитным полем Галилео -Феррариса. -"Хранится в Национальном институте электротехники в Турине,
•описанного в 1888 г. Галилео Феррарисом (1847—1897), и начинается современная электротехника. Краткого упоминания заслуживает еще одно применение явления электромагнитной индукции — телефон, о приоритете на изобретение которого велись ожесточенные споры и даже судебные процессы. Теперь уже представляется несомненным, что первым изобрел телефон Антонио Меуччи (1808—1889) в 1849 г., но первый телефонный аппарат был показан лишь в 1876 г. на Филадельфийской выставке Александром Грехемом Беллом (1847—1922). Приемная часть телефона Белла осталась без изменений до наших дней, передающая же была очень несовершенной. Ее усовершенствовал Эдисон в том же 1876 г., введя угольный передатчик, но существенное улучшение в 1878 г. внес Дэвид Юэ (1831—1900), изобретя микрофон, в основных чертах сходный с тем, который применяется в наше время. Первый, кто применил телефон при физических исследованиях, был, пожалуй, Кольрауш, использовавший его в своих работах по измерению сопротивления электролитов. ЭЛЕКТРОМАГНИТНАЯ ТЕОРИЯ МАКСВЕЛЛА 20. ОПИСАНИЕ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ. Примерно к 1860 г. благодаря работам Неймана, Вебера, Гельмгольца и Феличи (см. § 11) электродинамика считалась уже наукой окончательно систематизированной, с ■четко определенными границами. Основные исследования теперь уже, казалось, должны были идти по пути нахождения и вывода всех следствий из установленных принципов и их практического применения, к которому уже и приступили изобретательные техники. Однако перспективу такой спокойной работы нарушил молодой шотландский физик Джемс Кларк Максвелл (1831—1879), указав на гораздо <более широкую область применений электродинамики. С полным основанием Дюэм писал: «Никакая логическая необходимость не толкала Максвелла придумывать новую электродинамику; он руководствовался лишь некоторыми аналогиями и желанием завершить работу Фарадея в таком же духе, как труды Кулона и Пуассона были завершены электродинамикой Ампера, а также, возможно, интуитивным ощущением электромагнитной природы света» *. Быть может, основным побуждением, которое заставило Максвелла заняться работой, вовсе не требовавшейся наукой тех лет, было восхищение новыми идеями Фарадея, столь оригинальными, что ученые того времени не способны были воспринять их и усвоить. Поколению физиков- теоретиков, воспитанных на понятиях и математическом изяществе работ Лапласа, Пуассона и Ампера, мысли Фарадея казались слишком расплывчатыми, а физикам-экспериментаторам — слишком мудреными и абстрактными. Произошла странная вещь: Фарадей, который по своему образованию не был математиком (он начал свою карьеру разносчиком в книжной лавке, а затем поступил в лабораторию Дэви на положение полуассистента-полуслуги), чувствовал настоятельную необходимость в разработке некоего теоретического метода, столь же действенного, как и математические уравнения. Максвелл угадал это. «.Приступив к изучению труда Фарадея,— писал Максвелл в предисловии к своему знаменитому «Трактату»,— я установил, что его метод понимания явлений был также математическим, хотя и не представленным в форме "* P. D u h e m, Les theories electriques de J. Clerk Maxwell, Paris, 1902, p. 8. 283
Джемс Кларк Максвелл» обычных математических символов. Я также нашел, что этот метод можно выразить в обычной математической форме и, таким образом, сравнить с методами профессиональных математиков. Так, например, Фарадей видел силовые линии, пронизывающие все пространство, там, где математики видели центры сил, притягивающих на расстоянии; Фарадей видел среду тамг где они не видели ничего, кроме расстояния; Фарадей предполагал '^источник и причину явлений в реальных действиях, протекающих в среде, они же были удовлетворены тем, что нашли их в силе действия на расстоянии, приписанной электрическим флюидам. Когда я переводил то, что я считал идеями Фарадея, в математическую' форму, я нашел, что в большинстве случаев результаты обоих методов совпадали, так что ими объяснялись одни и те же явления и выводились одни и те же законы действия, но что методы Фарадея походили на те, при которых мы начинаем с целого и приходим к частному путем анализа, в то время как обычные математические методы основаны на принципе движения от частностей и построения, целого путем синтеза. Я также нашел, что многие из открытых математиками плодотворных- методов исследования могли быть значительно лучше выражены с помощью* идей, вытекающих из работ Фарадея, чем в их оригинальной форме» *. Что же касается математического метода Фарадея, Максвелл в другом месте замечает, что математики, которые считали метод Фарадея лишенным научной точности, сами не придумали ничего лучшего, как использование- гипотез о взаимодействии вещей, не обладающих физической реальностью, как, например, элементов тока, «которые возникают из ничего, проходят участок провода и затем снова превращаются в ничто». Чтобы придать идеям Фарадея математическую форму, Максвелл начал с того, что создал электродинамику диэлектриков. Теория Максвелла непосредственно связана с теорией Моссотти. В то время как Фарадей в CBoeir теории диэлектрической поляризации намеренно оставил открытым вопрос о природе электричества, Моссотти, сторонник идей Франклина, представляет себе электричество как единый флюид, который он называет эфиром и который, по его мнению, присутствует с определенной степенью плотности во всех молекулах. Когда молекула находится под действием силы индукции, эфир концентрируется на одном конце молекулы и разрежается на другому из-за этого возникает положительная сила на первом конце и равная ей отрицательная —- на втором. Максвелл целиком принимает эту концепцию. В своем «Трактате» он пишет: * J. Clerk Maxwell, A Treatise on Electricity and Magnetism, London, 1873; 2nd ed.,. Oxford, 1881. (Русскийперевод предисловия и части IV см. в книге Дж. К. М а к с в е л л,. Избранные сочинения по теории электромагнитного поля, 1954, стр. 345— 361.— Прим. пер ев.) 284
«Электрическая поляризация диэлектрика представляет собой состояние деформации, в которое тело приходит под действием электродвижущей силы и которое исчезает одновременно с прекращением этой силы. Мы можем представить себе ее как нечто такое, что можно назвать электрическим смещением, производимым электродвижущей силой. Когда электродвижущая сила действует в проводящей среде, она вызывает там ток, но если среда непроводящая или диэлектрическая, то ток не может проходить через эту среду. Электричество, однако, смещено в ней в направлении действия электродвижущей силы, и величина этого смещения зависит от величины электродвижущей силы. Если электродвижущая сила увеличивается или уменьшается, то в той же пропорции соответственно увеличивается или уменьшается и электрическое смещение. Величина смещения измеряется количеством электричества, пересекающего единицу поверхности при возрастании смещения от нуля до максимальной величины. Такова, следовательно, мера электрической поляризации». Если поляризованный диэлектрик состоит из совокупности рассеянных в изолирующей среде проводящих частиц, на которых электричество распределено определенным образом, то всякое изменение состояния поляризации должно сопровождаться изменением распределения электричества в каждой частице, т. е. настоящим электрическим током, правда ограниченным лишь объемом проводящей частицы. Иначе говоря, каждое изменение состояния поляризации сопровождается током смещения. В том же ч<Трактате» Максвелл говорит: «Изменения электрического смещения, очевидно, вызывают электрические токи. Но эти токи могут существовать лишь во время изменения смещения, а поскольку смещение не может превысить некоторой величины, не вызывая разрушительного разряда, то эти токи не могут продолжаться бесконечно в одном и том же направлении, подобно токам в проводниках». После того как Максвелл вводит понятие напряженности поля, представляющее собой математическое истолкование фарадеевского понятия поля сил, он записывает математическое соотношение для упомянутых понятий электрического смещения и тока смещения. Он приходит к выводу, что так называемый заряд проводника является поверхностным зарядом окружающего диэлектрика, что энергия накапливается в диэлектрике в виде состояния напряжения, что движение электричества подчиняется тем же условиям, что и движение несжимаемой жидкости. Сам Максвелл так резюмирует свою теорию: «Энергия электризации сосредоточена в диэлектрической среде, будь то твердое тело, жидкость или газ, плотная среда, или разреженная, или же совершенно лишенная весомой материи, лишь бы она была в состоянии передавать электрическое действие. Энергия заключена в каждой точке среды в виде состояния деформации, называемого электрической поляризацией, величина которой зависит от электродвижущей силы, действующей в этой точке... В диэлектрических жидкостях электрическая поляризация сопровождается натяжением в направлении линий индукции и равным ему давлением по всем направлениям, перпендикулярным линиям индукции; величина этого натяжения или давления на единицу поверхности численно равна энергии в единице объема в данной точке». Трудно более ясно выразить основную идею такого подхода, являющуюся идеей Фарадея: местом, в котором совершаются электрические явления, является среда. Как бы желая подчеркнуть, что это и есть главное в его трактате, Максвелл заканчивает его следующими словами: 285
«Если мы примем эту среду в качестве гипотезы, я считаю, что она должна занимать выдающееся место в наших исследованиях и что нам следовала бы попытаться сконструировать рациональное представление о всех деталях ее действия, что и было моей постоянной целью в этом трактате». Обосновав теорию диэлектриков, Максвелл переносит ее понятия с необходимыми поправками на магнетизм и создает теорию электромагнитной индукции. Все свое теоретическое построение он резюмирует в нескольких уравнениях, ставших теперь знаменитыми: в шести уравнениях Максвелла. Эти уравнения сильно отличаются от обычных уравнений механики — они определяют структуру электромагнитного поля. В то время как законы механики применимы к областям пространства, в которых присутствует материя, уравнения Максвелла применимы для всего пространства независимо от того, присутствуют или не присутствуют там тела или электрические заряды. Они определяют изменения поля, тогда как законы механики определяют изменения материальных частиц. Кроме того, ньютоновская механика отказалась, как мы уже говорили в гл. 6, от непрерывности действия в пространстве и времени, тогда как уравнения Максвелла устанавливают непрерывность явлений. Они связывают события, смежные в пространстве и во времени: по заданному состоянию поля «здесь» и «теперь» мы можем вывести состояние поля в непосредственной близости в близкие моменты времени. Такое понимание поля абсолютно согласуется с идеей Фарадея„ но находится в непреодолимом противоречии с двухвековой традицией. Поэтому нет ничего удивительного в том, что оно встретило сопротивление. Возражения, которые выдвигались против теории электричества Максвелла, были многочисленны и относились как к фундаментальным понятиям, положенным в основу теории, так и, может быть в еще большей степени, к той слишком свободной манере, которой Максвелл пользуется при выводе следствий из нее. Максвелл шаг за шагом строит свою теорию с помощью «ловкости пальцев», как удачно выразился Пуанкаре, имея в виду те логические натяжки, которые иногда позволяют себе ученые при формулировке новых теорий. Когда в ходе аналитического построения Максвелл наталкивается на очевидное противоречие, он, не колеблясь, преодолевает его с помощью обескураживающих вольностей. Например, ему ничего не стоит исключить какой-нибудь член, заменить неподходящий знак выражения обратным, подменить значение какой-нибудь буквы. На тех, кто восхищался непогрешимым логическим построением электродинамики Ампера, теория Максвелла должна была производить неприятное впечатление. Физикам неудалось привести ее в стройный порядок, т. е. освободить от логических ошибок и непоследовательностей. Но. с другой стороны, они не могли отказаться от теории, которая, как мы увидим в дальнейшем, органически связывала оптику с электричеством. Поэтому в конце прошлого века крупнейшие физики придерживались тезиса, выдвинутого в 1890 г. Герцем: раз рассуждения и подсчеты, с помощью которых Максвелл пришел к своей теории электромагнетизма, полны ошибок, которые мы не можем исправить, примем шесть уравнений Максвелла как исходную гипотезу, как постулаты, на которые и будет опираться вся теория электромагнетизма. «Главное в теории Максвелла — это уравнения Максвелла»,— говорит Герц. 21. ЭЛЕКТРОМАГНИТНАЯ ТЕОРИЯ СВЕТА. В найденную Вебером формулу для силы взаимодействия двух электрических зарядов, перемещающихся относительно друг друга, входит коэффициент, имеющий смысл некоторой скорости. Величину этой скорости сам Вебер и Кольрауш определили экспериментально в работе 1856 г., ставшей классической; эта величина получалась несколько больше скорости света. В следующем году Кирхгоф- 286
из теории Вебера вывел закон распространения электродинамической индукции по проводу: если сопротивление равно нулю, то скорость распространения электрической волны не зависит от сечения провода, от его природы и плотности электричества и почти равна скорости распространения света в пустоте. Вебер в одной из своих теоретико-экспериментальных работ 1864 г. подтвердил результаты Кирхгофа, показав, что постоянная Кирхгофа количественно равна числу электростатических единиц, содержащихся в электромагнитной единице, и заметил, что совпадение скорости распространения электрических волн и скорости света можно рассматривать как указание- на наличие тесной связи между двумя явлениями. Однако, прежде чем говорить об этом, сначала следует точно выяснить, в чем истинный смысл понятия скорости распространения электричества: «а смысл этот,— меланхолически заключает Вебер,— представляется вовсе не таким, чтобы вызывать- большие надежды». У Максвелла же как раз не было никаких сомнений, возможно потому, что он находил поддержку в идеях Фарадея относительно природы света (см. § 17). «В различных местах этого трактата,— пишет Максвелл, приступая в XX главе четвертой части к изложению электромагнитной теории света,— делалась попытка объяснения электромагнитных явлений при помощи механического действия, передаваемого от одного тела к другому при посредстве среды, занимающей пространство между этими телами. Волновая теория: света также допускает существование какой-то среды. Мы должны теперь показать, что свойства электромагнитной среды идентичны со свойствами светоносной среды... Мы можем получить численное значение некоторых свойств среды, таких, как скорость, с которой возмущение распространяется через нее, которая может быть вычислена из электромагнитных опытов, а также наблюдена непосредственно в случае света. Если бы было найдено, что скорость распространения электромагнитных возмущений такова же, как и скорость света, не только в воздухе, но и в других прозрачных средах, мы получили бы серьезное основание для того, чтобы считать свет электромагнитным явлением, и тогда сочетание оптической и электрической очевидности даст такое же доказательство реальности среды, какое мы получаем в случае других форм материи на основании совокупности свидетельств наших органов чувств» *. Как и в первой работе 1864 г., Максвелл исходит из своих уравнений и после ряда преобразований приходит к выводу, что в пустоте поперечные токи смещения распространяются с той же скоростью, что и свет, что и «представляет собой подтверждение электромагнитной теории света»,— уверенно заявляет Максвелл. Затем Максвелл изучает более детально свойства электромагнитных возмущений и приходит к выводам, сегодня уже хорошо известным: колеблющийся электрический заряд создает переменное электрическое поле, неразрывно связанное с переменным магнитным полем; это представляет собой обобщение опыта Эрстеда. Уравнения Максвелла позволяют проследить изменения поля во времени в любой точке пространства. Результат такого исследования показывает, что в каждой точке пространства возникают электрические и магнитные колебания, т. е. интенсивность электрического и магнитного полей периодически изменяется; эти поля неотделимы друг от друга и поляризованы взаимно перпендикулярно. Эти колебания распространяются в пространстве с определенной скоростью и образуют поперечную электромагнитную волну: электрические и магнитные колебания * Там ят, стр. 550—551 русского издания. 287
Генрих Герц. в каждой точке происходят перпендикулярно направлению распространения волны. Среди многих частных следствий, вытекающих из теории Максвелла, упомянем следующие: особенно часто подвергавшееся критике утверждение о том, что диэлектрическая постоянная равна квадрату показателя преломления оптических лучей в данной среде; наличие светового давления в направлении распространения света; ортогональность двух поляризованных волн — электрической и магнитной. 22. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ. В §11 мы уже говорили, что был установлен колебательный характер разряда лейденской банки. Это явление с 1858 по 1862 г. вновь было подвергнуто внимательному анализу Вильгельмом Феддерсеном (1832—1918). Он заметил, что если две обкладки конденсатора соединены небольшим сопротивлением, то разряд носит колебательный характер и длительность периода колебаний пропорциональна квадратному корню из емкости конденсатора. В 1855 г. Томсон вывел из теории потенциала, что период колебаний осциллирующего разряда пропорционален квадратному корню из произведения емкости конденсатора на его коэффициент самоиндукции. Наконец, в 1864 г. Кирхгоф дал теорию колебательного разряда, а в 1869 г. Гельмгольц показал, что аналогичные колебания можно получить и в индукционной катушке, концы которой соединены с обкладками конденсатора. В 1884 г. Генрих Герц (1857—1894), бывший ученик и ассистент Гельмгольца, приступил к изучению теории Максвелла (см. гл. 12). В 1887 г. он повторил опыты Гельмгольца с двумя индукционными катушками. После нескольких попыток ему удалось поставить свои классические опыты, хорошо известные сейчас. С помощью «генератора» и «резонатора» Герц экспериментально доказал (способом, который сегодня описывают во всех учебниках), что колебательный разряд вызывает в пространстве волны, состоящие из двух колебаний — электрического и магнитного, поляризованных перпендикулярно друг другу. Герц установил также отражение, преломление и интерференцию этих волн, показав, что все его опыты полностью объяснимы теорией Максвелла. По пути, открытому Герцем, устремились многие экспериментаторы, но им не удалось многого прибавить к уяснению сходства световых и электрических волн, ибо, пользуясь той же длиной волны, которую брал Герц (около 66 см), они наталкивались на явления дифракции, затемнявшие все другие эффекты. Чтобы избежать этого, нужны были установки таких больших размеров, которые практически в те времена были нереализуемы. Большой шаг вперед сделал Аугусто Риги (1850—1920), которому с помощью созданного им нового типа генератора удалось возбудить волны длиной несколько сантиметров (чаще всего он работал с волнами длиной 10,6 см). 288
Аугусто Риги. Таким образом, Риги удалось воспроизвести все оптические явления с помощью приспособлений, которые в основном являются аналогами соответствующих оптических приборов. В частности, Риги первому удалось получить двойное преломление электромагнитных волн. Работы Риги начатые в 1893 г. и время от времени описывавшиеся им в заметках и статьях, публиковавшихся в научных журналах, были затем объединены и дополнены в теперь уже ставшей классической книге ЮШса delle oscilla- zioni elettriche» («Оптика электрических колебаний»), вышедшей в 1897 г., одно лишь название которой выражает содержание целой эпохи в истории физики. Способность помещенного в трубку металлического порошка становиться проводящим под действием разряда находящейся рядом электростатической машины была изучена Онести (1853—1922) в 1884 г., а десять лет спустя эта способность была использована Лоджем, а затем и многими другими для индикации электромагнитных волн. Сочетав генератор Риги и индикатор Онести с гениальными идеями «антенны» и «заземления», в конце 1895 г. Гульельмо Маркони (1874—1937) успешно произвел первые практические эксперименты * в области радиотелеграфии, стремительное развитие и удивительные результаты которой поистине граничат с чудом. Как известно, приоритет в изобретении радио принадлежит русскому ученому А. С. Попову, прочитавшему 7 мая 1895 г. на заседании Физического отделения Русского физикс- химического общества свой доклад, содержавший описание приемника.— Прим. перев. 19 Марио Льоцци
ГЛАВА И . ЭЛЕКТРОН 1. КАТОДНЫЕ ЛУЧИ. Непосредственным предшественником той субатомной физики, которая родилась в конце XIX века и заняла господствующее положение в научных исследованиях нашего столетия, следует считать Уильяма Крукса (1832—1919). Свободный исследователь, изучавший в своей частной лаборатории в Лондоне проблемы химии и физики, естествознания и спиритизма, Уильям Крукс открыл элемент таллий (1861 г.), создал «радиометр», носящий теперь его имя (1875 г.), и «спинтарископ» (1903 г.). За свои научные заслуги в 1897 г. был пожалован титулом баронета. Исследование прохождения электричества через разреженные газы было делом чрезвычайно сложным, ибо уровень вакуумной техники тогда был низким и истолкование результатов встречало значительные трудности, и это направление исследований казалось бесперспективным. Исследованию электрического разряда в газе фактически положил начало еще в 1706 г. другой англичанин — Фрэнсис Хоксби, однако дело продвинулось лишь после появления ртутного вакуумного насоса (Гейслер, 1855), сделавшего возможным получение хорошего вакуума. Тогда экспериментальные исследования электрического разряда были повторены и расширены Ю. Плюккером (1801—1868) и Вильгельмом Гитторфом (1844—1914), исследовавшими, в частности, флуоресценцию стекла трубки, в которой происходит разряд. Варли (1828—1883) объяснил это явление в 1871 г. как следствие соударения со стенками некоторых агентов, вылетающих с катода. Первую характеристику этих новых агентов дал в 1876 г. Э. Гольдштейн (1850—1930); он назвал их катодными лучами, считая, что они той же природы, что и свет, но свет испускается светящимися телами по всем направлениям, тогда как катодные лучи испускаются только по нормали к поверхности катода. Крукс повторил эти исследования, добившись значительно большего разрежения в трубках, которым он придавал самую различную форму. Введя в трубку радиометр, Крукс обнаружил вращение радиометра, когда он оказывался на пути катодного пучка, и сделал вывод, что катодные лучи обладают механическим действием. Поместив в трубку металлический мальтийский крест, Крукс увидел на флуоресцирующем стекле тень и пришел к выводу, что катодные лучи распространяются внутри трубки прямолинейно. Приблизив магнит к тонкому пучку катодных лучей, прошедших сквозь щель, он обнаружил, что флуоресцирующее пятно при этом сместилось, откуда заключил, что магнитное поле искривляет катодные лучи. Но что представляют собой катодные лучи? Крукс считал, что это «лучистая материя», четвертое состояние вещества, или «ультрагазообразное» состояние, «столь же далекое от газообразного, насколько то далеко от жидкого». Согласно Круксу, принявшему гипотезу Варли, выдвинутую в 1871 г., катодные лучи образованы молекулами остаточного газа, содержащегося в трубке, которые, соприкоснувшись с катодом, заряжаются отрицательно и отталкиваются от катода. Проявляемые ими своеобразные свойства связаны не с их природой, которая остается такой же, как и у остальных известных веществ, а с их агрегатным состоянием, с высокой степенью разрежения. В своем докладе «О лучистой материи, или четвертом агрегатном состоянии», прочитанном на заседании Королевского института, Крукс со свойственным ему оптимизмом, которым он умел заражать и других, сказал 290
Уильям Кр^кс. пророческие слова, явно выходившие за пределы того, что было получено на опыте: «При изучении этого четвертого состояния вещества создается представление, что мы имеем, наконец, в своем распоряжении «окончательные» частицы, которые мы можем с полным основанием считать лежащими в основе физики Вселенной. Мы видели, что в отношении некоторых свойств лучистая материя столь же реальна, как, например, эта доска, тогда как по некоторым другим свойствам она сходна с лучистой энергией. Мы определенно вошли здесь в область, где материя и энер-'ия кажутся слитыми воедино, в темную область между известным и неиэсест- ным, которая всегда меня особенно прельщала. Я беру на себя смелость предположить, что главные проблемы будущего найдут свое решение именно в этой области и даже за нею. Здесь, по моему мнению, сосредоточены окончательные реальности, тончайшие, определяющие, таинственные». 2. ПРИРОДА КАТОДНЫХ ЛУЧЕЙ. Молекулярной гипотезе Крукса о природе катодных лучей противостояла волновая гипотеза, поддерживаемая немецкими учеными Видеманом, Гольдштейном, Герцем и Ленардом. Герцу не удалось добиться отклонения катодных лучей при прохождении ими электростатического поля. В 1892 г. он показал, что катодные лучи могут проникать сквозь тонкие пластинки алюминия. Используя это открытие, Ленард вывел эти лучи из трубки, заменив участок стеклянной трубки перед катодом металлической фольгой, достаточно прочной, чтобы выдержать атмосферное давление. Если катодные лучи не отклоняются электростатическим полем, то как это могут быть наэлектризованные молекулы? Если это наэлектризованные молекулы, то как они могут проходить сквозь твердое тело? Проще принять волновое представление Гольдштейна, если даже и приходится приписывать этим волнам необычные свойства, например считать их продольными, а не поперечными, как световые волны. Однако волновая гипотеза несовместима с тем фактом, что катодные лучи отклоняются магнитом, потому что на световые волны магнитное поле не действует. Как молекулярная гипотеза Крукса, так и волновая гипотеза Гольдштейна оказались неудовлетворительными. Чтобы выйти из этого затруднения, нужны были дополнительные экспериментальные данные. Они были получены молодым физиком Жаном Перреном (1870—1942), работавшим тогда с Липпманом в лаборатории Эколь нормаль в Париже. Перрен поместил внутри разрядной трубки перед катодом закрытый металлический цилиндр с небольшим отверстием против катода на расстоянии 10 см от него и соединил цилиндр с электроскопом. При работе трубки пучок катодных лучей проникал в цилиндр, причем цилиндр всегда оказывался заряженным отрицательно. Для проверки достаточно было отклонить магнитом катодные лучи так, чтобы они не проникали в цилиндр, и сразу элек- 19* 291
Молекулярные лучи, испускаемые полусферическим катодом а, концентрируются в центре полусферы, где помещена платиновая нить Ъ, которая накаливается при разряде. (Proceedings of the Royal Institution of Great Britain, 1879.) Радиометр, примененныйКруксом в 1879 г. для доказательства механического действия катодных лучей. (Proceedings of the Royal Institution of Great Britain, 1879.) Вывод Р соединен с положительным полюсом, JV—с отрицательным; когда давление в трубке становится Iменьше 0,5 мм рт. ст., «мельница» начинает вращаться. троскоп, присоединенный к цилиндру, оказывался незаряженным. Отсюда можно было сделать вывод: катодные лучи — это отрицательные электрические заряды, так что их материальная природа представляется значительно более вероятной, чем волновая. Это был 1895 г. В этот год родилась электроника. Однако возникла она не без трудностей. Сторонники волновой теории не были обескуражены опытом Перрена. Они отнюдь не отрицают, говорили они, что катодом могут испускаться отрицательно заряженные частицы. Они отрицают лишь, что именно эти частицы и являются катодными лучами, т. е. теми особыми агентами, которые вызывают флуоресценцию стекла: пуля, вылетающая из винтовки, не имеет ничего общего со вспышкой света, сопровождающей выстрел; заряженные частицы можно считать пулями, а то, что вызывает флуоресценцию,— вспышкой света. Это возражение через два года было снято Джозефом Джоном Томсоном (1856—1940), который поместил цилиндр Перрена не перед катодом, а сбоку. Когда поднесенный магнит искривлял катодные лучи так, чтобы они попадали в отверстие цилиндра, цилиндр заряжался отрицательно и одновременно смещалось флуоресцирующее пятно на стекле; заряд оказывался неотделимым от лучей. Если катодные лучи представляют собой отрицательно заряженные частицы, то законы электродинамики требуют, чтобы они отклонялись 292
Опыт Крукса, доказывающий прямолинейность распространения катодных лучей. (Proceedings of the Royal Institution of Great Britain, 1879.) Лучи, выходящие из катода а, задерживаются алюминиевым крестом Ь, и на стекле трубки образуется тень креста. Молекулярные лучи Крукса искривляются в магнитном поле. (Proceedings of the Royal Institution of Great Britain, 1879.) Пучок ограничен слюдяной пластинкой bd, в которой прорезана тонкая щель е. Выходящие из щели лучи вызывают флуоресценцию вдоль линии с/ на экране. Если к трубке приблизить магнит, пучок искривляется и вызывает флуоресценцию в точке g. ■Электроскоп Экспериментальная установка Перрена. (Comptes rendus des seances de I'Academie des Sciences de Paris, 1895.) JV—катод; цилиндр ABCD, защищенный цилиндром EFGH, является анодом и соединен с электроскопом. При работе трубки цилиндр заряжается отрицательно. Если JV—анод, а цилиндр—катод, то электроскоп заряжается положительно.
Жан Перрен. в электростатическом поле. Почему же тогда дал отрицательный результат специальный опыт Герца? Возможно, подумал Томсон, что он не удался из-за проводимости остаточного газа в трубке, возникшей под действием катодных лучей. Поэтому Томсон модифицировал экспериментальную установку Герца и обнаружил, что при подаче разности потенциалов на пластины, подсоединяемые к полюсам электрической батареи, лучи действительно отклоняются. 3. ИЗМЕРЕНИЕ ЗАРЯДА И МАССЫ ЭЛЕКТРОНА. Итак, экспериментально было доказано: катодные лучи несут с собой электрические заряды; их отклонение магнитным полем точно такое, как если бы магнитное поле действовало на заряженные частицы, движущиеся вдоль лучей. Перед лицом таких фактов нельзя избежать заключения, говорит Томсон, что катодные лучи и представляют собой отрицательные заряды, переносимые частицами вещества. Но являются ли эти частицы вещества молекулами, атомами или еще более мелкими частицами? Этот качественный вопрос следует дополнить некоторыми количественными уточнениями. Ответ на этот вопрос был получен самим Томсоном, предложившим метод измерения, составивший эпоху в физике. Не входя в детали, излагаемые в курсах физики, напомним идею метода (см. рис. на стр. 227). Пусть А и В — две металлические пластины, находящиеся под различными потенциалами. Частица электричества -\-т в точке М, отталкиваемая пластиной А и притягиваемая пластиной В, стремится двигаться ускоренно под действием постоянной силы в промежутке между пластинами: поле между пластинами считается однородным. Движение частицы -\-т в промежутке между пластинами А и В было бы аналогично полету крупинки града в поле силы тяжести Земли. Если же частица электричества +ге попадает в электростатическое поле с некоторой скоростью V, направленной слева направо, то она, находясь под действием электрической силы, направленной вниз, и имея горизонтальную скорость, сохраняемую по инерции, будет находиться в тех же условиях, что и снаряд, выпущенный по горизонтали, и опишет в электростатическом поле параболу. Таким образом, заряженные частицы движутся в электростатическом поле пластин точно так же, как движутся падающие тела на поверхности Земли,— к ним применимы законы механики. Аналогичные рассуждения можно применить и при движении заряженных частиц в магнитном поле. Действительно, движение такой частицы эквивалентно току, а Эрстед в 1819 г. открыл закон взаимодействия магнитного поля с электрическим током. Например, если в пока- 294
Томсоновский вариант трубки Перрена. Катодные лучи, выходящие из катода А и ограниченные металлической диафрагмой, попадают на стенки трубки, вызывая ее флуоресценцию. Если их отклонить магнитом так, чтобы они попали в отверстие цилиндра, то цилиндр зарядится отрицательно. Катодные лучи, испускаемые катодом С, проходят после щелей А ж В между двумя пластинами D и Е и вызывают флуоресцирующее пятно на стекле трубки, к которому прикреплена шкала. Если пластины D и Е связать с полюсами электрической батареи, а пластина D заряжена положительно, пятно на трубке сместится вверх; если пластина Е заряжена положительно, то пятно смегтится вниз.
Джозеф Джон Томсон занной на стр. 297 установке создано магнитное поле, перпендикулярное плоскости рисунка и направленное от читателя, то частица будет отклоняться вниз, если же поле направлено к читателю, то частица будет отклоняться вверх *. Томсон действовал на частицу одновременно электрическим и магнитным полями и менял величину этих полей так, что они компенсировались, катодные лучи не отклонялись и создаваемое ими на стекле светящееся пятно не смещалось. Простые математические расчеты позволяют показать, что в этом случае скорость частицы дается отношением электрического поля к магнитному, что легко поддается измерению. Если же, наоборот, измерять смещение светящегося пятна при одновременном воздействии надлежащим образом направленных магнитного и электрического полей, то, применяя законы механики, можно определить отношение elm электрического заряда частицы к ее механической массе, что Томсон и сделал. Опыты Томсона дали следующие результаты: скорость частиц, возрастающая по мере увеличения разрежения в трубке, чрезвычайно велика, значительно больше средней скорости, приписываемой, согласно кинети- чнской теории, молекулам остаточного газа в трубке (в одном из первых опытов 1897 г. Томсон нашел скорость равной Vi0 скорости света, но через десять лет он получил для нее значение 1/3 скорости света). Кроме того, эта скорость зависит от разности потенциалов, которую проходит заряд. Значение- е/т оказалось не зависящим ни от состава остаточного газа, ни от формы трубки, ни от материала электродов, ни от скорости лучей, если только она не близка к скорости света, ни от каких-либо иных физических параметров. Другими словами, отношение elm есть универсальная постоянная. Результаты этих измерений сразу исключают возможность рассмотрения катодных лучей как ионов остаточного газа, вылетающих с катода. Поэтому гипотеза Крукса о «лучистой материи» должна была быть отброшена, но основная его идея сохранялась и подтверждалась: катодные лучи состоят из материальных частиц. Постоянство отношения elm несомненно указывало на индивидуальные свойства этих частиц, которые, по-видимому, все были одинаковы. Значение отношения elm было порядка 107, если е измерять в электромагнитной системе СГС, am — в граммах. Несколькими * Неизвестно, знал ли об этом Томсон, но в 1887 г. Артур Шустер (1851—1934), английский физик немецкого происхождения, больше известный как историк, использовал явление отклонения катодных лучей с помощью магнита для измерения отношения заряда к массе для частиц, образующих, по его мнению, катодные лучи. Он получил значение 1,1 -106 ал.-стат. ед. Исследования остались незамеченными; как видно, время для этого открытия еще не наступило. 296
A + + + + + Ш^гЖЖШЖШЖЖШЖШ^ м + п ' ^~~~^-^ tmmmim тж&шжшт&$шы>тшжжтшя ,г годами позже Томсон дал для elm значение 1,7-107, сопоставление которого с современным значением (1,760 ± 0,002) -107 дает нам представление о высокой точности примененных Томсоном методов. Аналогичное отношение elm было уже подсчитано для иона водорода из данных по электролизу; оно оказалось равным 104. Различие этих значений может быть истолковано по-разному: если мы будем для удобства читателя называть отрицательно заряженные частицы, образующие катодные лучи, не «корпускулами», как это делал Томсон, а электронами *, то возможны три гипотезы о заряде и массе электронов: 1) заряд электрона равен заряду иона водорода, и, следовательно, его масса в тысячу раз меньше массы иона водорода; 2) масса электрона равна массе иона водорода, и тогда его заряд в тысячу раз больше заряда иона водорода; 3) ни заряд, ни масса электрона не имеют никакого отношения к соответствующим значениям для иона водорода. Вторая гипотеза, по-видимому, противоречила результатам Ленардаг который показал, что средний свободный пробег катодных лучей в воздухе при обычном давлении составляет 0,5 см, тогда как для молекулы пробег при этих условиях не превышает стотысячной доли сантиметра; ясно, что это указывает на чрезвычайную малость электрона. Постоянство свойств электронов независимо от состава остаточного газа в трубке также не согласовалось со второй гипотезой. Но все же этих соображений было недостаточно для достоверного вывода.Только прямое измерение т или е позво- * Представление о дискретной, зернистой структуре электричества было выдвинуто в самом начале XIX века(Риттер, 1801 г.) и продолжало жить среди физиков-теоретиков, поддерживаемое успехами атомистики. Еще Фарадей ввел термин «ион» для носителей электричества в электролите и предполагал, что ион обладает неизменным зарядом. Гельмгольц (1881 г.) обратил внимание на такую концепцию Фарадея и показал, что она должна быть согласована с уравнениями Максвелла. В том же году Стони рассчитал впервые заряд одновалентного иона при электролизе, а десятью годами позже, в 1891 г.. в одной из теоретических работ предложил термин «электрон» для обозначения электрического заряда одновалентного иона при электролизе. В теоретических работах Вебера, начатых в 1846 г., можно найти не только понятие атома электричества, но и гипотезу о том, что его движением вокруг материального ядра можно объяснить тепловые и световые явления. Этой идеей вдохновлялся Гендрик Антон Лоренц, духовный отец теоретической физики XX века, в своем классическом труде «Опыт теории электрических и оптических явлений в движущихся телах», который лег в основу электронной теории. Целью этой работы было если не слить, то связать теорию электричества с теорией оптических явлений, добавив к теории Максвелла представление об ионах как единственных носителях электричества. Эта теория побудила голландского физика Петера Зеемана (1865—1943) к открытию (1896 г.) явления, носящего теперь его имя. На следующий год Лоренц, дав ему количественное объяснение, смог таким образом рассчитать заряд электрона. 297
лило бы надежно ответить на этот вопрос, хотя Томсон уже в своей первой работе 1897 г. не поколебался отдать предпочтение первому предположению, которое позволяло вернуться к заманчивой античной гипотезе, возрожденной Праутом (1816 г.), о едином первичном элементе: «Это объяснение, которое, как мне кажется, проще всего согласуется с фактами, основано на представлении о строении химических элементов, которое было благосклонно принято многими химиками. Это представление состоит в том, что атомы различных химических элементов представляют собой агрегаты из более мелких одинаковых атомов». Одно счастливое обстоятельство в следующем году позволило Том- сону оценить правильность своего выбора путем непосредственного измерения заряда е. В 1897 г. Чарльз Вильсон (1869—1935) открыл, что в воздухе, пересыщенном водяными парами, каждый ион становится центром конденсации пара: ион притягивает к себе молекулы пара и начинается образование капельки воды, которая становится постепенно все больше и больше, пока не станет видимой. Конденсация происходит легче вокруг отрицательно заряженных частиц. Это открытие было использовано в 1911 г. самим Вильсоном в так называемой «камере Вильсона», одном из ценнейших инструментов атомной физики, названном с некоторой долей фантазии «открытым окном в атомный мир». Томсон использовал это открытие следующим образом. Представим себе в ионизованном газе п ионов с одинаковым зарядом е, движущихся со скоростью v. Быстрым расширением можно создать пересыщение газа, так что каждый ион становится центром конденсации. Величина электрического тока, легко измеримая на опыте, равна nev, скорость v можно измерить, так что если удастся определить п, то можно будет найти е. Для этой цели, с одной стороны, измерялась масса сконденсированного водяного пара; с другой стороны, пользуясь формулой Стокса (1819—-1903), по скорости падения капелек под действием силы тяжести можно рассчитать их радиус, а значит, и массу каждой капельки. Деля полную массу образовавшегося водяного пара на массу каждой капельки, можно найти число капелек, т. е. число ионов газа, а по нему определить заряд е каждого иона. Опыт этот очень труден и требует большого искусства. Как среднее большого числа измерений Томсон получил е = = 6,5-Ю-10 эл.-стат. ед., что неплохо согласуется с уже известным тогда значением заряда иона водорода и хорошо согласуется с теоретически рассчитанным Лоренцем в том же году значением, получающимся, как мы уже говорили, при количественном анализе эффекта Зеемана. Описанный выше метод был усовершенствован Вильсоном в 1899 г. введением метода «уравновешивания» капелек: над отрицательно заряженной капелькой располагалась положительно заряженная пластина, притягивающая каплю в направлении, противоположном направлению падения. Можно так подобрать параметры, что притяжение капли к верхней пластине уравновесит ее вес. Тогда капля повиснет в воздухе, между небом и землей, подобно гробу Магомета. Ясно, что из условия равновесия легко найти заряд ядра конденсации. Но является ли заряд капли в действительности зарядом электрона? Разве это скорее не заряд ионизованных молекул, который отнюдь не обязан быть априори равным заряду электрона? Это серьезное возражение. Но Томсон показал, что заряд ионизованной молекулы равен заряду электрона, т. е. что упомянутые методы, определяя заряд ионизованной молекулы, одновременно определяют заряд электрона. И этот заряд появляется совершенно независимо от способа ионизации веществ и всегда оказывается рав- 298
ным заряду одновалентного иона при электролизе. Достаточно подставить это значение заряда е в выражение elm, чтобы найти массу электрона. Она оказывается равной т = 1,2-Ю-27 г, т. е. около 1/17оо массы атома водорода. Ясно, что эти численные данные первых опытов впоследствии, при усовершенствовании приборов и методов, были существенно уточнены. В настоящий момент приняты следующие значения: е = (4,800 ± 0,005) х X Ю-10 эл.-cmam. ед. = 1,601 • 10"19 кулон, тп = (9,08 ± 0,02) -Ю"28 г, т. е. около 1/i84o массы атома водорода. Гораздо более существенным, чем определение численных значений, является вытекающий из этих исследований общий вывод: электричество, по крайней мере отрицательное, имеет, как и вещество, дискретную структуру; во всех известных явлениях атомы отрицательного электричества имеют один и тот же заряд и одну и ту же массу. Не случайно слово «электрон», введенное Стони в 1891 г., быстро распространилось и после 1900 г. стало общепринятым, так что никто из физиков не мог уже сомневаться в прерывистой структуре электричества *. РЕНТГЕНОВСКИЕ ЛУЧИ 4. ПОЛУЧЕНИЕ РЕНТГЕНОВСКИХ ЛУЧЕЙ. В истории физики бывало часто, что противостоящие научные течения распределялись в соответствии с национальностью физиков. Отнюдь не следует считать это проявлением национализма. Это объясняется просто научными связями, личными отношениями, применением одного и того же или аналогичного экспериментального оборудования, а также единым языком. Поэтому не удивительно, что полуголландец-полунемец Вильгельм Конрад Рентген (1845—1923) приступил к экспериментальному исследованию катодных лучей, придерживаясь взглядов Ленарда, который, как и все немецкие физики того времени, защищал волновую природу катодных лучей. Будучи чрезвычайно внимательным экспериментатором, уже прославившимся в среде физиков того времени исследованиями в различных областях (сжимаемость жидкостей, удельная теплоемкость газов, магнитное действие диэлектриков, движущихся в электростатическом поле, и т. д.), Рентген с первых же опытов заметил, что фотографические пластины, помещенные вблизи разрядной трубки и защищенные обычным образом от действия света, часто оказывались засвеченными. О действии катодных лучей здесь не могло идти речи, ибо применявшаяся катодная трубка не имела алюминиевого окошка подобно трубке Ленарда и катодные лучи наружу выйти не могли. Очевидно, речь шла о новом явлении, возникающем, как это удалось установить через несколько дней, в разрядной трубке **. 8 ноября 1895 г. в Вюрцбурге Рентген наблюдал новое поразительное явление. Если разрядную трубку обернуть черным картоном и поместить возле нее бумажный экран, смоченный с одной стороны платино-синероди- стым барием, то при каждом разряде трубки на экране наблюдается флуорес- * Как мы уже говорили, Стони назвал электроном отрицательный заряд одновалентного иона, так что это слово имело тогда смысл, отличный от теперешнего. После 1900 г. по предложению Друде электроном стали называть заряженную частицу, несущую элементарный электрический заряд. Однако применение термина «ион» вместо «электрон» сохранялось еще много лет, особенно среди английских физиков, что породило ряд недоразумений и неправильных толкований, характерных для работ последнего десятилетия XIX века. ** Годом раньше Ленард, работая с разрядной трубкой, имеющей алюминиевое окошко для выхода катодных лучей наружу, так описывает свои наблюдения, в «Annalen der Physik und Chemie» (Berlin, 1894): «Катодные лучи являются фотоактивными. При достаточно долгой экспозиции можно вполне наблюдать их действие на фотографическую пластинку. На пластинке, 299
Вильгельм Конрад Рентген. цирующее свечение независимо от того, какая сторона бумаги повернута к трубке — смоченная или сухая. В этом опыте прежде всего поражает то, что абсолютно непрозрачный для видимого излучения и ультрафиолета черный картон пропускает что-то, способное вызвать флуоресценцию экрана. Этот эффект получался не только с картоном: методически поставленная серия специальных опытов показала, что для этого агента более или менее прозрачны все тела. Точнее говоря, прозрачность убывает с увеличением плотности тела и его толщины. «Если держать руку между разрядной трубкой и экраном, то видны темные тени костей на фоне более светлых очертаний руки» *. Это было первое в истории рентгеноскопическое исследование. Эти новые агенты, которые были названы Рентгеном для краткости Х-лучами **, а мы их называем сейчас рентгеновскими лучами, вызывали флуоресценцию не только платино-синеродистого бария, но и других веществ, например фосфоресцирующих соединений кальция, уранового стекла, обычного стекла, известкового шпата, каменной соли и др. Они действуют также на фотопластинки, но не действуют на глаз человека. Было неясно, преломляются ли эти лучи. Рентген не обнаружил преломления в призмах из воды и сероуглерода. Некоторые признаки преломления, как ему показалось, были замечены в опытах с эбонитовыми и алюминиевыми призмами. Опыты с мелким порошком каменной соли, с серебря- помещенной под листом картона, видны четко очерченные зоны почернения. Над картоном помещались различные металлические пластины, которые в зависимости от степени их проницаемости для катодных лучей казались на фотопластинке более или менее темными. Только там, где металлическая пластина имела достаточную толщину, фотопластинка оказывалась незасвеченной. Таким образом, установлено, что катодные лучи проходят сквозь картон и металлы». Однако более критичное истолкование наблюденных явлений показало бы Ленар- ду, что здесь он натолкнулся на нечто новое: замеченные явления были обусловлены не катодными лучами, а рентгеновскими. * W. С. R о n t g е п, Ober eine neue Art von Strahlen, Sitzungsberichte der Wurzburger Physik-Med. Gesellschaft, 1895. (Есть русский перевод: В. Рентген, О новом роде лучей, М.— Л., 1933.) ** ((Причина,— поясняет Рентген в той же работе,— по которой я считаю себя вправе назвать «лучами» агент, испускаемый стенками разрядной трубки, заключается отчасти в образовании правильной тени при помещении между трубкой и флуоресцирующим экраном (или фотографической пластинкой) более или менее прозрачного тела». 300
ным порошком, полученным электролитическим методом, и с цинковым порошком не обнаружили никакого различия в прохождении Х-лучей через порошок и через сплошной образец того же вещества. Отсюда можно было сделать вывод, что Х-лучи не испытывают ни преломления, ни отражения и что отсутствие этих явлений подтверждается тем, что Х-лучи невозможно сконцентрировать линзами. Х-лучи возникают в точке, где катодные лучи соударяются со стеклом трубки. Действительно, отклоняя магнитом катодные лучи внутрь трубки, можно заметить одновременное смещение точки образования Х-лучей, всегда совпадающей с точкой, где кончаются катодные лучи. Для образования этого нового излучения не обязательно, чтобы катодные лучи соударялись именно со стеклом: это явление наблюдается и в разрядной трубке, изготовленной из алюминия. Природа этого нового излучения оставалась загадочной. Одно было ясно — излучение это нельзя отождествлять с катодными лучами. Как и катодные лучи, оно вызывало флуоресценцию, оказывало химическое воздействие, распространялось прямолинейно и, следовательно, образовывало тени. Но Х-лучи не обладали характерным свойством катодных лучей — не отклонялись магнитным полем. Может быть, они той же природы, что и ультрафиолетовое излучение? Но тогда они должны были бы заметно отражаться, преломляться, поляризоваться. Учитывая наличие определенного сходства между Х-лучами и световыми, можно было предполагать, что в отличие от видимого излучения, которое есть не что иное, как поперечные колебания эфира, Х-лучи являются продольными колебаниями. Не могут ли оказаться Х-лучи проявлением этих продольных колебаний эфира, существование которых физикам до сих пор не удавалось установить? Этим вопросом, повторяющим попытку объяснения природы катодных лучей, заканчивается первая работа Рентгена об Х-лучах, доложенная в декабре 1895 г. в Физическом институте Вюрцбургского университета. Во второй работе, доложенной 5 марта 1896 г., содержалось два новых существенных факта. Первый был открыт Аугусто Риги, который едва ли знал об опытах Рентгена: под действием Х-лучей наэлектризованные тела разряжаются. Действуют не сами Х-лучи, а пронизываемый ими воздух, который приобретает свойство разряжать наэлектризованные тела. Вторым важным фактом, упомянутым еще в первой работе Рентгена, было то, что Х-лучи получаются при попадании катодных лучей не только на стекло разрядных трубок, но и на любое тело, не исключая жидкостей и газов. В зависимости от природы тела, на которое попадают катодные лучи, интенсивность получающегося Х-излучения оказывается различной. Эти наблюдения привели Рентгена уже в феврале 1896 г. к разработке трубки «фокус», в которой «катодом служит вогнутое зеркало из алюминия», а анодом — платиновая пластинка, помещенная в центре кривизны зеркала и наклоненная под углом 45° к оси зеркала. До появления термоэлектронных приборов трубки «фокус» были единственными установками для получения рентгеновских лучей при медицинских и физических исследованиях. Новое открытие, о возможности применения которого в медицине :и хирургии вскоре стали догадываться, взволновало не только ученых, но и широкую публику. Физические лаборатории осаждались врачами и больными. На бесчисленных публичных выступлениях с демонстрацией опытов вид скелета живых людей производил сильное впечатление и вызывал даже истерики среди присутствовавших. Рентген способствовал быстрому распространению своего открытия, со свойственным ему бескорыстием отказавшись от всякой возможности извлечь из него прибыль. Этот всеобщий интерес в немалой мере способствовал быстрому прогрессу рентгенотехники. В нашу задачу не входит рассмотрение ее развития. Достаточно, пожа- 301
дуй, одной лишь цифры, чтобы дать представление о пройденном пути: в 1896 г. рентгенография руки требовала экспозиции 20 минут, сейчас для этого достаточно ничтожной доли секунды. Открытие рентгеновских лучей привело к необычайно важным последствиям как в области научных исследований, так и в области практических приложений—в медицине и в промышленности. Можно, пожалуй, без преувеличения сказать, что с этого изобретения начинается новая история. 10 декабря 1901 г. в большом зале Музыкальной академии в Стокгольме в присутствии наследного принца Швеции, представлявшего короля, комитет по присуждению Нобелевских премий в знак признательности ученых и человечества присудил Рентгену первую Нобелевскую премию по физике *. Теперь может показаться символичным, что впервые столь почетный международный знак отличия был присужден именно за открытие рентгеновских лучей. 5. ПРИРОДА РЕНТГЕНОВСКИХ ЛУЧЕЙ. По мере того как область применения рентгеновских лучей расширялась, исследование их происхождения и их природы становилось все более насущной необходимостью теоретической физики. Первое объяснение происхождения рентгеновских лучей, данное самим Рентгеном, было вскоре принято единодушно: рентгеновские лучи возникают при соударении катодных лучей, т. е. электронов, с телами, в частности с антикатодом разрядной трубки. Но какова их природа? Гипотеза Рентгена о том, что это продольные волны, была неприемлема по ряду причин. Нельзя было также согласиться с выдвигавшейся первое время гипотезой о корпускулярном характере рентгеновского излучения. Согласно электромагнитной теории, быстрое изменение скорости заряженного тела вызывает электромагнитное излучение, так что если принять, что причиной рентгеновских лучей является резкое торможение электронов на антикатоде (а такое предположение кажется необходимым), то мы приходим к заключению, что рентгеновские лучи представляют собой электромагнитное излучение. Но как же тогда объяснить, что для рентгеновских лучей не удается наблюдать обычных оптических явлений — отражения, преломления, поляризации, дифракции? На это отвечали так: электромагнитное возмущение, возникающее при соударении электронов с антикатодом, не является периодическим; отсутствие периодичности, т. е. отсутствие определенной длины волны, могло бы объяснить аномальное поведение рентгеновских лучей по сравнению с обычными электромагнитными волнами. За неимением лучшего вплоть до 1912 г. физики удовлетворялись таким объяснением. Однако многие физики обращали внимание на то, что для объяснения отрицательных результатов попыток наблюдения обычных оптических явлений в опытах с рентгеновскими лучами совсем не обязательно лишать элек- * Альфред Берпард Нобель (родился 21 октября 1833 г. в Стокгольме, умер 10 декабря 1896 г. в Сан-Ремо) посвятил себя исследованию взрывчатых веществ. В 1867 г. он получил патент на производство динамита, как удачно назвал он смесь нитроглицерина с инертными веществами. В 1876 г. он получил патент на другое взрывчатое вещество — нитрожелатин, а в 1889 г.— па баллнстит. Эксплуатация этих патентов и нефтераз- работок в Баку принесла ему громадное состояние, которое, согласно завещанию, он посвятил учреждению трех международных ежегодных премий, предназначенных для лиц, совершивших наиболее крупные открытии соответственно в области физпки, химии и физиологии или медицины. Он установил также одну премию по литературе и одну премию мира. Присуждение премий началось в 1901 г. и происходит ежегодно 10 декабря, в день смерти Нобеля. Нобелевская премия стала высоким и почетным знаком отличия в мировой науке. Обычно лауреаты читают лекцию о своих работах. Сборники Нобелевских лекций, издаваемые из года в год, позволяют проследить эволюцию физики нашего столетия. 302
Макс фон Лауэ. тромагнитное возмущение волнового характера, при котором оно сходно со световыми волнами. Достаточно положить длину волны рентгеновских лучей чрезвычайно малой, чтобы объяснить все особенности их поведения. Это легко понять из аналогии со звуком, часто применявшейся в учебных целях в первом десятилетии нашего века. Звуковые волны, длина волны которых изменяется от долей сантиметра до 20 ж и более, отражаются от тел достаточно боль ших размеров, например от стены. А от тел малых размеров, скажем от вертикального столба в поле, они не отражаются. Это объясняется тем, что в образовании отраженной волны должно участвовать большое число элементарных волн, исходящих из всех точек препятствия, на которые падает волна. Как из того факта, что звуковая волна не отражается от отдельного столба, нельзя делать вывода об отсутствии периодичности в волне, так и из того, что нет или не обнаружено отражения рентгеновских лучей, нельзя делать вывода о том, что они не имеют волновой структуры. Достаточно было бы положить длину волны рентгеновских лучей меньше расстояния между молекулами вещества, чтобы каждая молекула вела себя как отдельный вертикальный столб в случае звуковой волны, так что не было бы никакого отражения, а была бы лишь дифракция рентгеновских лучей. Физики, придерживавшиеся этой точки зрения, естественно, пытались обнаружить не отражение, а дифракцию рентгеновских лучей на чрезвычайно тонких щелях, что диктовалось предполагаемой малостью длины волны рентгеновских лучей. Но искусственно сделанные щели, как бы тонки они ни были, оказывались слишком грубыми, да и ясно было, что едва ли можно найти механический способ нанесения штрихов, удаленных на расстояние порядка молекулярных размеров. Но вот молодому немецкому физику Максу Лауэ (1879 — 1959), ученику Макса Планка, пришла в голову смелая идея. Была известна старая теория строения кристаллов, восходящая еще к Аюй. Эта теория исходя из характерного явления регулярного отслоения кристаллов, принимала, что кристаллы образуются совокупностью тесно примыкающих чрезвычайно малых частиц в форме параллелепипеда, названных Аюй «интегрирующими молекулами». Позднее Л. Зеебер (1835 г.), Г. Делафосс (1843 г ) и в наиболее цельной форме А. Браве (1849-1851 гг.) модернизировали представления Аюй, заменив «интегрирующие молекулы» точечными молекулами, расположенными на постоянных чрезвычайно малых расстояниях друг от друга во вполне регулярном каркасе. 303
Модели структур кристаллов по У. Брэггу. # 0 Ф hbr'% шШ> — N' i ^ а о Л'* •. • * '-Ч • . " * ' - Дифракция рентгеновских лучей. (M.Laue, Ueber die Auffindung der Roent- genstrahl-Interferenzen, Les Prix Nobel, 1914—1918.)
Если кристалл действительно обладает структурой, предполагаемой Браве, то он должен вести себя как дифракционная решетка, или, вернее, как совокупность дифракционных решеток с параллельными плоскостями, т. е. пространственная решетка, как ее называют. Если бы была установлена дифракция рентгеновских лучей на кристаллах, то одновременно были бы, так сказать, убиты два зайца: доказана волновая природа рентгеновских лучей и дано экспериментальное подтверждение гипотезе Браве о строении кристаллов. Разработав количественную теорию этого явления, Лауэ провел соответствующий опыт в Мюнхене совместно с Паулем Книппингом (1883—1935) и Вальтером Фридрихом (род. в 1883 г.). Примененная для эксперимента установка была довольно простой: определенное количество параллельных свинцовых пластинок защищало небольшой кристалл (например, каменной соли) от прямого воздействия рентгеновских лучей. Во всех свинцовых пластинах были проделаны крошечные отверстия, расположенные по одной прямой. Проходя эти отверстия, пучок рентгеновских лучей попадал на кристалл и далее проходил на фотопластинку, защищенную черной бумагой от стороннего облучения. После нескольких часов экспозиции пластинка была проявлена. Было обнаружено темное пятно на линии центров отверстий в свинцовых пластинах, обусловленное прямым действием рентгеновских лучей, и большое число других пятен различной интенсивности, расположенных регулярным образом вокруг центрального пятна, в соответствии с симметрией кристалла. Этот опыт вскоре был повторен многими физиками в различных вариантах и всесторонне проанализирован. Все это привело к заключению, что получающиеся на фотопластинках фигуры действительно представляют собой дифракционные картины. На основе полученных результатов Брэгги (отец и сын) предложили модификацию теории Браве, предположив, что в узлах кристаллической решетки располагаются атомы кристалла, на которых и происходит дифракция. Ясно, что принятие физиками теории Брэггов привело к коренному изменению традиционного представления о молекуле. Мы не можем здесь входить в детали теории Лауэ и обсуждать многочисленные теоретические и экспериментальные следствия из нее. Достаточно отметить лишь два обстоятельства: исследование дифракционных фигур позволяет определить длину волны применяемого рентгеновского излучения, а зная длину волны, можно получить сведения о структуре кристалла. Длины волн рентгеновских лучей оказались в среднем в тысячу раз меньше средней длины волны видимого света, т. е. намного короче длин волн ультрафиолетового излучения. Рентгеновские лучи тоже дают целый спектр волн, аналогичный спектру видимого излучения. РАДИОАКТИВНЫЕ ЯВЛЕНИЯ 6. РАДИОАКТИВНЫЕ ВЕЩЕСТВА. Попадая на стенки стеклянной трубки, катодные лучи вызывают там флуоресценцию; флуоресцирующая часть трубки является источником рентгеновских лучей. Связаны ли между собой эти два явления, совпадающие во времени и в пространстве,—флуоресценция и испускание рентгеновских лучей? Этот вопрос даже не возник бы, если бы рентгеновские лучи были с самого начала получены в трубке типа «фокус». Но поскольку, как сообщил Рентген в своей первой работе, они получаются в простой разрядной трубке, такой вопрос вполне закономерен. Этот вопрос поставил перед собой Анри Беккерель (1852—1908), один из славной династии выдающихся физиков, к которой принадлежали его дед Антуан Сезар (1788—1878), отец Эдмонд (1820—1891) и сын Жан 20 марио Льоцци 305
Апри Беккерель» (1878—1953). Флуоресценция и фосфоресценция были, так сказать, «семейным делом» Бекке- релей. Отец Анри Беккереля — Эдмон Беккерель — действительно много занимался спектроскопическими исследования- ми'фосфоресценции, и в частности фосфоресценции урана, а Анри с 1882 по 1892 г. продолжал эти исследования. Ш Как только Анри Беккерель узнал об опытах Рентгена, ему тотчас показалось, что они имеют отношение к тому, чем он занимается, и сразу же, т. е. в начале 1896 г., он задался вопросом, не могут ли рентгеновские лучи испускаться фосфоресцирующими телами, подвергшимися длительному облучению солнечным светом. Среди исследованных фосфоресцирующих веществ были и соли урана. Беккерель поместил чешуйки соли урана на фотопластинку, завернутую плотной черной бумагой, и подверг их в течение нескольких часов сильному воздействию солнечных лучей. После проявления фотопластинки на ней были обнаружены контуры чешуек, которые были к ней прижаты. Этот результат говорил в пользу принятой рабочей гипотезы и заставлял продолжать исследования. Было очевидно, что урановая соль испускает какое-то излучение, проходящее через черную бумагу и засвечивающее фотопластинку. Связано ли оно с фосфоресценцией, т. е. преобразуется ли в урановом минерале солнечная энергия в это излучение? Счастливый случай позволил Беккерелю вскоре ответить на этот вопрос. 26 и 27 февраля 1896 г. был подготовлен опыт, несколько отличавшийся от первоначального, но выполнить его не удалось, так как день был облачный и солнце показывалось лишь на короткое время. Поэтому вся установка (на фотопластинке в рамке из черной ткани, прикрытой алюминиевой пластинкой, покоился тонкий медный крест, над которым располагался препарат с двойным сульфатом калия и урана) была заперта в ящике стола. Проявив 1 марта эти пластинки, Беккерель неожиданно обнаружил на них весьма четкий контур креста. Ему тотчас же пришла в голову мысль, что действие излучения происходило и в темноте, и новые, специально предпринятые опыты подтвердили это предположение. Таким образом, для получения фотографического эффекта не было необходимости предварительно освещать урановую соль солнцем. Более того, это явление на других фосфоресцирующих веществах не наблюдалось, но наблюдалось на других солях урана, не обладающих фосфоресценцией. Всего этого было достаточно, чтобы прийти к выводу, что здесь речь идет о новом самопроизвольном явлении, интенсивность кото- 306
рого заметно не убывает во времени, как это доказывали опыты с урановыми солями, приготовленными задолго до постановки опыта. Именно в это время в Париж пришли сведения о том, что многими физиками замечена утечка заряда с заряженного тела, облучаемого рентгеновскими лучами. Беккерель поставил аналогичный опыт с новым излучением и пришел к тому же результату. Он продолжил исследования двумя методами: методом фотопластинок, чисто качественным, и электрическим методом, пригодным для относительных численных измерений. Как это ни странно, около двух лет Беккерель был единственным физиком, который занимался этими исследованиями. Позднее, в 1898 г., к нему подключились супруги Кюри, а после открытия радия к концу столетия число исследователей сразу чудовищно разрослось. Среди них были Резерфорд, Дебьерн, Эльстер. Гейтель, Гизель, Кауфман, Крукс, Рамзай, Содди. Направление, принятое Беккерелем, послужило, естественно, отправной точкой для последующих исследований. Одним из основных фактов, установленных Беккерелем, был следующий: все соли урана, фосфоресцирующие и нефосфоресцирующие, в виде кристалла и в виде порошка, в сухом виде и в растворе, независимо от своего происхождения — все испускают излучение одной и той же природы, интенсивность которого зависит только от количества урана, содержащегося в соли. Таким образом, эта способность оказывается атомным свойством, присущим элементу урану. Это подтверждалось тем фактом, что металлический уран обладал в Зг/2 раза большей активностью, чем применявшиеся в первых опытах соли урана. Эти результаты, естественно, ставили вопрос о поисках других веществ, которые могут обладать аналогичными свойствами. В 1898 г. почти одновременно Мария Кюри-Склодовская (1867—1934) во Франции и Эрхард Карл Шмидт (1865—1949) в Германии обнаружили, что торий обладает аналогичными свойствами. Мария Кюри предприняла систематическое изучение минералов, содержащих уран и торий, и заметила, что некоторые минералы оказались активнее урана. Мария Кюри и ее муж Пьер Кюри пришли к выводу, что в этих минералах должен содержаться элемент, еще более активный, чем уран. Именно в это время, в 1898 г., супруги Кюри ввели термин радиоактивность для обозначения свойства вещества испускать «лучи Беккереля», как называлось тогда излучение, испускаемое ураном и торием. Супруги Кюри попытались выделить этот гипотетический элемент, более активный, чем уран, из урановой смоляной руды. Химический анализ минерала и измерение радиоактивности постепенно отделяемых фракций подтвердили, что действительно найдено простое вещество, более радиоактивное, чем уран. Они назвали его полонием в честь родины Марии Кюри. Позже был найден еще один элемент, значительно более радиоактивный, названный ими радием. Два года спустя, в 1900 г., Андре Дебьерн. ученик Марии Кюри, открыл третье радиоактивное вещество, названное им актинием. 7. ИССЛЕДОВАНИЕ НОВЫХ ИЗЛУЧЕНИЙ. После того как вырос список известных радиоактивных веществ — уран, торий, полоний, радий, актиний — и число ученых, занимающихся их изучением, началась вторая, более физическая фаза исследования, во время которой основное внимание было обращено на изучение характерных свойств новых явлений. На первых образцах полония и радия, полученных от супругов Кюри, Беккерель обнаружил, что испускаемое радием излучение обладает значительно большей проникающей способностью, чем излучение полония. Излучение радия после прохождения алюминиевой и слюдяной пластинок воздействует на фотопластинки, тогда как лучи полония не могли проникнуть даже сквозь картонные стенки коробки, в которой хранился препарат. Таким образом, радиоактивное излучение разнородно. Это получило новое экспериментальное подтверждение 20* 307
в конце 1899 г., когда Беккерель и независимо от него Гизель обнаружили, что если пучок лучей Беккереля проходит магнитное поле, то часть лучей отклоняется в одном направлении, а другая — в противоположном. Опыт исследования катодных лучей тотчас подсказал ученым интерпретацию этого экспериментального результата: значит, лучи Беккереля неоднородны и имеют корпускулярную природу, перенося электрический заряд. К тому же выводу и в то же время пришел на основе изучения проникающей способности лучей новозеландский физик Эрнест Резерфорд, начинавший свою научную работу под руководством Джозефа Томсона в Кавендишской лаборатории и посвятивший всю жизнь исключительно исследованиям радиоактивности. В заключение своего исследования он пишет: «Эти опыты показывают, что излучение урана является сложным и состоит по крайней мере из двух различных видов: одно, очень быстро поглощаемое, назовем для удобства а-излучением; другое, более проникающее, назовем ^-излучением» *. Через три года Поль Вийяр (1860—1934) показал, что имеется и третья составляющая излучения, о которой раньше не подозревали; она не отклоняется магнитным полем, а следовательно, сходна по природе с рентгеновскими лучами. По аналогии с двумя другими составляющими она была названа ^-излучением. Беккерель показал, что |3-лучи, испускаемые различными радиоактивными веществами, имеют разные скорости и отклоняются электрическим полем. Супруги Кюри установили, что эти лучи несут с собой отрицательный заряд, а Вальтер Кауфман (1871—1947), определив по методу Томсона одновременно отклонение в электрическом и магнитном полях, нашел отношение elm и обнаружил, что оно является функцией скорости v частицы. Этот факт натолкнул Кауфмана на мысль, что масса электрона в соответствии с выдвинутой Максом Абрагамом (1875—1922) гипотезой имеет, по крайней мере частично, электромагнитное происхождение, т. е. является проявлением реакции электромагнитного поля. Отсюда берут начало теории электромагнитной природы материи, оказавшие большое влияние на физиков первой четверти нашего столетия. 8. ЭНЕРГИЯ РАДИОАКТИВНЫХ ИЗЛУЧЕНИЙ. Но все эти и другие свойства радиоактивного излучения, о которых можно сегодня узнать в любом, даже элементарном курсе физики, как бы важны они ни были сами по себе, отходят на второй план по сравнению с главной проблемой, которую эти опыты поставили перед первыми экспериментаторами. В радиоактивных явлениях выделяется энергия: энергия химического действия, энергия элементарных зарядов, энергия движения частиц. Откуда она берется? Мария Кюри выдвинула две гипотезы в 1899 и в 1900 гг. Согласно первой, радиоактивные вещества улавливают внешнее излучение, не воспринимаемое нашими приборами, а затем обратно его испускают. Иными словами, они не генераторы, а трансформаторы энергии. По второй гипотезе, наоборот, предполагается, что радиоактивные тела самопроизвольно генерируют энергию, медленно изменяясь при этом, хотя мы (пока) не замечаем их изменений. Обе эти гипотезы представлялись в равной мере возможными или, если угодно, в равной мере необоснованными. Острота этой проблемы еще более возросла, когда в 1903 г. Пьер Кюри сделал весьма важное открытие, обнаружив,что соли урана непрерывно выделяют тепло, причем в таком количестве, которое при сопоставлении с малой массой радиоактивного препарата представляется огромным. В своем первом * E.Rutherford, Uranium Radiation and the Electrical Conduction produced by it, Philosophical Magazine, Jan., 116 (1899). 308
Пьер и Мария Кюри. качественном опыте, проведенном совместно с А. Лабордом, П. Кюри установил выделение теплоты с помощью термопары, один спай которой был окружен радиоактивным хлористым барием, а другой — чистым хлористым барием. Было обнаружено, что разница температур обоих мест спаев составляет около 1,5° С, что значительно превосходило возможные экспериментальные ошибки. Воодушевленные этим первым положительным результатом, Кюри и Лаборд произвели непосредственное измерение выделившейся теплоты, пользуясь двумя различными методами. В первом методе количество тепла, полученное металлическим блоком, внутрь которого помещалось определенное количество радиоактивного вещества, приравнивалось количеству тепла, выделенному разогреваемой током металлической спиралью, помещенной внутрь блока вместо радиоактивного образца и вызывающей такой же разогрев металлического блока. Во втором методе в калориметр Бунзена вводилась ампула с радиоактивным хлористым барием и с чистым хлористым радием и непосредственно определялось количество выделенного тепла. Оба метода давали достаточно согласующиеся результаты: в пересчете на 1 г радия получалось 100 кал в час (последующие измерения уменьшили эту цифру примерно до 25,5 кал). Может ли быть столь большая энергия просто перехваченной радием? Неужели Вселенная пронизывается такими интенсивными потоками энергии, которые мы никак не можем обнаружить, кроме как через эти радиоактивные явления? Подобные элементарные соображения толкали физиков к тому, чтобы отказаться от первой гипотезы Кюри в пользу второй. Но предположить, что радиоактивные вещества, являясь источниками энергии, испытывают при этом какие-то медленные изменения, более глубокие, нежели обычные химические изменения, означало вновь подвергнуть обсуждению все основы атомистики. Чтобы понять, насколько радикальным и революционным был такой новый взгляд, современный читатель должен представить себе образ мыш- 309
ления физиков начала нашего столетия, их мировоззрение, так сказать, полученное с молоком матери и являвшееся предметом гордости науки того времени. Атомарная структура материи, неизменность атомов, постоянство массы, сохранение энергии — таковы были основополагающие принципы, которые многим представлялись уже не гипотезами, а самоочевидными истинами. У кого же хватит смелости посягнуть на эти положения науки, подтвержденные столетием непрерывных успехов? Нашлись два таких смельчака — мы скажем о них ниже (см. гл. 14). Радиоактивность немедленно нашла многочисленные применения в физике, химии, геологии, метеорологии, медицине. Смертоносное действие радиоактивного излучения на животные организмы произвело сильное впечатление на общественное мнение, и вновь был поднят вопрос о пользе научных исследований. За год до своей трагической гибели в Париже в уличной катастрофе Пьер Кюри в заключение своей лекции в 1905 г. в связи с присуждением ему Нобелевской премии за 1903 г. говорил: «В преступных руках радий может стать весьма опасным, и мы можем теперь задать себе вопрос, выигрывает ли человечество от знания секретов природы, достаточно ли оно созрело, чтобы пользоваться ими, не принесет ли ему вред это знание. Пример открытия Нобеля весьма характерен. Наличие мощных взрывчатых веществ сделало возможным проведение грандиозных работ. Но вместе с тем взрывчатые вещества являются страшным средством разрушения в руках преступников, вовлекающих народы в войну. Я склонен придерживаться точки зрения Нобеля, что человечество извлечет из новых открытий больше хорошего, чем плохого» *. ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ И ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ 9. НОВЫЕ СПОСОБЫ ПОЛУЧЕНИЯ ЭЛЕКТРОНОВ. Экспериментаторам уже издавна было известно, что при обычных условиях воздух не является проводником, но при низком давлении он проводит электричество (Хоксби, 1706 г.), а пламя является проводником электричества и обладает свойством разряжать наэлектризованные проводники, находящиеся поблизости (см. гл. 5). Но попытки объяснить эти явления стали предприниматься лишь во второй половине XIX века и были основаны на теории проводимости жидкостей. В 1879 г. Гитторф выдвинул гипотезу о том, что проводимость газов должна объясняться механизмом, аналогичным известному механизму проводимости жидкостей-электролитов, т. е. и в газах способность проводить электричество связана с существованием ионов — заряженных атомов или групп атомов, которые, двигаясь, переносят с собой электрические заряды. Не видя возможности убедиться в правильности гипотезы Гитторфа, физики продолжали экспериментально исследовать прохождение электричества через газы, особенно интенсивно в 1887—1890 гг. после опыта Шусте- ра, показавшего, что электрические искры ускоряют разряд заряженных проводников, находящихся поблизости. В 1888 г. Герц, развивая исследования Шустера, обнаружил, что электрический разряд между двумя проводниками происходит значительно сильнее, когда электроды освещаются светом, богатым ультрафиолетом. В том же году Видеман и Эрберт установили, что разряд происходит у отрицательного электрода, а Галльвакс * Le prix Nobel en 1903, Stockholm. 1906. 310
нашел, что рассеяние отрицательных зарядов усиливается при освещении проводников ультрафиолетовым светом. Продолжая эти исследования, Арре- ниус поместил в трубку с разреженным воздухом два очень близко расположенных платиновых электрода и связал их цепью с гальванометром и батареей (это был первый фотоэлемент в истории). Гальванометр показывал отклонение, как только электроды освещались электрическим разрядом, происходившим вне трубки. Аррениус считал, что причина явления заключена в воздухе, предполагая, что ультрафиолетовый свет обладает свойством ускорять встречающиеся на его пути ионы. Пытаясь объяснить эти явления, описанные немецкими физиками, итальянский ученый Аугусто Риги в начале 1888 г. сделал новое открытие: проводящая пластина, освещенная пучком ультрафиолетовых лучей, заряжается положительно. Риги назвал это явление фотоэлектрическим, введя этот термин в науку. Первое время Риги считал, что речь идет о простом переносе электричества, осуществляемом ультрафиолетовыми лучами. Однако Вильгельм Галльвакс (1859—1922), высказавший догадку об этом явлении (но не наблюдавший его) за несколько месяцев до Риги *, спустя несколько месяцев показал (вслед за ним независимо к этому пришел и Риги), что здесь речь идет не о переносе, а о создании электрических зарядов. «Излучения, — говорит Риги,— действуют на металлы... и электризуют их положительно». Что касается механизма возникновения электричества, то Риги полагал, что ультрафиолетовое излучение отрывает молекулы воздуха, соприкасающиеся с металлом, и что при отрыве положительный заряд остается на металле, а отрицательный, оставшийся на молекуле, может быть унесен ею на значительное расстояние вдоль силовой линии поля. Такое истолкование как будто подтверждалось другим фактом, установленным Риги и исследованным позже, в 1890 г., Иоганном Эльстером (1854—1920) и Гансом Гейтелем (1855—1923) **: появлением потока отрицательного электричества от электрода, освещенного ультрафиолетовыми лучами. В 1899 г. Джозеф Томсон занялся анализом этого явления, будучи воодушевлен успехами проведенного несколько лет назад аналогичного исследования катодных лучей. Если принять, что электрический ток, обнаруживаемый при фотоэлектрическом эффекте, представляет собой поток отрицательно заряженных частиц, то аналогично тому, как это было сделано для катодных лучей, можно рассчитать теоретически движение такой частицы при одновременном воздействии на нее электрического и магнитного полей. Экспериментальная проверка этой теории позволила бы установить правильность или неправильность отправной гипотезы и в первом случае рассчитать отношение elm — заряда к массе этой частицы. Эксперимент подтвердил рабочую гипотезу: ток, возникающий между двумя противоположно заряженными металлическими пластинами при освещении катода ультрафиолетовыми лучами, ведет себя подобно рою движущихся отрицательных частиц. Среднее по многим измерениям значение elm оказалось равным 7,3 -106. Аналогичное отношение, найденное Томсо- ном для частиц, образующих катодные лучи, было равно 5 -106 (впоследст- * О приоритете на это открытие разгорелась дискуссия между Галльваксом и Риги. Оба они изложили в Nuovo Cimento (3a serie, t. XXVII, 1890, pp. 59—62 ter) свои соображения. Научная общественность, назвав это явление эффектом Галльвакса, или эффектом Герца — Галльвакса, тем самым решила этот спор; на нага взгляд, по отношению к Риги решение чрезмерно сурово. ** Имена отих ученых часто встречаются в совместных работах. Будучи еще в Гейдель- бсргском университете близкими друзьями, Эльстер и Гейтель продолжали всю жизнь работать вместе. Оба они были преподавателями гимназии в Вольфенбуттеле, каждый раз • отказываясь от университетской кафедры, когда она предлагалась одному из них. 311
вии Ленард нашел более точное значение 6,4 -106). С другой стороны, измерение заряда е, проведенное тем же методом, который годом раньше позволил определить заряд иона, образующегося под действием рентгеновских лучей, дало среднее значение заряда 6,8 -10"10, т. е. того же порядка, что и для катодных лучей. Отсюда Томсон заключил, что носителями отрицательного электричества в случае фотоэлектрического эффекта являются частицы той же природы, что и в катодных лучах, т. е. электроны. Но было еще одно явление, в котором был обнаружен перенос электричества. Мы имеем в виду явление, открытое Эдисоном в 1879 г. и исследованное затем другими физиками: раскаленная угольная нить испускает поток отрицательного электричества. Томсон решил исследовать и этот поток, наложив одновременно электрическое и магнитное поля. Результат оказался таким же, как и в предыдущем случае: как отношение elm, так и само значение е получились того же порядка величины, что и для катодных лучей. Отсюда однозначно вытекало, что электрический ток, возникающий при эффекте Эдисона, представляет собой поток электронов. Таким образом, существование электрона, еще за пять лет до того бывшее лишь гипотезой, принятой в некоторых теоретических работах, к концу XIX столетия оказалось экспериментально доказанным опытами с катодными лучами, лучами Беккереля, фотоэлектрическим явлением, термоэлектронной эмиссией. До тех пор физики представляли себе мир состоящим из атомов, последних частиц материи, неделимых и вечных. От этого представления приходилось отказываться в пользу другого, более отвечающего фактам. 10. ОБ ОРГАНИЗАЦИИ НАУЧНЫХ ИССЛЕДОВАНИЙ В XX ВЕКЕ. Тер моэлектронная эмиссия используется в термоионной (или термоэлектронной) трубке для получения рентгеновских лучей, о которой мы говорили в § 4. Такая трубка была сконструирована Уильямом Кулиджем, работником исследовательской лаборатории «Дженерал электрик компани» в Скенектеди (штат Нью-Йорк). Здесь как раз уместно остановиться на характерной особенности организации научных исследований в XX веке. Начиная со средневековых университетов и с академий эпохи Возрождения вся научная деятельность концентрировалась вокруг этих двух типов учреждений, а со второй половины XVIII века она все больше сосредоточивалась в университетах. В течение всего XIX столетия понятие ученый, за редкими исключениями, совпадало с понятием профессор университета. Юридически основной обязанностью профессора было обучение студентов; научные исследования рассматривались как дополнительная деятельность, полностью предоставленная личной инициативе ученого и совершенно свободная. Но на протяжении XIX века наука, понимавшаяся до тех пор как «философия природы» или «естественная история», начала все чаще заниматься вопросами, имеющими значение для производства материальных благ (вспомним, например, об исследованиях паровых машин Уатта и последовавших за ними фундаментальных исследованиях Карно, о разработке методов изготовления искусственных красителей английским химиком Уильямом Перкином, о разработке оптических инструментов Карлом Цейссом; эти примеры можно было бы значительно умножить). Кроме того, во второй половине XIX века произошло новое событие, оказавшее революционное влияние на промышленность того времени — открытия науки об электричестве привели к созданию совершенно новой техники, которая уже не могла быть непосредственно применена в промышленности без участия, даже без прямого вмешательства ученых. Но сотрудничество науки и 312
техники требовало специальных организационных форм вследствие много образия научных аспектов одного и того же производственного процесса, требующего сотрудничества специалистов в областях знаний, по традиции весьма далеких друг от друга. Так, к концу прошлого века стало ясно, что нефтяная промышленность, ставшая ключевой отраслью промышленности в нашем столетии, не может развиваться без участия не только физиков и химиков, но и геологов в первую очередь. Наконец, чрезвычайно быстрое расширение научных знаний влекло за собой необходимость все более узкой специализации, а следовательно, и необходимость сотрудничества и в самих научных исследованиях многих ученых — специалистов в различных областях. При этих обстоятельствах крупные отрасли промышленности постепенно почувствовали актуальную необходимость иметь в своем распоряжении лаборатории и специалистов, занимающихся исключительно научными исследованиями, отряды специалистов различного профиля, координирующих свою деятельность для достижения единой общей цели. Так родилась новая форма организации, в которой индивидуальные исследования были заменены координированными коллективными исследованиями. Эта новая форма организации была применена в первом десятилетии нашего века сначала в Германии, затем в США. В 1911 г. немецкая промышленность дала выдающийся пример такой новой формы организации, основав специальное объединение Kaiser Wilhelm Gesellschaft; с 1949 г. оно изменило свое название на Мах Planck Gesellschaft—целый комплекс институтов, которые вели и ведут исследования как в области чистых, так и в области прикладных наук. В США в десятилетие, предшествовавшее первой мировой войне, крупнейшие фирмы, такие, как «Дженерал электрик», «Белл телефон», «Вестингауз», «Истман Кодак», «Стандард ойл», организовали свои исследовательские лаборатории, но особенно необходимость создания таких экспериментальных лабораторий была осознана во время и после первой мировой войны в Англии, Франции и малых государствах Северной Европы (Швеция, Норвегия, Голландия, Бельгия), где эта организация приняла международный характер. Несколько примеров такой организации было и в Италии. С этого времени научная организация промышленности приняла в некоторых странах внушительные размеры. Так, по статистическим данным 1965 г. в США насчитывалось 4834 научно-исследовательские промышленные лаборатории. Во время первой мировой войны были созданы новые организации, поддерживаемые правительствами и заботящиеся об участии науки в решении различных проблем, диктуемых войной. Эти новые организации, так называемые Советы по исследованиям, оказались очень полезными, так что после войны они были укреплены и созданы в других странах. Их задача — способствовать, координировать, а в некоторых случаях и осуществлять научно-исследовательские работы с учетом потребностей страны, ее' природных ресурсов, наличных средств и людей. Ясно, конечно, что если общие цели всех Советов по исследованиям примерно одинаковы, то их внутренняя структура в разных странах различна в соответствии с политическими и экономическими условиями и сложившимися традициями. Первые Советы по исследованиям возникли в Великобритании (Department of Scientific and Industrial Research) и США (National Research Council). Постепенно они появились во всех странах, заинтересованных в научных исследованиях: сейчас они имеются в 28 странах мира. В Италии Consiglio NazionaJe delle Ricerche был создан в 1923 г., но до 1945 г. эта организация влачила жалкое и неустойчивое существование, сотрясаемая добрым десятком реорганизаций и испытывая сопротивление своему развитию со стороны традиционных предрассудков и предвзятых интересов. 313
Таким образом научные исследования, которые на исходе XIX столетия выполнялись лишь «профессорами», теперь доверены трем категориям работников: преподавателям университетов, научным работникам (в новом смысле этого слова, принятом повсюду), охватываемым научной организацией промышленности, и научным работникам, находящимся на службе у государства (в лице его Совета по исследованиям). Между этими тремя категориями нет четкого разграничения функций, поскольку происходит непрерывный переход ряда лиц из одной категории в другую. Организация научных исследований в наше время стала существенным фактором и по числу охватываемых ею работников. Хотя трудно привести точные современные статистические данные, поскольку их держат в секрете, ясно, что число лиц, занятых научными исследованиями, громадно. Так, считают, что в США в 1954 г. число лиц, занятых научными исследованиями, составляло около 850 000 человек (из них 200 000 научных работников), а полные затраты на научные исследования достигали 9 миллиардов долларов. В Великобритании число научных работников в тот же период составляло примерно 50 000 человек, а во Франции около 12 000—13 000. В прошлом столетии ученый был полностью свободен в выборе темы своих исследований. Теперь такую свободу выбора сохранили лишь ученые- одиночки, которых становится все меньше; это те, кто располагает огромными финансовыми средствами, необходимыми для современных научных исследований. Такой свободой не могут располагать ученые, работающие в современных мощных исследовательских организациях. Даже научно- исследовательские организации крупных частных промышленных предприятий в конечном счете зависят от государства. Таким образом, именно государство планирует научные исследования, определяя создание научных учреждений, выбор их местоположения, ассигнование фондов, подбор, подготовку и использование кадров, а также требуемый порядок работы и тематику исследований. Эта «научная политика», уже давно практикуемая в государствах с высоким уровнем развития науки, диктуется требованиями современной жизни и проявила себя как мощнейший инструмент прогресса, так что нетрудно предугадать, что она получит распространение и в других странах. Таким образом, современные научные исследования характеризуются двумя особенностями: они коллективные и планируются государством. Однако такая форма организации влечет за собой трудную и деликатную проблему свободы, поскольку очевидно, что подобная система таит в себе не только опасность сосредоточения огромной мощи в руках немногих политиков, но и опасность выхолащивания самой науки или замедления научного прогресса вследствие внешнего ограничения свободной деятельности ученых. Социологи и ученые встревожены этой опасностью и ищут способы ее предупреждения с помощью поправок, ослабляющих жесткость системы организации науки.
ГЛАВА 12 • ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ МЕХАНИКА XIX ВЕКА 1. СУТОЧНОЕ ДВИЖЕНИЕ ЗЕМЛИ. Разработка ньютоновской механики, как мы видели (см. гл. 7), завершилась созданием аналитической механики Лагранжа, господствовавшей в физике в течение всего XIX века вплоть до появления релятивистской и квантовой теорий. В XIX веке механика обогатилась несколькими частными результатами, усовершенствовалась в дидактическом отношении, лучше осознала природу своих фундаментальных понятий в результате критики ее принципов, характерной для второй половины этого столетия. Среди частных результатов для истории физики существенны две теоремы Гюстава Гаспара Кориолиса (1792—1843) о составляющих ускорения, сформулированные в 1831 и 1835 гг., а также опыт Фуко по экспериментальному доказательству движения Земли вокруг своей оси. В современных учебниках вопрос о центробежной силе Кориолиса и опыт Фуко с маятником излагаются совместно. Однако исторически оба эти факта независимы: открытие Кориолиса носит математический характер и фактически не повлияло на опыт Фуко, потому что Фуко, блестящий экспериментатор, но весьма посредственный математик, работ Кориолиса не знал, когда в 1851 г. представил свою историческую работу об экспериментальном доказательстве вращательного движения Земли. Фуко исходил из экспериментального факта, что если вращать вокруг самой себя нить, на которой подвешен маятник, то плоскость колебаний маятника останется неизменной. Поэтому если бы мы поместили маятник на земном полюсе, подвесив его в точке, расположенной на оси вращения Земли, плоскость его колебаний оставалась бы фиксированной в пространстве. ^Движение Земли, непрерывно вращающейся в направлении с запада на восток, стало бы ощутимым по отношению к неподвижной плоскости колебаний, след которой на поверхности Земли казался бы участвующим в кажущемся движении небесной сферы. Если бы колебания могли продолжаться в течение двадцати четырех часов, то след этой плоскости совершил бы за это ■время полный оборот вокруг вертикальной проекции точки подвеса» *. Если переместиться с полюса на наши широты, то явление усложняется, потому что горизонтальная плоскость в данной точке поверхности Земли наклонена по отношению к земной оси, так что вертикаль, вместо того чтобы вращаться вокруг самой себя, описывает коническую поверхность с углом раствора, все увеличивающимся по мере удаления от полюса к экватору. Фуко чувствовал, что и на средних широтах явление должно быть качественно таким же, меняясь лишь в количественном отношении, что он и сформулировал в виде закона, открытого им почти интуитивно, но впоследствии подтвержденного расчетами математиков. Фуко начал свои опыты в подвале, а затем благодаря поддержке Араго перенес их в зал Парижской астрономической обсерватории и, наконец, в заполненный зрителями Парижский пантеон. Шар маятника весил 28 кг и подвешивался на нити длиной 67 м. * L. Foucault, Demonstration physique du mouvement de rotation de la Terre an smoyen du pendule, Comptes rendus de l'Ac. de Sc. de Paris. 32, 135 (1851). 315
Опыт Фуко в Пантеоне в Париже. Колеблющийся маятник прочерчивает своим острием штрихи на кольце, расположенном на полу. Острие маятника не проходит повторно по одним и тем же штрихам, а все время наносит новые, регулярно поворачиваясь по часовой стрелке, будто само кольцо, вращаясь под маятником, подставляет под его острие различные участки. tf№&> Опыт Фуко имел громадный успех. За ним последовало болыиое- число работ математического характера, разъясняющих все детали опыта. Как бы то ни было, но Фуко хотел дать еще более убедительное доказательство суточного вращения Земли, и вот в следующем году (1852 г.) он изобрел гироскоп, технические применения которого, становящиеся все более многочисленными, почти заставили забыть о его первом научном применении. Опыт Фуко повторил во Флоренции Винченцо Антинори (1792 — 1865), который решил, кроме того.,, провести исследование рукописей: Галилея, чтобы установить, не было ли когда-нибудь проведено подобных опытов. Среди бумаг Академии опытов он нашел запись Винченцо> 1 Вивиани, в которой отмечено, что' маятник, подвешенный на нити, «незаметно отклоняется от своего первого пути», а в другой заметке, уже опубликованной Тарджони Тодзетти, отмечается, что маятник «рисует свой путь на пыли мрамора». Таким образом.. Академия опытов ставила опыт Фуко, но не пыталась его объяснить. Другое экспериментальное доказательство суточного движения Земли — отклонение падающих тел к востоку — для строгого своего объяснения также требует учета сложной центробежной силы Кориолиса. Тем не менее это отклонение можно предвидеть и на основе простого интуитивного рассуждения, проведенного еще Борелли и подтвержденного опытами Гульельмини (см. гл. 5), повторенными в опытах на башне св. Михаила в Гамбурге (1802 г.) и в шахте в Шлеебуше (1804 г.) Иоганном Фридрихом Бенценбергом (1777 — 1846). Более известные и более точные опыты были проведены Фердинандом Райхом (1799—1882) в 1833 г. в Фрейбургской шахте: при свободном падении с высоты 158 м он получил в среднем по 106 опытам отклонение в 28,3 мм. 2. КРИТИКА НЬЮТОНОВСКИХ ПРИНЦИПОВ. Вторая половина XIX века характеризуется, как мы уже говорили, оживленной дискуссией по вопросу 0 фундаментальных понятиях ньютоновской механики: силе, массе, инерции, действии и противодействии. Еще в начале столетия Лазар Карно отмечал оккультную и метафизическую природу ньютоновской силы. В 1851 г. Барре де Сен-Венан (1797—1886) продолжил критику Сади Карно, про- 316
тив «этих проблематических сущностей или, лучше сказать, субстантивированных свойств», предсказывая, что они будут постепенно исключены из науки как первичные понятия и заменены связями между взаимными движениями тел. В 1861 г. французский математик и экономист Антуан Курно (1801 — 1877) придал понятию силы антропоморфный характер, связав его с мускульными ощущениями, испытываемыми при выполнении определенных операций, например при поднятии тяжестей, растяжении или сжатии упругих тел и т. п. Такое антропоморфное понимание силы, сохранившееся до наших дней, не было явно выражено у Ньютона, который обобщил галилеевское понятие тяги или давления, производимых тяжестью. С этим галилеевским пониманием в известном смысле связана «нитяная школа», основанная Ф. Реехом*, наиболее последовательным выразителем идей которой был Андраде* *. Согласно этим идеям, нам интуитивно ясно понятие натяжения растянутой нити, которая считается не имеющей массы. Материальная точка (здесь мы опустим дискуссию по поводу понятия «материальной точки» и возможности его применения), подвешенная на нити, удлиняет ее и тем порождает силу. Силу можно непосредственно измерить по удлинению нити, пропорциональной которому она считается. Эта сила уравновешивается •«силой инерции» (в понимании Эйлера) материальной точки. В конце концов «нитяная школа», как заметил Пуанкаре, принимает закон равенства действия и противодействия за определение силы, вместо того чтобы рассматривать его как опытный факт. Такое определение силы весьма надуманное и странное. Если, например, Земля связана с Солнцем невидимой нитью, то каким образом мы можем измерить растяжение этой нити? Все с той же целью избегнуть построения механики на основе антропоморфного понятия, Кирхгоф (1876 г.) определил силу чисто аналитическим путем, пользуясь лишь простейшими понятиями пространства, времени и материи. Поддаваясь тенденции математиков к номинализму, он называет «ускоряющей силой» определенное математическое выражение, не интере- -суясь его физическим смыслом, так как убежден, что опыт не способен дать полное определение понятия силы. Герцу традиционное изложение ньютоновской механики, основанное на понятиях пространства, массы, силы и движения, также не представлялось свободным от противоречий. Разве при вращательном движении камня, привязанного к веревке, центробежная сила отлична от инерции самого камня? Не учитывается ли при обычном рассмотрении этой задачи камень дважды —один раз как масса и один раз как сила? Вообще, заявляет Герц***, нам не удастся понять движения окружающих нас тел, обращаясь лишь к тому, что мы непосредственно ощущаем органами чувств. Чтобы получить : ясное представление о мире, подчиняющемся каким-то законам, мы должны аза вещами, которые мы видим, представлять себе другие, невидимые 'вещи и искать за пределами наших чувств скрытые действующие лица». При классическом рассмотрении идеализациями такого типа являются сила и энергия. Но мы вправе принять, что скрытые Действующие лица—это не что иное, как массы и движения, имеющие ту же природу, что и воспринимаемые нашими чувствами массы и движения. Поэтому Герц развил механику, построенную лишь на понятиях пространства, времени и массы. Сила вводится здесь как чисто вспомогательное понятие, и вся механика покоится на единственном принципе: если материальная точка обладает ускорением, то она находится под действием не зависящей от времени * F. Reech, Cours de mecanique d'apres la nature generalement flexible et elastique des corps, Paris, 1852. ** A n d г a d e, Lecons de mecanique physique, Paris, 1898. *** H. Hertz, Die Prinzipien der Mechanik in neuem Zusammenhang dargestellt, Leipzig. 1894. 317
слизи без трения. Отсюда тштекает система построения механики, которую Герц считал формально более логичной, чем классическая, хотя и менее практичной. Еще большее влияние оказали на физиков конца XIX века работы Эрнеста Маха (1838—1916). Эйнштейн признавал, что чтение философских работ Давида Юма (1711—1776) и Маха «значительно облегчило» его критические исследования*. Мах начинает с понятия массы, определяемого по традиции как постоянное отношение силы, приложенной к телу, к величине вызванного ею ускорения. Мах выдвинул по существу следующие возражения. Понятие массы здесь зависит от различных ускорений, которые одно и то же тело испытывает под действием различных сил, между тем как, казалось бы, понятие массы выявляется с очевидностью, когда мы видим, что одна сила, действуя на различные тела, вызывает различное их ускорение. В связи с этим значение понятия массы в механике состоит в том, что, зная, как ведет себя одно-единственное тело под действием определенной силы, мы можем определить движущее действие этой же силы на различные тела. Затем Мах переходит к построению понятия массы, привлекая при этом принцип симметрии: если какое-либо тело А испытывает ускорение, то это ускорение обусловлено каким-либо телом Б, которое в свою очередь испытывает ускорение со стороны тела А. Он иллюстрирует этот принцип примером (восходящим еще к Ньютону) с двумя поплавками, на одном из которых — магнит, а на другом — кусок железа: когда они приходят в контакт друг с другом, то остаются неподвижными. Далее Мах переходит к другой серии опытов с центробежной машиной. Два тела A vs. В различного веса, связанные нитью, продетой сквозь стержень, могут оставаться в равновесии при любой скорости вращения центробежной машины. В этом случае, как известно, ускорения а и а' обратно пропорциональны расстояниям до оси. Обратное отношение ускорений принимается, по определению, за отношение масс этих тел. Отсюда следует такое явное определение: отношением масс двух тел называется обратное отношение ускорений (взятое с противоположным знаком), которые два тела сообщают друг другу. В сущности Мах, вместо того чтобы определить массу тела, определяет смысл «отношения масс двух тел», т. е. дает для массы определение через абстракцию. Очевидно, для этого совсем не обязательно прибегать к центробежной машине. Мах ввел такой экспериментальный метод, по-видимому, для того, чтобы отвести возражение, которое выдвигал его коллега Больцман: приведенное раньше определение подразумевает принятие действия на расстоянии; это вопрос сложный и разумнее его не касаться. В приведенном определении массы, замечает с удовлетворением Мах, не используется никакая теория и «количество вещества», о котором говорил Ньютон, оказывается совершенно ненужным. Это определение делает также ненужным формулировку принципа равенства действия и противодействия, который вторично выражал бы тот же самый факт. Мах был одним из самых резких критиков ньютоновской механики. В своей критике он всегда руководствовался «антиметафизическим» духом и своеобразным пониманием науки, которая, по его мнению, руководствуется принципом экономии. Каждая наука, по Маху, имеет целью сэкономить опыт, заменить его умственным изображением фактов. Поэтому каждая наука * Автор неправильно оценивает роль философских работ Д. Юма и Э. Маха. Субъективно-идеалистическая философия Э. Маха способствовала усилению и закреплению кризисных явлений в методологии физического познания и не позволяла правильно понять развитие современной физики, в том числе появление теории относительности и квантовой механики, не говоря о том, что Мах вместе с Оствальдом, исходя из своей философской концепции, долгое время боролся против атомистической теории.— Прим. ред. 318
должна непрерывно подтверждаться или оспариваться опытом и движется » области неполного опыта. Таким образом, согласно Маху, если признать, что законы природы являются формулировкой правил, экономично резюмирующих последовательность наших ощущений, то «всякий мистицизм» исчезнет из области науки. Более известны критические замечания Анри Пуанкаре о классической механике, изложенные в свойственном ему блестящем стиле, сделавшем популярными его высказывания о философии науки. В своей книге «La science et. Vhypothtese» («Наука и гипотеза», Париж, 1906) Пуанкаре замечает, что механика, хотя имеет дело только с относительными движениями, помещает их в абсолютном пространстве и абсолютном времени, что является чистой условностью. Классическая механика принимает принцип инерции, который не является экспериментальным фактом и не дан априори нашему разуму, так что греческие механики обходились без него. С другой стороны, сила как причина движения есть понятие метафизическое, а для ее измерения приходится прибегать к закону равенства действия и противодействия, который тем самым становится не опытным законом, а определением. Что касается закона всемирного тяготения, то это гипотеза, которая может оказаться опровергнутой опытом. Что же, таким образом, остается от классической механики? Мы видим, что сила равна произведению массы на ускорение исключительно по определению и что исключительно по определению действие равно противодействию. Эти принципы можно было бы проверить только в изолированных системах, однако никакие эксперименты с ними невозможны. Но поскольку существуют почти изолированные системы, к ним приближенно применимы законы Ньютона; отсюда ясно, каким образом опыт может служить их основанием. Упомянутые вкратце критические течения не были прямо направлены на релятивистский пересмотр классической механики. Тем не менее их появление свидетельствовало о трудностях классической механики и об осознании того, что аксиомы классической механики, несмотря на их двухсотлетний успех, тоже могут оказаться опровергнутыми опытом. НА ПУТИ К ТЕОРИИ ОТНОСИТЕЛЬНОСТИ 3. ЛОРЕНЦЕВО СОКРАЩЕНИЕ. Неудача опыта Майкельсона (см. гл. 8) поставила физику в затруднительное положение. Ирландский физик Джордж Фитцджеральд (1851—1901) и несколько позже, но независимо Лоренц (1887 г.) попытались объяснить отрицательный результат опыта введением новой гипотезы о так называемом лоренцевом сокращении. Согласно Фитцджеральду и Лоренцу, движущиеся тела испытывают в направлении своего движения сокращение вполне определенной величины, которое тем сильнее, чем больше скорость тела. Сокращение максимально, когда скорость тела достигает скорости света в пустоте; в этом предельном случае длина тела в направлении движения стала бы равной нулю. Лоренцево сокращение нельзя наблюдать экспериментально, причем не столько вследствие его чрезвычайной малости (так, сокращение диаметра Земли в ее поступательном движении вокруг Солнца составляло бы 6,5 см), сколько потому, что все измерительные инструменты, участвующие в движении, испытали бы сокращение в том же отношении. Гипотеза о сокращении полностью объясняла отрицательный результат опыта Майкельсона, поскольку плечо использованного им прибора, расположенное в направлении движения Земли, испытывало бы при этом сокращение как раз на такую величину, которая необходима, чтобы скомпенсировать разность времен распространения света в этом направлении и в перпендикулярном. 319
Гендрик Антон Лоренц. Однако гипотеза Фитцджеральда — Лоренца казалась чрезмерно искусственной, выдвинутой специально для объяснения одного частного явления, ее введение не было оправдано никакими теоретическими доводами. 4. ЭЛЕКТРОМАГНИТНАЯ ТЕОРИЯ ЛОРЕНЦА. Между тем добавилась еще одна трудность, уже не связанная с опытом Майкельсона. После экспериментального подтверждения Герцем максвеллова теория поля стала постепенно утверждаться в сознании физиков. Но уравнения Максвелла отличались от обычных уравнений механики не только теми особенностями, которые мы уполшнали в гл. 10, но и тем, что они не оставались инвариантными при галилеевых преобразованиях (см. гл. 4). Кроме того, уравнения Максвелла были неприменимы к телам, движущимся по отношению к эфиру. Поэтому их необходимо было дополнить исследованием этого случая, что, конечно, вновь подымало вопрос о поведении эфира по отношению к движущимся телам. В 1890 г. Герц, приняв гипотезу Стокса о полном увлечении эфира (см. гл. 8), нашел систему уравнений, инвариантных по отношению к галиле- евьш преобразованиям и превращающихся в частном случае покоящегося тела в уравнения Максвелла. Однако уравнения Герца противоречили опыту Физо и некоторым другим экспериментальным данным. Значительно более удачной была попытка Гендрика Антона Лоренца (1853—1928), предпринятая еще в 1892 г., но завершенная лишь в 1895 г. в его классическом труде, который мы упоминали в гл. 11, § 3. Лоренц выдвинул идею ввести в уравнения Максвелла дискретную структуру электричества. Он принял существование, с одной стороны, эфира, единого, геометрически неизменного диэлектрика, лишенного внутренних движений, не подверженного механическим силам, а с другой — вещества, состоящего исключительно из элементарных частиц электричества, которые он называл положительными или отрицательными ионами и которые мы для большей ясности будем называть вообще электронами (даже если у них заряд будет положительный). Если тело заряжено положительно, значит, в нем избыток положительных электронов; если тело электрически нейтрально, значит, в нем одинаковое количество электронов обоих знаков. Электрический ток в проводнике представляет собой движение электронов, содержащихся в самом проводнике. Эта гипотеза отрицала особые токи проводимости Максвелла и понимала всякий ток как конвекционный. Каждый движущийся электрон создает вокруг себя электромагнитное поле. Если электрон движется равномерно и прямолинейно, то он несет за собой свое собственное поле, так что нет никакого излучения энергии в окружающее пространство. Но если движение электрона меняется (т. е. он ускоряется или замедляется), то, согласно уравнениям Лоренца, электрон излучает электромагнитные 320
волны. Вследствие этого электрон теряет энергию, причем потеря энергии в каждый момент пропорциональна квадрату ускорения электрона. Электромагнитное поле, наблюдаемое в макроскопическом масштабе, есть результат статистического наложения бесчисленного количества элементарных полей, создаваемых отдельными электронами. Законы Максвелла описывают макроскопические поля, тогда как Лоренц дал законы микроскопических полей, сформулированные так, что в результате статистического наложения бесчисленного множества микроскопических полей получается макроскопическое поле, описываемое уравнениями Максвелла. Таким образом, уравнения Максвелла являются усредненными статистическими уравнениями электромагнетизма, вытекающими из лоренцевой «тонкой структуры». Исходя из таких предпосылок, Лоренц вывел пять основных уравнений, из которых, как указал он сам, вытекают все другие известные законы электромагнетизма. Теория Лоренца была принята в то время с известной долей скептицизма. Как бы то ни было, она представляет собой вершину развития классической теории электромагнетизма и вдохновляла и направляла все исследования по электронной теории, в том числе и неклассические. Как и уравнения Максвелла, уравнения Лоренца не оставались инвариантными при галилеевых преобразованиях. В 1904 г. Лоренц обнаружил, что его уравнения остаются инвариантными при преобразованиях другого типа, отличающихся от галилеевых. В следующем году Пуанкаре предложил называть их лорещевыми преобразованиями, хотя они были найдены еще в 1887 г. Вольдемаром Фохтом (1850—1920), о чем Лоренцу не было известно. Не уточняя математического содержания преобразований Лоренца, достаточно здесь отметить наиболее интересное их свойство: в то время как при галилеевых преобразованиях время остается неизменным для двух систем, движущихся равномерно и прямолинейно одна относительно другой, при лоренцевых преобразованиях при переходе от одной системы к другой время также меняется. Поэтому Лоренц дал определенному математическому выражению название местное время, не приписывая ему, правда, никакого физического смысла. Уравнения Максвелла оставались инвариантными при преобразованиях Лоренца, но зато при этом оказывались неинвариантными уравнения классической механики. Так что в целом теория Лоренца не устраняла расхождения между классической механикой и уравнениями Максвелла. СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ 5. ОТНОСИТЕЛЬНОСТЬ ВРЕМЕНИ И ПРОСТРАНСТВА. Характер попыток объяснить результат опыта Майкельсона и согласовать механику и электродинамику радикально изменился с момента появления в 1905 г. знаменитой работы Альберта Эйнштейна «Zur Elektrodynamik der bewegten Korper» («К электродинамике движущихся тел»). Эйнштейн начал с того, что отметил асимметрию уравнений электродинамики Максвелла в применении к движущимся телам. Так, согласно обычному подходу, взаимодействие тока и магнита зависит не только от их взаимного движения, но и от того, что именно движется — ток или магнит. Подобные примеры и неудача попыток обнаружить движение Земли относительно эфира приводят к предположению, что «....для всех координатных систем, для которых справедливы уравнения механики, справедливы те же самые электродинамические и оптические законы... Это предположение (содержание которого в дальнейшем будет называться «.принципом относителъностиь) мы намерены превратить в предпосылку 21 Марио Льоцци 321
Альберт Эйнштейн в год присуждения ему Нобелевской премии по физике (1921 г.). и сделать, кроме того, добавочное допущение, находящееся с первым лишь в кажущемся противоречии, а именно что свет в пустоте всегда распространяется с определенной скоростью, независящей от состояния движения излучающего тела» *. Таким образом, Эйнштейн поставил себе целью создать электродинамику движущихся тел, свободную от противоречий и приводящую к уравнениям Максвелла для покоящихся тел. В такой теории введение эфира, являющегося «носителем» колебаний, оказывается излишним. В работе содержится кинематическая часть (определение одновременности, вопрос об относительности длин и промежутков времени, преобразование пространственных координат и времени, сложение скоростей), электродинамическая часть (о сохранении уравнений Максвелла) и, наконец, динамика слабо ускоренного электрона. Первым традиционным понятием, подвергнутым критике Эйнштейна, было понятие времени. Физика принимала без возражений ньютоновское понятие абсолютного, универсального, равномерно текущего времени (см. гл. 6). Закон инерции давал способ измерения абсолютного ньютоновского времени, и в конце концов звездное время, являющееся результатом условного соглашения, было молчаливо отождествлено с абсолютным временем Ньютона. Критику абсолютного времени Эйнштейн начал с рассмотрения понятия одновременности двух событий. Рассмотрим какую-либо систему, в которой справедливы законы классической механики. Мы можем представить себе часы, расположенные в точке А системы. Наблюдатель, находящийся в точке А, может установить момент, когда произойдет какое-либо событие в непосредственной близости от точки А. Если в точке В расположены такие же часы, то наблюдатель в точке В может определить момент, когда произойдет какое-либо событие в непосредственной близости от точки В. Таким образом, мы определили «местное время в точке А» ж «местное время в точке В». Но поскольку не существует физических явлений, распространяющихся мгновенно, то мы не можем без дальнейших предположений сравнивать показания А и В. В классической механике принимается, что одновременность двух событий, происходящих соответственно вблизи точек А я В, может быть установлена переносом часов из одной точки в другую, причем вопрос о том, не изменяет ли движение часов их хода, даже не ставился. Но в конце * А. Е i n s t e i n, Zur Elektrodynamik der bewegten Korper, Annalen der Physik, 17, 891—921 (1905). (Есть русский перевод: А. Эйнштейн, Собр. научн. трудов' т. I, стр. 7.) '
концов этот вопрос был поставлен, потому что скорость света перестали считать бесконечной. Если бы имеющиеся в распоряжении людей сигналы были более медленными, того же порядка, что и обычные скорости, то проблема определения одновременности двух удаленных событий была бы поставлена уже значительно раньше. Во всяком случае, совсем не очевидно, что перемещение часов не меняет их хода; это предположение отнюдь нельзя принимать априори. Но если принять, как это сделал Эйнштейн, что скорость света одинакова по всем направлениям, то можно дать критерий одновременности двух событий, происходящих в разных точках А и В одной и той же системы координат: события, происходящие в точках А и В, считаются одновременными, если два световых сигнала, испущенных из точек А и В в моменты, когда произошли эти события, одновременно достигают середины отрезка АВ. Но установленная таким образом одновременность в одной системе координат не будет верна в другой системе, движущейся по отношению к первой. Если один наблюдатель считает одновременными два события в своей системе, то другой наблюдатель, участвующий в равномерном поступательном движении относительно первой системы, не считает их одновременными. Таким образом, одновременность становится понятием относительным, зависящим от наблюдателя. В каждой системе отсчета есть свое собственное время и нет таких часов, которые отсчитывали бы время для всей Вселенной, универсальное время. Иными словами, абсолютное ньютоновское время нужно заменить «временами» различных систем отсчета. Следует подчеркнуть, что «местное время» Лоренца было просто математическим выражением, тогда как в теории Эйнштейна оно приобрело конкретное физическое значение. На часто встречающийся упрек в адрес теории относительности в том, что она приписывает слишком большое значение распространению света, Эйнштейн отвечает: «Чтобы придать понятию времени физический смысл, нужны какие-то процессы, которые дали бы возможность установить связь между различными точками пространства. Вопрос о том, какого рода процессы выбираются при таком определении времени, несуществен. Для теории выгодно, конечно, выбирать только те процессы, относительно которых мы знаем что-то определенное. Распространение света в пустоте благодаря исследованиям Максвелла и Лоренца подходит для этой цели в гораздо большей степени, чем любой другой процесс, который мог бы стать объектом рассмотрения» *. Относительность времени влечет за собой как неизбежное следствие относительность расстояния между двумя точками. Допустим, что необходимо определить длину движущейся линейки. Наблюдатель, который движется вместе с линейкой, должен уложить вдоль линейки свою единицу измерения столько раз, сколько требуется. Другой же, неподвижный наблюдатель должен установить положение концов линейки в определенный момент, а затем измерить расстояние между этими двумя отметками своей мерой. Это две различные операции, поэтому различны и их результаты. Вот почему расстояние между концами линейки зависит от системы отсчета, т. е. от относительного движения обоих наблюдателей. 6. СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ. Как уже было упомянуто, в основу новой механики Эйнштейн кладет два принципа, которые он формулирует следующим образом: * A. Einstein, The meaning of relativity, London, 1922. (Есть русский перевод; А. Эйнштейн! Сущность теории относительности! Собр. научн. трудов, т. II, стр. 24.) 21» 323
1. Принцип относительности (позднее названный специальным принципом относительности). Законы, управляющие всеми физическими явлениями,— одни и те же для двух наблюдателей, движущихся равномерно и прямолинейно относительно друг друга. Это означает, другими словами, что никаким опытом, механическим или электромагнитным, наблюдатель не может обнаружить, покоится он или же находится в состоянии равномерного и прямолинейного движения. Классический принцип относительности утверждал то же самое, но только для механических движений; предполагалось, что с помощью оптических или электромагнитных опытов наблюдатель мог бы обнаружить свое движение. 2. Принцип постоянства скорости света. Свет распространяется в пустоте с постоянной скоростью по всем направлениям независимо от движения источника и наблюдателя. Этот последний постулат сразу объясняет отрицательный результат опыта Майкельсона. Из этих двух принципов Эйнштейн вывел математически лоренцево сокращение движущихся тел при их наблюдении из покоящейся системы: если скорость движущегося тела приближается к скорости света, сжатие достигает максимума и тело сжимается в плоскую фигуру. Отсюда следует, что скорость, превышающая скорость света в пустоте, не имеет никакого физического смысла, т. е. скорость распространения света в пустоте — максимально достижимая в природе. Следствием лоренцева сокращения является то, что движущиеся часы отстают от неподвижных: если какое-либо явление имеет определенную длительность для движущегося наблюдателя, то оно кажется более продолжительным для неподвижного. Если бы система двигалась со скоростью света, то неподвижному наблюдателю движения в ней казались бы бесконечно замедленными. В этом заключается знаменитый «парадокс часов», о котором столько писали, начиная с Ланжевена (1910 г.). Ланжевен предположил, что астронавт вылетает с Земли со скоростью, отличающейся от скорости света на одну двадцатитысячную, летит по прямой в течение года (отсчитанного по его часам и по событиям его жизни) и затем возвращается обратно, приземлившись, следовательно, через 2 года. Вернувшись на Землю, он обнаружит, согласно релятивистской формуле замедления времени, что жители Земли состарились на 100 лет (по земным часам), т. е. встретит уже другое поколение. Но теперь показано, что в этом нет никакого противоречия. Действительно, после того как при прямом и обратном полете астронавт доходит до участка, где он движется равномерно, он находится в галилеевой системе отсчета. Но на первом участке разгона, при изменении направления полета на обратное и при приземлении он испытывает ускорение, и его система, следовательно, не является галилеевой: на этих трех участках к нему неприменима специальная теория относительности. Следует здесь, однако, упомянуть, что новое понимание времени подымает целый ряд важных философских вопросов, в рассмотрение которых мы здесь входить не будем, поскольку они затрагивают общие проблемы познания. Принцип постоянства скорости света находится в прямом противоречии с принципами классической механики. Он устанавливает верхний предел возможных скоростей, тогда как в классической механике возможны сколь угодно большие скорости. Поэтому новый постулат приводит к изменению правила сложения скоростей классической механики. Так, сложение скорости света со скоростью источника дает во всех случаях опять-таки скорость света. Классическая формула сложения скоростей одинакового направления очень проста: результирующая скорость равна алгебраической 324
сумме составляющих скоростей. Релятивистская формула, найденная Эйнштейном, более сложна и обладает тем свойством, что при малых скоростях, далеких от скорости света, она практически эквивалентна классической формуле, отклоняясь от нее тем больше, чем больше складывающиеся скорости *. Релятивистская формула сложения скоростей получила вскоре блестящее подтверждение в опытах Физо по частичному увлечению эфира (см. гл. 8). Без привлечения каких бы то ни было гипотез об увлечении эфира результаты опыта Физо в точности объясняются просто релятивистским сложением скорости света в исследуемой жидкости (по отношению к этой среде) и скорости движения среды. Совпадение оказывалось столь точным, что некоторые авторы даже считали его подозрительным! То же самое произошло потом с другими утверждениями релятивистской механики, развитой Эйнштейном в 1905—1907 гг. на основе указанных двух постулатов. Утверждения релятивистской механики отличаются от утверждений классической механики, но переходят в них при малых скоростях. Таким образом, классическая механика оказывается первым приближением, справедливым для обычных условий; этим и объясняется, почему ее считали точной и соответствующей опыту в течение более чем двух столетий. «Было бы нелепо,— говорит Эйнштейн в одной из своих популярных книг,— применять теорию относительности к движению автомобилей, пароходов и поездов, как нелепо употреблять счетную машину там, где вполне достаточно таблицы умножения» **. Одним из первых следствий из принятых постулатов является то, что все физические законы или, лучше сказать, их математические выражения остаются инвариантными при лоренцевых преобразованиях. Тем самым был установлен критерий для определения того, укладывается ли какой-нибудь закон в релятивистскую схему: достаточно убедиться, что его математическое выражение не меняет своей формы при лоренцевых преобразованиях. Таким образом было установлено, например, что уравнения Максвелла укладываются в релятивистскую схему, а закон всемирного тяготения не вписывается в нее. Минковский, у которого некогда учился Эйнштейн в Цюрихе, в своей знаменитой теории, сформулированной в 1907 — 1908 гг. и исходящей из положения, что пространство и время — абсолютно неотделимые понятия, ввел новый формализм, в котором математическая форма записи закона гарантирует его инвариантность при лоренцевых преобразованиях. Естественно, основное положение классической механики — пропорциональность силы ускорению — существенным образом изменяется в новой механике. Даже не прибегая к математическим расчетам, можно догадаться о необходимости таких изменений. Действительно, поскольку скорость света принята максимально возможной в природе, никакая сила не может увеличить скорость тела, движущегося со скоростью света, т. е. при этих условиях сила уже не вызывает ускорения. В релятивистской механике тело тем труднее ускорить, чем больше его скорость. А поскольку * В классической механике для составляющих скоростей v и v' результирующая скорость V равна V = v + v', тогда как в релятивистской механике она дается выражением у.. v+S где с — скорость света в пустоте. ** A. Einstein, L. I n f e 1 d, The evolution of physics, New York, 1938. (Есть русский перевод: А. Эйнштейн, Л. И н ф е л ь д, Эволюция физики, Собр. научн. трудов А. Эйнштейна, т. IV, стр. 479.) 325
сопротивление изменению скорости тела называют массой тела, отсюда вытекает, что масса тела возрастает со скоростью. В то время как классическая механика рассматривает массу тела как постоянную величину, в теории относительности она считается переменной и зависящей от скорости. Та масса, которая рассматривается в классической механике,— это релятивистская масса покоя. Более того, релятивистская механика доказывает, что масса зависит не только от скорости, но и от направления силы. Поэтому говорят о продольной массе и поперечной массе. В связи с этим интересно отметить, что еще в 1890 г. Поль Пенлеве (1863—1932) с помощью чисто математического обобщения классической динамики точки ввел понятия продольной и поперечной масс. Изменение массы можно экспериментально обнаружить лишь при больших скоростях, близких к скорости света. Идеальными объектами для этой экспериментальной проверки являются электроны. И действительно, в 1902 г. Кауфман установил зависимость поперечной массы |3-частиц от их скорости, подтвердив тем самым это следствие теории относительности еще до того, как она была сформулирована. В 1906 г. он подтвердил свои результаты последующими измерениями. В 1914 г. Глитчер, а годом позже Зоммерфельд, анализируя данные некоторых опытов Пашена о тонкой структуре спектральных линий гелия, показали, что массы электронов, обращающихся вокруг ядра, удовлетворяют релятивистским соотношениям для массы. В 1935 г. Наккен в опытах с катодными лучами при напряжении между электродами, достигавшем 200 000 в, подтвердил релятивистскую формулу зависимости массы от скорости с точностью до 1%. Другие экспериментальные подтверждения были получены в исследованиях следов электронов в камере Вильсона и по данным о космических лучах. Впрочем, теперь можно сказать, что релятивистское изменение массы подтверждается ежедневно явлениями ядерной физики. В том же 1905 г. Эйнштейн вывел чисто математическим путем из зависимости массы от скорости исключительно важное следствие. Позже он дал ему наглядное объяснение, которое мы здесь и приведем. Предположим, что в коробке покоится несколько шариков. Если к коробке приложить внешнюю силу, то она приобретет определенное ускорение, зависящее от массы покоя шариков. Но пусть эти шарики движутся по всем направлениям, подобно молекулам газа, со скоростями, близкими к скорости света. Вызовет ли при этом внешняя сила такой же эффект? Конечно, нет, поскольку скорость шариков увеличивает их массу. Следовательно, кинетическая энергия шариков оказывает, подобно массе, сопротивление движению. Этот частный случай был блестяще обобщен Эйнштейном на все формы энергии: энергия в любой форме ведет себя как вещество. Таким образом, в теории относительности нет существенного различия между массой и энергией: энергия обладает массой, а масса представляет собой энергию. Классическая физика ввела две субстанции — вещество и энергию — и провозгласила два соответствующих закона сохранения. Теория относительности свела их к одной субстанции и к одному закону сохранения массы-энергии. Масса и энергия преобразуются друг в друга во вполне определенном соотношении, даваемом релятивистской формулой Е — т0с2, где Е — энергия, т0 — масса покоя, с — скорость света в пустоте. Эта формула была получена впервые Эйнштейном в 1907 г. Эквивалентность массы и энергии представлялась самым парадоксальным утверждением теории относительности. Но мы уже убедились выше, что точка зрения теории относительности является весьма плодотворной. Все человечество убедилось в этом на трагическом примере — взрыве бомбы в Хиросиме. 326
ОБЩАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ 7. ТЯЖЕЛАЯ МАССА И ИНЕРТНАЯ МАССА. Подобно классической механике, специальная теория относительности также приписывала привилегированное положение «галилеевым» наблюдателям, т. е. наблюдателям, находящимся в системах, движущихся равномерно и прямолинейно. Но что является основанием этого преимущества галилеевых систем отсчета? Ответить на такой вопрос было очень нелегко. В 1907 г. Эйнштейн приступил к исследованию этого вопроса, начав « критического пересмотра одного факта, хорошо известного классической физике. В классической физике инертная масса тела определяется как постоянное отношение приложенной к ней силы к приобретаемому ускорению, а тяжелая масса определяется как отношение веса тела к ускорению •силы тяжести *. Очевидно, нет никаких оснований априори считать, что обе определенные так массы равны между собой, поскольку тяготение не имеет никакого отношения к определению инертной массы. Равенство обеих масс (при надлежащем выборе единиц) является опытным фактом, который •был установлен Ньютоном (см. гл. 6) в опытах с маятниками, а еще раньше Галилеем в опытах с падающими телами. При падении тел ускорение пропорционально тяжелой массе и обратно пропорционально инертной массе, и поскольку все тела падают с одинаковым ускорением, то обе массы равны. Подобное рассуждение имеется еще у Бальяни, который, отождествляя тяжелую и инертную массы, приходил к выводу о постоянстве ускорения силы тяжести. В более позднее время Р. Этвеш в серии весьма точных опытов, проведенных с 1890 по 1910 г. и продолженных в 1922 г., показал, что эта эквивалентность тяжелой и инертной масс соблюдается с точностью выше одной двадцатимиллионной. Опыты Этвеша основаны на том, что равновесие ответа определяется притяжением Земли, зависящим от тяжелой массы, и центробежной силой, вызванной вращением Земли и зависящей от инертной массы. Если бы эти массы не были одинаковы, то направление отвеса зависело бы от материала (свинец, железо, стекло и т. д.), из которого сделан шар отвеса. Однако Этвеш с помощью чувствительнейших крутильных весов установил, что отвес не меняет своего направления независимо от материала, из которого он изготовлен. Таким образом, в равенстве тяжелой и инертной масс ■сомневаться невозможно. Классическая механика в этом и не сомневалась, но она принимала этот факт как случайный, даже не пытаясь как-нибудь его объяснить. В упомянутой работе 1907 г. Эйнштейн показал с помощью наглядных соображений, что равенство тяжелой и инертной масс совсем не случайный факт, что оно носит особый характер, проявляясь как внутреннее свойство гравитационного поля. Эйнштейн пришел к этому выводу с помощью мысленного опыта, ставшего теперь классическим, опыта со свободно падающим лифтом. Представим себе гигантский небоскреб высотой 1000 км и физика, находящегося внутри свободно падающего лифта в этом небоскребе. Физик выпускает из рук платок или часы и убеждается, что они не падают на пол лифта. Если он сообщает этим вещам толчок, то они движутся равномерно и прямолинейно, пока не столкнутся со стенками лифта. Физик приходит * Здесь автор нечетко выражает свою мысль: в его формулировке второе определение является частным случаем первого и также относится к инертной массе. Суть в том, что тяжелая масса определяется на основе закона всемирного тяготения как величина, пропорциональная весу тела (множитель пропорциональности вависит от системы единиц). "Такое определение действительно не совпадает с определением инертной массы.— Лрим. пер ев. 327
к выводу: я нахожусь в ограниченной галилеевой системе. Условие ограниченности необходимо для того, чтобы можно было считать, что все тела испытывают одинаковое ускорение. Но физик, наблюдающий извне за падением лифта, будет судить о вещах совершенно иначе. Он видит, что лифт и все находящиеся в нем тела движутся ускоренно в соответствии с законом тяготения Ньютона. Этот пример показывает, что можно перейти от галилеевой системы к ускоренной, если учесть гравитационное поле. Иными словами, гравитационное поле (в котором проявляется тяжелая масса) эквивалентно ускоренному движению (в котором проявляется инертная масса). Тяжелая масса и инертная масса характеризуют одно и то же свойство материи, рассматриваемое по-разному. Таким образом, Эйнштейн пришел к принципу эквивалентности, который он так сформулировал в своей автобиографии: «В поле тяготения (малой пространственной протяженности) все происходит так, как в пространстве без тяготения, если в нем вместо „инер- циалъной" системы отсчета ввести систему, ускоренную относительно нее» *. Принцип эквивалентности можно сформулировать и иначе: наблюдатель никакими опытами в своей системе отсчета не может различить, находится ли он в гравитационном поле или же ускоренно движется. Для случая мысленного эксперимента со свободно падающим лифтом принцип эквивалентности справедлив в небольшой части пространства, т. е. имеет локальный характер. 8. ОБЩАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ. Принцип эквивалентности послужил отправной точкой для переработки теории относительности в новую- теорию, которую Эйнштейн назвал общей теорией относительности (в отличие от нее прежняя теория была названа специальной). Новая теория была изложена Эйнштейном после подготовительных работ 1914—1915 гг. в фундаментальном труде «.Die Grundlage der allgemeinen Relativitatstheorie» («Основы общей теории относительности»). Вторая часть этой работы посвящена описанию математического аппарата, необходимого для развития этой теории. К счастью, такой аппарат уже существовал — это было так называемое- «абсолютное дифференциальное исчисление», приведенное в систему еще в 1899 г. Грегорио Риччи-Курбастро (1853—1925) и Туллио Леви-Чивита (1873-1941). Основной постулат общей теории относительности заключается в том, что не существует привилегированных систем координат. «Законы физики,— говорит Эйнштейн,— должны быть таковы по природе, что они должны быть применимы к произвольно движущимся системам отсчета». Законы физических явлений сохраняют свою форму для произвольного наблюдателя, так что уравнения физики должны оставаться инвариантными не только при лоренцевых, но и при произвольных преобразованиях. Выведенные отсюда Эйнштейном математические следствия не менее- важны, чем следствия из специальной теории относительности. Они ведут к дальнейшему обобщению понятий пространства и времени. Если кинематическое изменение видоизменяет или уничтожает гравитацию в какой-либо' системе отсчета, то ясно, что между гравитацией и кинематикой существует тесная связь. А поскольку кинематика — это геометрия, к которой добавлена еще одна, четвертая переменная — время, то Эйнштейн интерпретирует * A. Einstein Philosopher-Scientist, ed. by P. A. Schilpp, Evanston (Illinois), 1945-. (Есть русский перевод: А. Эйнштейн, Собр. научн. трудов, т. IV, стр. 282.) 328
явления гравитации как геометрию пространства-времени. Отсюда вытекает что, согласно общей теории относительности, наш мир не является евклидовым; его геометрические свойства определяются распределением масс и их скоростями. С помощью знаменитого мысленного эксперимента, о котором было много споров, Эйнштейн со всей очевидностью показал тесную связь между кинематикой и геометрией. Предположим, что наблюдатель находится на круглой платформе, быстро вращающейся по отношению к внешнему наблюдателю. Внешний наблюдатель вычерчивает в своей, галилеевой системе отсчета окружность, равную внешней окружности платформы, измеряет ее длину и ее диаметр, составляет их отношение и находит число я евклидовой геометрии. Наблюдатель, находящийся на платформе, выполняет те же измерения с помощью той же линейки, которой пользовался внешний наблюдатель. Линейка, помещенная вдоль радиуса платформы, хотя и находится в движении относительно внешнего наблюдателя, не претерпевает изменения длины, потому что платформа движется перпендикулярно радиусу. Но когда наблюдатель начинает измерять периметр платформы, то линейка по отношению к внешнему наблюдателю представляется укороченной, потому что в этом положении она движется в направлении своей длины (лоренцево сокращение), платформа кажется более длинной и для числа я получается значение, большее, чем в предыдущем случае. Аналогичное явление имеет место и со временем. Если взять двое идентичных часов и одни поместить в центре платформы, а другие — на периферии, то внешний наблюдатель увидит, что часы, находящиеся на периферии и движущиеся по отношению к другим часам, идут медленнее, чем часы, находящиеся в центре, и придет к заключению, что часы на периферии действительно отстают. Но, согласно принципу эквивалентности, явления движения аналогичны явлениям гравитации. Следовательно, в гравитационном поле евклидова геометрия уже несправедлива, а часы отстают. Пример с платформой имеет прежде всего дидактическое значение; математически гравитационное поле отличается от центробежного поля вращающейся платформы. В гравитационном поле, создаваемом центральной массой, сокращаются радиальные размеры и остаются неизменными поперечные. Поэтому отношение окружности к диаметру становится меньше я. Эддингтон рассчитал порядок величины этого изменения числа я: если массу в одну тонну поместить в центре окружности радиусом пять метров, то число я изменится в 24-м знаке. В общей теории относительности уравнения гравитации имеют тот же вид, что и уравнения Максвелла (в том смысле, что они описывают изменения гравитационного поля); из них вытекают геометрические свойства нашего неевклидова мира. 9. ЭКСПЕРИМЕНТАЛЬНЫЕ ПОДТВЕРЖДЕНИЯ. Новые законы тяготения приводят к некоторым следствиям, поддающимся экспериментальной проверке. Поскольку энергия обладает массой, а инертная масса является также и тяжелой массой, то отсюда следует, что тяготение действует и на энергию. Поэтому луч света, проходящий в гравитационном поле, должен отклоняться. Фактически такое отклонение вытекает также из ньютоновской корпускулярной теории света; расчет отклонения луча света звезды, проходящего близ Солнца, был проведен еще в 1804 г. Зольднером, который получил значение вдвое меньше рассчитанного по теории относительности. Опыты, проведенные во время полных солнечных затмений 29 мая 1919 г. и 21 сентября 1922 г., подтвердили выводы общей теории относительности и в количественном отношении (хотя среди астрономов полного согласия не было). Подтверждение не предсказываемого специальной теорией 329
относительности влияния тяготения на прохождение лупа показывает, что теория справедлива лишь в отсутствие гравитационных полей. По отношению к общей теории относительности она оказывается лишь приближенной теорией, точно так же как классическая механика является приближенной теорией по отношению к специальной теории относительности. Второе подтверждение общей теории относительности было получено при исследовании движения планет. Одним из следствий общей теории относительности является то, что эллиптическая траектория движения планеты должна медленно поворачиваться вокруг Солнца. Этот эффект, не предсказываемый ньютоновской теорией, должен быть наибольшим для ближайших к Солнцу планет, для которых сила тяготения максимальна. Ближайшей к Солнцу планетой является Меркурий, поэтому именно на движении этой планеты можно наблюдать указанный эффект, который столь слаб, что, согласно расчетам, потребовалось бы три миллиона лет, чтобы орбита Меркурия совершила полный оборот. Медленное вращение орбиты Меркурия, или, точнее, смещение его перигелия, было замечено астрономами, которые пытались объяснить это возмущениями движения Меркурия, вызываемыми другими планетами. Но расчеты, проведенные исходя из этого предположения, приводят к значению смещения меньше наблюдаемого. Расхождение между расчетным и наблюдаемым значениями никак не удавалось объяснить в рамках ньютоновской механики. С точки зрения общей теории относительности вопрос был рассмотрен впервые в 1915 г. Эйнштейном и окончательно решен в 1916 г. Шварц- шильдом. Совпадение результатов расчета по общей теории относительности с данными астрономических наблюдений производило особое впечатление потому, что оно было достигнуто без всяких дополнительных гипотез, как прямое следствие общей теории относительности. Третьим подтверждением общей теории относительности, которое после периода взаимно противоречащих результатов теперь представляется надежным, является так называемый «эффект Эйнштейна», т. е. смещение спектральных линий излучения звезд в сторону красного цвета. Как мы уже упоминали, часы, расположенные в поле тяготения, идут медленнее, а поскольку колебательное движение можно уподобить часам, то теория предсказывает уменьшение частоты светового излучения в присутствии поля силы тяжести. Отсюда следует, что спектральные линии света, излученного звездой, должны быть смещены в красную сторону по сравнению с соответствующими линиями, в спектрах земных источников. Этот факт, по-видимому, подтверждается исследованием спектра света от звезд-карликов, средняя плотность которых в десятки тысяч раз больше плотности воды. В 1925 г. Адаме, фотографируя спектры Сириуса и его спутника Сириуса В, наблюдал красное смещение. В количественном отношении это явление тоже как будто хорошо согласуется с предсказаниями теории, 10. О СУДЬБЕ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ. Число исследований по вопросам теории относительности, проведенных математиками, физиками и философами, неизмеримо велико; едва ли можно указать в истории физики другой аналогичный пример бурного расцвета теории. Собранная Лека в 1924 г. библиография насчитывала уже около 4000 наименований книг, брошюр и статей. Естественно, что столь оригинальные идеи не могли войти в науку, не натолкнувшись на сильнейшее противодействие, а когда в первые годы после мировой войны элементы теории относительности распространились среди широкой публики, то к научной критике специалистов присоединилась горячая реакция различных по характеру людей, недостаточно компетентных, чтобы судить о теории по существу. Противники теории, как компетентные, так и некомпетентные, отрицая теорию относительности, в конечном 330
«чете апеллировали к «здравому смыслу». Во времена Галилея «здравый смысл» также призывался в качестве высшего судьи в споре между птолемеевой и коперниковой системами. Но в обоих случаях здравый смысл, который сам изменяется вместе со временем, в конце концов становился на сторону нового. Сейчас все эти горячие дискуссии затихли. Теория относительности уже не вызывает возражений со стороны ученых. Наоборот, как метко заметили Макс Планк и Луи де Бройль, теперь уже ее следует рассматривать как составную часть классической физики, основным законам которой она не противоречит, затрагивая лишь некоторые обыденные представления, как, например, представление об абсолютном пространстве и времени. Сплотив воедино понятия пространства и времени, массы и энергии, тяготения и инерции, эта теория наравне с другими теориями классической физики подчинилась той унифицирующей тенденции, которая, как мы отмечали ранее, воодушевляла физику XIX века.
ГЛАВА 13 • ФИЗИКА ДИСКРЕТНОГО КВАНТЫ 1. МАТЕРИЯ И ЭНЕРГИЯ *. Великие унифицирующие теории, которые служили руководящей нитью для всех исследований, к концу XIX века привели к тому, что физика разделилась на два больших раздела: физику материи и физику эфира, или, лучше сказать, физику излучения. Материя и излучение казались двумя совершенно независимыми сущностями, ибо- материя может существовать без излучения, а излучение может проникать через пустое пространство, лишенное материи. Более глубокие исследования, однако, привели к новой концепции — достоянию уже нашего века, о которой мы будем говорить дальше, концепции, согласно которой все то, что мы наблюдаем, и даже само наблюдение являются не материей и не излучением, а совокупностью того и другого. Но даже помимо этого более глубокого анализа проблема взаимодействия материи и излучения была одной из самых серьезных проблем конца века, так как было ясно, что если они и существуют независимо друг от друга, то весь мир явлений тем не менее проистекает из их взаимодействия. В сущности вся проблема сводилась к тому, чтобы найти тот механизм или тот способ, благодаря которому материя способна излучать и поглощать излучение. Электромагнитная теория света давала формулы, которые устанавливали связь между электромагнитными полями, зарядами и токами. Они отлично служили для описания макроскопических результатов опытов. Но уже в последнее десятилетие прошлого века, как мы увидим подробнее в следующей главе, были замечены связи между данными спектроскопии и периодическими внутриатомными процессами: уравнения Максвелла оказались неприменимыми к излучению, испускаемому или поглощаемому мельчайшими элементарными частицами материи. Поэтому нужно было изменить эти уравнения, чтобы можно было их применять в этом новом уже приоткрывавшемся мире внутриатомных явлений; это, как мы говорили в предыдущей главе, предвидел Лоренц. Но хотя теорию Лоренца вполне можно было привлечь для изучения проблемы взаимодействия материи и энергии, физики конца прошлого века все же предпочитали следовать по проторенной дороге классической термодинамики, которая казалась более прочным основанием и по которой можно было идти, не опасаясь очутиться вдруг среди зыбучих песков. 2. ИЗЛУЧЕНИЕ «ЧЕРНОГО ТЕЛА». Здесь уместно вспомнить вкратце те стороны термодинамической проблемы взаимодействия материи и энергии, которые остались не решенными физикой XIX века. Пусть несколько тел с различной температурой помещено в пустое пространство, окруженное теплонепроницаемой оболочкой. Весь накопленный опыт показывает, что в соответствии со вторым законом термодинамики все- эти тела непременно приобретут одинаковую температуру. Термодинамика * Если даже не обращать внимания на то, что в этой книге не дается четкого определения понятий материи, массы, вещества, энергии и т. д., то следует иметь в виду, что автор здесь, по-видимому, пытается отождествить массу и энергию. Хотя теория относительности устанавливает связь между этими понятиями, они являются совершенно различными.—Прим. ред. 332
объясняет этот факт передачей энергии от одного тела к другому без посредства материи, т. е. путем излучения: каждое тело испускает и поглощает целый спектр электромагнитного излучения; более теплые тела излучают больше, чем поглощают, а более холодные поглощают больше, чем излучают, так что в конце концов температура всех заключенных внутри оболочки тел станет одинаковой. Когда наступает такое состояние, оно уже остается неизменным неограниченно долгое время (если только прочие физические условия в системе остаются прежними), потому что каждое тело внутри оболочки испускает и поглощает одинаковое количество энергии. Главная проблема состояла в следующем: определить количество лучистой энергии, испускаемое или поглощаемое телом при любой температуре и на любой частоте. Еще в 1859 г. Кирхгоф, исходя из термодинамических соображений, установил, что, когда все тела внутри оболочки достигают одинаковой температуры, они испускают и поглощают излучение таким образом, что устанавливается точное равновесие между поглощенной и отданной энергиями. Это состояние равновесия единственно, и распределение излучаемой энергии зависит только от температуры резервуара и не зависит от его размера или формы или от свойств заключенных в нем тел и свойств стенок. Этот знаменитый «закон Кирхгофа» формулируется так: излучательная способность тела пропорциональна его поглощающей способности, или, другими словами, тело тем больше поглощает излучение, чем больше оно способно испустить его. Кирхгоф же ввел в употребление (в 1860 г.) понятие «черного тела», или, точнее, «абсолютно черного тела» (в применении к которому законы излучения становятся особенно простыми), т. е. такого тела, которое поглощает все падающее на него излучение. Строго говоря, в природе не существует абсолютно черных тел в определенном выше смысле: самые черные тела (как, например, сажа) все же отражают и рассеивают хоть какую-то часть, пусть ничтожно малую, той энергии, которую они получают. Однако сам же Кирхгоф указал способ получения черного тела, обладающего свойствами, данными в его определении. Представим себе замкнутую полость. Проникающее туда излучение попадает на стенки полости и частично поглощается ими, а частично отражается и рассеивается; эта отраженная и рассеявшаяся часть снова попадает на стенки и опять-таки частично поглощается ими, а частично отражается и рассеивается, и т. д. После нескольких последовательных отражений энергия, оставшаяся непоглощенной, будет очень невелика; при достаточном числе отражений она стремится к нулю. Иными словами, такая полость обладает коэффициентом поглощения, равным единице, и представляет собой черное тело. Практически черное тело изготовляется в виде камеры со стенками, сделанными из хороших проводников тепла {например, из меди), покрытыми изнутри сажей. В камере проделывается маленькое отверстие для свободного сообщения с внешним объемом. Всякое излучение, проникающее через это отверстие, практически целиком поглощается благодаря указанному уже механизму рассеивания и поглощения. Некоторое грубое подобие такой камеры, своеобразной ловушки для излучения, попадающего в отверстие, представляет собой обычная комната с окном: если на нее смотреть снаружи через окно, комната кажется темной, так как свет, который проникает в нее через окно, почти целиком поглощается стенами комнаты и лишь небольшая его часть попадает снова наружу. Энергия, излучаемая через отверстие в полости, может считаться равной энергии излучения черного тела при той же температуре. Эта энергия носит краткое, но неудачное (как неудачно, впрочем, и само выражение «черное тело») название «черного излучения»; при высокой температуре оно может быть даже ослепительно белым. 333
Экспериментальные кривые излучения черного тела при различных температурах. По оси абсцисс отложена длина волны, по оси ординат — энергия. С увеличением абсолютной температуры максимум кривой смещается влево, т. е. в сторону меньших длин волн. Если черное тело поддерживать при постоянной температуре в термостате- и излучение, испускаемое отверстием, направлять в какой-либо приемник (болометр, термоэлектрическая пара), поглощающий все излучение и переводящий его в тепловую энергию, то таким способом можно измерить для каждой данной температуры общее количество испускаемой черным телом энергии. Если же в приемник с помощью тех или иных приспособлений (фильтры, призмы, решетки) направить лишь излучение, соответствующее данной длине- волны (или, точнее, определенному узкому спектральному интервалу вокруг данной длины волн), то можно измерить для каждой данной температуры черного тела удельную интенсивность излучения для этой длины волны. Эти измерения, однако, не так просты и требуют большой точности, умения и высокой техники. Ясно, что гораздо легче измерить общую энергию черного излучения, нежели удельную интенсивность для каждой отдельной длины волн. Это подтверждается и историческим ходом этих исследований, начатых в 1879 г. профессором физики Венского университета Иозефом Стефаном (1835—1893). Опираясь на полученные им и другими исследователями результаты измерений общего количества энергии, излучаемого черным телом при различных температурах, Стефан сформулировал закон пропорциональности этой энергии четвертой степени абсолютной температуры. Этот закон был подтвержден в 1880 г. систематическими исследованиями Греца в интервале температур от 0 до 250° С. В 1897 г., используя гораздо более совершенную аппаратуру, Люммер и Курлбаум проверили этот закон для температур от 290 до 1500° С. В 1884 г. другой венский физик, один из величайших представителей математической физики прошлого века, Людвиг Больцман (1844—1906), дал приводимое во всех современных курсах физики доказательство того, что закон Стефана есть следствие законов термодинамики и, в частности, следует из выражения для давления излучения, найденного теоретически Максвеллом (см. гл. 10), а в 1876 г. полученного из термодинамических соображений Адольфо Бартоли (1851—1896). Вслед за открытием интегрального закона Стефана, называемого теперь обычно законом Стефана — Больцмана, в последние годы прошлого века последовали важные экспериментальные исследования по определению удельной интенсивности излучения черного тела для различных температур и длин волн. Эти исследования позволили найти спектр черного тела для большого интервала^длин волн. При данной температуре излучаемая энер- 334
гия максимальна на определсппой длине волны и быстро уменьшается по обе стороны от нее. Иными словами, кривая зависимости интенсивности излучаемой энергии при данной температуре от длины волны имеет, как принято говорить, «колоколообразный» вид. Экспериментальные исследования Люммера и Прингсгейма в 1899— 1900 гг. в области видимого излучения, опыты Бекмана (1898 г.) и Пашена (1901 г.) в инфракрасной области при температурах от 420 до 1600° С и опыты Байша (1911 г.) в ультрафиолетовой области экспериментально подтвердили общую форму этой кривой, если не считать нескольких мелких экспериментальных ошибок, впоследствии исправленных. Но хотя в конце прошлого века само явление излучения, можно сказать, было довольно хорошо известно и были уже найдены общие законы, как, например, закон Стефана — Больцмана и закон Вина, о котором мы будем говорить дальше, тем не менее наука того времени была неспособна объяснить характер этого явления, а также других более общих проявлений взаимодействия материи и энергии. Почему, например, кусок железа при обычной температуре не излучает света? Если в нем содержатся частицы, будь то электроны или какие-то иные частицы, колеблющиеся с определенной частотой, то почему быстрые колебания, соответствующие видимому излучению, не проявляются до тех пор, пока не достигнута определенная температура? Между тем тот же кусок железа поглощает падающее на него световое излучение даже в холодном состоянии. Приходится поэтому представлять себе наличие некоего механизма, допускающего переход энергии быстрых колебаний от эфира к материи, но запрещающего обратный переход. 3. ПРОТИВОРЕЧИЯ КЛАССИЧЕСКОЙ ТЕОРИИ. В 1894 г. Вильгельм Вин (1864—1928), развивая идеи Больцмана и исходя из мысленных экспериментов, показал, что второй закон термодинамики окажется нарушенным, если только удельная интенсивность излучения не будет пропорциональной пятой степени абсолютной температуры и некоторой пока не определенной функции от произведения длины волны на температуру *. Из этого утверждения он вывел важный «закон смещения», согласно которому произведение- абсолютной температуры черного тела на длину волны, соответствующую- максимуму излучения, постоянно. Другими словами, при увеличении температуры черного тела максимум излучения смещается в сторону меньших длин волн; этим и объясняется название закона. Законы Вина имели огромное значение, и не только потому, что полностью подтверждались на опыте, но и потому, что получили широкое применение в технике (например, при измерениях высоких температур спектроскопическими методами), а главное, потому, что они, как это показало историческое развитие, представляли собой наивысшее достижение классической физики в области законов теплового излучения. И действительно, все дальнейшие попытки найти с помощью методов, классической физики функцию, оставшуюся у Вина неопределенной, приводили всегда к резким противоречиям с экспериментальными данными. Сам Вин впервые в 1896 г. попытался найти эту функцию и дать явное выражение для излучения черного тела **. Но через четыре года лорд Рэлей (Уильям Стретт, 1842—1919) заметил, как отмечали до него уже и другие, * Одно из многих принятых представлений закона Вина имеет вид: и\ = Г5/ (XT), где "■I — удельная интенсивность излучения в интервале длин волн между X и dX; T — абсолютная температура; / — неизвестная функция. ** Соответствующая формула Вина такова: Ux = ci\-be-c*/XT, где С) и с2 — константы; и^ — удельная интенсивность излучения в интервале длин волн между X и X + dX. 335--
что, согласно формуле Вина, с увеличением температуры интенсивность излучения на данной длине волны стремится к пределу; этот вывод опровергался экспериментальными данными, которые показывали, что закон Вина достаточно точен в области малых длин волн и низких температур, но вступает в резкое противоречие с опытом при больших длинах волн и высоких температурах. Раскритиковав закон Вина, Рэлей попытался сам вывести закон, более соответствующий экспериментальным данным, применяя к эфиру и к весомой материи принцип равномерного распределения энергии, установленный Максвеллом и Больцманом. Согласно этому принципу, в системе, состоящей из большого числа частиц, энергия распределяется равномерно по всем степеням свободы данной системы. Следуя этому вполне ортодоксальному принципу, Рэлей получил формулу, согласно которой удельная интенсивность излучения оказалась пропорциональной квадрату частоты и абсолютной температуре *. Получение этой формулы было не только разочарованием, но прямой катастрофой для классической физики. Никогда еще формула, выведенная на основе классических законов, не была в таком кричащем противоречии с результатами опытов. Для малых частот, соответствующих примерно инфракрасному краю спектра, формула достаточно согласовывалась с данными опыта, но по мере увеличения частоты возрастало и несоответствие формулы опыту, доходя под конец до абсурда. Действительно, согласно этой формуле, удельная интенсивность излучения должна всегда возрастать с увеличением частоты; на самом же деле, как мы уже говорили, кривая интенсивности излучения имеет колоколообразную форму. Кроме того, из закона Рэлея следует, что полная энергия, излучаемая черным телом при любой температуре, бесконечна, тогда как закон Стефана, подтвержденный на опыте, утверждает, что она пропорциональна четвертой степени абсолютной температуры. Противоречие станет еще более очевидным, если учесть, что, согласно формуле Рэлея, чтобы нагреть хоть немного любую систему, содержащую эфир, необходимо сообщить ей бесконечно большое количество тепла. Из закона Рэлея вытекает еще один абсурдный вывод. Закон был выведен исходя из максвелловского принципа равномерного распределения энергии. Представим же себе, что в некотором замкнутом резервуаре находятся эфир и материя. Для термодинамического равновесия необходимо, чтобы энергия распределилась между материей и эфиром пропорционально числу их степеней свободы. Но, будучи дискретной, материя содержит конечное число молекул или каких-либо иных элементов и, следовательно, обладает конечным числом степеней свободы, тогда как число степеней свободы эфира, каков бы ни был его объем, бесконечно, так как считается, что эфир обладает непрерывной структурой. Отсюда следует, что при справедливости закона Рэлея вся энергия перешла бы в эфир, а в эфире распределилась бы по наиболее высоким частотам; это и приводит к так называемой «ультрафиолетовой катастрофе». Наконец, как показал Лоренц, даже пропорциональность интенсивности излучения абсолютной температуре также приводит к абсурду. В самом деле, если бы закон пропорциональности был верным, то черное тело, сияющее белым светом при температуре 1200° С, должно быть все еще видимым в темноте при температуре 15° С, т. е. при примерно лишь в пять раз меньшей (если перейти к абсолютной шкале) температуре. Примерно * Формула Рэлея имеет вид uv = —r- v2kT, где uv — удельная интенсивность излучения в интервале частот от v до v + dv; с п к — константы; остальные обозначения имеют обычный смысл. 336
Макс Планк. то же самое должно было бы происходить со всяким телом, обладающим достаточным поглощением. Наконец, формула Рэлея не объясняет той загадки, о которой мы говорили раньше: почему холодное тело, поглощая световое излучение, само не излучает света? Многие физики (Хаген и Рубенс, Друде, Лоренц) до и после появления теории Планка пытались вывести формулы излучения, заменяющие законы классической физики, исходя из моделей осцилляторов или других подходящих моделей. Однако все эти попытки приводили снова к закону Рэлея. Важные исследования были проведены с 1905 по 1909 г. Джемсом Джинсом (поэтому закон Рэлея иногда называют законом Джинса или законом Рэлея— Джинса). Джине попытался решить проблему, применив методы классической статистической механики (см. гл. 9) к стационарным волнам, которые могут существовать в полости. Но и на этом пути он снова пришел к формуле Рэлея. 4. КВАНТЫ. Учитывая все эти тяжелые неудачи теоретиков, Макс Планк, тоже приступивший с 1889 г. к теоретическому изучению излучения черного тела, решил, что гораздо разумнее ограничиться более скромной задачей: вместо того чтобы, исходя из теории, строить формулу излучения, а затем сопоставлять ее с опытом, собрать данные опытов, которых к тому времени было уже достаточно много и которые продолжали все поступать, свести их в одну эмпирическую формулу, а уже затем попытаться ее теоретически осмыслить. В 1899 г. Пашен, а в следующем году Люммер и Прингсгейм установили, что закон Вина достаточно точен для коротких волн, а закон Рэлея — для длинных волн. Исходя из этого, Планк решил найти такую эмпирическую формулу, которая для коротких волн совпадала бы с формулой Вина, а для длинных волн — с формулой Рэлея. В статье, озаглавленной «О поправке к спектральному уравнению Вина» * и представленной в ноябре 1900 г. Берлинской Академии наук, он указал, каким образом можно было бы достичь желаемого результата и получить формулу, согласующуюся с результатами опытов для волн любой длины. С математической точки зрения Планк внес лишь одно существенное изменение в теорию Рэлея: интеграл, который становится бесконечным по мере уменьшения длин волн, он заменил дискретной суммой элементов, сгруппированных так, что эта сумма остается всегда конечной. Если не считать * М. Planck, Uber eine Verbesserung der Wienschen Spektralgleichung, Verhandl. Deutsch. phys. Ges., Bd. 2, 1900, S. 202. 22 Марио Льоцци 337
этой единственной «вольности», в остальном вся работа Планка полностыо- находится в согласии со всеми законами и формализмом классической физики. Найдя эту удачную эмпирическую формулу, Планк, чтобы объяснить ее, должен был приписать физический смысл двум константам, которые в ней появились. Для первой константы это было довольно легко. Но что касается второй, которую Планк назвал элементарным квантом действия, то «после- нескольких недель самого напряженного труда... мрак рассеялся», и ему стало ясно, что эта константа «...либо фиктивная величина, и тогда весь вывод закона излучения был в принципе ложным и представлял собой всего лишь пустую игру в формулы, лишенную смысла, либо же вывод закона излучения опирается на некую физическую реальность, и тогда квант действия должен приобрести фундаментальное значение в физике и означает собой нечто совершенно новое и неслыханное, что должно произвести переворот в нашем физическом мышлении, основывавшемся со времен Лейбница и Ньютона, открывших дифференциальное исчисление, на гипотезе непрерывности всех причинных соотношений». Суть этого действительно неслыханного открытия заключается в допущении, что каждый колеблющийся линейный осциллятор, окруженный* абсолютно поглощающей оболочкой, может излучать энергию только прерывно, квантами, т. е. испуская в эфир порции энергии, равные hv, где- v — собственная частота осциллятора, a h — константа, названная Планком квантом действия и равная, как он нашел на основе экспериментальных данных того времени (1900 г.), 6,548-Ю-27 эрг-сек. Историческая работа, в которой дано это объяснение его эмпирической формулы, называлась «Теория закона распределения энергии нормального спектра» и была- представлена в Берлинскую Академию наук 14 декабря 1900 г. * Полное описание явления излучения требует, однако, еще объяснения механизма распространения «элементов», или «единиц энергии», как их называли в начале века. Здесь имеются две возможности: либо эти элементы энергии после излучения продолжают сохранять свою индивидуальность- и остаются во время распространения сконцентрированными в некоторых участках пространства, либо каждый излучаемый элемент может рассеиваться в пространстве все больше и больше по мере удаления от источника. Первое предположение несовместимо с классической оптикой, основывающейся на волновом распространении светового и теплового излучений. Планк, которому выпала судьба предложить самую революционную физическую теорию нашего времени, вовсе не обладал качествами революционера. У него были консервативные взгляды, а серьезные занятия гуманитарными науками привили ему уважение к традиции и осторожное отношение- к непредвиденным нарушениям непрерывности исторического процесса. Теперь же шла речь о том, чтобы отбросить теорию, которая на протяжении целого века, со времен Юнга и до Максвелла и Герца, не вызывала ни у кого- никаких сомнений, и заменить ее неизвестно чем. Руководствуясь этими соображениями и настроениями, он инстинктивно избрал второе из двух объяснений, так что в первоначальной форме его теория предполагала испу- * Формула Планка такова: где с — скорость света; к—константа, равная RIN (R — постоянная, появляющаяся; в уравнении состояния газов; N — число Авогадро).
екание и поглощение излучения дискретным, в виде квантов, а само излучение — непрерывным. Таким образом, уравнения Максвелла были спасены. Лишь Эйнштейн в 1905 г., о чем мы будем говорить дальше, предложил порвать с классической оптикой и постулировать особую индивидуальность элементов энергии. Но Планк в течение многих лет решительно возражал против этой гипотезы Эйнштейна. В своем докладе на Сольвеевском конгрессе * в 1911 г. Планк писал относительно упомянутой гипотезы световых квантов Эйнштейна: «Когда думаешь о полном опытном подтверждении, которое получила электродинамика Максвелла при исследовании даже самых сложных явлений интерференции, когда думаешь о необычайных трудностях, с которыми придется столкнуться всем теориям при объяснении электрических и магнитных явлений, если они откажутся от этой электродинамики, инстинктивно испытываешь неприязнь ко всякой попытке поколебать ее фундамент. По этой причине мы и далее оставим в стороне гипотезу «световых квантов», тем более что эта гипотеза находится еще в зародышевом состоянии. Будем считать, что все явления, происходящие в пустоте, в точности соответствуют уравнениям Максвелла и не имеют никакого отношения к константе h» **. Но такая позиция вызывала еще больше возражений, и гораздо более серьезных, чем раньше: если излучение, падающее на тело, непрерывно, но может поглощаться только дискретными порциями, где и как накапливается поступающая энергия, прежде чем достигнет величины, необходимой для того, чтобы она могла быть поглощена? Это было серьезным возражением. Ему соответствовали чисто технические возражения, которые сам Планк выдвигал против математического вывода своей формулы, являющейся результатом соединения двух гипотез, противоречащих одна другой, — гипотезы квантов и максвелловской электродинамики непрерывных явлений. Как выйти из этого затруднительного положения? Планк, по-прежнему твердый в своем стремлении спасти от разрушения стройное здание науки, воздвигнутое в XIX веке, отступает еще раз, снова ограничивая революционное значение своей гипотезы. В двух заметках 1911 г., и особенно в своем докладе Сольвеевскому конгрессу в том же году, он излагает новую теорию. Приведя возражения против дискретности поглощения, Планк заявляет: «Перед лицом всех этих трудностей мне кажется, что необходимо отказаться от предположения, будто энергия осциллятора обязательно должна быть кратна элементу энергии е = hv, и принять, что, наоборот, явление поглощения свободного излучения есть по существу непрерывный процесс. Стоя на этой точке зрения, можно сохранить основную идею теории квантов, предположив лишь, что испускание теплового излучения осциллятором с частотой v происходит * Этот первый «симпозиум ученых» (своеобразный частный конгресс) был организован Эрнестом Сольве (1838—1922), известным химиком, который, введя в промышленное производство свой способ получения соды, необычайно разбогател и часть своих средств предназначил для поощрения научных исследований. Председателем конгресса был Лоренц, и в нем принимали участие крупнейшие ученые того времени. Полезно перечислить их: от Германии — В. Нернст, М. Планк, X. Рубенс, А. Зоммерфельд, В. Вин, Э. Варбург; от Англии — Д. Джине, Э. Резерфорд, лорд Рэлей; от Франции — М. Брил- люэн, Мария Кюри, П. Ланжевен, Ж. Перрен, А. Пуанкаре; от Австрии — А. Эйнштейн, Ф. Хазенёрль; от Дании — М. Кнудсен; от Голландии — Г. Камерлинг-Оннес, И. Ван дер Ваальс, не считая президента Г. Лоренца. ** La theorie du rayonnement et les quanta, Rapports et discussions de la reunion tenue a Bruxelles du 30 octobre au 3 novembre 1911. Publies par P. Langevin et M. De Broglie, Paris, 1912, p. 101. 22* 339
дискретно и излучаемая онереия может быть лишь целым кратным, элементарной порции энергии е = hv» *. Получается некая гибридная концепция: испускание излучения дискретно, а само излучение и его поглощение непрерывно — концепция, которая сводит первоначальную теорию почти к чисто техническому средству, к удачному жонглированию формулами. Из дискуссии, последовавшей за докладом Планка, в которой приняли участие Эйнштейн, Лоренц, Пуанкаре, Джине. Ланжевен, Вин, Бриллюэн, Нернст, Кюри, Камерлинг-Оннес и другие, можно, пожалуй, заключить, что новая теория Планка никого не удовлетворила. Наиболее благожелательно настроенные думали, наверное, примерно так, как Зоммерфельд, который в одном из своих выступлений сказал: «Я думаю, что гипотезу квантов испускания, как и начальную гипотезу квантов энергии, нужно рассматривать скорее как форму объяснения, а не как физическую реальность» **. Со своей стороны Зоммерфельд, также стремясь спасти электромагнитную теорию и исходя из того, что универсальная постоянная Планка, входящая в его теорию излучения, является не элементом энергии, а «квантом действия», предложил заменить гипотезу «квантов энергии» новым принципом, на первый взгляд довольно странным, суть которого можно выразить так: время, необходимое материи для того, чтобы получить или отдать некое количество энергии, тем короче, чем больше эта энергия, так что произведение энергии на время определяется константой h. Гипотеза Зоммерфельда, поскольку она, казалось, предлагала выход из этой пропасти неразрешимых противоречий, внимательно обсуждалась крупнейшими учеными того времени, но вызвала столько возражений (в частности, Пуанкаре показал, что принцип Зоммерфельда, желавшего спасти классическую физику, противоречит принципу равенства действия и противодействия), что вскоре была предана забвению. Но одновременно с Зоммерфельдом Планк понял всю важность понятия «кванта действия» и положил его в основу новой теории излучения, опубликованной им в 1911 г. Эта новая теория носит гораздо более общий характер, чем теория «квантов энергии», потому что применима ко всем механическим системам, а не только к осцилляторам, но в случае осцилляторов она сводится к гипотезе «квантов энергии». Новая теория была также более абстрактна, нежели предыдущая, потому что действие (произведение энергии на время) — мало наглядная физическая величина, не подчиняющаяся никакому закону сохранения, и тем не менее оно обладает в новой теории некоторым свойством атомарности. Атомарность действия влечет за собой как следствие особые соотношения между пространством и временем и динамическими явлениями, локализованными в пространстве и времени. Эти соотношения совершенно чужды классической физике и еще более революционны, чем первоначальное понятие «квантов энергии». Определенно Планку на роду было написано вопреки собственному желанию производить перевороты в науке! 5. ТРУДНОСТИ, ВЫЗВАННЫЕ ГИПОТЕЗОЙ КВАНТОВ. Гипотеза кван тов была введена в науку лишь для того, чтобы объяснить единственный частный феномен. Вначале эта гипотеза казалась чуть ли не простым техническим приемом, временным средством, которое дальнейшее развитие теории должно будет отбросить, потому что исторический опыт показывает, что * Там же, р. НО; подчеркнуто в оригинале. ** Там же, р. 129. 340
если одного-единственного эксперимента достаточно, чтобы разрушить какую-либо теорию, то его вовсе не достаточно, чтобы обосновать новую. Но по мере того как гипотеза уточнялась, а ее применение все более расширялось (о чем мы будем говорить впоследствии), в научных кругах стали намечаться два, на первый взгляд противоречивых, явления: с одной стороны, теория завоевывала все большее доверие, а с другой — начинала вызывать все большее беспокойство и критика в ее адрес все усиливалась. В первом десятилетии нашего века особенно остры были два возражения. Первое, как мы уже сказали, было высказано самим Планком. Он вывел формулу излучения, скомбинировав две формулы: одну, основанную на гипотезе о том, что энергия осциллятора меняется квантами, и другую, опирающуюся на электродинамику Максвелла, предполагающую непрерывное изменение энергии. Это же внутреннее противоречие было свойственно всем выдвинутым в то время квантовым теориям, стремившимся описать свойства осциллятора. Как можно совместить в одном и том же умозаключении две прямо противоположные посылки? Только в 1909 г., а еще более полно в 1917 г. Эйнштейну удалось показать, что противоречие между ними лишь кажущееся, поскольку соотношение, выведенное Планком, носит универсальный характер, не зависящий ни от какой физической интерпретации. А .между тем по примеру Планка, а также вследствие не определившегося еще ясно различия в понятиях, физики в своей практике манипулировали одновременно и классическими и квантовыми представлениями, что очень беспокоило теоретиков. Анри Пуанкаре озабоченно предостерегал: «Нет такого утверждения, которое нельзя было бы легко доказать, если основывать доказательство на двух противоречивых предпосылках. Другой важный вопрос был поднят представителями математической физики. До сих пор физика занималась лишь непрерывными величинами, и именно поэтому правомерным было применение дифференциальных уравнений, представляющих собой основу классической теоретической физики. Не подрывает ли введение квантов правомерность применения дифференциальных уравнений? И не должна ли новая физика подумать над тем, чтобы заменить их уравнениями в конечных разностях или же изобрести новый способ математического выражения?)} * Этой озабоченности Пуанкаре созвучна точка зрения Эйнштейна. На Сольвеевском конгрессе в 1911 г. он говорил: «Мы все согласны с тем, что теория квантов в своем нынешнем виде может иметь полезное применение, но на самом деле она не представляет собой настоящей теории в обычном смысле этого слова, во всяком случае такой теории, которую можно было бы последовательно развивать дальше. С другой стороны, хорошо известно, что классическую динамику, выведенную из уравнений Лагранжа и Гамильтона, нельзя больше рассматривать как достаточно прочную базу для построения удовлетворительной модели, объясняющей все физические явления» **. Настроение крупнейших физиков того времени лучше всех выразил на этом конгрессе М. Бриллюэн, заявив на заключительном заседании следующее: «Я хотел бы, подводя итог, выразить то впечатление, которое произвели на меня зачитанные доклады и еще больше, пожалуй, последовавшие затем * A. Poincare, Dernieres pensees, Paris, 1913. ** La theorie du rayonnement et les quanta, цит. выше, р. 436. 341
дискуссии. Возможно, мое заключение покажется наиболее молодым из нас, слишком робким, но и в таком виде оно кажется мне уже достаточно значительным. Теперь уже представляется очевидным, что в наши физические и химические представления необходимо ввести дискретность, некий изменяющийся скачкообразно элемент, о котором мы не имели никакого представления несколько лет назад. Каким образом нужно ввести его? Это мне уже не так ясно. В том ли первоначальном виде, в каком предложил это Планк, несмотря на все вызываемые этим трудности, или же в ином виде? Так ли, как предлагал Зоммерфелъд, или же в какой-то иной форме, которую еще предстоит найти? Я не знаю. Каждый из этих подходов хорош в одних случаях и хуже в других. Может быть, нужно будет пойти еще дальше и отвергнуть сами основы электродинамики и классической механики, вместо того чтобы ограничиваться приспособлением нового понятия дискретности к старой механике? В этом я несколько сомневаюсь. Как бы важны ни были те явления, которые привлекают наше внимание, я не могу забыть того огромного количества физических явлений, которые так хорошо согласуются с законами классической механики и электродинамики. Я не хочу отказываться от этих завоеванных наукой результатов, хотя и рискую показаться некоторым нашим коллегам слишком большим консерватором». При наличии стольких возражений, при таком замешательстве и неуверенности, вызванных теорией квантов даже среди самых передовых умов, читателю, наверное, не терпится узнать, какое же сенсационное событие заставило принять эту теорию. На наш взгляд, такого сенсационного события вообще не было. Нельзя сказать, что какой-то определенный факт явился решающим для победы этой теории. Своей удачей она обязана собственной плодотворности, т. е. способности предвидеть новые явления и объяснять с их помощью другие, кажущиеся на первый взгляд весьма далекими друг от друга. Признание физической реальности квантов было медленным и постепенным процессом, совершавшимся по мере того, как все новые явления получали свое объяснение в рамках этой теории. Мы об этом скажем немного дальше. Поэтому нас не должно удивлять то, что даже в первые годы после первой мировой войны многие физики благоразумно не высказывались относительно приемлемости этой теории, а другие, также пользовавшиеся широкой известностью, не желали вообще ее признавать. Например, Баркла (1877—1944), проведший серьезное исследование спектра рентгеновских лучей, получая Нобелевскую премию по физике в 1918 г., заявил, что из его опытов с рентгеновскими лучами следует, что излучение и поглощение непрерывны и что только атомы в некоторых исключительных условиях испускают свет квантами. Этим медленным внедрением квантовой теории, без сомнения, объясняется также и тот исторический факт, что Нобелевская премия по физике была присуждена Планку лишь в 1923 г., когда эта теория имела уже такое широкое распространение, что (даже оставляя в стороне ее физическую достоверность) она стала исключительно мощным методом эвристического исследования. Впрочем, сам Планк уверовал в квантовую теорию во всей ее полноте, т. е. с признанием квантового характера излучения, распространения и поглощения, лишь после того, как она повсеместно имела уже большой успех. Страх разрушить восхитительное здание, воздвигнутое классической физикой, оказался преувеличенным, потому что новая теория сама нашла удобные способы примирения, некий modus vivendi, который постепенно все приняли. Чрезвычайно малая величина постоянной Планка h приводит к тому, что в тех явлениях, в которых присутствует большое количество квантов, дискретность почти исчезает, уступая место кажущейся непрерывности, подобно тому как большая куча мелкого песка кажется непрерывной 342
•и цельной. Другими словами, большинство законов классической физики сохраняет свое значение, если их рассматривать как статистическое описание различных явлений. Такой ценой, принятой, впрочем, Лоренцем еще до квантовой теории, физика смогла сохранить почти нетронутыми основные законы, найденные за последние три века. ПОСТОЯННАЯ АВОГАДРО 6. ПЕРВЫЕ ОПРЕДЕЛЕНИЯ ПОСТОЯННОЙ АВОГАДРО. Известно, какое •большое значение имела для молекулярной теории и вообще для теоретической химии гипотеза или, как иногда говорят, закон Авогадро: в одинаковых объемах всех газов при одинаковом давлении и одинаковой температуре содержится одинаковое число молекул. Из этого следует, что грамм-молекула любого вещества (т. е. число граммов, равное его молекулярному весу) содержит всегда одно и то же число молекул N, названное числом, или постоянной, Авогадро. Таким образом, число N есть универсальная постоянная, относящаяся к любому веществу. Одной из самых трудных проблем химии и физики второй половины XIX века было определение этого числа N. В 1866 г. Йозеф Лошмидт (1821—1895) попытался впервые вычислить число N, исходя из кинетической теории газов. Как известно, эта теория объясняет давление газа на стенки резервуара ударами молекул газа о стенки (см. гл. 9). Из этого следует, что при прочих равных условиях давление газа будет тем сильнее, чем больше число ударов и, следовательно, чем больше число молекул, содержащихся в резервуаре. Таким образом, существует ■соотношение между числом Авогадро и давлением, производимым определенной массой газа при данной температуре; этим соотношением и воспользовался Лошмидт при первом вычислении числа N, конечно, пока лишь « первом приближении. Семь лет спустя эту константу вычислил более точно Ван дер Ваальс, знаменитая формула которого лучше описывала поведение газа, заметно отличающееся, особенно при высоких давлениях, от той идеальной схемы, которая описывается законами Бойля — Мариотта и Гей-Люссака. Ван дер Ваальс нашел, что величина N должна быть больше 4,5 -1023, а последующая более точная оценка дала для числа N приблизительное значение 6,2 -1023. Теория Ван дер Ваальса и вытекающие из нее следствия вызвали всеобщее восхищение, но из-за большого числа предположений, лежавших в основе как теории, так и расчета числа N, полученному значению числа Авогадро не особенно доверяли. Распространилось, однако, убеждение, психологически очень важное, что надежда получить рано или поздно достоверную и точную величину N вовсе не так уже фантастична. 7. О ГОЛУБОМ ЦВЕТЕ НЕБА. Известно, что пучок света, распространяющийся в воздухе, становится видимым благодаря рассеянию на частицах пыли в атмосфере. На каждой частице свет дифрагирует тем сильнее, чем меньше длина волны падающего света. Из этого следует, что в пучке белого света дифракция будет наиболее заметной для более преломляемых лучей. Уже в 1871 г., а в уточненной форме в 1899 г. Рэлей выдвинул предположение, что молекулы воздуха ведут себя по отношению к падающему на них пучку света точно так же, как частицы пыли, содержащиеся в атмосфере. Каждая молекула воздуха становится дифрагирующим центром, и упомянутая выше характерная для этого явления зависимость от длины волны объясняет, согласно Рэлею, голубой цвет неба. Основываясь на теории упругого 343
эфира Френеля, Рэлей нашел отношение интенсивности прямого солнечного света к интенсивности рассеянного небом света, вытекающее из его гипотезы. В формулу Рэлея входит число N, поскольку очевидно, что это отношение должно быть тем больше, чем меньше центров дифракции, т. е. чем меньше число молекул газа, содержащихся в определенном объеме атмосферного воздуха; поэтому число N и входит в формулу. Опытную проверку формулы Рэлея, найденной другим путем также Эйнштейном, нельзя было провести немедленно. Для этого нужны были ученые-альпинисты, ибо наблюдения приходилось проводить на большой высоте, при очень ясном небе, чтобы устранить помехи, вызываемые атмосферной пылью и каплями воды в облаках. Первые экспериментальные данные были получены лордом Кельвином (Уильямом Томсоном, 1824—1907) на основании старых опытов Квинтино Селлы, которые последний провел на вершине Монте Роза, сопоставляя одновременные значения яркости Солнца, стоящего на высоте 40° над горизонтом, и яркости неба в зените. Лорд Кельвин определил, что N должно быть не меньше 3,0 -1023 и не больше 15 -1023. В 1910 г. Бауэр и Мулэн с помощью специальной аппаратуры (но при плохой погоде) нашли для N значение между 4,5-1023 и 7,5 -1023. Этот опыт был повторен с той же самой аппаратурой на Монте Роза Леоном Бриллюэном, который получил для величины N приблизительно 6,0 -1023. 8. ВЫЧИСЛЕНИЕ ВЕЛИЧИНЫ JV ПО ДАННЫМ АТОМНОЙ ФИЗИКИ. Другие способы вычисления величины N были подсказаны в конце прошлого века исследованиями субатомных процессов. В гл. 11 мы уже говорили, что величина заряда электрона равна заряду одновалентного иона при электролизе и что из этого вытекает представление о дискретной структуре электричества, как бы составленного из элементарных зарядов, имеющих величину е. Но элементарный заряд связан с числом Авогадро простым соотношением Ne—F, носящим общеупотребительное, но неточное название соотношения Гельмгольца. Здесь F — количество электричества, приходящееся на грамм-молекулу вещества при электролизе. Согласно измерениям, произведенным в конце прошлого века, F = 96 550 кулон. Эта формула применялась уже в 1874 г. Стони при вычислении элементарного электрического заряда, для которого он получил величину в 10 раз меньше истинной из-за неточного знания числа N. Но начиная с конца XIX века формулу Гельмгольца стали применять для противоположных целей: не для вычисления е, предполагая N известным, а для расчета N по измеренному значению е. Это новое применение формулы, как можно понять, объяснялось тем, что непосредственное измерение е с помощью новых методов было гораздо более надежным, чем косвенные методы нахождения величины N. Таким образом, каждое новое измерение величины е давало соответствующую величину N. Эти значения N согласовывались между собой по крайней мере по порядку величины и находились в согласии со значениями, ранее полученными другим путем. В самом начале XX века изучение радиоактивных явлений дало более прямые способы вычисления N. Отождествив а-частицы с ионами гелия, получающимися при атомных превращениях, согласно смелому толкованию Резерфорда, о котором мы будем говорить в следующей главе, Крукс в 1903 г. сконструировал спинтарископ, получивший широкое применение. На дно небольшого цилиндра помещалось немного радиоактивного вещества примерно на расстоянии 1 см от флуоресцентного экрана, который можно было наблюдать через увеличительное стекло. На этом экране можно было видеть частые вспышки, что напоминало темное небо, на котором неожиданно загораются и потухают яркие звезды. Крукс объяснял эти вспышки столкновениями а-частиц с экраном. В 1908 г. Регенер указал, что спинтарископ можно 344
применять для измерения молекулярных величин. Он подсчитал количество вспышек в определенном телесном угле для определенного количества полония и из этого нашел полное число а-частиц, испускаемых полонием в течение 1 сек. Затем он измерил ионный ток насыщения в воздухе, создаваемый а-частицами от того же количества полония. Еще раньше Резер- форд подсчитал, что он в 94 000 раз больше заряда, переносимого этими частицами. После этого простой арифметический подсчет дает величину заряда одной а-частицы. Этот заряд оказался вдвое больше элементарного заряда, как и должно было быть. По величине элементарного заряда с помощью соотношения Гельмгольца получается число N. Но, несмотря на то что все эти измерения находились в согласии с ранее известными, оставалось еще некоторое сомнение в правильности истолкования Круксом причины упомянутых вспышек: можем ли мы быть уверены в том, что каждая вспышка вызывается именно одной а-частицей и что каждая а-частица вызывает вспышку, так что мы можем отождествлять число а-частиц, испущенных исследуемым радиоактивным препаратом, с зарегистрированным числом светящихся точек на экране? Чтобы устранить это сомнение, Резерфорд и Гейгер в том же году предложили остроумнейшее приспособление, в котором летящие а-частицы попадают в ионизационную камеру только поодиночке, создаваемые ими ионы попадают на обкладку конденсатора и вызывают на соединенном с ним электрометре четко различимые импульсы, неравномерно распределенные во времени (например, от 2 до 5 в минуту). Число импульсов дает число а-частиц, которые, таким образом, легко сосчитать. Зная это число, можно различными способами, которые и были испробованы в 1908—1910 гг., найти число N. Можно собрать а-частицы в цилиндре Фарадея, измерить их заряд и, разделив его на число частиц, получить заряд каждой из них; половина его дает нам элементарный заряд, по которому уже определяется число N. Резерфорд и Гейгер нашли таким образом значение N = 6,2 -1023. Можно измерить объем, занимаемый известным числом молекул. Трудность состоит в том, чтобы собрать все а-частицы и не допустить проникновения других газов. Это удалось сделать в том же 1908 г. Джемсу Дьюару (1842—1923), более известному благодаря «сосудам Дыоара», получившим затем в обиходе название «термосов». Он определил, что 1 г радия в состоянии радиоактивного равновесия испускает за год 164 мм3 гелия в нормальных условиях. По этим данным легко получить число TV = 6,0-1023. Этот метод измерения был использован, правда с некоторыми усовершенствованиями, Болтвудом и Резерфордом в 1911 г., а также Кюри и Дебьерном в том же году. Полученные ими значения N совпадали с найденными Дьюа- ром. Если внимательно вглядеться во все эти методы нахождения числа N, то видно, что все они опирались на гипотезы, которые сейчас уже общеприняты, но в то время были предметом жарких научных споров. В самом деле, что стало бы со всей этой массой поистине восхитительных экспериментальных исследований, со всеми этими остроумными приспособлениями, со всеми этими тонкими методами, если бы было опровергнуто существование элементарного заряда или опровергнута теория атомного распада? Поэтому вполне оправданна та сдержанность, с которой все эти результаты были встречены физиками того времени. Следует упомянуть еще об одном имевшем огромное историческое значение факте, который нужно иметь в виду, чтобы лучше понять научное развитие в первой четверти нашего века: в области радиоактивных явлений огромное большинство физиков должно было верить in verba magistri (слову учителя), потому что лишь очень немногие научные лаборатории мира располагали тогда оборудованием, необходимым для изучения радиоактивности. В первой 345
четверти нашего века такие лаборатории были лишь в Кембридже, Манчестере, Париже, Вене и Берлине. 9. БРОУНОВСКОЕ ДВИЖЕНИЕ. Все описанные методы хорошо подтверждались исследованиями, проводившимися в совсем другом направлении и имевшими то преимущество, что они обладали гораздо большей наглядностью, поскольку относились к явлению, исследуемому уже в течение почти столетия, и опирались на прочную основу классической теории. Мы имеем в виду броуновское движение. В 1828 г. английский ботаник Роберт Броун (1773-—-1858) заметил, что даже в самый простой микроскоп видно, как взвешенные в воде мельчайшие частицы находятся в непрерывном движении — удаляются, приближаются, поднимаются, опускаются, снова поднимаются,— движении очень быстром, неупорядоченном, непрестанном, буквально в вечном движении. Это явление наблюдал также Спалланцани, но связывал его с жизненными процессами, тогда как Броун признавал, что это вечное движение свойственно неодушевленным частичкам. Сначала физики не придали большого значения этому явлению, даже те, кто сам с удивлением наблюдал эти частицы и подробно их описывал. Одни говорили, что это явление объясняется дрожанием опоры, на которой находится препарат; другие — что оно аналогично движению пылинок, которое наблюдается в атмосфере, когда на них падает луч света, и которое, как было известно, вызывается движением воздуха. Но во второй половине прошлого века по мере накопления наблюдений гакая уверенность в интерпретации этого явления уступила место более критическим размышлениям. Наиболее внимательные исследователи (сам Броун, Гуи, Кантони, Экснер, Винер) установили, что движение каждой частицы совершенно не зависит от соседних частиц, что оно действительно безостановочно, что какие бы меры ни принимались для соблюдения точного механического и термического равновесия раствора, движение проявляется все равно одинаковым образом, что природа или яркость применяющегося света никак не влияет на движение частиц, как не влияет на него и характер этих взвешенных частиц, а влияет лишь их масса, причем более мелкие частицы движутся быстрее. В 1863 г. Отто Винер, подведя итог всем накопленным наблюдениям, лришел к выводу, что источником этого движения являются не сами взвешенные частицы и не какие-либо внешние по отношению к жидкости причины, а его следует объяснять внутренними движениями, присущими жидкости. Иными словами, броуновское движение обусловлено столкновениями молекул жидкости со взвешенными в ней частицами. По правде говоря, заключения Винера в том виде, в каком они появились, были очень путаными и усложненными из-за введения понятия «атомов эфира» помимо атомов материи. Но в 1876 г. Рамсей, а в 1877 г. Дельсоль, Карбонель и Тисьон, и особенно в 1888 г. Гуи, ясно показали тепловую природу броуновского движения. «При большой площади,— писали Дельсоль и Карбонель,— удары молекул, являющиеся причиной давления, не вызывают никакого сотрясения подвешенного тела, потому что они в совокупности создают равномерное давление на тело во всех направлениях. Но если площадь недостаточна, чтобы скомпенсировать неравномерность, нужно учесть неравенство давлений и их непрерывное изменение от точки к точке. Закон больших чисел не сводит теперь эффект соударений к среднему равномерному давлению, их равнодействующая уже не будет равна нулю, а будет непрерывно изменять свое направление и свою величину». 346
Если принять это объяснение, то явление теплового движения жидкостей, постулируемое кинетической теорией, можно сказать, представляется доказанным ad oculos (наглядно). Подобно тому как мы, не различая волн в морской дали, тем не менее объясняем качание лодки на горизонте волнами, точно так же, не видя движения молекул, мы заключаем о нем по движению взвешенных в жидкости частиц. Это объяснение броуновского движения имеет значение не только как подтверждение кинетической теории, оно влечет за собой также важные теоретические последствия. Если мы хотим придерживаться принципа сохранения энергии, необходимо принять, что каждое изменение скорости взвешенной частицы должно сопровождаться изменением температуры в непосредственной окрестности этой частицы: эта температура возрастает, если скорость частицы уменьшается, и уменьшается, если скорость частицы увеличивается. Таким образом, термическое равновесие жидкости представляет собой статистическое равновесие. Еще более существенное наблюдение сделал Гуи в 1888 г.: броуновское движение, строго говоря, не подчиняется второму началу термодинамики. В самом деле, когда взвешенная частица спонтанно поднимается в жидкости, то часть тепла окружающей ее среды превращается в механическую работу, так что неверно, будто такое превращение не может происходить спонтанно, как то утверждает второе начало термодинамики. Проще говоря, взвешенная в жидкости частица самопроизвольно опускается и поднимается, и неверно утверждение второго начала, что, если некое явление происходит самопроизвольно в одном направлении, оно не может самопроизвольно происходить в обратном направлении. Наблюдения, однако, показали, что поднятие частицы происходит тем реже, т. е. тем менее оно вероятно, чем тяжелее частица. Для частиц материи обычных размеров эта вероятность практически равна нулю. Таким образом, второй закон термодинамики становится законом вероятности, а не законом необходимости (см. гл. 9). Статистическое понимание второго закона термодинамики, как известно, особенно отстаивали Клаузиус, Максвелл, Больцман, Гиббс. Но их объяснение основывалось на мысленных экспериментах (как, например, «демон» Максвелла), исходивших из постулата о реальном существовании молекул. Никакой чувственный опыт не подтверждал этой статистической интерпретации. Достаточно было отрицать существование молекул, как это делала, например, школа энергетиков, процветавшая под руководством Маха и Оствальда как раз во времена Гуи, чтобы второе начало термодинамики стало законом необходимости. Но после открытия броуновского движения строгая интерпретация второго начала становилась уже невозможной: здесь налицо был реальный опыт, который показывал независимо от какой бы то ни было молекулярной теории, что второй закон термодинамики постоянно нарушается в природе, что вечный двигатель второго рода не только не исключен, но постоянно осуществляется прямо на наших глазах. Поэтому в конце прошлого века исследование броуновского движения приобрело огромное теоретическое значение и привлекло внимание многих физиков-теоретиков, и в частности Эйнштейна (1905 г.). Начиная с самых первых физических исследований броуновского движения, делались попытки определить среднюю скорость взвешенных частиц. Однако полученные оценки содержали грубые ошибки, так как траектория частицы столь сложна, что ее невозможно проследить: средняя скорость сильно меняется по величине и направлению, не стремясь ни к какому определенному пределу с увеличением длительности времени наблюдения. Невозможно определить касательную к траектории в какой-либо точке, потому что траектория частицы напоминает не гладкую кривую, 347
Горизонтальная проекция (в увеличенном виде) последовательных положений, занимаемых через каждые 30 сек тремя частицами камеди диаметром чуть больше 1 мк. (J. Р е г г i п, Les atomes, 1920.) а график какой-то функции, не имеющей производной. Совсем недавно (в 1950 г.) Уго Кассина отметил сходство между кривой Пеано и траекториями броуновского движения. Эйнштейн убедился в тщетности попыток определить среднюю скорость, не поддающуюся измерению, и принял за характеристику движения смещение взвешенной частицы, т. е. отрезок, соединяющий исходную точку с конечной, в которую перемещается частица за определенный промежуток времени. Ему пришла также в голову удачная мысль применить к броуновскому движению ту же гипотезу, которую Максвелл положил в основу расчета распределения скоростей молекул газа, т. е. любопытный постулат, который может показаться внутренне противоречивым: броуновское движение совершенно нерегулярно. Если принять этот постулат, то к броуновскому движению можно применить те же рассуждения, которые использовал Максвелл при изучении скоростей молекул (см. гл. 9), и прийти вместе с Эйнштейном к заключению, что в суспензии мельчайших частиц (или в эмульсии) так же, как в растворе, наблюдается диффузия с вполне определенным коэффициентом диффузии, зависящим от температуры эмульсии, числа Авогадро, размера частиц эмульсии (предполагаемых равными между собой) и вязкости жидкости. Отсюда следует, что если можно измерить все другие величины, то по данной Эйнштейном формуле можно непосредственно вычислить величину N. Это легче сказать, чем сделать; трудности, которые нужно преодолеть при этих экспериментах, действительно огромны. Первые опыты не дали убедительного результата. Более того, данные киносъемки броуновского движения (первый случай использования киносъемки при изучении физических явлений), произведенной в 1908 г. В. Анри, казалось бы, противоречили теории Эйнштейна и привели многих нетерпеливых физиков к заключению, что в этой теории, должно быть, неявно принята какая-то неверная предпосылка. Но в том же году Ж. Перрен, ученый, обладавший редким даром экспериментатора, взялся за ее проверку, избрав очень удачный метод исследования. И действительно, ему удалось, следуя Эйнштейну, вычислить N, подойдя к изучению броуновского движения совсем с другой стороны. Перрен начал с проверки основной гипотезы теории Эйнштейна, т. е. предположения о совершенной нерегулярности движения. Он наблюдал в освещенной камере последовательные положения одной и той же частицы эмульсии через равные промежутки времени. Для примера на помещаемых здесь рисунках отмечены положения, которые последовательно через каждые 30 сек занимала частичка камеди диаметром чуть больше одного микрона. Разумеется, если бы отметки делались через каждую секунду, то каждый отрезок фигуры был бы заменен ломаной из 30 отрезков, что дает нам представление о поразительной запутанности реальных траекторий частиц. Если 348
Еолыттое число перемещений одной частицы камеди, полученных тем же способом, как и на предыдущем рисунке. (J. Рег- г i n, Les atomes, 1920.) движение совершенно нерегулярно, то проекции этих •отрезков на какую-либо горизонтальную ось должны располагаться вокруг их середины по случайному закону, выражаемому известной математической формулой. Полученные по этой формуле значения поразительно совпадали с результатами экспериментов. Ланжевен предложил более простой способ проверки совершенной нерегулярности броуновского движения, применив метод параллельного переноса наблюдаемых смещений так, чтобы начала всех смещений находились в одной точке. Если движение действительно совершенно нерегулярно, т. е. подчиняется законам случайности, то концы смещений, перенесенных так, чтобы их начала совпали, должны расположиться вокруг их общего центра, как располагаются при стрельбе попадания пуль вокруг центра мишени. Произведя такое геометрическое построение на основании 500 наблюдений, проводившихся с интервалом в 30 сек, Перрен получил картину, воспроизведенную на рисунке на стр. 350. Разве, взглянув на этот рисунок, читатель не подумал сразу же, что перед ним стрелковая мишень, продырявленная пулями целого батальона солдат? Проверив основной постулат, Перрен и его сотрудники провели семь серий измерений диффузии эмульсий, изменяя различным образом условия опыта. Подстановка полученных результатов в формулу Эйнштейна дала в качестве наиболее вероятного значения N величину 6,85-Ю23. Этой проверке, как мы уже говорили, предшествовала другая аналогичная работа Перрена. Учитывая, что Вант-Гофф^распространил на разбавленные растворы законы газов, Перрен пришел к следующему заключению: {(Молекула сахара, содержащая 45 атомов, и молекула сульфата хинина, содержащая свыше 100 атомов, играет в растворе не большую и не меньшую роль, чем какая-нибудь молекула воды, содержащая всего лишь 3 атома. А раз так, разве нельзя предположить, что не существует никакого предельного размера атомов, для которого справедливы эти законы? Разве нельзя предположить, что даже видимые частицы и те подчиняются этим законам, так что частица, подверженная броуновскому движению, играет не большую и не меньшую роль, чем обычная молекула в процессе соударения со стенками сосуда? Короче говоря, разве нельзя предположить, что законы газов применимы также и к эмульсиям, состоящим из видимых частиц?» * Перрен решил, что истинность этой гипотезы проще всего проверить, исследовав распределение частиц эмульсии по высоте. Если законы газов * Jean Perrin, Les atomes, Paris, 1920, p. 128—129 (первое издание вышло в 1913 г.). 349
Распределение конечных точек горизонтальных смещений частицы камеди, перенесенных параллельно самим себе так, чтобы начала всех смещений) находились в центре окружности, (J.Perrin, Les atomes, 1920). действительно применимы к эмульсиям, то, подобно тому как число молекул воздуха убывает с высотой, число частиц эмульсин- должно также уменьшаться с высотой. Известно, что с высотой* воздух становится более разреженным, потому что верхние слои воздуха давят своей тяжестью на- нижние (см. гл. 5). Полагая, что разница между давлениями на двух границах горизонтального слоя воздуха обусловлена весом этого слоя, Лаплас путем простейшего подсчета вывел закон зависимости плотности атмосферы от высоты и вообще закон распределения плотности произвольного газа, подверженного одной лишь силе тяжести. Закон Лапласа носит экспоненциальный характер и утверждает, по существу, что одинаковой разности уровней соответствует одинаковая степень разрежения, пропорциональная молекулярному весу рассматриваемого газа. Например, для кислорода при 0° С плотность уменьшается вдвое при подъеме на каждые 5 км, а для водорода, чтобы получить такое же уменьшение плотности, подъем должен быть в 16 раз большим, потому что грамм-молекула водорода в 16 раз легче грамм-молекулы кислорода. Если на эмульсии распространяются те же законы, что и на газы, то распределение частиц по высоте должно подчиняться закону Лапласа (с соответствующими изменениями). А именно, если все частицы эмульсии одинаковы, как это имеет место для молекул, то «грамм-молекула частиц» получится умножением числа Авогадро на массу одной частицы. Аналогом плотности газа будет насыщенность эмульсии частицами, т. е. количество частиц, содержащихся в заданном объеме. Если опыт подтверждает, что эмульсия ведет себя подобно газу, то применение к ней формулы Лапласа позволяет найти число N по данным измерений других характерных величин. Трудности, возникающие при проведении таких опытов, очевидны: выбрав подходящую эмульсию (Перрен после нескольких проб остановился на эмульсии камеди или древесной смолы), нужно добиться, чтобы все частицы, имея микроскопические размеры (диаметр меньше полмикрона), были одинаковой величины; нужно далее определить их плотность и массу и произвести микроскопическое исследование распределения частиц по уровням в пределах десятой доли миллиметра, подсчитав количество частиц на различных уровнях. Доказательством того, что совершенство и точность опытов Перрена вполне соответствовали трудностям стоявших перед ним задач, служит совпадение результатов различных серий измерений, проведенных как самим Перреном, так и его сотрудниками. Результаты исследования эмульсий показали, что частицы распределяются в соответствии с предсказаниями теории, и по данным опытов была получена для N средняя величина 6,82 -1023, с возможной ошибкой, которая по оценке Перрена составляла 3%, 350
10. ВЫВОД ЧИСЛА АВОГАДРО ИЗ ТЕОРИИ КВАНТОВ. Из всего сказан ного ясно, какое значение для науки в самом начале нашего века имело число N, причем не только для теоретической химии, но и для наиболее новых разделов физики того времени. Достаточно указать, например, что каждое уточнение значения величины N влечет за собой изменение молекулярных величин, и в частности изменение величины элементарного заряда, связанного с N через уравнение Гельмгольца. Вот почему немаловажное значение имеет тот факт, что величину N можно подсчитать по формуле излучения черного тела, предложенной Планком. Но этот первый успех теории квантов, конечно, гораздо яснее сейчас, чем это было в те времена. Тогда, в 1901 г., когда этот подсчет был проделан Планком, имелись лишь немногочисленные и неточные данные о величине N. Определение числа N не могло ни поднять авторитет квантовой теории, потому что не было известно точное значение N, с которым можно было бы сопоставить вновь полученное, ни придать большую достоверность ранее полученным значениям N, потому что сомнению подвергалась как раз сама теория, с помощью которой проводился расчет. Этими обстоятельствами и объясняется тот факт, что в первое десятилетие нашего века расчету Лг, проведенному Планком, не придавали большого значения. Мы же, чтобы подчеркнуть значение этого первого успеха квантовой теории, слегка нарушили хронологическую последовательность изложения. На первый взгляд может показаться парадоксальным, что закон излучения, т. е. закон, относящийся к явлению, наблюдающемуся при отсутствии всякой материи, содержит в себе величины, относящиеся к структуре материи. Этот кажущийся парадокс вытекает из того факта, что в теории Планка фигурируют законы статистической термодинамики, в которые входит коэффициент, не зависящий от системы и имеющий, следовательно, такое же значение и для газов. Вот почему в формулу входит число N, как это видно из примечания на стр. 338. В действительности Планк пользовался не только этой формулой, но и законом Стефана и законом смещения Вина (которые, впрочем, легко выводятся из его формулы излучения) и получил для N величину 6,16 -Ю23, в прекрасном соответствии с наиболее достоверным в то время значением, найденным Ван дер Ваальсом. Чтобы иметь возможность лучше судить о ценности полученных результатов, закончим этот параграф указанием на то, что один из лучших известных сегодня способов определения N основан на данных по дифракции рентгеновских лучей и что принятое в настоящий момент значение N равно 6,02 -1023. Возможная ошибка не превышает одной тысячной, т. е., по образному выражению Милликена, постоянная Авогадро известна сегодня с большей точностью, нежели можно знать в какой-либо определенный момент количество жителей в таком городе, как Нью-Йорк. УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ 11. ЗАКОН ДЮЛОНГА И ПТИ. Расширение области применения квантовой теории началось в 1905 г. благодаря работам Эйнштейна. Он рассмотрел вопрос о молекулярной удельной теплоемкости произвольного вещества в твердом состоянии. Еще в 1819 г. Дюлонг и Пти экспериментально установили следующий закон: для любого элемента в твердом состоянии произведение удельной теплоемкости на атомный вес (называемое атомной теплоемкостью) постоянно. 351
Кинетическая теория дала этому закону другую эквивалентную формулировку: количество тепла (называемое молекулярной теплоемкостью), необходимое для того, чтобы температура одной грамм-молекулы любого элемента в твердом состоянии повысилась на один градус Цельсия, составляет около шести калорий. Но поскольку грамм-молекула любого вещества содержит всегда одно и то же число молекул, то этот закон в сущности означает, что для повышения температуры на один градус каждой молекуле любого твердого элемента необходимо сообщить одинаковое количество тепла. Этот закон был проверен для целого ряда элементов при обычных температурах, так что часто даже ие- пользовался химиками в некоторых сомнительных случаях для определения молекулярного веса некоторых элементов. Но прошло едва десять лет с момента открытия этого закона, как было обнаружено, что закон Дюлонга и Пти не выполняется для некоторых твердых тел, обычно отличающихся особой твердостью, как, например, алмаз. Кроме того, уже в 1875 г. Вебер, проводя опыты с бором, углеродом и кремнием, показал, что для них молекулярная теплоемкость растет с температурой до предельной величины, которая как раз дается законом Дюлонга и Пти. Для алмаза при —50° С он нашел молекулярную удельную теплоемкость равной 0,76. На протяжении XIX века все попытки объяснить такое поведение некоторых твердых тел оказывались тщетными. Более того, можно было легко показать, что закон Дюлонга и Пти есть почти прямое следствие теоремы о равномерном распределении энергии по степеням свободы — как мы помним, одного из краеугольных камней классической статистической механики. Но формула Планка для излучения черного тела основывается как раз на отрицании теоремы о равномерном распределении энергии. Это и натолкнуло Эйнштейна на мысль попытаться применить теорию Планка также к расчету молекулярной теплоемкости. Можно предположить, что в твердом теле атомы в результате их взаимодействия удерживаются вблизи некоторых определенных положений, вокруг которых они могут колебаться, причем энергия этих колебаний и определяет теплоемкость тела. Если принять, что эта энергия может меняться непрерывно, то, согласно законам термодинамики, как показал Больцман, отсюда следует закон Дюлонга и Пти, который, как мы уже видели, противоречит опытным данным. Но если предположить, что энергия колеблющегося атома может меняться только дискретными скачками, пропорциональными частоте колебаний, тогда в расчеты классической механики и термодинамики следует внести изменения. Так, если молекула газа сталкивается с атомом, колеблющимся вокруг своей точки равновесия, она не может отдать ему или получить от него столько энергии, сколько предусмотрено правилами классической механики; она может отдать или получить лишь энергию, кратную световому кванту. Из этого следует, что, если атом в соответствии с законом распределения Максвелла обладает энергией, меньшей энергии кванта, он останется в состоянии покоя и энергия не будет распределяться равномерно. Энергия кванта довольно мала, так что для большинства твердых тел при обычной температуре тепловое возбуждение может сообщить такую энергию; в этом случае будет выполняться закон равномерного распределения энергии и, следовательно, будет справедлив закон Дюлонга и Пти. Но для тел очень твердых, в которых связь атомов очень сильна, квант колебания слишком велик, чтобы тепловое возбуждение могло сообщить такую энергию всем атомам. В этих случаях равномерного распределения по степеням свободы нет, что и вызывает отклонение от закона Дюлонга и Пти. Точно так же при низких температурах для всех тел тепловое возбуждение недостаточно, чтобы сообщить каждому атому соответствующий квант колебания. Иными словами, теория Эйнштейна истолковывает несоответствие закона Дюлонга и Пти данным опыта при 352
низких температурах и у слишком твердых тел при обычной температуре «замораживанием» степеней свободы молекул, обусловленным передачей энергии в форме квантов. Основываясь на этой концепции, Эйнштейн с помощью простого расчета вывел формулу для атомной теплоемкости. В формуле Эйнштейна атомная теплоемкость стремится к нулю при приближении температуры к абсолютному нулю и по мере возрастания температуры? приближается к величине 6 кал'град. Таким образом, значение константы Дюлонга и Пти, равное 6 калЫрад, есть асимптотическая величина, к которой стремится атомная теплоемкость всех элементов. Объяснение, данное Эйнштейном, в некотором смысле обобщало правило Дюлонга и Пти, которому, таким образом, оказались подчиняющимися все элементы без исключения, но лишь при различных для каждого элемента температурах. Значительный вклад в экспериментальную проверку формулы Эйнштейна внесли В. Нернст и его ученики, которые в течение нескольких лет занимались этими исследованиями и пришли к выводу (1911 г.), что закон Эйнштейна качественно подтверждается для всех элементов (серебро, цинк, медь, алюминий, ртуть, иод и др.), подвергавшихся проверке, в том числе и для свинца, для которого остались в силе экспериментальные данные, полученные еще в 1905 г. Дыоаром, дававшие, как казалось, постоянную атомную теплоемкость вплоть до самых низких температур. Нернст проявил особый интерес к теории Эйнштейна. Еще в 1905 г. он установил, что если принять теорию квантов, то постоянная, остающаяся неопределенной при обычном термодинамическом определении энтропии, оказывается равной нулю при абсолютном нуле. Из этой теоремы, известной теперь как третий закон термодинамики, вытекает следствие, касающееся удельной теплоемкости твер; „ix тел при низких температурах: легко показать, что если теорема Нернс а верна, то удельная теплоемкость при абсолютном нуле равна нулю. Опытяое подтверждение формулы Эйнштейна делало более достоверным (хотя и не доказывало, как это заметил вопреки мнению Нернста сам Эйнштейн) третий закон термодинамики, который, впрочем, получил многочисленные другие подтверждения. Принципу Нернста сегодня обычно придают более драматическую формулировку, являющуюся прямым следствием приведенной ранее: никаким способом нельзя на опыте достигнуть абсолютного нуля. Более того, опыт показывает, что, говоря словами самого Нернста, «в соответствии с результатами квантовой теории, для каждого твердого тела существует в окрестности абсолютного нуля некий температурный интервал, в котором само понятие температуры практически теряет смысл», или, проще говоря, в этом температурном интервале свойства тела (объем, тепловое расширение, сжимаемость и т. д.) не зависят от температуры. Это, так сказать, поле термической нечувствительности различно у разных тел; у алмаза, согласно Нернсту, оно простирается не менее чем на 40 градусов от абсолютного нуля. Однако из экспериментальной проверки Нернста следовало, что в количественном отношении формула Эйнштейна не соответствует результатам опыта. Например, для меди при 22,5° К формула Эйнштейна давала величину атомной теплоемкости 0,023, опыт же показывал величину 0,223. В связи с этим Нернст и Линдеман заменили формулу Эйнштейна другой, эмпирической формулой, которая значительно лучше соответствовала данным опыта. Многие сторонники квантовой физики того времени были убеждены, что даже одно качественное соответствие формулы Эйнштейна данным опыта было бы достаточным указанием на приемлемость теории по существу, хотя она и нуждалась в поправках частного характера. С другой стороны, сам Эйн- 23 Марио Льоцци 353
штейн указывал, что гипотеза, рассматривающая атомы как материальпые частицы, является чрезвычайно упрощенной. Впоследствии Дебай, Борн и фон Карман своими работами развили теорию Эйнштейна, указали на причины количественного несовпадения с данными опыта и обобщили теорию на удельную теплоемкость газов, получив хорошее совпадение с опытом. 12. ЯВЛЕНИЯ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ. Теория Эйнштейна привлекла внимание к тем глубоким изменениям, которые может претерпевать. материя при низких температурах, и дала новый толчок экспериментальным и теоретическим исследованиям в тех лабораториях, где имелось оборудование для получения низких и сверхнизких температур. Такими исследованиями занялись Нернст, Линдеман, Грюнайзен и другие; в частности, Камер- линг-Оннес (1853—1926), основатель известной криогенной Лейденской лаборатории, впервые получил в 1908 г. жидкий гелий, а заменившему его на посту директора этой лаборатории Кеезому удалось в 1926 г. получить твердый гелий. Эти и другие физики исследовали поведение тел при низких температурах в различных аспектах: тепловое расширение, сжимаемость, теплопроводность, давление паров, термоэлектричество, магнитные свойства. Эти исследователи открыли мир явлений, отличный от обычного; он описан в ряде специальных работ, к которым мы и отсылаем читателя. Но об одном из этих явлений нужно сказать несколько слов. Речь идет об электропроводности при низких температурах. После нескольких лет исследований Камерлинг-Оннес с удивлением обнаружил, что при температуре жидкого гелия (т. е. ниже 4,5° К) электрическое сопротивление платиновой проволоки не зависит от температуры. Более того, при температурах, близких к абсолютному нулю, электрическое сопротивление некоторых чистых металлов (ртуть, свинец, олово, таллий, индий) неожиданно исчезает. Например, в свинцовом витке при температуре ниже 7,20° К ток, индуцированный смещением магнита из центра витка, продолжает циркулировать очень долго без заметного уменьшения. Это обстоятельство, необъяснимое в рамках электронной теории Лоренца, согласно которой электрическое сопротивление вызывается столкновением движущихся электронов с атомами, может быть объяснено, согласно Камерлинг-Оннесу, квантовой теорией. Достаточно только предположить, что движению электронов в чистых металлах препятствуют не их столкновения с атомами, а возбуждение осцилляторов Планка. Исходя иэ такого предположения, Камерлинг- Оннес разработал в 1910 г. количественную теорию, достаточно хороша согласующуюся с данными опыта. В течение многих лет шли дискуссии о том, является ли сверхпроводимость (термин, введенный Камерлинг-Оннесом для открытого им явления) общим свойством материи или же только характерным свойством некоторых твердых элементов. Из экспериментальных работ, проделанных П. Л. Капицей в 1929 г. в области проводимости металлов в сильных магнитных полях, можно, по-видимому, заключить, что сверхпроводимость — общее свойство материи. ФОТОНЫ 13. ЗАКОНЫ ФОТОЭЛЕКТРИЧЕСКОГО ЭФФЕКТА. В гл. И мы видели, что уже в 1899 г. была установлена природа фотоэлектрического эффекта: испускание электронов большой энергии веществом, подвергшимся облучению. Это явление как бы обратно явлению испускания рентгеновских лучей. Схематически это можно выразить так: столкновение электронов с материей вызывает излучение; столкновение излучения с материей вызывает поток электронов. 354
Благодаря такому родству с явлением, открытие которого представляло собой самое значительное завоевание науки того времени, многие физики занялись тщательным изучением фотоэлектрического эффекта. В 1902 г. Ленард экспериментально показал, что скорость испускаемых электронов зависит не от интенсивности падающего света, а лишь от его частоты, возрастая с увеличением частоты. С ростом же интенсивности падающего света увеличивается лишь количество испускаемых электронов. Кроме того, это явление обнаруживается лишь при том условии, что частота падающего излучения превышает определенный предел, зависящий от природы облучаемого вещества. Все эти эмпирические факты очень трудно было объяснить в пределах классической оптики. В самом деле, волновая теория света считает энергию излучения равномерно распределенной в световой волне. По закону сохранения энергии при фотоэлектрическом эффекте часть энергии излучения переходит в кинетическую энергию испускаемых электронов. Поэтому чем богаче энергией падающее излучение, тем большей энергией должны обладать и испускаемые электроны, т. е. тем больше должна быть их скорость. С другой стороны, как может энергия, полученная электронами, зависеть от частоты, или, выражаясь менее точно, но более наглядно,— от цвета? Она должна была бы быть пропорциональна только интенсивности излучения, независимо от цвета. Все попытки объяснить фотоэлектрический эффект законами классической физики, делавшиеся в начале века, не привели ни к какому результату. Более того, чувствовалось, что здесь речь идет не о каких-то временных трудностях, которые можно надеяться преодолеть путем незначительных изменений теории е помощью какой-нибудь дополнительной гипотезы, как это уже бывало столько раз в истории физики. Здесь было ясно глубокое и коренное несоответствие этого эффекта классическим представлениям. Данные опыта выходили за рамки классической теории, показывая несовместимость старой теории и новых экспериментальных данных. 14. КВАНТЫ СВЕТА. Среди тех явлений, которые не находили себе объяснения в классической физике и которые Эйнштейн в 1905 г. попытался охватить новой квантовой теорией, был как раз и фотоэлектрический эффект. Эйнштейн показал, что фотоэлектрический эффект можно объяснить очень легко, очень естественно, вплоть до мельчайших деталей, если квантовую теорию, которую Планк применял лишь к случаю испускания излучения, распространить и на само излучение, т. е. если предположить, что квант энергии hv, будучи излучен, не рассеивается, а сохраняет свою индивидуальность, локализованную в пространстве. «Мы должны предположить,— говорил Эйнштейн,— что однородный свет состоит из зерен энергии... «световых квантов» (Lichtquanten), т. е. небольших порций энергии, несущихся в пустом пространстве со скоростью света». Этим сгусткам энергии Комптон дал в 1923 г. удачное название фотонов. Вот как просто Эйнштейн, непосредственно расширив область применения теории Планка, объясняет фотоэлектрический эффект: «Сразу ясно, что квантовая теория света дает объяснение фотоэлектрическому эффекту. Пучок фотонов падает на металлическую пластинку. Взаимодействие между излучением и веществом состоит здесь из очень многих элементарных процессов, в которых фотон ударяется об атом и выбивает из него электрон. Эти элементарные процессы подобны друг другу, и вырванный электрон будет во всех случаях иметь одинаковую энергию. Нам становится 23* 355
понятным, что увеличение интенсивности света на нашем новом языке означает увеличение числа падающих фотонов. В этом случае из металлической пластинки было бы вырвано большее число электронов, но энергия каждого отдельного электрона не изменилась бы. Итак, мы видим, что эта теория находится в полном согласии с результатами наблюдения» *. Если к этому качественному объяснению мы хотим прибавить некоторые количественные оценки, то можно сказать, что, если частица света вырывает электрон из вещества, она отдает ему всю свою энергию. Электрон затрачивает часть этой энергии на преодоление силы, связывающей его с веществом, а оставшаяся часть энергии превращается в собственную кинетическую энергию электрона. Из этого следует, что частица света (фотон) должна обладать энергией, по меньшей мере достаточной, чтобы вырвать электрон из вещества. В конечном счете должен иметь место следующий энергетический баланс: ЭНЕРГИЯ ФОТОНА = ЭНЕРГИЯ ОТРЫВАНИЯ + КИНЕТИЧЕСКАЯ ЭНЕРГИЯ ЭЛЕКТРОНА. Но если представлять себе свет как поток фотонов, то чем же заменить классическое понятие длины волны, определяющей восприятие цветов? Его нужно заменить, отвечает Эйнштейн, энергией фотонов. При такой замене каждое утверждение волновой теории непосредственно переводится в утверждение квантовой теории. Например: УТВЕРЖДЕНИЕ ВОЛНОВОЙ УТВЕРЖДЕНИЕ КВАНТОВОЙ ТЕОРИИ ТЕОРИИ Однородный свет имеет определен- Однородный свет состоит из фото- ную длину волны. Длина волны крас- нов определенной энергии. Энергия ного края спектра вдвое больше длины фотонов для красного края спектра волны фиолетового края. вдвое меньше энергии фотонов фиолетового края. Нужно отметить еще две особенности новой теории. Частицы света, фотоны, не все одинаковы по величине, как частицы электричества, электроны, а обладают разной энергией, равной е = hv. Фотоны не существуют неограниченно во времени — они рождаются и умирают, появляются при излучении и исчезают при поглощении. Поэтому их общее число меняется со временем. Из этого следует, что фотоны — это не ньютоновские корпускулы, пусть даже и невесомые, но обладающие материальной сущностью. Теория Эйнштейна встретила сначала сильные возражения. Мы уже говорили о резко отрицательной реакции самого Планка. Сразу же всем стало ясно, что теория световых квантов представляла собой возврат, пусть хотя бы частичный, к ньютоновской оптике. Но, несмотря на критику, теория все более доказывала свою плодотворность. Она объясняла не только фотоэлектрический эффект, но и очень многие другие явления, необъяснимые в классической физике, как, например, некоторые особенности испускания рентгеновских лучей, явления флуоресценции, вызываемой в некоторых веществах излучением различной частоты, и т. п. Один опыт, повторенный многими физиками, и в частности Милликеном, с большой тщательностью, оказался особенно важным: металлические пылинки, парящие в воздухе между пластинками конденсатора, облучаются рентгеновскими лучами очень слабой интенсивности. Классическая теория электромагнетизма позволяет рассчитать время, необходимое для того, чтобы пылинка поглотила энергию, требуемую для вырывания электрона. Можно так отрегулировать установку, чтобы это время измерялось несколькими секундами. Однако вопреки предсказаниям классической физики опыт показывает, что вырывание электронов * A. Einstein, L. I n f e 1 d, The evolution of physics, New York, 1938. (Есть рус ский перевод: А. Эйнштейн, Л. Инфельд, Эволюция физики, Собр. научн. трудов А. Эйнштейна, т. IV.) 356
происходит сразу с момента начала облучения пыли рентгеновскими лучами. Отставание во времени не превышает 1/2000 сек (как известно, эта быстрота фотоэлектрического эффекта является одной из основных предпосылок его широкого применения в современной технике, граничащего с чудом, как, например, в звуковом кино и телевидении). Приходится заключить, что на пылинки падают не волны, а поток фотонов. Этот опыт интересен еще и в другом отношении. Он показал, что в среднем каждая пылинка испускает один электрон как раз за такой промежуток времени, который получается согласно классическим соотношениям. Из этого следует, что классическая теория может быть принята как статистический закон при большом потоке квантов. 15. ЭФФЕКТ КОМПТОНА. Гипотеза световых квантов поставила теорети ческую физику в большое затруднение. Представление о частицах света совершенно не согласуется с классической оптикой. Многие явления физической оптики необъяснимы с точки зрения корпускулярного строения света. Например, необъясним опыт Юнга с двумя отверстиями, как и вообще все опыты по интерференции и дифракции света. Лоренц показал также, что нельзя объяснить разрешающую силу оптических приборов, если предположить, что свет состоит из квантов. С другой стороны, опыты по дифракции рентгеновских лучей и последовавшие за ними большие успехи в области строения кристаллов (см. гл. 11) вновь продемонстрировали силу и значение волновой теории. Она все еще была способна предсказывать явления, которые опыт подтверждал, а это как раз и есть критерий достоверности всякой физической теории. Как же отказаться от нее, если к тому же новая теория не может объяснить всего комплекса явлений, получившего в классической оптике название «физической оптики»? Около 1920 г. между старой и новой теориями установился любопытный modus vivendi. Большинство физиков полагало, что фотоны представляют собой не физическую реальность, а лишь удачный эвристический способ определения некоего количества энергии, связанного, возможно, с какой- нибудь особенностью электромагнитного поля. Иными словами, квант света рассматривался лишь как некая мера, а не как своеобразная корпускула. В сущности не только физическая реальность фотона подвергалась сомнению, но и вся квантовая теория, к которой физики по-прежнему испытывали большое недоверие. Принято считать, что решающим для победы теории фотонов было открытие эффекта Комптона (1922 г.) и эффекта Рамана (1923 г.). Несомненно, открытие этих двух явлений имело большое значение для победы квантовой теории. Но такое заключение, пожалуй, было бы слишком односторонним. При этом не учитывается, с одной стороны, процесс постепенного созревания новых идей, а с другой — влияние, которое оказывает на смену научного мировоззрения смена поколений, т. е. уход из жизни старых ученых с их полусентимонтальной привязанностью к теориям своей юности. По нашему мнению, смена поколений — это немаловажный фактор в научном развитии. Но как бы там ни было, явление или, как его называют, эффект Комптона имел большое историческое значение. Он заключается в следующем. Известно, что при попадании излучения на вещество часть энергии излучения обычно рассеивается по всем направлениям, сохраняя ту же частоту, т. е. тот же цвет, что и падающее излучение. Теория Лоренца объясняет это явление тем, что электроны тела, на которое падает излучение, колеблются в резонанс с ним и поэтому испускают в свою очередь сферические волны, которые рассеивают по всем направлениям часть энергии первоначальной волны. 357
Ясно, что при таком механизме вторичные волны должны обладать той же частотой, что и первичная волна, так что рассеянное излучение имеет тот же цвет, что и падающее. Эта теория успешно объясняла рассеяние как видимого света (работы Друде и Рэлея), так и невидимого излучения (работы Томсо- на, Дебая и других). Но в 1922 г. молодой американский физик Артур Комптон установил, что при рассеянии рентгеновских лучей наряду с классическим явлением рассеяния без изменения частоты имеется и рассеяние с уменьшением частоты. Относительная интенсивность обеих вторичных компонент излучен- ния бывает различной: для больших длин волн наибольшая энергия приходится на компоненту с неизменной частотой, тогда как при малой длине волны преобладает компонента с измененной частотой. Если для наблюдения этого эффекта используется у-излучение очень большой частоты, то в рассеянном излучении вообще невозможно обнаружить никакой составляющей начальной частоты. Внимательное изучение особенностей этого явления позволило Комптону прийти к выводу, что здесь речь идет вовсе не о флуоресценции. Эффект Комптона — еще один пример явления, необъяснимого с точки зрения волновой теории, но получающего очень простое объяснение с помощью теории фотонов, как это вскоре показали Комптон и Дебай. Представим себе рентгеновские лучи в виде потока легких частиц, которые как раз Комптон впервые назвал фотонами. Фотон ударяется об электрон, в результате чего происходит обмен энергией между ними. Так как электрон по сравнению с быстро движущимся фотоном можно считать неподвижным, то при столкновении фотон теряет энергию, отдавая ее электрону. Но, согласно основной гипотезе, энергия фотона есть аналог длины волны в волновой теории излучения, так что после соударения фотон, теряя энергию, приобретает большую длину волны. Отброшенный же электрон, названный Компто- ном электроном отдачи, изменяет свою скорость, так как получает часть энергии фотона. Математическая теория этого явления, построенная на основе специальной теории относительности, дает формулу, связывающую угол рассеяния фотона с его начальной и измененной частотой. Опыты, проводившиеся многократно в самых различных условиях многими физиками, дали прекрасное подтверждение этой теории. Более того, когда Комптон предложил свою теорию, ему еще не удалось на опыте обнаружить электроны отдачи. Но спустя несколько месяцев Ч. Вильсон в Англии, а затем В. Боте в Германии наблюдали экспериментально электроны отдачи, а позже другие исследователи подтвердили, что число электронов отдачи, их энергия и пространственное распределение находятся в полном соответствии с предсказаниями теории. Комптон в своей теории рассматривает фотоны как настоящие частицы, считая, что при их столкновении с электронами справедлив закон сохранения энергии и количества движения. Заметим, что в эффекте Комптона рассматриваются изменения самого фотона, тогда как раньше о свойствах фотонов знали только то, что они могут рождаться и умирать, но не замечали каких-либо изменений во время их жизни. Короче говоря, мы хотим сказать, что эффект Комптона указывает особые индивидуальные характеристики фотонов, т. е. их физическую реальность. Новым подтверждением теории фотонов было открытие эффекта Рамана, названного так по имени индийского физика Чандрасекара Рамана, который первым наблюдал его и опубликовал результаты своих исследований в 1928 г. * Как рассказывал сам Раман, первым толчком послужило ему * Одновременно с Ч. Раманом и К. Кришнаном, открывшими явление комбинационного рассеяния света на жидкостях, его открыли в 1928 г. советские физики Г. С. Ландсберг и Л. И. Мандельштам в опытах с кристаллами.— Прим. перев. 358
набдюдепие синего свечения Средиземного моря во время путешествия в Европу в 1921 г. Откуда берется такой цвет? Изучение законов диффузии в жидкостях, начатое Раманом в том же году по возвращении в Калькутту, помогло ему ответить на этот вопрос. Но вскоре стало очевидным, что проблема вышла далеко за первоначальные рамки. Молекулярное рассеяние света, которым объясняется цвет неба, необходимо было исследовать не только в газах и нарах, но и в жидкостях, и в твердых телах, как кристаллических, так и аморфных. Раман поручил своим искусным сотрудникам изучение всех этих частных проблем и интерпретировал результаты этих работ с помощью классической электродинамики, т. е. в духе работ Рэлея, о которых мы говорили выше. Но в 1923 г. Раманатан, один из сотрудников Рамана, заметил, что наряду с молекулярным рассеянием типа Рэлея — Эйнштейна наблюдается также более слабое рассеяние, отличающееся от классического тем, что рассеянный и падающий свет имеют разную длину волны. В этом направлении были сосредоточены усилия экспериментаторов, и в 1924 г. был получен первый определенный результат: солнечный свет, рассеянный на образце хорошо очищенного глицерина, имел ярко-зеленый цвет, а не голубой, как обычно. Аналогичное явление было замечено в парах органических веществ, сжатых газах, кристаллах льда и даже в оптических стеклах. Это явление было сродни эффекту Комптона, но отличалось от него двумя важными особенностями: во-первых, в эффекте Рамана изменение частоты может происходить и в сторону увеличения; во-вторых, характер явления существенно зависит от природы рассеивающего тела, тогда как в эффекте Комптона она не имеет никакого значения. Как эффект Комптона, так и эффект Рамана необъяснимы с точки зрения классической теории, в то время как теория фотонов дает им сравнительно простое объяснение. Достаточно предположить, что фотон, сталкиваясь с молекулой или с атомом, в зависимости от характера столкновения либо распадается на два фотона, либо отскакивает с измененной энергией. Легко понять, что конкретные характеристики эффекта тесно связаны со строением рассеивающих молекул, поэтому его изучение помогло решить многие проблемы химии и физики. В заключение нужно сказать, что теория фотонов многие явления объясняет, а многие предсказывает; но все же она не может ответить на вопрос, поставленный более двух тысяч лет назад Евклидом: что же такое свет? Ниже мы увидим, как на этот древний вопрос отвечала во времена открытия Рамана волновая механика.
ГЛАВА 14 • СТРОЕНИЕ МАТЕРИИ РАДИОАКТИВНЫЙ РАСПАД 1. РАДИОАКТИВНЫЕ ПРЕВРАЩЕНИЯ. Эрнест Резерфорд родился в Новой Зеландии в английской семье. В Новой Зеландии он получил высшее образование, а затем в 1895 г. приехал в Кембридж и занялся научной работой в качестве ассистента Томсона. В 1898 г. Резерфорд был приглашен на кафедру физики Монреальского университета Мак-Гилла (Канада), где продолжал исследование радиоактивности, начатое еще в Кембридже. В 1899 г. в Монреале коллега Резерфорда Оунз сообщил ему, что радиоактивность тория чувствительна к потокам воздуха. Это наблюдение показалось любопытным, Резерфорд заинтересовался и обнаружил, что радиоактивность соединений тория, если торий находится в закрытой ампуле, сохраняет постоянную интенсивность, если же опыт производится на открытом воздухе, то она быстро уменьшается, причем на результатах сказываются даже слабые потоки воздуха. Кроме того, тела, расположенные по соседству с соединениями тория, спустя некоторое время сами начинают испускать излучение, как если бы они тоже были радиоактивными. Это свойство Резерфорд назвал «возбужденной активностью». Резерфорд довольно скоро понял, что все эти явления можно легко объяснить, если предположить, что соединения тория испускают, кроме ос-частиц, еще другие частицы, которые в свою очередь радиоактивны. Вещество, состоящее из этих^частиц, он назвал «эманацией» и считал его подобным радиоактивному газу, который, располагаясь тончайшим невидимым слоем на телах, находящихся рядом с выделяющим эту эманацию торием, сообщает этим телам кажущуюся радиоактивность. Руководствуясь этим предположением, Резерфорд сумел отделить этот радиоактивный газ с помощью простой вытяжки воздуха, имевшего соприкосновение с препаратом тория, а затем, введя его в ионизационную камеру, определил таким образом его активность и основные физические свойства. В частности, Резерфорд показал, что степень радиоактивности эманации (окрещенной позднее тороном, подобно тому как были названы радоном и актиноном радиоактивные газы, испускаемые радием и актинием) очень быстро уменьшается в геометрической прогрессии в зависимости от времени: каждую минуту активность уменьшается вдвое, через десять минут она уже становится совсем незаметной. Тем временем супруги Кюри показали, что радий тоже обладает свойством возбуждать активность близлежащих тел. Для объяснения радиоактивности осадков радиоактивных растворов они приняли выдвинутую Бек- керелем теорию и назвали это новое явление «индуцированной радиоактивностью». Супруги Кюри полагали, что индуцированная радиоактивность вызывается каким-то особым возбуждением тел лучами, испускаемыми радием: нечто похожее на фосфоресценцию, которой они прямо уподобляли это явление. Впрочем, Резерфорд, говоря о «возбужденной активности», первое время тоже, должно быть, имел в виду явление индукции, которое физика XIX века вполне готова была принять. Но Резерфорду уже было известно нечто большее, нежели супругам Кюри: он знал, что возбуждение, или индукция, было не прямым следствием воздействия тория, а результатом действия эманации. Тогда Кюри еще не открыли эманации радия, она была получена Латером и Дорном в 1900 г., после того как они повторили такие же исследования радия, какие Резерфорд провел ранее с торием. 360
Эрнест Резерфорд. Весной 1900 г., опубликовав свое открытие, Резерфорд прервал исследования и вернулся в Новую Зеландию, где должна была состояться его свадьба. По возвращении в Монреаль в том же году он встретился с Фредериком Содди (1877—1956), окончившим химический факультет в Оксфорде в 1898 г. и также недавно приехавшим в Монреаль. Встреча этих двух молодых людей была счастливым событием для истории физики. Резерфорд рассказал Содди о своем открытии, о том, что ему удалось выделить торон, подчеркнул широкое поле исследований, которое здесь открывалось, и предложил ему объединиться для совместного химико-физического изучения соединения тория. Содди согласился. Это исследование заняло у молодых ученых два года. Содди, в частности, изучил химическую природу эманации тория. В результате своих исследований он показал, что новый газ совершенно не вступает ни в какие известные химические реакции. Поэтому оставалось предположить, что он принадлежит к числу инертных газов, а именно (как Содди определенно показал в начале 1901 г.) новый газ по своим химическим свойствам подобен аргону (сейчас известно, что это один из его изотопов), который Рэлей и Рамсей обнаружили в воздухе в 1894 г. Упорная работа двух молодых ученых увенчалась новым значительным открытием: вместе с торием в их препаратах был обнаружен другой элемент, отличавшийся по химическим свойствам от тория, а по активности превосходивший торий по крайней мере в несколько тысяч раз. Этот элемент был химически отделен от тория осаждением с помощью аммиака. По примеру Уильяма Крукса, который в 1900 г. назвал радиоактивный элемент, полученный им из урана, ураном X, молодые ученые назвали новый радиоактивный элемент торием X. Активность этого нового элемента в течение четырех дней уменьшается наполовину; этого времени было достаточно, чтобы обстоятельно изучить его. Исследования позволили сделать не подлежащий сомнению вывод: эманация тория получается вовсе не из тория, как это казалось, а из тория X. Если в некотором образце тория торий X отделялся от тория, то интенсивность радиации тория была сначала намного меньше, чем до разделения, но постепенно она увеличивалась со временем по экспоненциальному закону благодаря постоянному образованию нового радиоактивного вещества. В первой работе 1902 г. ученые, объясняя все эти явления, пришли к выводу, что «...радиоактивность — это атомное явление, сопровождающееся химическими изменениями, в котором порождаются новые виды вещества. Эти изменения должны происходить внутри атома, а радиоактивные элементы являются, 361
•должно быть, спонтанными превращениями атомов... Поэтому радиоактивность нужно рассматривать как проявление внутриатомного химического .процесса» *. А в следующем году они писали уже более определенно: «Радиоактивные элементы обладают среди всех других элементов самым большим атомным весом. Это, собственно, и есть их единственное общее химическое свойство. В результате атомного распада и выбрасывания тяжелых заряженных частиц с массой того же порядка, что и масса атома водорода, остается новая система, более легкая, чем первоначальная, с физическими и химическими свойствами, совершенно отличными от свойств исходного элемента. Процесс распада, начавшись однажды, затем уже переходит с одной ступени на другую с определенными скоростями, вполне измеримыми. На каждой ступени испускается одна или несколько а-частиц, пока не достигаются последние ступени, когда а-частицы или электроны уже испущены. По-видимому, целесообразно было бы дать специальные названия этим новым осколкам атомов и новым атомам, которые получаются из первоначального атома после испускания частицы и существуют лишь ограниченный отрезок времени, постоянно подвергаясь дальнейшим изменениям. Их отличительным свойством является неустойчивость. Количества, в которых они могут скопляться, очень невелики, так что маловероятно, чтобы их можно было изучать обычными способами. Неустойчивость и связанное с ней испускание лучей ■и дают нам способ их изучения. Поэтому мы предлагаем называть эти осколки атомов „метаболонами"» **. Предложенный термин не удержался, потому что эта первая осторожная -попытка сформулировать теорию была вскоре исправлена самими авторами и уточнена в ряде неясных пунктов, которые, наверно, отметил и сам читатель. В исправленном виде теория уже не нуждалась в новом термине и лет десять спустя одним из этих молодых ученых, ставшим к тому времени уже ученым с мировым имененем и лауреатом Нобелевской премии по физике, была выражена так: «Атомы радиоактивного вещества подвержены спонтанным видоизменениям. В каждый момент небольшая часть общего числа атомов становится неустойчивой и взрывообразно распадается. В подавляющем большинстве случаев с огромной скоростью выбрасывается осколок атома — а-частица, ■в некоторых других случаях взрыв сопровождается выбрасыванием быстрого электрона и появлением рентгеновских лучей, обладающих большой проникающей способностью и известных под названием у-излучения. Радиация сопровождает превращения атомов и служит мерой, определяющей степень их распада. Было обнаружено, что в результате атомного превращения ■образуется вещество совершенно нового вида, полностью отличное по своим •физическим и химическим свойствам от первоначального вещества. Это новое вещество, однако, само тоже неустойчиво и испытывает превращение с испусканием характерного радиоактивного излучения... Таким образом, точно установлено, что атомы некоторых элементов ■подвержены спонтанному распаду, сопровождающемуся излучением энергии в количествах, огромных по сравнению с энергией, освобождающейся при обычных молекулярных видоизменениях» ***, В уже цитировавшейся статье 1903 г. Резерфорд и Содди составили таблицу «метаболонов», которые, согласно их теории, образуются в соот- * Philosophical Magazine, (6), 4, 395 (1902). ** Philosophical Magazine, (6), 5, 536 (1903). '*** E. Rutherford, The structure of the atom, Scientia, 16, 339 (1914). 362
ветствии с их собственными опытами и опытами других ученых как продукты распада: Уран Торий Радий у у у Уран X Торий X Эманация радия У у У ? Эманация тория Радий I ! I Торий I Радий II I ! Торий II Радий III I I Таковы первые «генеалогические деревья» радиоактивных веществ. Постепенно другие вещества заняли свое место в этих семействах естественных радиоактивных элементов, и было установлено, что таких семейств всего три, из коих два имеют родоначальником уран, а третье — торий. Первое семейство насчитывает 14 «потомков», т. е. 14 элементов, получающихся один из другого в результате последовательного распада, второе — 10, третье — 11; в любом современном учебнике физики можно найти подробное описание этих «генеалогических деревьев». Позволим себе одно замечание. Сейчас может казаться вполне естественным, более того, само собой разумеющимся тот вывод, к которому пришли в результате своих опытов Резерфорд и Содди. По сути дела, о чем шла речь? О том, что спустя некоторое время в первоначально чистом тории оказывалась примесь нового элемента, из которого в свою очередь образовывался газ, также обладающий радиоактивностью. Образование новых элементов можно видеть наглядно. Наглядно, но не очень. Нужно иметь в виду, что количества, в которых образовывались новые элементы, были очень далеки от тех минимальных доз, которые в то время были необходимы для самого точного химического анализа. Речь шла о едва заметных следах, которые можно обнаружить лишь радиоактивными методами, по фотографии и ионизации. Но все эти эффекты можно было объяснить и другим способом (индукцией, присутствием новых элементов в исходных препаратах с самого начала, как это было при открытии радия, и т. п.). То, что распад вовсе не был так уж очевиден, ясно хотя бы из того, что ни Крукс, ни Кюри не увидели ни малейшего намека на это, хотя и наблюдали аналогичные явления. Нельзя умолчать и о том, что нужно было большое мужество, чтобы в 1903 г., в самый разгар триумфа атомистики, говорить о превращениях элементов. Эта гипотеза отнюдь не была защищена от всевозможной критики и, быть может, не устояла бы, если бы Резерфорд и Содди с удивительным упорством не отстаивали ее в течение целых десятилетий, прибегая все к новым доказательствам, о которых мы еще будем говорить. Нам кажется уместным прибавить здесь, что теория радиоактивной индукции также оказала большую услугу науке, предотвратив распыление сил в поисках новых радиоактивных элементов при каждом проявлении радиоактивности у нерадиоактивных элементов. 2. ПРИРОДА а-ЧАСТИЦ. Очень важным пунктом в теории радиоактивного распада, который мы до сих пор обходили, однако, молчанием в целях простоты изложения, является природа а-частиц, испускаемых радиоактивными веществами, ибо гипотеза, приписывающая им корпускулярные свойства, имеет определяющее значение для теории Резерфорда и Содди. 363
Земля Поступление Выход водорода Первая установка Резерфорда для определения отклонения а-лучей в электрическом и магнитном полях. Лучи, испускаемые слоем радия, проходят через ряд узких щелей G, образованных вертикально помещенными металлическими полосками, и очень тонкую алюминиевую пластинку (толщиной 0,03 — 0,04 мм) в резервуар У, где они ионизуют содержащийся в нем водород. Ионизация измеряется по спаданию пластины из фольги в электроскопе В, заряженном снаружи через провод D. Если создается горизонтальное магнитное поле, перпендикулярное плоскости рисунка, то а-лучи отклоняются на металлические пластинки и поглощаются ими; поэтому в резервуар V попадает меньшее число частиц и фольга электроскопа опускается медленнее. Поток сухого водорода попадает в резервуар V, проникает через алюминиевую пластинку и через щели G и выходит внизу, что препятствует проникновению в ионизационную камеру эманации радия, которая искажала бы результат. Этот же прибор служит для наблюдения отклонения лучей в электрическим поле; для этого соединяют каждую вертикальную пластинку с полюсом электрической батареи так, чтобы между всеми пластинками создавались электрические поля одинакового направления. ^ Сначала а-частицы — медленная, легко поглощаемая веществом компонента излучения — после их открытия Резерфордом не привлекали особого внимания физиков, интересовавшихся преимущественно быстрыми Р-лучами, обладающими в сто раз большей проникающей способностью, нежели а-частицы. Тот факт, что Резерфорд предугадал важность а-частиц для объяснения радиоактивных процессов и многие годы посвятил их изучению, является одним из самых ясных проявлений гениальности Резерфорда и одним из главных факторов, определивших успех его деятельности. В 1900 г. Роберт Рэлей (Роберт Стретт, сын Джона Уильяма Рэлея) и независимо от него Крукс выдвинули гипотезу, не подтвержденную никаким опытным доказательством, согласно которой а-частицы несут положи- 364
тельный заряд. Сегодня очень хорошо можно понять те трудности, которые стояли на пути экспериментального исследования а-частиц. Этих трудностей две: во-первых, а-частицы намного тяжелее |3-частиц, поэтому они незначительно отклоняются под воздействием электрических и магнитных полей, и, конечно, простого магнита было недостаточно, чтобы получить заметное отклонение; во-вторых, а-частицы быстро поглощаются воздухом, отчего наблюдать их становится еще труднее. В течение двух лет Резерфорд пытался добиться отклонения а-частиц в магнитном поле, но все время получал неопределенные результаты. Наконец, в конце 1902 г., когда ему удалось благодаря любезному посредничеству Пьера Кюри получить достаточное количество радия, он смог надежно установить отклонение а-частиц в магнитном и электрическом полях с помощью показанного на стр. 364 устройства. Наблюдавшееся им отклонение позволило определить, что а-частица несет положительный заряд; по характеру отклонения Резерфорд определил также, что скорость а-частицы приблизительно равна половине скорости света (позднейшие уточнения уменьшили скорость примерно до одной десятой скорости света); отношение elm получилось равным приблизительно 6000 электромагнитных единиц. Из этого следовало, что если а-частица несет элементарный заряд, то ее масса должна быть вдвое больше массы атома водорода. Резерфорд отдавал себе отчет в том, что все эти данные в высшей степени приближенны, но один качественный вывод они все же позволяли сделать: а-частицы обладают массой того же порядка, что и атомные массы, и поэтому подобны каналовым лучам, которые наблюдал Гольдштейн, но обладают значительно большей скоростью. Полученные результаты, говорит Резерфорд, «проливают свет на радиоактивные процессы», и отражение этого света мы уже видели в цитировавшихся отрывках из статей Резер- |форда и Содди. В 1903 г. Мария Кюри подтвердила открытие Резерфорда с помощью •описываемой теперь во всех учебниках физики установки, в которой благодаря сцинтилляции, вызываемой всеми лучами, которые испускает радий, можно было одновременно наблюдать противоположные отклонения а- частиц и Р-лучей и невосприимчивость •у"излУчения к электрическому и магнитному полям. Теория радиоактивного распада навела Резерфорда и Содди на мысль, что все устойчивые вещества, получающиеся при радиоактивных превращениях элементов, должны присутствовать в радиоактивных рудах, в которых эти превращения происходят уже в течение многих тысяч лет. Не следует ли тогда считать гелий, найденный Рамсеем и Траверсом в урановых рудах, продуктом радиоактивного распада? С начала 1903 г. изучение радиоактивности получило неожиданно новый толчок благодаря тому, что Гизель (фирма «Хининфабрик», Брауншвейг) выпустил в продажу по сравнительно умеренным ценам такие чистые соединения радия, как гидрат бромистого радия, содержащий 50% чистого элемента. До этого приходилось работать с соединениями, содержавшими самое большее 0,1% чистого элемента! К тому времени Содди вернулся в Лондон, чтобы продолжать там изучение свойств эманации в химической лаборатории Рамсея — единственной тогда в мире лаборатории, где можно было проводить исследования такого рода. Он купил 30 мг поступившего в продажу препарата, и этого количества оказалось ему достаточно, чтобы вместе с Рамсеем в том же 1903 г. доказать, что гелий присутствует в радии, имеющем возраст несколько месяцев, и что при распаде эманации образуется гелий. Но какое место занимал гелий в таблице радиоактивных превращений? Был ли он конечным продуктом превращений радия или же продуктом 365
Аппарат Резерфорда и Ройдса для доказательства образования гелия при распаде радопа. Толщина стенок стеклянной трубки А, сделанной опытным стеклодувом, равна 5—8 мп. Трубка наполнена газом радоном. Испускаемые им а-частицы проходят через стенки трубки А в объем В. Спустя некоторое время столбик ртути в трубке В подымается, сжимая содержащийся в трубке газ в отростке С. При спектроскопическом исследовании этого газа получается спектр гелия. Если трубку А наполнить гелием, то в объеме В не обнаруживается следов гелия. Таким образом, через стенки трубки А проникают только а-частицы, а не атомы гелия, которые почему-либо могли бы там оказаться. какой-то из стадий его эволюции? Резерфорд очень скоро догадался, что гелий образуется а-частицами, испускаемыми радием, что каждая а-частица является атомом гелия с двумя положительными зарядами. Но чтобы доказать это, понадобились годы работы. Доказательство было получено лишь тогда, когда Резерфорд и Гейгер изобрели счетчик а-частиц, о котором мы говорили в гл. 13. Измерение заряда отдельной ос- частицы и определение отношения elm сразу же дало для ее массы т значение, равное массе атома гелия. И все же все эти исследования и подсчеты еще не доказывали решительно, что а-частицы тождественны с ионами гелия. В самом деле, если бы, скажем, одновременно с выбрасыванием а-частицы освобождался атом гелия, то все опыты и расчеты оставались бы в силе, но а-частица могла бы быть и атомом водорода или какого-нибудь другого неизвестного вещества. Резерфорд хорошо понимал возможность такой критики и, чтобы отклонить ее, в 1908 г. вместе с Ройдсом дал решительное доказательство своей гипотезы с помощью установки, схематически изображенной на приведенном рисунке: а-частицы, испускаемые радоном, собираются и накапливаются в трубке для спектроскопического анализа; при этом наблюдается характерный спектр гелия. Таким образом, начиная с 1908 г. уже не было никаких сомнений в том, что а-частицы являются ионами гелия и что гелий представляет собой составную часть естественных радиоактивных веществ. Прежде чем перейти к другому вопросу, добавим еще, что через несколько лет после обнаружения гелия в урановых рудах американский химик Болтвуд, исследуя руды, содержащие уран и торий, пришел к выводу, что последним нерадиоактивным продуктом последовательного ряда превращений урана является свинец и что, кроме того, радий и актиний — сами. 366
продукты распада урана. Таблица «метаболонов» Резерфордя и Содди должна была, таким образом, претерпеть существенное изменение. Теория атомного распада приводила к еще одному новому интересному следствию. Поскольку радиоактивные превращения происходят с неизменной скоростью, которую не мог изменить никакой физический фактор, известный в то время (1930 г.), то по соотношению количеств урана, свинца и гелия, присутствующих в урановой руде, можно определить возраст самой руды, т. е. возраст Земли. Первый подсчет дал цифру в один миллиард восемьсот миллионов лет, но Джон Джоли (1857—1933) и Роберт Рэлей (1875—1947), проведшие важные исследования в этой области, считали эту оценку весьма! неточной. Сейчас возраст урановых руд считают примерно равным полутора миллиардам лет, что не очень отличается от первоначальной оценки. 3. ОСНОВНОЙ ЗАКОН РАДИОАКТИВНОСТИ. Мы уже говорили, что Резер- форд установил на опыте экспоненциальный закон убывания активности эманации тория со временем: активность уменьшается вдвое примерна за одну минуту. Все радиоактивные вещества, исследованные Резерфордом и другими, подчинялись качественно такому же закону, но каждому из них соответствовал свой период полураспада. Этот экспериментальный факт выражается простой формулой *, устанавливающей соотношение между числом N0 радиоактивных атомов в начальный момент и числом еще не распавшихся атомов в момент t. Этот закон можно выразить иначе: доля атомов, распадающихся за определенный цромежуток времени, является постоянной, характеризующей элемент, и называется постоянной радиоактивного распада, а величина, обратная ей, называется средним временем жизни. До 1930 г. не было известно какого-либо фактора, который влиял бы хоть в малейшей степени на естественную скорость этого явления. Начиная с 1902 г., Резерфорд и Содди, а затем и многие другие физики помещали радиоактивные тела в самые различные физические условия, но ни разу не получили ни малейшего изменения постоянной радиоактивного распада. «Радиоактивность,— писали Резерфорд и Содди,— согласно нашим сегодняшним знаниям о ней, следует рассматривать как результат процесса,- остающегося совершенно вне сферы действия известных нам и контролируемых сил; она не может быть ни создана, ни изменена, ни остановлена» **. Среднее время жизни элемента — это точно определенная константа, неизменная для каждого элемента, однако индивидуальное время жизни отдельного атома данного элемента совершенно неопределенно. Среднее время жизни не уменьшается со временем: оно одно и то же как для группы только что образовавшихся атомов, так и для группы атомов, образовавшихся в ранние геологические эпохи. Короче говоря, прибегая к антропоморфному сравнению, можно сказать, что атомы радиоактивных элементов умирают, но не стареют. В общем с самого начала основной закон радиоактивности показался совершенно непостижимым, каким остается и до наших дней. Из всего сказанного ясно, и это было понятно сразу же, что закон радиоактивности — закон вероятностный. Он утверждает, что возможность рас- * Эта формула имеет вид N = N0e~M где X — постоянная полураспада, а обратная ей величина есть среднее время жизни элемента. Время, необходимое для того, чтобы число атомов уменьшилось вдвое, называется периодом, или временем, полураспада. Как мы уже сказали, X сильно изменяется от элемента к элементу и, следовательно, меняются и все другие зависящие от нее величины. Например, среднее время жизни урана I равно 6 миллиардам 600 миллионам лет,, а актиния А — трем тысячным долям секунды. ** Philosophical Magazine, (6), 5, 582 (1903). 367
пада атома в данный момент одинакова для всех имеющихся радиоактивных атомов. Речь идет, таким образом, о статистическом законе, который тем яснее выявляется, чем больше число рассматриваемых атомов. Если бы на явление радиоактивности влияли внешние причины, то объяснение этого закона было бы довольно простым: в таком случае атомами, распадающимися в данный момент, были бы как раз те атомы, которые находятся по отношению к воздействующей внешней причине в особенно благоприятных услов- виях. Эти особые условия, приводящие к распаду атома, можно было бы, например, объяснить тепловым возбуждением атомов. Иными словами, статистический закон радиоактивности имел бы тогда такой же смысл, как и статистические законы классической физики, рассматриваемые как синтез частных динамических законов, которые из-за большого их числа просто удобно рассматривать статистически. Но данные опыта не давали абсолютно никакой возможности свести этот статистический закон к сумме частных законов, определяемых внешними причинами. Исключив внешние причины, стали искать причины превращения атома в самом атоме. «Так как,— писала Мария Кюри,— в совокупности большого числа атомов некоторые из них немедленно разрушаются, в то время как другие продолжают существовать в течение очень долгого времени, то нельзя уже рассматривать все атомы одного и того же простого вещества как совершенно одинаковые, а следует признать, что различие в их судьбе определяется индивидуальными различиями. Но тогда возникает новая трудность. Различия, которые мы хотим учитывать, должны быть такого рода, что они не должны определять, так сказать, «старения)) вещества. Они должны быть такими, чтобы вероятность того, что атом проживет еще некоторое данное время, не зависела от того времени, в течение которого он уже существует. Любая теория строения атомов должна удовлетворять этому требованию, если она основана на высказанных выше соображениях» *. Точку зрения Марии Кюри разделял и ее ученик Дебьерн, который выдвинул предположение, что каждый радиоактивный атом непрерывно быстро проходит через многочисленные различные состояния, сохраняя неизменным и независимым от внешних условий некое среднее состояние. Отсюда следует, что в среднем все атомы одного и того же вида обладают одинаковыми свойствами и одинаковой вероятностью распада, обусловливаемого неустойчивым состоянием, через которое атом время от времени проходит. Но наличие постоянной вероятности распада атома предполагает чрезвычайную его сложность, поскольку он должен состоять из большого числа элементов, подверженных беспорядочным движениям. Это внутриатомное возбуждение, ограниченное центральной частью атома, может привести к необходимости введения внутренней температуры атома, которая значительно выше внешней. Эти соображения Марии Кюри и Дебьерна, не подтвержденные, однако, никакими опытными данными и не приведшие ни к каким реальным следствиям, не нашли отклика среди физиков. Мы вспомнили их потому, что оказавшаяся безрезультатной попытка классического истолкования закона радиоактивного распада была первым, или по крайней мере наиболее убедительным, примером статистического закона, который нельзя получить из законов индивидуального поведения отдельных объектов. Возникает новая концепция статистического закона, данного непосредственно, безот- * Rapports et discussions du Conseil Solvay term a Bruxelles du 27 au 30 avril 1913, Paris, 1921, p. 68—69. 368
Д. И. Менделеев. носительно к поведению индивидуальных объектов, составляющих совокупность. Такая концепция станет ясной лишь спустя десять лет после безуспешных усилий Кюри и Дебьерна 4. РАДИОАКТИВНЫЕ ИЗОТОПЫ. В первой половине прошлого века некоторые химики, в частности Жан Батист Дюма (1800—1884), заметили определенную связь между атомным весом элементов и их химическими и физическими свойствами. Эти наблюдения были завершены Дмитрием Ивановичем Менделеевым (1834—1907), который в 1868 г. опубликовал свою гениальную теорию периодической системы элементов, одно из самых глубоких обобщений в химии. Менделеев расположил известные в то время элементы в порядке возрастания атомного веса. Вот первые из них, с указанием их атомного веса по данным того времени: 71л; 9,4Ве; ИВ; 12С; 14N; 160; 19F; 23Na; 24Mg£27,3Al; 28Si; 31P; 32S; 35.50С1. Менделеев заметил, что химические и физические свойства элементов являются периодическими функциями от атомного веса. Например, в первом ряду выписанных элементов плотность регулярно возрастает с увеличением атомного веса, достигает максимума в середине ряда, а затем уменьшается; такую же периодичность, хотя и не столь четкую, можно видеть и в отношении других химических и физических свойств (точка плавления, коэффициент расширения, проводимость, окисляемость и т. п.) для элементов как первого, так и второго ряда. Эти изменения происходят по одинаковому закону в обоих рядах, так что элементы, которые находятся в одной и той же колонке (Li и Na, Be и Mg и т. д.), обладают аналогичными химическими свойствами. Эти два ряда называются периодами. Таким образом, все элементы можно распределить по периодам в соответствии с их свойствами. Из этого и следует закон Менделеева: свойства элементов находятся в периодической зависимости от их атомных весов. Здесь не место рассказывать об оживленной дискуссии, которую вызвала периодическая классификация, и о ее постепенном утверждении благодаря бесценным услугам, которые она оказала развитию науки. Достаточно лишь указать, что к концу прошлого столетия она была принята почти всеми химиками, которые принимали ее как опытный факт, убедившись в тщетности всех попыток теоретически ее интерпретировать. В самом начале XX века при обработке драгоценных камней на Цейлоне был открыт новый минерал, торианит, который, как известно сейчас, пред- -4 Марио Льоццц 369
ставляет собой ториево-урановый минерал. Некоторое количество торианита было послано в Англию для анализа. Однако при первом анализе из-за ошибки, которую Содди приписывает известной немецкой работе по аналитической химии, был спутан торий с цирконием, из-за чего исследуемое вещество, считавшееся урановой рудой, было подвергнуто обработке по методу Кюри для отделения радия от урановой руды. В 1905 г., применив указанный способ, Вильгельм Рамсей и Отто Хан (последний обессмертил свое им» тридцать лет спустя, открыв реакцию деления урана) получили вещество, которое химический анализ определял как торий, но которое отличалось от него гораздо более интенсивной радиоактивностью. Как и в случае тория, в результате его распада образовались торий X, торон и другие радиоактивные элементы. Интенсивная радиоактивность свидетельствовала о наличии в полученном веществе нового радиоактивного элемента, химически еще не определенного. Его назвали радиоторием. Вскоре выяснилось, что он представляет собой элемент из ряда распада тория, что он ускользнул от предшествовавшего анализа Резерфорда и Содди и должен быть вставлен между торием и торием X. Среднее время жизни радиотория оказалось равным примерно двум годам. Это достаточно долгий срок, чтобы радиоторий мог заменить в лабораториях дорогостоящий радий. Помимо чисто научного интереса, эта экономическая причина побудила многих химиков попытаться выделить его, но все попытки оказались безрезультатными. Никаким химическим процессом отделить его от тория не удавалось, более того, в 1907 г. проблема, казалось, еще более усложнилась, потому что Хан открыл мезо- торий — элемент, порождающий радиоторий, который тоже оказался неотделимым от тория. Американские химики Мак-Койи Росс, потерпев неудачу, имели смелость объяснять ее и неудачи других экспериментаторов принципиальной невозможностью отделения, но их современникам такое объяснение показалось лишь удобной отговоркой. Между тем в период 1907 — 1910 гг. были отмечены другие случаи, когда одни радиоактивные элементы не удавалось отделить от других. Наиболее типичными примерами были торий и ионий, мезоторий I и радий, радий D и свинец. Некоторые химики уподобляли неотделимость новых радиоэлементов случаю с редкоземельными элементами, с которым химия столкнулась в XIX веке. Первое время сходные химические свойства редких земель заставили считать свойства этих элементов одинаковыми, и лишь позднее по мере совершенствования химических методов постепенно удалось отделить их. Однако Содди считал, что эта аналогия надуманная: в случае с редкими землями трудность состояла не в том, чтобы разделить элементы, а в том, чтобы установить факт их разделения. Напротив, в случае радиоактивных элементов с самого начала ясно различие двух элементов, а вот отделить их не удается. В 1911 г. Содди провел систематическое исследование коммерческого препарата мезотория, содержащего также радий, и обнаружил, что относительное содержание одного из этих двух элементов увеличить невозможно, даже прибегая к многократной фракционной кристаллизации. Содди пришел к выводу, что два элемента могут обладать различными радиоактивными свойствами и тем не менее иметь настолько сходные другие химические и физические свойства, что они оказываются неразделимыми с помощью обычных химических процессов. Если два таких элемента обладают одинаковыми химическими свойствами, их следует помещать на одно и то же место в периодической таблице элементов; поэтому он назвал их изотопами. Исходя из этой основной идеи, Содди попытался дать теоретическое объяснение, сформулировав «правило смещения при радиоактивных превращениях»: испускание одной а-частицы приводит к смещению элемента на два места влево в периодической системе. Но превращенный элемент 370
Диаграмлта Соддп, составленная им в 1913 г. для иллюстрации правила смещения при радиоактивных превращениях. (F. S о d d у, The origins of the conceptions of isotopes, Les Prix Nobel en 1921—1922.) По оси ординат отложены массы атомов, по оси абсцисс ■— порядковый номер элемента в периодической системе (атомный номер). может впоследствии вернуться в ту же клетку периодической системы при последующем испускании двух Р-частиц, в результате чего два элемента будут обладать одинаковыми химическими свойствами, несмотря на различные атомные веса. В 1911 г. химические свойства радиоактивных элементов, испускающих (3-лучи и обладающих, как правило, очень малой продолжительностью жизни, были еще мало известны, поэтому, прежде чем принять такое объяснение, нужно было лучше узнать свойства элементов, испускающих (3-лучи. Содди поручил эту работу своему ассистенту Флекку. Работа потребовала много времени, и в ней приняли участие оба ассистента Резерфорда — Рессел и Хевеши; позднее этим занялся также Фаянс. Весной 1913 г. работа была завершена и правило Содди было подтверждено без всяких исключений. Его можно было сформулировать очень просто: испускание а-частицы уменьшает атомный вес данного элемента на 4 единицы и смещает элемент на два места влево в периодической системе; испускание же (3-частицы не меняет существенно атомного веса элемента, но смещает его на одно место вправо в периодической системе. Поэтому если за превращением, вызванным испусканием а-частицы, следует два превращения с испусканием Р-частиц, то после трех превращений элемент возвращается на первоначальное место в таблице и приобретает те же химические свойства, что и исходный элемент, обладая, однако, атомным весом, мень- 24* 371
шим на 4 единицы. Из этого ясно следует также, что изотопы двух различных элементов могут иметь одинаковый атомный вес, но различные химические свойства. Стьюарт назвал их изобарами. На стр. 371 воспроизведена схема, иллюстрирующая правило смещения при радиоактивных превращениях в форме, данной Содди в 1913 г. Сейчас мы знаем, конечно, значительно больше радиоактивных изотопов, чем знал Содди в 1913 г. Но нам не стоит, пожалуй, прослеживать все эти последующие технические завоевания. Важнее лишний раз подчеркнуть главное: а-частицы несут два положительных заряда, а ^-частицы — один отрицательный заряд; испускание любой из этих частиц изменяет химические свойства элемента. Глубокий смысл правила Содди состоит, таким образом, в том, что химические свойства элементов, или по крайней мере радиоактивных элементов, пока это правило не распространено дальше, связаны не с атомным весом, как это утверждала классическая химия, а с внутриатомным электрическим зарядом. НЕКВАНТОВЫЕ МОДЕЛИ АТОМА 5. ПЕРВЫЕ ПРЕДСТАВЛЕНИЯ О СЛОЖНОМ СТРОЕНИИ АТОМОВ. Вторая часть работы Джозефа Джона Томсона, в которой изложен упоминавшийся нами в гл. 11 метод определения отношения заряда электрона к его массе, посвящена рассмотрению строения вещества. Из первых опытов, как мы уже говорили, следовало, что «корпускулы» обладают массой, которая несомненно значительно меньше, нежели масса самого простого атома, однако, по мнению Дж. Дж. Томсона, не меньше десятой или сотой доли массы атома водорода. Томсон считал приемлемой гипотезу Праута, согласно которой различные химические элементы представляют собой различные соединения атомов первоэлемента одной и той же природы. Если заменить атомы водорода из гипотезы Праута «корпускулами», то теория первоэлемента согласуется как с опытными данными, так и с выдвинутой в то время для объяснения особенностей спектров звезд гипотезой Нормана Локкайера. Но как располагаются «корпускулы» в атоме? Дж. Дж. Томсон считал, что можно принять модель Босковича или даже просто модель «некоторого числа взаимоотталкивающихся частиц, сдерживаемых вместе некоторой центральной силой». К сожалению, экспериментальное изучение такого «коллектива» частиц так стремительно усложняется с ростом числа частиц, что практически становится невозможным. Поэтому целесообразнее прибегнуть к модельным представлениям, чтобы уяснить возможную структуру этих атомов, состоящих из корпускул. По мнению Дж. Дж. Томсона, самой простой моделью следует считать модель плавающих магнитов *, предложенную американцем Альфредом * Опыты, проведенные в 1878—1879 гг. Майером, представляются нам интересными. В небольшой сосуд, наполненный до краев водой, помещались плавающие маленькие пробочные цилиндрики, в каждый из которых была вертикально вставлена намагниченная игла, едва выглядывавшая из пробки. Все обращенные вверх острия игл имели одинаковую полярность. Над этими плавающими магнитами в 60 см от кончиков игл был помещен противоположный полюс вертикально расположенного цилиндрического магнита. Майер разделяет конфигурации, полученные с разным числом иголок, на группы или классы (первичные, вторичные, третичные...) и замечает, что устойчивые конфигурации одного класса образуют ядра (nuclei) последующих. С одним и тем же числом игл можно получить несколько конфигураций, одна из которых более устойчива, чем другие: колебания внешнего магнита, получаемые передвижением его по вертикали, приводят к переходу одной конфигурации в другую. Например, 29 магнитов, кроме конфигурации, указанной в тексте, позволяют получить еще более устойчивую кофигурацию, состоящую из четырех колец, которые от центра к периферии насчитывают соотвественно 1, 6, 9 и 13 магнитов. Такое поведение плавающих игл, по мнению Майера, может служить моделью структуры молекул, способной объяснить реальное поведение тел, например явления увеличения объема в некоторых случаях затвердевания, явления аллотропии и изомеризма. 372
Майером. В этой модели магниты самопроизвольно располагаются в состоянии равновесия под действием взаимного отталкивания и силы притяжения большого магнита. Если плавающих магнитов не больше пяти, то они располагаются в вершинах правильного многоугольника; если же их больше, то они располагаются несколькими кольцами. Например, если магнитов шесть, то один помещается в центре, остальные пять его окружают, располагаясь в вершинах правильного многоугольника; если магнитов 29, то один помещается в центре, его окружает первое кольцо из 6 магнитов, второе, большее кольцо из 10 магнитов и третье, еще большее кольцо из 12 магнитов. Если принять эту систему магнитов за модель атома, причем число магнитов будет пропорционально атомному весу, то из нее сразу же следует, что если, скажем, какое-нибудь свойство зависит от числа магнитов в самом меньшем круге, то, поскольку кольцо такого типа может повторяться в нескольких моделях, появляется возможность рационального объяснения периодической системы элементов. Какая соблазнительная перспектива для физики конца прошлого века! Но, к сожалению, эта модель смогла продержаться лишь несколько месяцев. В самом деле, ее достоверность связана с идеей о небольшом числе составляющих атом «корпускул», порядка нескольких десятков. Но если для представления строения простейшего атома требуется вообразить целое облако из тысяч «корпускул», то такая модель, очевидно, не давала бы никаких возможностей для экспериментального изучения, а может быть, и для теоретического. Вот почему, когда вскоре после этого Дж. Дж. Томсон и другие установили, что эти «корпускулы» (отныне мы будем называть их современным именем — электроны) обладают массой, во много раз меньшей массы атома водорода, Томсон вынужден был (в 1899 г.) изменить свою модель. Теперь она выглядела так: нейтральный атом содержит большое число электронов, отрицательный заряд которых компенсируется тем-то, что делает пространство, в котором рассеяны электроны, способным действовать так, как если бы оно имело положительный электрический заряд, равный сумме отрицательных зарядов электронов» *. Эта вторая томсоновская модель атома все еще страдает некоторой неясностью, но по сравнению с первой это уже большой шаг вперед, потому что она признает, что атом состоит не только из электронов, но из электронов и из чего-то, точно еще не определенного, которое служит как бы центром образования атома. 6. АТОМ ТОМСОНА. Вторая модель Дж. Дж. Томсона вскоре получила более четкий характер благодаря работе лорда Кельвина, чей огромный авторитет, несомненно, сильно помог дальнейшему успеху модели Томсона. В этой работе, появившейся в 1901 г., выдвигается предположение, что поток отрицательного электричества, состоящий из электронов (которые Кельвин, пожалуй, этимологически более правильно называет электрионами по аналогии с термином ионы), свободно пронизывает не только пустое пространство между атомами, но и сами атомы. Кроме того, Кельвин постулирует притяжение между атомом обычной материи и электроном, определяемое следующим законом: Притяжение атомом внешнего электрона обратно пропорционально квадрату расстояния между их центрами, а притяжение электрона, находящегося внутри самого атома, пропорционально расстоянию между их центрами. * J.J.Thomson, On the Masses of the Ions in Gases at Low Pressures, Phil. Mag., (5), 48, 547 (1899). 373
Этот закон, согласно пнаменитой теореме Ньютона, равносилен допущению о равномерном распределении положительного электричества в пространстве, занимаемом атомом обычной материи. Из этого следовало, что существует два рода электричества: отрицательное, «зерновидное», и положительное в виде непрерывного облака, как обычно представляли себе «флюиды», и в частности эфир. Обычная незаряженная материя представляет собой совокупность атомов, содержащих столько электронов, сколько необходимо для того, чтобы вне атома нейтрализовать электрические силы. Короче говоря, модель атома Кельвина предполагает, что в атоме имеется равномерное сферическое распределение положительного электричества и определенное число электронов. Но при чтении статьи Кельвина нельзя понять, является ли для него так называемая материя носителем этого электрического заряда или же она отождествляется с ним. Эта же двусмысленность потом будет присуща и последующим моделям атома. Как бы там ни было, простейшая модель атома представляет собой равномерное сферическое распределение положительного электрического заряда с одним электроном в центре. Что же касается атомов с двумя и более электронами, то здесь возникает проблема устойчивости, которую Кельвин без долгих рассуждений разрешает утверждением, что электроны, вероятно, располагаются по сферическим поверхностям, концентричным границе атома, находящимся внутри него, и, должно быть, вращаются вокруг центра. Модель Кельвина подымала две важные проблемы. Вращающиеся электроны должны были бы, согласно электромагнитной теории света, вызывать электромагнитные волны и магнитное поле. Как проявляются оба эти явления? Изучением этого занялся Дж. Дж. Томсон и примерно в течение пятнадцати лет оставался верным модели Кельвина, которая была воспринята физиками как развитие модели Дж. Дж. Томсона и поэтому в течение первых двух десятилетий нашего века называлась «атомом Томсона». Томсон установил сначала (1903 г.), что вращающиеся электроны должны создавать эллиптически поляризованные световые волны. Что же касается магнитного поля, создаваемого вращающимися зарядами, то, как показывала теория представление об электронах, вращающихся под действием силы, пропорциональной расстоянию, не может объяснить магнитных свойств тел, если только движение происходит без рассеяния энергии. Если допустить, что движение частиц испытывает торможение по какой-то неизвестной причине, то таким образом можно было бы объяснить парамагнетизм. Но происходит ли на самом деле рассеяние энергии? Томсон не высказывается ясно на этот счет, предчувствуя серьезные следствия, которые повлекло бы за собой такое утверждение. За год до этого Вильгельм Фохт тоже был вынужден для объяснения пара- и диамагнетизма привлечь довольно сложную гипотезу о вращающихся электронах, тормозимых в их движении постоянными соударениями. В противоположность заключениям Томсона и Фохта Пьер Ланжевен в одной чрезвычайно важной работе 1905 г., на которую все еще продолжают опираться книги по теории магнетизма, считает возможным придать гипотезе Ампера точное истолкование с помощью модели вращающихся по замкнутым траекториям электронов. Ланжевен показал также, что эффект Зеемана можно объяснить гипотезой вращающихся электронов, даже не зная закона притяжения, удерживающего электроны на орбите. Механическая устойчивость атомной структуры была исследована Дж. Дж. Томсоном в его следующей работе в том же 1904 г. Он пришел к выводу, что электроны должны находиться в быстром вращательном движении, причем скорость их не меньше некоторой определенной предельной 374
величины, а если электронов много (больше восьми), то они располагаются несколькими кольцами (отсюда и связь между структурой атомов и периодической системой элементов) и число электронов в каждом кольце уменьшается с уменьшением радиуса самого кольца. В радиоактивных атомах вследствие излучения скорость электронов постепенно уменьшается; когда она достигает предельной величины, устойчивость нарушается и происходит взрыв атома, в результате которого выбрасываются частицы и устанавливается новая структура атома. Известно, что атом Томсона не устоял перед критикой и перед опытной проверкой. Но было бы неверно думать, что его исследование было бесполезно. Напротив, оно представляло собой ценное руководство для теоретических и опытных изысканий того времени и выявило основные проблемы, которые предстояло решить при любой модели атома, принимающей электроны его составной частью. Эти проблемы можно свести к трем: связь между числом и распределением электронов и массой атома; природа и распределение положительного электричества, компенсирующего общий отрицательный заряд электронов; природа и распределение массы атома. Томсон понимал, что главная проблема, перед которой стоит любая модель атома, состоит в нахождении такого пути, который позволил бы по данным опыта как-то судить о числе электронов, содержащихся в атоме. И он нашел такой путь, предположив, что каждый электрон является центром рассеяния излучения, падающего на атом. Если основываться на этой гипотезе, то четыре явления позволяли получить необходимые оценки: рассеяние рентгеновских лучей, поглощение катодных лучей, дисперсия света и отклонение быстрых заряженных частиц при их прохождении через вещество. Идя по этому пути, Дж. Дж. Томсон и многие другие исследователи, среди которых самыми известными были Краутер и Баркла, пришли к выводу, что число электронов в атоме должно быть пропорционально атомному весу. Точнее говоря, Краутер, исходя из опытов по рассеянию лучей, пришел в 1910 г. к выводу, что число электронов должно быть в 2—3 раза больше атомного веса данного элемента; Баркла же по данным о рассеянии рентгеновских лучей в 1911 г. пришел к выводу, что в легких атомах число электронов должно равняться примерно половине их атомного веса. Эти данные взаимно противоречивы, но их объединяет одно: число электронов каким-то образом связывается с массой рассматриваемого атома. Разве уже один этот качественный вывод, который впоследствии побудит других к более тщательным исследованиям, не делает атом Томсона достойным упоминания? Гораздо труднее получить данные, необходимые для решения второй проблемы, касающейся положительного заряда атома. Здесь вопрос не столь ясен, как в случае с отрицательными зарядами. И все же, по мнению Томсона, имелись два указания на существование положительного заряда в атоме. Испускание а-частиц радиоактивными веществами заставляло предполагать, что они исходили изнутри атома, более того, они представляли собой составную часть атомов в радиоактивных элементах. А разве устойчивые элементы не могли иметь тот же состав? «По-моему,— писал Томсон в 1913 г.,— можно быть уверенным, что и другие атомы, помимо атомов радиоактивных элементов, могут быть тоже разложены и что гелий может быть получен в качестве продукта такого разложения». Более того,— и это как раз и есть второе указание на существование положительного заряда в атоме — Томсону показалось, что он наблюдал (каким метким кажется нам замечание Гальвани о том, что часто каждый 375
из нас видит в явлениях то, что хочет видеть!), как некоторые металлы, бомбардируемые быстрыми катодными лучами, испускали гелий. Однако этот факт был позже опровергнут Марией Кюри. 7. АТОМ НАГАОКА — РЕЗЕРФОРДА. Кельвин лишь упомянул о возможности существования внутри атома центрального положительно заряженного ядра. Эта идея, оставленная без внимания Томсоном, была развита японским физиком Хантаро Нагаока (1865—1950) в сообщении, сделанном им в декабре 1903 г. в Токийском физико-математическом обществе; в следующем году это сообщение было опубликовано в английском журнале «Nature». Томсон выдвигал свою модель, учитывая прежде всего электрические явления, тогда как Нагаока решил заняться изучением сатурноподобной системы, чтобы попытаться объяснить спектры эмиссии. «Система,— разъясняет ученый,— состоит из большого числа частиц одинаковой массы, расположенных по кругу через равные угловые интервалы и взаимно отталкивающихся с силой, обратно пропорциональной квадрату расстояния между ними; в центре круга помещается большая частица, которая притягивает другие частицы, образующие кольцо, по тому же закону». Заметив, что при движении частиц вокруг центра система остается устойчивой по отношению к малым поперечным или продольным колебаниям, Нагаока добавляет: «Очевидно, рассмотренная здесь система будет приблизительно реализована, если мы разместим электроны по кольцу, а положительный заряд в центре. Такой атом не будет противоречить результатам недавних опытов с катодными лучами, радиоактивностью и другими связанными с этим явлениями» *. И все же первое время модель Нагаока не имела особого успеха. В 1908 г. Гейгер и Марсден начали экспериментальное изучение прохождения а-частиц через тонкие пластинки из золота и других металлов. Они заметили, что большинство частиц проходит через пластинку почти по прямой и продолжает дальше за пластинкой свой путь так, как будто никакого препятствия со стороны вещества и не было. Аналогичное наблюдение было проведено Уильямом Брэггом в 1904 г. Но Гейгер и Марсден заметили, что наряду с таким поведением большинства а-частиц иногда какая-нибудь частица — примерно одна из 10 000 — все же сильно отклонялась, причем отклонение было больше прямого угла. Здесь, несомненно, речь шла о явлении столкновения а-частицы с атомами вещества. Но как в модели атома Томсона, так и в модели Нагаока предполагалось радикальное изменение понятия столкновения атомов по сравнению с тем, которое существовало в кинетической теории газов. В кинетической теории атомы уподоблялись упругим шарикам и проблемы столкновения рассматривались точно так же, как рассматривается столкновение двух бильярдных шаров. Новые модели атомов больше не допускали такого уподобления, потому что при сближении двух атомов со своими электрическими зарядами между соответствующими электрическими зарядами возникают довольно значительные силы отталкивания, изменяющие первоначальные траектории атомов: «удара» в механическом смысле не происходит. Теория, объясняющая изменение движения двух таких сильно сближающихся атомов, гораздо сложнее с математической точки зрения. В первом приближении, однако, движение двух таких атомов с соответствующими заря- *Н. Nagaoka, On a Dynamical System Illustrating the Spectrum Lines and the Phenomena of Radioactivity, Nature, 69, 392 (1904). 376
дами измспяется приблизительно так же, как и при механическом столкновении, поэтому можно еще продолжать говорить о столкновениях, помня, однако, что это не настоящие столкновения. Имея все это в виду, Томсон истолковывал сильное отклонение, наблюдавшееся Гейгером и Марсденом, не как отклонение, вызванное одним-един- ственным столкновением а-частицы с атомом, а как сумму многочисленных мелких отклонений частицы в ее последовательных столкновениях с атомами проходимого вещества. Напрасно было бы ждать, чтобы Томсон объяснил, каким же образом последовательные мелкие отклонения направлены все в одну сторону так, что складываются в одно общее большое отклонение, которое и наблюдается. Модель Томсона не допускала другой интерпретации опыта Гейгера и Марсдена, ибо очевидно, даже если не вникать в расчеты Томсона, что размазанный положительный электрический заряд (сс-частица), проходя через другой размазанный электрический заряд с примесью электронов (атом), может претерпеть лишь незначительные отклонения. Модель Томсона не могла удовлетворительно объяснить опыт Гейгера и Марсдена. Решить эту задачу смог в 1911 г. бывший ассистент Томсона Эрнест Резерфорд. Он пришел к убеждению, что сильное отклонение, наблюдавшееся Гейгером и Марсденом у некоторых сс-частиц, должно объясняться резким отклоняющим действием, испытываемым а-частицей при прохождении через интенсивное электрическое поле атома, или, иначе говоря, в результате одного-единственного столкновения с атомом. Но если отклонение вызывается одним столкновением, то неизбежно приходится предположить, что в центре атома имеется некое ядро чрезвычайно малых размеров, заряженное положительно и заключающее в себе большую часть массы атома. Одним словом, нужно было принять модель атома Нагаока, устойчивость которого, подвергавшаяся сомнению, по мнению Резерфорда, не должна вызывать особого беспокойства, ибо этот вопрос должен рассматриваться лишь во вторую очередь, когда будет подробно изучена структура атома. С помощью модели Нагаока сильное отклонение получает очень простое объяснение: а-частица пересекает электронную атмосферу атома металлической пластинки, приближается к ядру и благодаря большой силе кулонов- ского взаимодействия между двумя положительными зарядами сильно отклоняется, описывая траекторию гиперболического типа. Ланжевен обратил внимание на то, что модель атома Нагаока как будто не совсем соответствовала данным о радиоактивных явлениях, поскольку радиоактивные вещества испускают также и р-лучи, которые, как кажется, выходят из самых глубин атома. Поэтому в атомном ядре должны находиться также и электроны, так что с этой точки зрения модель Томсона казалась более приемлемой. Мария Кюри настаивала на необходимости признать существование электронов в ядре. Эти «основные» электроны, как она их назвала, или «ядерные», как их стали называть позже, не могут быть испущены без разрушения самого атома, тогда как другие, получившие название «периферических», могут быть оторваны от атома без изменения его химической природы. В течение двадцати лет ядерные электроны считались частью атомной структуры (запоздалая дань уважения модели Томсона?). По предложению Резерфорда им была приписана функция склеивания положительных зарядов ядра, которые сила взаимного кулоновского отталкивания стремилась разделить. Модель Нагаока — Резерфорда была лишь качественным представлением строения атома, и необходимо было перейти к количественным характеристикам, подобно тому как это было сделано для модели Томсона. Эксперименты, которые привели к выводу, что ядерный заряд равен половине атомного веса, очевидно, были применимы и к новой модели. Но Резерфорд 377
Гиперболические траектории а-частиц вблизи тяжелого ядра, по Резерфорду (1911 г.) заметил, что эта закономерность, по крайней мере для легких ядер, не вполне точпа. В самом деле, трудно допустить, что отдельная а-частица, испущенная радиоактивным веществом в виде иона гелия с двумя положительными зарядами, сохраняет какой-нибудь из своих периферических электронов. Поэтому нейтральный атом гелия должен иметь два электрона, а атом водорода по аналогии — один электрон, причем заряд ядра тоже должен быть равен единице, из чего ясно, что указанный закон здесь несправедлив. Решающим, или, как назвал его Содди, «драматическим», годом для модели Резерфорда был 1913 год. Четыре основных факта, установленных почти одновременно, сильно помогли уверовать в достоверность ядерной модели атома. Эти четыре факта взаимно связаны и взаимно обусловлены не только потому, что все они (за исключением одного) установлены в географически близких друг другу местах (Кембридж, Манчестер и Глазго), но и благодаря общему для всех них более или менее непосредственному влиянию самого Резерфорда. Мы уже говорили о первом из этих фактов, об экспериментальном правиле смещения, ясно сформулированном Содди весной 1913 г. Расскажем теперь об остальных трех: о понятии «атомного номера», выдвинутом незадолго до этого Ван ден Брейком (1870—1026), о квантовании электронных орбит, сформулированном Бором летом того же года, и об опытном законе Мозли, установленном зимой. Ван ден Брейк заметил, что данные по рассеянию а-частиц лучше объясняются моделью Резерфорда, если предположить ядерный заряд равным 378
порядковому номеру элемента в периодической системе Менделеева, названному им «атомным номером». Отношение атомного номера к атомному весу приблизительно равно 0,5 для легких атомов и постепенно уменьшается, достигая примерно 0,4 для урана, последнего элемента системы. Таким образом, идея Ван ден Брейка, не удаляясь сильно от ранее найденного экспериментального закона, обладала соблазнительной простотой. Однако основание ее было довольно хрупким. Твердый экспериментально обоснованный фундамент ей придало лишь последнее из важных событий того года (о третьем мы будем подробно говорить в § 12) — закон Мозли. Генри Мозли (1887—1915), безвременно погибший в сражении на полуострове Галлиполи, начал в Манчестере в качестве добровольного ассистента Резерфорда свои исследования спектров рентгеновских лучей с помощью незадолго до этого введенного Брэггом метода вращающегося кристалла. По словам Резерфорда, целью его исследований было решить, что существеннее для жестких рентгеновских спектров — атомный номер элемента или его атомный вес. Баркла уже показал, что достаточно жесткие рентгеновские лучи, попадая на простое вещество, порождают другие рентгеновские лучи, названные вторичными, которые однородны, т. е. имеют одну и ту же частоту, характерную для облучаемого вещества и не зависящую от частоты первичных рентгеновских лучей. Мозли измерил частоту основных спектральных линий, открытых Баркла для ряда элементов периодической системы, и нашел, что она пропорциональна квадрату числа, которое изменяется на единицу при переходе от одного элемента периодической системы к соседнему. Это был опытный факт, не предполагавший никакого теоретического представления о строении атома и о происхождении его излучения. Но он приобрел глубокий смысл, как только Мозли показал, что наблюдаемый факт может служить доказательством того, что «атому присуща некая характерная величина, которая регулярно увеличивается при переходе от атома к атому. Это количество не может быть не чем иным, как только зарядом внутреннего ядра». Кроме этих опытных данных Мозли, правило Содди также подтверждало простую идею Ван ден Брейка. Поскольку каждое испускание одной а-частицы уменьшает массу атома на 4, а атомный номер на 2, тогда как выбрасывание (3-лучей увеличивает заряд на 1 и оставляет неизменной массу атома, то достаточно узнать тип излучения данного радиоактивного семейства и атомный номер его родоначальника, чтобы непосредственно определить атомный номер и массу всех элементов данного семейства и сопоставить их с данными опыта. Сопоставление давало результаты, полностью соответствующие теории. Деятельная группа Резерфорда искала способ непосредственного определения величины ядерного заряда, но первая мировая война замедлила, если не совсем остановила работу, потому что тогда в отличие от положения, сложившегося в период второй мировой войны, никто не считал, что эти исследования смогут в будущем иметь какое-то военное значение; они целиком принадлежали к области «доброй старой философии», которой нужно было пожертвовать ради военных нужд. Вот почему только в 1920 г. Джемс Чэдвик произвел первое точное измерение ядерного заряда некоторых элементов, определив его по доле а-частиц, отклоняющихся на определенный угол при столкновении с атомами исследуемого элемента. Этим методом он нашел ядерные заряды для меди, серебра и платины, оказавшиеся соответственно равными 29,3; 46,3 и 77,4, а их атомные номера 29, 47 и 78; соответствие вполне удовлетворительное. 379
8. ИСКУССТВЕННОЕ РАСЩЕПЛЕНИЕ ЭЛЕМЕНТОВ. Факты, которые в 1913 г. придали вес модели атома Резерфорда, принадлежали главным образом к области радиоактивных явлений. Но эти явления были столь специфичны, что можно было даже допустить, что строение радиоактивных атомов отличается от строения обычных устойчивых атомов. Перенесение структуры радиоактивного атома на устойчивый атом было чистой экстраполяцией. «Совершенно необходимо,— предупреждал Томсон в 1913 г.,— устанавливать теорию строения атома на базе более широкой, чем одни лишь явления радиоактивности. Химические свойства атомов и многие физические свойства зависят от распределения электронов, находящихся вблизи поверхности атомов. Эти электроны не участвуют в радиоактивных превращениях, так что данные о радиоактивных превращениях не могут дать нам никаких указаний на их счет» *. Поэтому было бы очень важно получить какое-нибудь опытное доказательство того, что строение устойчивых атомов подобно строению радиоактивных. В 1920 г. Резерфорд попытался получить это доказательство, руководствуясь следующим чрезвычайно простым соображением, которое стоит воспроизвести буквально: «Испускаемая радием а-частица является самым концентрированным источником энергии из всех, какими мы располагаем, и, как мы видели, имеются все основания предполагать, что а-частица радия С способна проникать внутрь ядер легких атомов, а может быть, даже тяжелых. Если только ядра атомов не представляют собой исключительно устойчивых структур, то можно ожидать, что они разрушатся под действием внутренних сил, проявляющихся в момент столкновения с частицей... Если учесть незначительные размеры ядер, то возможность центрального столкновения маловероятна, и даже в наиболее благоприятных случаях не больше одной а-части- цы из 10 000 действительно производит расщепление» **. В связи с этим Резерфорд стал пропускать через азот а-частицы, получаемые от радиоактивного вещества, или, как говорят, бомбардировал азот а-частицами. При этом он наблюдал появление ионов водорода с одним зарядом, которые Марсден наблюдал уже в 1914 г. и назвал протонами. Число полученных протонов было чрезвычайно мало: миллион а-частиц, бомбардирующих азот, едва давал 20 протонов, наблюдавшихся Резерфордом методом сцинтилляций. Полученный эффект, говорит Резерфорд, «незначителен и с трудом поддается измерению, но в общем создается впечатление, что атомы водорода рождаются в результате расщепления ядра азота» **. Протоны были получены также при бомбардировке а-частицами радия С других элементов (бора, фтора, натрия, алюминия, фосфора). В 1921 и 1922 гг. Резерфорд и Чэдвик осуществили другие ядерные реакции, а в 1925 г. Резерфорд истолковал все эти результаты как расщепление атомов, показав, что а-частица может быть захвачена ядром. Позднее, когда искусственные превращения уже перестали быть чем-то необычным, стало ясно, что Резерфорд в действительности добился расщепления еще в 1920 г., хотя первое время сообщения о полученных им результатах принимались сдержанно, если не скептически. Так, первый опыт Резерфорда по бомбар- * Rapports et Discussion du Conseil de Physique Solvay, 1913, p. 51. ** Atomes et electrons, Rapports et Discussions du Conseil de Physique tenu a Bruxelles du 1« au 6 avril 1921, Paris, 1923, p. 50—51. 380
дировке азота объясняется следующим образом: а-частица захватывается ядром азота с доследующим испусканием протона и образованием ядра с массой 17, являющегося изотопом кислорода. 9. НЕРАДИОАКТИВНЫЕ ИЗОТОПЫ. Изотопия (или, как иначе говорят, изотопизм) радиоактивных элементов была установлена как опытный факт, не зависящий от каких бы то ни было гипотез о структуре атомов. Чтобы подчеркнуть это, мы упомянули о ней до того, как перешли к моделям атома, помня, что современные авторы курсов физики в этом случае нарушают хронологический порядок для удобства изложения (Содди даже считал, пожалуй несколько преувеличивая, что нарушение хронологии проводилось нарочно, чтобы умалить его заслуги). Но после того как правило смещения Содди было использовано как одно из наиболее убедительных доказательств правильности модели Резерфорда, перенесенной также и на устойчивые элементы, изотопия нерадиоактивных элементов казалась прямым следствием этой теории и пролила новый свет на явление, открытое Томсоном в 1912 г. До этого, в 1910 г., Уотсон измерил с большой тщательностью атомный вес неона и нашел его равным 20,200 (принимая атомный вес кислорода равным 16). В 1912 г. Томсон, воздействуя на каналовые лучи неона одновременно электрическим и магнитным полями, согласно своему методу (см. гл. 11), заметил, что эти лучи неоднородны, потому что получались две параболы: одна, соответствующая частицам с атомным весом 20, а другая, более слабая, но все же четкая, соответствующая частицам с атомным весом 22. Томсон предположил, что атмосферный неон представлял собой смесь двух различных газов. Содди же сразу отметил: «Это открытие представляет собой самое неожиданное приложение того, что было найдено для одного конца периодической системы, к элементу другого конца системы; оно подтверждает предположение о том, что структура материи вообще существенно сложнее, чем это проявляется в одном лишь периодическом законе» *. В 1913 и 1914 гг. Фрэнсис Уильям Астон (1877—1945), ассистент Томсо- на, попытался фракционной возгонкой разделить два предполагаемых компонента атмосферного неона, однако не добился результатов. Весьма неопределенный результат дала и последующая очень трудоемкая попытка разделения методом диффузии через пористые перегородки. Началась первая мировая война. Астон был призван и прервал свои исследования. Он смог возобновить их лишь в 1919 г., когда в существовании радиоактивных изотопов уже никто не сомневался. Начал Астон (совместно с Линдеманом) с теоретического исследования, в котором показал, что из всех возможных физических методов разделения изотопов (диффузия, возгонка, центрифугирование) самым многообещающим и результативным является электромагнитный метод Томсона. В том же году Астон начал экспериментальные исследования и в следующем году усовершенствовал их, применив устройство, которое назвал масс-спектрографом. Название это так и осталось в науке. В масс-спектрографе применяется томсонов- .ский метод отклонения заряженных частиц под действием двух полей, электрического и магнитного, но Астон значительно увеличил его чувствительность, введя фотографирование, а главное применяя электрические и магнитные отклонения в одной и той же плоскости, но в противоположных направлениях. Впрочем, физические принципы, примененные в масс-спектрографе, * Annual Report in Radioactivity, в сб. Annual Reports on the Progress of Chemistry, Chemical Society, London, 1913, p. 266. 381
Схема первого масс-спектрографа. Ионы, вылетающие из разрядной трубки, не показанной на рисунке, проходят через щели Si и St. попадают в электрическое поле, создаваемое плоским конденсатором Р^Рг. и отклоняются вниз. Выйдя из поля, ионы проходят в щель D и попадают в магнитное поле, создаваемое цилиндрическими полюсами (показано окружностью). Магнитное поле отклоняет ионы вверх по-прежнему в плоскости рисунка. Все ионы одинаковой массы концентрируются в одной и той же точке фотопластинки GF, создавая на ней изображение. По положению этого изображения определяется масса иона. Устройство первого масс-спектрографа. В — разрядная трубка, испускающая каналовые лучи; А — анод; С — катод с отверстием; D — кремневый антикатод, служащий для сведения к минимуму рентгеновского излучения. Ионы проходят через щели S, и S2, пересекают электростатическое поле, создаваемое плоским конденсатором J-tJt, а затем магнитное поле М, и попадают на фотопластинку W; I, и I, — отростки, наполненные древесным углем и охлаждаемые жидким воздухом для поддержания вакуума; V — приспособление для перемещения фотопластинки.
общеизвестны. Ионы исследуемого вещества, проходя вначале электрическое, а затем магнитное поле, попадают на фотопластинку и оставляют на ней след. Отклонения ионов зависят от отношения elm заряда, одинакового для всех ионов, к массе (или, лучше сказать, от пе/т, потому что ион может нести более одного элементарного заряда). Поэтому все ионы одинаковой массы концентрируются в одной и той же точке фотопластинки, а ионы с другой массой — в других точках, так что по точке попадания иона на пластинку можно определить его массу. Новый инструмент сразу же позволил получить замечательные результаты. Астон нашел непосредственное подтверждение того, что неон состоит из двух изотопов с массами 20 и 22. Следующим исследованным элементом был хлор; здесь тоже были найдены два изотопа с массами 35 и 37. Астон начал систематическое изучение различных элементов, и клетки периодической системы наполнились изотопами: в 1921 г. из 21 исследованного элемента у 11 имелись изотопы, а 10 лет спустя из 64 исследованных элементов у 42 оказались изотопы. В 1945 г. из 83 исследованных элементов только 10 оказались чистыми элементами, остальные имели 283 изотопа. Это, пожалуй, было чересчур! Теперь уже многочисленность различных атомов представляет серьезную трудность на пути изучения атомной структуры. Постепенно спектрографы все более усовершенствовались. В 1925 г. Астон сконструировал второй спектрограф, который обладал точностью 1/10 000, а в 1937 г. третий спектрограф достигал уже точности 1/100 000. По словам Содди, «эти инструменты можно поставить в ряд с наиболее удивительными и точными приборами, которые когда-либо изобретал человеческий ум». Открытие А стона имело исключительно важное значение для теории. Непосредственным следствием его было то, что вновь был поставлен вековой вопрос об определении понятия элемента. Речь идет о том, нужно ли рассматривать каждый изотоп как отличный элемент и каждое вещество, содержащее несколько изотопов, как смесь различных элементов, а не как один химически определенный элемепт? Сейчас подавляющее большинство химиков продолжает придерживаться классической концепции, т. е. считает, что каждый элемепт химически определяется своими химическими свойствами и своим спектром излучения при заданных условиях. Для элементов, обладающих одинаковыми химическими свойствами, но различными ядерными массами, вводится понятие и название изотопа. Другими словами, изотопы считаются элементами химически эквивалентными, но физически отличными. Здесь впервые проявляется недостаточность периодической системы, которая годится для классификации большинства таких физических и химических свойств элементов, как объем, валентность, теплопроводность и электропроводность, т. е. тех свойств, которые называются электронными и которые зависят от числа и расположения самых внешних электронов атома. Для других же свойств, таких, как масса, радиоактивность, спектр рентгеновского излучения, которые зависят от строения ядра и от наиболее близких к нему электронов, классификация, основывающаяся на знании одного лишь атомного номера, недостаточна. 10. МАТЕРИЯ II ЭНЕРГИЯ. При проведении самых первых исследований в 1920 г. Астона и его сотрудников больше всего поразил тот факт, что атомные веса всех легких элементов представляли собой целые числа, по крайней мере в пределах экспериментальных ошибок, возможных в то время, т. е. с точностью до 1/1000. Это «правило целого числа» начинало, однако, слегка нарушаться для более тяжелых атомов — с номера 30 и дальше, для которых отклонение 383
CI "ГГ..Т~» -j.-j-y»—, <; ■ ^*T.- - - ^^ ■ чш-Д - \A Xe Первые фотографии спектров масс, полученные Астоном. (Philosophical Magazine, 1920.) Числа над линиями указывают соответствующие массы (масса атома кислорода принята равной 1G). Линии, которые не относится к исследуемому влемспту, являются опорными линиями и принадлежат веществам с хорошо известной массой атома. от этого правила, пранда незначительное, неуклонно возрастало с атомным номером. Правило целого числа, заключает Астон, придает соблазнительную простоту нашему представлению об атомном весе. Это правило реабилитирует гипотезу, выдвинутую в 1816 г. Ираутом: первоэлемент «протил», из которого составлены все остальные элементы, это не водород, как думал Праут, а протон, сочетающийся с частицей, примерно в две тысячи раз меньшей,— с электроном. Из этого следует, что дробные числа, полученные химиками для атомных весов многих элементов, представляют собой средние взвешенные значения для смеси изотопов, нз которых состоит химический элемент. Это просто случайный результат статистического усреднения, определяемый соотношением различных изотопов. Но у правила целого числа было одно исключение — исключение, которое оказалось гораздо важнее самого правила: атомная масса водорода, определенная также и с помощью масс-спектрографа, оказывалась равной по 1 (если массу атома кислорода принять равной 16), а 1,008, как это установили химики. Разница очень незначительная, но все же ее нельзя было отнести за счет ошибок опытов, существенно меньших этой разницы. Астону первому (1920 г.) пришла замечательная мысль объяснить эту аномалию неаддитивностью масс, которая предсказывалась сначала электронной теорией Лоренца, а затем теорией относительности. Именно в то время, т. е. около 1920 г., теория относительности, несмотря на суровую крити- 384
ку, которой она подвергалась, начинала приобретать популярность. Одним из следствий теории относительности является то, что масса и энергия оказываются разными аспектами одной и той же реальности и, согласно точно определенному соотношению, могут переходить одна в другую. Всего за несколько лет до открытия Астона известнейшие физики считали эквивалентность массы и энергии одной из самых парадоксальных шуток теории относительности (см. гл. 12). Однако Астон находит в принципе относительности объяснение отклонения массы водорода от целого числа. По мнению Астона, когда несколько протонов соединяются, образуя атомное ядро элемента, часть их массы переходит в энергию связи ядра. Это явление, названное Астоном «packing effect» («эффект упаковки») и называемое теперь дефектом массы, объясняет кажущуюся потерю массы ядра водорода при его соединении с другими ядрами и образовании нового ядра. Едва ли следует упоминать о том, что это объяснение дефекта массы сегодня есть краеугольный камень теории ядра, все еще далеко не завершенной. «.Теория показывает,— писал Астон в своей Нобелевской лекции,— что когда имеет место такая тесная упаковка, то эффективная масса уменьшается. Таким образом, при упаковке четырех протонов с двумя электронами в ядре гелия вес этого ядра несколько меньше учетверенного веса ядра водорода. Давно известно, что атомный вес водорода больше одной четвертой веса гелия, но до тех пор, пока были приняты дробные атомные веса, не было никакой нужды объяснять этот факт и из него нельзя было извлечь никакого определенного вывода. Результаты, полученные с помощью масс-спектрографа, устранили всякие сомнения в этом вопросе, так что уменьшение массы в результате упаковки не подлежит больше обсуждению. Мы можем быть совершенно уверены в том, что при превращении водорода в гелий определенная часть массы должна исчезнуть. Космологическое значение этого вывода огромно, и открываемые им возможности для будущего очень важны, важнее, чем любое другое научное открытие, сделанное до сих пор человечеством. Мы знаем из теории относительности Эйнштейна, что масса и энергия переходят друг в друга и что в единицах СГС масса покоя т может быть выражена как некое количество энергии тс2, где с — скорость света. Даже при самых малых массах эта энергия огромна. Потеря массы даже в одном- единственном ядре гелия эквивалентна энергии, получаемой электрическим зарядом е при прохождении им разности потенциалов примерно в тридцать миллионов вольт. Если же рассматривать не один атом, а обычные количества вещества, то величина энергии становится колоссальной. Рассмотрим, например, один грамм-атом водорода, т. е. количество водорода, содержащееся в 9 г воды. Если это количество водорода целиком превращается в гелий, то величина освобожденной энергии равна 0,0077-9-1020 = 6,93-1018 эрг. Выраженная в виде теплоты, эта энергия равняется 1,11 -1011 кал, а в виде работы — 200000 квт-час. Перед нами источник энергии, достаточный для объяснения происхождения тепла, излучаемого Солнцем. По этому поводу Эддингтон замечает, что если бы лишь 10% всего водорода, имеющегося на Солнце, превратилось в гелий, то освободилась бы энергия, достаточная для того, чтобы поддерживать сегодняшний уровень радиации Солнца в течение миллиарда лет. Возможно, будущие исследователи откроют какой-нибудь способ освобождения этой энергии, который позволит ее использовать. Тогда человечен ство получит в свое распоряжение такие возможности, которые превосходят любую фантазию. Но нужно, однако, все время помнить о том, что освобожденная энергия может оказаться совершенно неконтролируемой и благодаря 25 Марио Льоцци 385
своей огромной силе произвести взрыв всего окружающего вещества. В этом случае весь водород Земли внезапно превратится в энергию и успех этого эксперимента предстанет перед Вселенной в виде вновь появившейся звезды» *. За два года (1919 и 1920) решение частной задачи об атомной массе неона привело к пересмотру одной из самых важных космологических проблем. Этот факт может показать, насколько важным было открытие изотопов для всех наук, а не только для физики: для великих открытий характерно сведение к одному и тому же принципу явлений, кажущихся очень далекими друг от друга. АТОМ БОРА 11. СПЕКТРАЛЬНЫЕ СЕРИИ. С самого начала исследования светового спектра (см. гл. 8) физики заметили, что, несмотря на кажущийся беспорядок, в распределении спектральных линий элементов имеется некоторая закономерность. Первым, кто открыл здесь точное соотношение, был, пожалуй, Джонстон Стони. В 1870 г. он заметил, что частоты линий С, F, h солнечного спектра, соответствующих линиям a, р", б спектра водорода, относятся между собой как 20 : 27 : 32. Установление этого факта сразу же навело его на мысль, что эти три линии, должно быть, имеют своим источником какое-то периодическое явление внутри молекулы водорода. Он утвердился в этом предположении, когда в следующем году в сотрудничестве с Дж. Рей- нольдсом установил, что частоты линий спектра поглощения хлористого хромила (Сг02С12) находятся при определенных условиях в простых отношениях с частотами гармоник скрипичной струны. В 1885 г. Иоганн Бальмер (1825—1898) показал, что результаты Стони можно рассматривать как частный случай более общего закона. Он нашел, что длины волн (или обратные им величины, называемые «волновыми числами») линий видимого спектра водорода могут быть выражены простой формулой, с помощью которой длины волн различных спектральных линий получаются при приписывании некоторой переменной целых значений от 3 и больше**. Ободренные успехом Бальмера, Ридберг в 1889 г., а Кайзер и Рунге в 1890 г. также начали исследования спектров. Ридберг нашел серию линий для таллия и ртути, а проводившиеся в течение нескольких лет работы Кайзера и Рунге, применивших метод фотографирования, составили целую эпоху в этой области. Они исследовали также интенсивность спектральных линий, различие между искровыми и дуговыми спектрами и установили серии линий для многих элементов, в частности для щелочных^элементов и щелочноземельных. В XX веке работы сосредоточились на изучении серий водорода. В 1904 г. Лайман нашел еще одну серию водорода в ультрафиолетовой части * F. W. Aston, Mass-spectra and isotopes, Nobel Lecture, Les Prix Nobel en 1922, Stockholm, 1923, p. 13, 14. ** Если v0 — волновое число линии водородного спектра, то серия Бальмера выражается формулой *о=л(-^—^-). где R — константа, называемая постоянной Ридберга, равная 109 678, а п принимает целые значения 3, 4, 5,... . Теоретически число линий бесконечно, но из формулы видно, что последующие линии располагаются все ближе и ближе. Начиная с определенного предела, они становятся уже неразличимыми, потому что их интенсивность уменьшается в направлении к фиолетовой части спектра. 386
спектра, в 1909 г. Пашен нашел серию водорода в инфракрасной части, а в 1922 г. Блэккет установил вторую серию в инфракрасной части спектра *. Все эти серии описываются формулами, похожими на формулу для серии Бальмера. В них входит постоянная, называемая в спектроскопии постоянной Ридберга, величина которой определена с большой точностью. Все эти серии установлены чисто экспериментально и обладают одной особенностью: волновые числа спектральных линий получаются каждый раз приписыванием только целых значений некоторой переменной, входящей в формулу. В физике были известны только два случая, когда величины менялись не непрерывно, а лишь по целым числам: это явление интерференции и явления собственных колебаний тел (например, струны). Благодаря этой особенности математического выражения серий часто случается, что частота линии представляет собой сумму частот двух других линий. Из всей этой группы эмпирических формул Ритц вывел так называемый комбинационный принцип, являющийся основой современной спектроскопии. Этот принцип можно выразить так: для каждого элемента можно найти совокупность чисел, называемых спектральными термами рассматриваемого атома, таких, что частота любой спектральной линии данного элемента равна разности двух спектральных термов этого элемента. Вплоть до 1913 г. не было никакого намека на то, каким образом можно было бы теоретически истолковать эти серии, а тем более комбинационный принцип; они оставались лишь эмпирическими формулами, точными, но таинственными. Одно казалось ясным в первом десятилетии нашего века: весь этот комплекс многочисленных неопровержимых экспериментальных фактов должен был определяться структурой элементарных частиц материи. Классическая электродинамика объясняла излучение существованием в излучающей материи электрических зарядов, обычно неподвижных, но под влиянием внешних воздействий могущих совершать колебания вокруг центра равновесия с вполне определенными частотами с одновременным испусканием излучения. Постепенно осцилляторы (как называют колеблющиеся электрические заряды) теряют свою энергию на излучение и возвращаются в состояние покоя. Таким образом, классическая электромагнитная теория объясняла спектральные линии, которые, однако, согласно этой теории, получались совершенно отличными по положению и по свойствам от того, что давал опыт. Анри Пуанкаре, отмечая эту неудачу классической электродинамики, писал: «Исследование распределения линий сразу же заставляет вспомнить гармонические соотношения в акустике, но различие все же огромно; не только волновые числа не являются последовательными целыми кратными одного и того же числа, но мы не находим никаких аналогий с корнями трансцендентных уравнений, к которым приводятся многочисленные проблемы математической физики: задача об упругих колебаниях тела произвольной формы, задача о волнах Герца для осциллятора любой формы, задача Фурье об охлаждении твердого тела. Эти законы проще, но они совсем иной природы... Во всем этом еще не отдают себе достаточно отчета, и я думаю, что здесь заключается одна из самых важных тайн природы» **. * Если формулу, приведенную в предыдущем примечании, написать в виде v0=i?(—• 1 и принять т= 1, а п=2, 3, 4, . . ., то получится серия Лаймана (уль- трафиолет). Если положить т = 2, а п — 3, 4, 5, . . ., то получится серия Бальмера. Если принять т= 3, ап=4, 5, 6, ..., то получится серия Пашена (в инфракрасной части спектра). Наконец, если принять т = 4, а п = 5, 6, 7, ..., то получится серия Блэккета. ** Н. Poincare, La valeur de la science, Paris, 1908, p. 205. 25* 387
Нильс Бор. 12. ТЕОРИЯ БОРА. На третьем Сольвеевском конгрессе, состоявшемся в Брюсселе в 1921 г., Перрен спросил Резерфорда, существует ли разница между ядерными электронами и периферическими в его модели атома и какая. Резерфорд кратко бросил в ответ фразу, ставшую популярной во время последней войны: «no man's land» *,— решительно выразив таким образом основную идею, которой руководствовался он сам и его школа начиная с 1911 г. Атом разделяется на две области, внутреннюю и внешнюю, на ядро и электронную систему, отделенные друг от друга непреодолимым барьером, в том смысле, что ни периферические электроны не могут войти в ядро, ни частицы, составляющие ядро, не могут перейти в электронную систему (только совсем недавно пришлось принять одно исключение для периферического электрона, самого близкого к ядру, который может быть им захвачен). В электронной системе могут сравнительно легко происходить изменения, определяющие химические свойства элемента, но не сопровождающиеся изменениями в ядре. В ядре же изменения происходят с гораздо большим трудом и всегда немедленно сопровождаются перестройкой электронной системы, которая сразу же приспосабливается к новому ЯДРУ- Главная заслуга Резерфорда в том, что он угадал, что радиоактивные явления происходят в ядре, и посвятил себя изучению именно ядра, не позволяя сбить себя с этого пути ни вновь возникающим проблемам, связанным с электронной системой, ни критическим возражениям против его концепции. В самом деле, модель Резерфорда находилась в решительном противоречии с классической электромагнитной теорией, согласно которой вращающийся электрон должен непрерывно излучать электромагнитные волны и поэтому должен непрерывно терять энергию, приближаться к ядру и, наконец, упав на ядро, нейтрализовать его или даже разрушить. Нужно было либо отказаться от этой модели, чтобы остаться верным классической физике, либо отказаться от классической физики и найти в иных физических принципах оправдание этой модели. Этот второй путь избрал молодой датский физик Нильс Бор (1885— 1962) из Копенгагена, который в 1911 г. приехал работать в лабораторию Томсона в Кембридж, а в следующем году перешел в лабораторию Резерфорда в Манчестере. Здесь он соприкоснулся с самыми передовыми теориями атома того времени. Бор увидел, что можно одновременно спасти устойчивость планетарного атома и объяснить спектроскопические данные на основе квантовой теории, которая априори исключает всякую возможность непрерывного излучения. Форма квантования, примененная Бором к модели Резерфорда, теперь обще- * No man's land (англ.) — ничейная земля.
известна, но, может быть, будет полезно услышать о ней еще раз от самого Бора: «5 форме, в которой мы будем в дальнейшем применять принципы квантовой теории, за основу в наших рассуждениях будет принят следующий постулат: атомная система, испускающая спектр, состоящий из четких линий, может находиться в определенных различных состояниях, которые мы будем называть стационарными состояниями. Система может пребывать в таком состоянии по крайней мере в течение некоторого времени, не излучая. Излучение имеет место только при полном переходе из одного стационарного состояния в другое и представляет собой всегда ряд простых гармонических волн. В этой теории частота излучения, испускаемого при таком процессе, не определяется непосредственно движением электронов в атоме, подобно тому как это имеет место в классической электродинамике. Вместо этого частота просто связана с общим количеством энергии, излученным во время перехода: произведение частоты v на постоянную Планка h равно разности значений Е' и Е" энергии атома в обеих стадиях интересующего нас процесса, так что hv = Е' — Е"» *. Таким образом, электрон, вращающийся вокруг ядра, подчиняется по существу всем механическим законам классической физики, но не законам электродинамики, в том смысле, что во время вращения он не излучает. В соответствии с классической механикой можно рассмотреть динамическое равновесие системы в стационарном состоянии и при известном радиусе орбиты рассчитать скорость, частоту, потенциальную и общую энергию вращающегося электрона. Это, однако, относится не к любой орбите, а только к тем, для которых величина действия является целым кратным кванта действия h. Это так называемые квантовые орбиты, которые нумеруются по порядку, начиная с самой близкой к ядру. Атом может находиться в целом ряде стационарных состояний, причем каждое соответствует особой орбите, на которой расположены электроны. Атом всегда находится в каком-либо стационарном состоянии с определенным значением энергии, так что для каждого атома характерна последовательность значений энергии, соответствующих различным возможным стационарным состояниям. Бор справедливо заметил, что такая квантованная планетарная система может быть лишь частично уподоблена астрономической планетной системе. В самом деле, законы тяготения позволяют нам изучать и объяснять с большой степенью точности движение планет, но не позволяют предсказывать их орбиты, неполностью определяемые массами планет и Солнца. Орбиты планет существенно зависят от условий образования планетной системы, т. е. от ее истории. Из этого вытекает существенное различие между планетной системой и системой электронов: в первой орбиты планет остаются постоянными, во второй меняются. Но каковы основные свойства стационарных состояний электронных систем? Как следует рассматривать вопрос об их устойчивости? Первое время Бор был настроен весьма примирительно в этом вопросе: «Даже если нам приходится, — пишет он,— вводить в классическую теорию электронов изменения, которые означают радикальную перемену в наших взглядах на механизм излучения, мы все же вовсе не обязаны из-за этого считать, что в каждый момент движение существенно отличается от того, что должно было бы быть согласно классической электронной теории. Напротив того, мы совершенно естественно приходим к выводу — и эта гипотеза в настоящее время лежит в основе всех применений квантовой теории * Atomes et electrons, Rapports et Discussions du Conseil de Physique tenu a Bruxelles du 1" au 6 avril 1921, Paris, 1923, p. 230. 389
к атомным проблемам,— что с большой степенью точности можно описывать движение частиц при стационарных состояниях атомной системы как движение точечных масс под действием их взаимного отталкивания и притяжения, вызываемого электрическими зарядами. Если мы затем рассмотрим вопрос об «устойчивости» стационарных состояний, то сразу же увидим, что как необходимое условие устойчивости, так и вообще действие внешних факторов на движение частиц атома не подчиняется обычным законам механики. В самом деле, мы увидим, что те свойства, которые отличают стационарные состояния от возможных механических движений атомной системы, не характеризуются просто в соответствии с их природой скоростями и координатами частиц в данный момент, но существенно зависят от свойства периодичности орбит, которым соответствуют мгновенные распределения и скорости. Если мы будем затем рассматривать атом при меняющихся внешних условиях, то для определения изменений, вызываемых в движении изменением этих условий, недостаточно просто рассмотреть, как в обычной механике, эффект сил, действующих в данный момент на частицы, потому что результирующее движение должно существенно зависеть от изменения характера возможных орбит, соответствующего изменению во внешних условиях» *. Основав свою теорию на таком полуклассическом фундаменте, Бор предполагает (по причине, о которой мы будем говорить дальше), что электронные орбиты являются точными окружностями, и отсюда находит радиус наименьшей орбиты, орбиты № 1, равным 0,556-Ю-8 см, т.е. равным по порядку величины атомному радиусу, определяемому кинетической теорией газов. Затем Бор применяет свою теорию к самой простой модели атома, к атому водорода, состоящему из центрального ядра с массой 1 и единичным положительным зарядом и одного вращающегося электрона. После очень простого подсчета он получает общую формулу для серий водородного спектра, т. е. для уже известных в то время серий Бальмера и Пашена и для серий Лаймана и Блэккета, в то время (1913 г.) еще не открытых. Кроме того, он вычисляет постоянную Ридберга, получая величину, совпадающую с даваемой опытом. Это был большой успех, потому что впервые удалось дать рациональное объяснение таинственным сериям спектральных линий, были рассчитаны атомные радиусы, априори определялась постоянная Ридберга. Таким образом, теория Бора, с одной стороны, подкрепляла гипотезу Резерфорда о строении атома, а с другой — удачно применяла к теории атома квантовую гипотезу. От атома водорода Бор перешел к однократно ионизованному гелию, т. е. к системе, которая, согласно модели Резерфорда, состояла из ядра с массой 4 и зарядом 2 с одним внешним электроном. Задача здесь, очевидно, тождественна с задачей об атоме водорода лишь с некоторыми количественными поправками. Для линий однократно ионизованного гелия Бор также получил серию, аналогичную серии Бальмера, но тогда еще не наблюдавшуюся. Бор отождествил ее с серией Пикеринга, уже обнаруженной в спектре некоторых звезд и приписывавшейся водороду. Но когда Бор попытался распространить свою теорию на атомы с несколькими вращающимися электронами, то натолкнулся на большие трудности. Уже в случае с атомом гелия, который имеет всего два вращающихся электрона, даже математическая часть задачи становится весьма сложной. В самом деле, нужно учитывать, что на каждый электрон действует как ядро, так и другой электрон. Мы приходим к «задаче трех тел», * Там же, р. 232. 390
еще более трудной, чем соответствующая астрономическая задача, подробно изучавшаяся Ньютоном и его последователями, потому что взаимодействие двух электронов того же порядка, что и взаимодействие между ядром и электроном, тогда как в астрономической задаче притяжение между двумя планетами незначительно по сравнению с взаимодействием планеты и Солнца. Но кроме математических трудностей, которые для более сложных атомов становятся уже непреодолимыми, была также трудность принципиального характера: при наличии нескольких электронов квантование становится неопределенным. В ожидании дальнейшего развития квантовой теории, которое помогло бы преодолеть эту принципиальную трудность, Бор ограничился в 1913 г. попыткой применить свою теорию по крайней мере к водо- родоподобним атомам, т. е. к атомам, структуру которых можно представить себе следующим образом: если атом содержит N электронов, то N — 1 электронов принадлежат к центральной области, а iV-й, самый внешний, вращается вокруг центральной части, образуемой ядром и N — 1 электроном. Переходы iV-ro электрона (названного оптическим) с одной орбиты на другую определяют излучение светового спектра элемента. К этой группе атомов принадлежат литий, натрий, калий и др. При применении теории Бора к этой группе атомов получилось несоответствие с опытными данными. 13. ТЕОРИЯ ЗОММЕРФЕЛЬДА. Когда Бор в 1913 г. сформулировал свою теорию, физики могли квантовать только движения, зависящие от одной переменной. По этой причине Бор был вынужден считать орбиты периферических электронов точными окружностями, тогда как законы механики указывали на то, что электронные орбиты должны быть кеплеровскими эллипсами. Но для определения положения точки на эллипсе нужны две переменные, и поэтому, чтобы квантовать эллиптические орбиты, нужно уметь квантовать движения, определяемые двумя переменными. В 1916 г. Вильсон и Зоммерфельд почти одновременно предложили метод квантования механических систем, определяемых несколькими переменными. Зоммерфельду сразу же пришла мысль применить этот метод к атомной модели Бора, введя в нее в соответствии с этим эллиптические орбиты, но это не влекло за собой существенных изменений в выводах Бора. Зоммерфельду удалось лишь объяснить некоторые другие эмпирические формулы, известные в спектроскопии, и в частности комбинационный принцип Ритца. Но Зоммерфельд заметил еще, что Бор считал массу вращающегося электрона постоянной в строгом соответствии с ортодоксальной классической механикой, тогда как из его же собственных формул можно было видеть, что скорость электрона слишком велика для того, чтобы можно было пренебречь поправками теории относительности. Поэтому нужно было изменить теорию Бора, введя в формулы релятивистскую массу электрона, зависящую от скорости. После такого изменения орбита электрона оказалась уже не неподвижным эллипсом, а эллипсом, вращающимся в своей плоскости вокруг фокуса, занятого ядром. Учитывая это обстоятельство и применяя развитый им метод квантования, Зоммерфельд в том же 1916 г. дал объяснение тонкой структуры не только водородного спектра, но и спектров рентгеновских лучей. Теория Зоммерфельда произвела в свое время большое впечатление и была воспринята как важнейшее подтверждение квантовых методов, а также теории относительности. Однако вскоре спокойный критический разбор и более тщательная опытная проверка несколько поубавили восторги. Спектральные линии, даваемые теорией Зоммерфельда, менее многочисленны, чем наблюдаемые на опыте; кроме того, эта теория оказалась неприменимой 391
к атомам с несколькими планетарными электронами. Ее нельзя было даже применить к атому гелия, в частности из-за математических трудностей, на которые мы уже раньше указывали. 14. ПРИНЦИП СООТВЕТСТВИЯ. Неудачи теорий Бора и Зоммерфельда не столь уж существенны. Кроме того, наряду с неудачами был один существенный положительный фактор: теории Бора удалось впервые охватить единым принципом бесконечное разнообразие спектроскопических наблюдений, указать характер их законов. Отдельные неудачи могли означать лишь то, что кое-что в теории было еще не на месте, но не обесценивали основные ее утверждения. Более серьезными, однако, были возражения общего характера, выдвинутые против этой теории. В то время как электродинамика точно описывала излучение, указывая для каждой монохроматической волны не только частоту, но и интенсивность и характер поляризации, теория Бора не могла ничего сказать о двух последних характеристиках, необходимых для полного определения монохроматического излучения. Но помимо этих недостатков в теории Бора было также одно кричащее несоответствие: взаимодействие между ядром и электроном понималось и рассматривалось чисто классически, но в эту классическую картину Бор неожиданно вводил квантовые ограничения. Скачки электрона с одной орбиты на другую нельзя описать с помощью классической механики, однако в стационарном состоянии электрон подчиняется законам классической механики. Не излучая энергии, как того требуют законы электродинамики, электрон существует как бы вне времени и пространства, в рамках которых действуют законы механики и классической электродинамики. Одним словом, Бор исходит из понятий классической физики, а приходит к заключениям, несовместимым с классической физикой; таким образом, его теории присуща внутренняя несогласованность. Физики видели это противоречие, видел его и сам Бор. В надежде на лучшее они попытались пока что устранить слишком большие отклонения выводов из теории от физической реальности, введя подходящие ориентирующие критерии, которые приобрели большое значение в дальнейшем развитии науки. Примером такого критерия служит сформулированный Бором в 1918 г. принцип соответствия, зачатки которого можно найти также в его первых работах 1913 г. Этот эвристический принцип Бор формулирует следующим образом: при разработке теории необходимо руководствоваться тем соображением, что, когда квантовые числа системы принимают все большие и большие значения, испускаемое излучение должно асимптотически стремиться к значению, определяемому классическими законами. Другими словами, законы новой физики должны переходить в законы классической физики, когда квантовая дискретность стремится к нулю, т. е. когда величина кванта действия пренебрежимо мала. Тем самым классическая физика, хотя и признается неточной, приобретает, однако, руководящее значение в открытии квантовых законов. В различных работах Бор дал методику использования этого принципа, отнюдь не такого понятного и легко применимого. Среди конкретных результатов, полученных с помощью принципа соответствия, упомянем выполненный Бором приблизительный квантовый расчет интенсивности спектральных линий и данную (в 1923 г.) его учениками Крамерсом и Гейзенбергом квантовую формулу для дисперсии, которая не совпадала с классической, однако соответствовала данным опыта. Но по мере расширения области применения принципа соответствия значительно увеличивались трудности. Физики были вынуждены вводить 392
все новые правила отбора или правила запрета, которые казались не только малоубедительными, но и загадочными. Таков, например, принцип запрета Паули (1925 г.), который утверждает, что в квантовой системе два или несколько электронов не могут находиться в одинаковых физических состояниях. Физики задавали себе вопрос, в чем глубокий смысл этого странного правила, применение которого, однако, приводит к результатам, согласующимся с опытом. О нем много дискутировали. Некоторые пытались объяснить его неразличимостью электронов, но похоже, что такое объяснение не выдерживает критики. Многие физики склонны были скорее считать, что оно является просто корректирующим правилом, исключающим вредные последствия подхода, при котором, быть может в противоречии с реальностью, электроны рассматриваются как корпускулы. 15. СТРОЕНИЕ АТОМОВ. К концу первой мировой войны стало ясно, что, основываясь на гипотезах Резерфорда и Бора, невозможно прийти дедуктивным путем к генетической теории строения атомов. Тогда по предложению Бора физики попытались приступить к осуществлению этой задачи индуктивным путем, т. е., основывась на обширном опытном материале, относящемся к химическим, магнитным и спектральным свойствам разных атомов, которые, как можно полагать, зависят от их строения, определить структуру атомов, и в частности расположение электронов. Это была внушительная работа, давшая большие результаты, конечно, носившие более эмпирический характер, чем ожидалось от теории Бора. В основу исследования были положены периодическая система элементов и понятие атомного номера, равного числу периферических электронов и порядковому номеру элемента в периодической таблице. Так как существует 92 элемента, то существуют также 92 атома, в которых число периферических электронов регулярно растет от 1 до 92. Но как расположены эти электроны? Все на одной и той же орбите или на разных орбитах? Мы уже видели, что, начиная с первых моделей Томсона, электроны предполагались расположенными в разных слоях и что только таким способом можно было объяснить периодичность таблицы Менделеева. Теория Бора тоже, и из тех же соображений, исходила из предположения, что на каждом квантованном уровне может быть не больше некоторого максимального числа электронов. Этот принцип насыщения уровней и фундаментальный физический принцип, согласно которому устойчивое состояние системы всегда является состоянием минимальной энергии, представляют собой основания теории строения атомов. Не имея возможности вдаваться в подробности, мы лишь кратко упомянем примененные здесь методы. Исходным являлся следующий результат наблюдений: атомы первого столбца таблицы Менделеева (водород, литий, натрий, калий, медь, рубидий, серебро, цезий, золото; см. гл. 14) обладают спектром, аналогичным спектру водорода, легко ионизуются и обладают другими общими свойствами. Из всех опытных данных резонно заключить, что все эти атомы обладают структурой, аналогичной структуре водорода, т. е. являются водородоподобными атомами с особой структурой, о которой мы уже говорили. Второй столбец периодической таблицы можно истолковать как получающийся из первого путем прибавления к каждому атому нового орбитального электрона с одновременным прибавлением одного элементарного заряда к ядру. Аналогично можно получить и следующие столбцы. Распределение электронов в остове водородоподобных атомов находится с помощью особого процесса, в котором используется правило запрета. Атом водорода состоит, как мы уже говорили много раз, из одного ядерного протона и одного планетарного электрона. В своем устойчивом, 393
т. е. невозбужденном, состоянии система обладает минимальной энергией, и поэтому электрон вращается по орбите, наиболее близкой к ядру, или на уровне, который принято обозначать буквой К. Если на этот уровень К добавить второй электрон с соответствующими характеристиками и одновременно добавить положительный заряд к ядру, то получится атом гелия. После добавления второго электрона слой К уже насыщен, или, как говорят, заполнен. Если к атому добавить третий электрон, то он уже не может поместиться в слое К, а помещается на следующем уровне, который принято обозначать буквой L; так получается (опять-таки с одновременным добавлением положительного заряда к ядру) литий. Таким образом были сконструированы один за другим все 92 различных атома периодической системы, с указанием для каждого из них распределения периферических электронов по разным уровням. К 1927 г. это внушительное сооружение, созданное индуктивным путем, было в основном завершено. Существование квантованных уровней и описанные выше схемы строения атомов были многократно подтверждены опытами по ионизации при соударениях и анализом спектров рентгеновских лучей.
ГЛАВА 15 • ВОЛНОВАЯ МЕХАНИКА НОВЫЕ КВАНТОВОМЕХАНИЧЕСКИЕ ТЕОРИИ 1. РАСПРОСТРАНЕНИЕ СТАТИСТИЧЕСКОГО ЗАКОНА РАДИОАКТИВНОСТИ НА ИЗЛУЧЕНИЕ. Новый механизм, введенный Бором для рассмотрения испускания и поглощения излучения, освобождал квантовую теорию от ограничений, связанных с использованием линейных осцилляторов или аналогичных частных типов систем. Поэтому возникла необходимость вывести формулу излучения черного тела на базе этих новых гипотез. Разрешением этой проблемы занялся Альберт Эйнштейн, с интересом следивший за работами Бора и с особым сочувствием принявший принцип соответствия, казавшийся многим прелюдией к возможному включению квантовой теории в классическую механику. В 1917 г. появилась знаменитая работа Эйнштейна, его крупнейший вклад в квантовую теорию, в которой к атому Бора применялся тот же вероятностный подход, что и для закона радиоактивного распада *. Подобно тому как каждый отдельный радиоактивный атом взрывается в некий непредвиденный момент в результате случайного процесса, не имеющего видимой причины, так и переход электрона в атоме совершенно непредвиден и должен изучаться согласно статистическим законам. Эйнштейн сформулировал эти законы, предположив, что: 1) при наличии поля излучения вероятность электронного перехода, как связанного с излучением, так и связанного с поглощением, в единицу времени пропорциональна интенсивности излучения; 2) даже без внешних возмущений происходит спонтанный переход электронов из состояний с более высокой энергией в состояния с более низкой энергией с вероятностью, пропорциональной числу атомов, находившихся первоначально в возбужденном состоянии. Таким образом, на явления излучения переносится закон радиоактивного распада. На этой основе, вновь воспроизводя и обобщая свою теорию броуновского движения, Эйнштейн не только получает формулу Планка для излучения черного тела, но рассматривает также в общем виде вопрос об обмене импульсом между атомной системой и излучением и приходит к выводу, что при каждом элементарном процессе излучения должен испускаться импульс величиной hv/c в совершенно случайном направлении. Этот вывод обострял дилемму волна — корпускула, потому что при таком описании процесса излучения исключалась возможность сферических волн. Такие последствия с огорчением отмечает сам Эйнштейн в конце своей работы: «Эти свойства элементарного процесса делают почти неизбежным создание подлинно квантовой теории излучения. Слабость теории заключается, с одной стороны, в том, что она не приводит нас к более тесному объединению с волновой теорией, и, с другой стороны, в том, что время и направление элементарного процесса предоставляются "случаю"; впрочем, я полностью уверен в надежности выбранного метода» **. Стоит особо подчеркнуть этот первый значительный шаг к индетермини- стской физике, сделанный Эйнштейном, который сам оставался всю жизнь * Работа, которую имеет в виду Льоцци, вышла в 1917 г. (Physik. Zeitschrift, 18, 121), но еще в 1916 г. она была напечатана в Mitt. Phys. Ges. (Zurich), № 18, 47—62.— Прим. перев. ** A. Einstein, Quantentheorie der Strahlung, Physik. Zeitschrift, 18, 128 (1917). (Есть русский перевод: А. Эйнштейн, Собр. научн. трудов, т. III, стр. 406.) 395
убежденным детерминистом. Заметим, что, прибегая к статистике, он все же остается в рамках классических законов причинности. В самом деле, согласно Эйнштейну, точный момент перехода электрона в атоме определен законами причинности, зависящими от структурных свойств возбужденного атома, и лишь наше незнание этих законов и их сложность вынуждают нас прибегать к статистическим методам, играющим роль инструмента. Тем не менее остается историческим фактом, что именно Эйнштейн первый перенес статистический метод, применявшийся при изучении радиоактивности, на другие области физики. 2. АНТИТЕЗА ВОЛНА — ЧАСТИЦА. Примерно к 1923 г. в результате изучения фотоэлектрического эффекта, исследований Бора о строении атома, упомянутой выше теории Эйнштейна, открытия эффекта Комптона физики очутились перед необходимостью рассмотреть самым серьезным образом вопрос о дискретной структуре излучения. Число явлений, которые нельзя было уже объяснить, оставаясь в рамках классической оптики, увеличивалось, можно сказать, с каждым днем. Снова опыт сметал границы, установленные теорией. На протяжении всей своей истории физика не раз оказывалась в положении, когда общепринятых теорий было недостаточно, но физике всегда удавалось выйти из этого положения, выдвинув новую, более общую теорию, способную объяснить одновременно и старые и новые явления. Однако новый кризис носил совершенно иной характер. Новая теория, теория световых квантов, не представлялась более общей, чем волновая, в том смысле, что некоторые явления, отлично объясняемые классической оптикой, никак нельзя было объяснить новой фотонной теорией. Противоречие волна — частица, которое в годы, последовавшие за первой мировой войной, казалось неразрешимым, часто сравнивали со спором, возникшим в XVIII веке между эмиссионной теорией Ньютона и волновой теорией Гюйгенса. Но это сравнение, пожалуй, не совсем удачно. В XVIII веке каждая из этих двух теорий объясняла более или менее удачно все известные тогда оптические явления; выбор той или иной теории сводился лишь к вопросу^о том, какой способ представляется более простым, или же к личным склонностям, чуть ли не к эстетическим взглядам того или иного ученого. Интуиция говорила в пользу теории Ньютона, которая объясняла самым простым и наглядным способом наиболее привычное оптическое явление — прямолинейное распространение света. Те же ученые, которые были склонны пожертвовать по крайней мере частью общепринятых представлений ради большей логической последовательности, предпочитали теорию Гюйгенса. В этой связи показательно, что волновой концепции придерживались в XVIII веке почти исключительно математики: Иоганн Бернулли младший (1710—1790) и Леонард Эйлер. В XX веке расхождение было уже не между физиками, а в самой физике. Каждый физик вынужден приписывать свету волновую природу, чтобы объяснить определенные явления (например, дифракцию), и корпускулярную природу, чтобы объяснить другие явления (например, фотоэлектрический эффект). Иными словами, как остроумно заметил Уильям Брэгг, каждый физик вынужден по понедельникам, средам и пятницам считать свет состоящим из частиц, а в остальные дни недели — из волн. Лишь при объяснении немногих явлений (например, прямолинейного распространения света, эффекта Допплера и др.) можно с равным успехом следовать как одной, так и другой теории. Отчаянное усилие спасти классическую оптику, сегодня уже совершенно забытое, но живо обсуждавшееся в 1924—1927 гг., сделал Бор, надеявшийся включить теорию световых квантов в волновую теорию с помощью прин- 396
ципа соответствия или хотя бы перекинуть мост между двумя этими теориями. В своей статье совместно с Крамерсом и Слэтером, опубликованной в 1924 г., Бор выдвигает любопытную гипотезу, согласно которой атомы постоянно испускают все излучения, соответствующие возможным переходам из состояния, в котором они находятся, в другие стационарные состояния. Но эти излучения являются «виртуальными», т. е. не оказывают никакого физического действия. Они становятся реальными только в случаях, определяемых вероятностным законом Эйнштейна. Эта теория среди прочего предполагала, что законы сохранения энергии и импульса не выполняются для единичных процессов, будучи верными лишь в статистическом смысле для совокупности большого числа элементарных процессов. Таким образом, классическая оптика оказывалась спасенной при придании всем физическим законам статистического значения. Сколько бы усилий ни делали''физики, чтобы остаться на почве классических теорий, они каждый раз наталкивались на необходимость статистического подхода! Зоммерфельд так комментировал эту попытку Бора: «Сейчас еще слишком рано высказывать окончательное суждение по поводу этой теории, но нам кажется, что компромисс между волновой теорией и теорией квантов, которого пытаются достичь с помощью статистического подхода, носит характер искусственного ухищрения. Также не очень подходящим кажется нам введение в физику таких величин, как поле виртуального излучения, которое, согласно гипотезе, не должно быть наблюдаемо. Все это похоже на историю со световым эфиром, который вследствие относительности движения не должен был явно обнаруживаться и в конце концов был вынужден отступить перед научным прогрессом. Мы рассматриваем противоречие между волновой теорией и квантовой теорией как временную загадку и считаем, что для ее разрешения понадобятся глубокие изменения основных понятий электромагнитного поля и, как в теории относительности, даже основных принципов физического знания» *. 3. ВОЛНА, СОПРЯЖЕННАЯ С ЧАСТИЦЕЙ. Уже за три года до того, как Зоммерфельд написал эти слова, были выдвинуты новые, глубоко революционные понятия, которые пока еще не разрешали противоречия волна — частица, а, напротив, распространяли его не только на фотон, но и на электрон. Автором этой новой концепции был молодой французский физик Луи де Бройль (род. в 1892 г.), который сразу же после демобилизации в 1919 г. приступил к своим первым работам в частной лаборатории своего брата Мориса де Бройля (1875—1960), открытой для молодых исследователей, желавших посвятить себя изучению спектров рентгеновских лучей и фотоэлектрического эффекта — самым передовым областям физических исследований того времени, в которых Морис де Бройль приобрел большой международный авторитет. Изучение рентгеновских лучей, естественно, навело Л. де Бройля на серьезные размышления о природе излучения, и в частности о работах Эйнштейна в области световых квантов. Следы этих размышлений можно видеть в двух заметках 1922 г., относящихся к вопросу об излучении черного тела, которые привели молодого физика «к идее, что, может быть, нужно найти общее синтезирующее понятие, которое позволило бы объединить точку зрения волновой теории с точкой зрения корпускулярной». С удивительной простотой де Бройль так изложил в своей Нобелевской речи поразившую его фантазию аналогию между корпускулярной и волновой теориями, принятыми физикой того времени: * A. Sommerfeld, t)ber die letzte Fortschritte der Atomphysik, Scientia, 39, 18 (1926). 397
Луи де Бройль. «С одной стороны, теория световых квантов не может быть признана удовлетворительной, потому что она определяет энергию корпускулы света соотношением W — hv, в котором фигурирует частота v. Но чисто корпускулярная теория не содержит в себе ни одного элемента, который позволил бы определить частоту. Хотя бы по этой причине необходимо в случае света вводить одновременно и идею корпускулы и идею периодичности. С другой стороны, определение стационарных движений электронов в атоме заставляет вводить целые числа, но до сих пор единственными явлениями в физике, при описании которых входили целые числа, были явления интерференции и собственных колебаний» *. И вдруг в результате того самого психологического процесса, который он так тонко проанализировал в одном, быть может, автобиографическом отрывке в конце лета 1923 г., произошла, как он говорит, «своего рода кристаллизация: разум в один момент схватывает с большой ясностью... основные очертания новых понятий, которые незаметно формулировались в нем, и он получает вдруг абсолютную уверенность в том, что применение этих новых понятий позволит разрешить большинство поставленных проблем и прояснить весь вопрос, апеллируя к до сих пор не учитывавшимся аналогиям и соответствиям» **. Возможность синтетической теории, столь неожиданно ему представившаяся, была разработана в его трех знаменитых докладах, представленных Парижской Академии наук. Эти три статьи, которые являются отправной точкой волновой механики, поражают современного читателя не только смелостью идей, но также чрезвычайной простотой использованных в них математических средств, особенно по сравнению со сложными, иногда даже слишком виртуозными математическими теориями физиков- теоретиков. В соответствии с теорией относительности Л. де Бройль исходит из предположения, что с каждой частицей с массой покоя (или энергией) т0 связан волновой процесс с частотой v0, так что hv0 = т0с2, где h — постоянная Планка, ас — скорость света в пустоте. Иными словами, этот основной постулат означает, что каждая частица материи является местом и источником связанного с ней колебания с частотой, определяемой выше- * L. De В г о g 1 i e, Conference Nobel prononcee a Stockholm, le 12 decembre 1929, p. 4, Les Prix Nobel en 1929, Stockholm, 1929. ** L. De В г о g 1 i e, Continu et discontinu en physique moderne, Paris, 1941f p. 82~»83. 398
указанным соотношением. Если эта частица находится в движении, то, согласно теории относительности, ее колебание представляется неподвижному наблюдателю в виде волны, движущейся со скоростью большей, чем скорость частицы. Получив этот результат, де Бройль рассматривает равномерное движение электрона по замкнутой траектории и показывает, что квантовые траектории теории Бора — Зоммерфельда могут быть истолкованы как явление резонанса фазовой волны на длине замкнутой траектории. Другими словами, если электрон движется по замкнутой кривой, то волна должна сопровождать его и замыкаться в непрерывное волновое кольцо, так что длина кольца должна быть равна целому числу длин волн, подобно тому как полосы обоев в точности подойдут к стенам комнаты и между ними не будет видно мест склейки только тогда, когда периметр стен комнаты будет вмещать целое число раз рисунок обоев. Поэтому стационарными орбитами будут те, на которых точно 1, 2, 3, . . . раза укладывается длина волны, связанной с вращающимся электроном. Расчет показал, что эти орбиты точно совпадают с определяемыми постулатом Бора. Затем де Бройль применяет свой подход к фотонам и набрасывает в общих чертах теорию явлений интерференции и дифракции света, исходя из того, что распределение фотонов определяется волнами, так что возможны темные области там, где волны, накладываясь друг на друга, взаимно ослабляются. Новая концепция приводит де Бройля к закону Планка для излучения черного тела. Кроме того, он устанавливает соответствие, ставшее теперь классическим, между принципом наименьшего действия Мопертюи, примененным к движению частицы, и принципом Ферма, примененным к распространению связанной с ней волны. Новая механика объясняла, таким образом, аналогию, на которую указывал еще Гамильтон, а затем и Якоби (см. гл. 8), между классической динамикой частиц и геометрической оптикой, аналогию, которая поражала Л. де Бройля еще в ранней молодости, но которая, однако, вряд ли была, как это сегодня утверждают некоторые, исходным пунктом, вдохновлявшим его исследования. Три короткие статьи 1923 г. были объединены и включены в его докторскую диссертацию (1924 г.), в которой новая концепция получила более широкое применение. В ней доказывается, например, что новые принципы позволяют количественно объяснить эффект Допплера, отражение от движущегося зеркала и давление излучения, приводя к тем формулам, которые дает волновая теория. Прием, который встретили идеи де Бройля в научном мире, хорошо характеризуется следующим случаем, о котором рассказал Макс Борн. В 1925 г. Эйнштейн посоветовал Борну прочесть диссертацию де Бройля, сказав: «Прочтите ее! Хотя и кажется, что ее писал сумасшедший, написана она солидно». 4. КВАНТОВАЯ МЕХАНИКА. Принципы волновой механики были еще мало известны, когда была сделана другая, совершенно отличная попытка выйти из трудного положения, в котором оказалась теоретическая физика. Эта попытка была предпринята в 1925 г. очень молодым учеником Зоммерфельда Вернером Гейзенбергом (род. в 1901 г.) и получила быстрое развитие благодаря работам М. Борна и П. Йордана. Гейзенберг проникся духом «копенгагенской школы», образовавшейся вокруг Бора, и посвятил свои первые работы применению принципа соответствия. Его теория родилась из сочетания этого принципа с новой феноменологической концепцией, которую он принял при изучении физических проблем. По мнению Гейзенберга, при построении физической теории нужно исключать все величины, которые недоступны нашему опыту, и пользоваться 399
только теми, которые мы можем наблюдать. Например, в предшествовавших теориях атома фигурируют траектории, положения, скорости электронов, но кто же видел когда-нибудь траекторию электрона? Кто экспериментально определил хоть раз положение или скорость электрона? Мы знаем лишь стационарные состояния атома, переходы атома из одного состояния в другое, энергию, излученную или поглощенную при этих переходах. Любая теория атома должна принимать в расчет только эти величины. Удалось ли действительно Гейзенбергу осуществить эту свою философскую программу и исключить из теории все ненаблюдаемые величины — это уже другой вопрос. Фактом остается, однако, то, что это новое направление построения физической теории знаменует собой важный этап в развитии современной физики*. Понятия, которые могут быть связаны с опытом, нельзя выразить из-за их квантовой дискретности через обычные непрерывные математические функции; нужно было найти какие-то новые формы выражения. В выборе этого нового формализма Гейзенберг руководствовался, возможно, принципом соответствия. Классическая теория выражает любую величину, связанную с квантовой системой, с помощью разложения в ряд Фурье. Квантовая же теория расчленяет эту величину на элементы, соответствующие различным переходам атома. Согласно принципу соответствия, оба эти метода должны асимптотически совпадать при очень большом числе квантов. Исходя из таких соображений, Гейзенберг пришел к поистине революционной идее: так сказать, раздробить каждую квантовую величину, представив ее в виде таблицы чисел, аналогичных применяемым в математике матрицам (бесконечным). Приняв такое представление, нужно было найти правила вычисления этих новых величин, и Гейзенберг, применяя принцип соответствия, сумел показать, что эти правила совпадают с правилами действий над матрицами, найденными Эрмитом и известными в математике, но не получившими еще до сих пор никакого применения в физике. Эти правила не всегда совпадают с правилами обычной алгебры, в частности произведение матриц, вообще говоря, не обладает свойством коммутативности. Оно зависит от порядка сомножителей, т. е. произведение первой матрицы на вторую не равно произведению второй матрицы на первую. Это очень важный факт для квантовой механики, настолько важный, что Дирак кладет его в основу своего изложения квантовой механики. Согласно Дираку, переход от классической механики к квантовой получается при замене величин, представляемых в классической механике обычными числами, на величины, представляемые «квантовыми числами», произведение которых не коммутативно. Затем, по-прежнему руководствуясь принципом соответствия, Гейзенберг вводит в свою схему постоянную Планка, причем вводит ее таким образом, что в явлениях макроскопических, в которых величина h относительно мала, произведение механических величин оказывается всегда не зависящим от порядка множителей, так что здесь мы снова возвращаемся к классической механике. Мы не имеем возможности следить дальше за развитием этой теории, не прибегая к помощи соответствующего математического аппарата, который в квантовой механике является чуть ли не самой сутью этой теории. Строгость и точность предложенного математического метода и полученные с его помощью результаты (доказательство существования стационарных состояний с квантованными значениями энергии, расчет энергетических уровней линейного осциллятора, атома водорода и т. п.) привели * Следует отметить, чтсГпринцип «наблюдаемости» Гейзенберга несет на себе явный отпечаток позитивизма. Дальнейшее развитие физики, в особенности теории вакуума частиц, показало несостоятельность этих философских установок.— Прим. ред. 400
Эрвпн Шредингер. в восторг молодых физиков. Но излишняя абстрактность теории, ставившая на место физических понятий математические символы, заставляла думать, что физика вступила на дурной путь, тех ученых, которые, как и Эйнштейн, считали, что «всякая физическая теория должна быть такой, чтобы ее, помимо всяких расчетов, можно было проиллюстрировать с помощью простейших образов, чтобы даже ребенок мог ее понять» *. 5. ВОЛНОВЫЕ УРАВНЕНИЯ. Стройность логического построения теории де Бройля, не говоря уже о наглядности представления о волне, связанной с частицей (к чему мы еще вернемся в дальнейшем), привлекла внимание швейцарского физика Эрвина Шредингера (1887—1961) — преподавателя из Цюриха. Большой заслугой Шредингера является то, что он первым в 1926 г. нашел в явном виде уравнение для волн волновой механики и построил на его основе строгий метод рассмотрения задач квантования. Это уравнение, полученное преобразованием классических уравнений в представлении Гамильтона, обладает той особенностью, что не все его коэффициенты представляют собой вещественные числа; в него входят и мнимые числа. В классической же физике уравнения распространения волн содержат всегда лишь вещественные числа, а если иногда вещественные функции и заменяются мнимыми функциями (или, точнее, комплексными), то там речь идет всего лишь о способе расчета. Между тем в волновой функции Шредингера, обычно обозначаемой теперь буквой г|з, мнимые коэффициенты принципиально неустранимы и поэтому как бы свойственны самому явлению, которое они описывают. Другими словами, если в классической физике волны соответствуют колебаниям реально существующей среды (например, воздуха при звуковых волнах) или предполагаемой среды (эфира в случае распространения света), то волну в волновой механике нельзя рассматривать как физическую реальность, соответствующую колебаниям какой-то среды. Впрочем, этот вывод лишь подтверждает то, что де Бройль интуитивно угадал: такой волне, как волна, сопряженная с частицей, не несущей энергии и распространяющейся в многомерном пространстве, нельзя приписать физического существования; это «фиктивная волна», как ее назвал де Бройль, или «волна-призрак», как ее окрестил Эйнштейн характерным для него образным языком, проникнутым юмором. При составлении своего уравнения Шредингер, как мы уже говорили, исходил из классических уравнений и, следовательно, из ньютоновской * Цитируется по книге L. De Broglie, Nouvelles perspectives en microphysique, Paris, 1956, p. 236. 26 марио Льоцци 401
механики. Это означает, что его уравнение не принимало в расчет релятивистских поправок для больших скоростей частиц, т. е. уравнение было справедливо лишь для частиц с достаточной малой скоростью. Этим объяснялись некоторые недостатки уравнения Шредингера. Делались попытки устранить их, внося в само уравнение необходимые релятивистские поправки, однако лишь в 1928 г. П. А. М. Дирак, подвергнув острой критике имевшиеся к тому времени релятивистские уравнения, указал на необходимость большего обобщения и выдвинул свою теорию — теорию очень большого физического значения, но еще более необычную и абстрактную по форме, чем волновая и квантовая механика. Одно из главных достоинств теории Дирака то, что из нее почти автоматически вытекает гипотеза о вращающемся электроне, которую Уленбек и Гаудсмит выдвинули в 1925 г. и которая наделала много шума. Согласно этой гипотезе, электрон подобен заряженному шарику, вращающемуся вокруг одного из своих диаметров. Таким образом, электрон обладает собственным механическим и магнитным моментом. Для обозначения собственного вращения электрона и его механического момента Уленбек и Гаудсмит использовали английское слово «спин» [от глагола to spin (англ.) — вращаться], которое теперь принято всеми физиками и которое можно было бы, пожалуй, перевести словом «волчок». Гипотеза спина полностью подтвердилась, и, казалось, именно этого не хватало предшествовавшим теориям атома. Теория Дирака гармонически сочетает теорию относительности, кванты и спин, которые до этого казались понятиями, совершенно не зависящими друг от друга. Еще одно удивительное следствие, вытекающее из теории Дирака, заключалось в том, что электрон может находиться также в состояниях с отрицательной энергией, обладая свойствами, весьма странными для нашего физического мышления. Чтобы ускорить такие электроны, нужно отнять у них энергию, а чтобы привести их в состояние покоя, нужно придать им энергию! Эти выводы вызвали живые споры между сторонниками и противниками теории. Дирак попытался объяснить столь странные выводы своей теории с помощью остроумной гипотезы, которая казалась, однако, слишком надуманной и приводила к заключению о возможности существования положительного электрона. Физики в большинстве своем отнеслись скептически к такому выводу, нов 1932 г. сначала Андерсон, а затем Блэккет и Оккиали- ни показали, что при ядерных распадах, вызываемых космическими лучами, появляются частицы, которые ведут себя именно как положительные электроны, предугаданные теорией Дирака. Впоследствии положительные электроны (или позитроны, как их стали называть) были получены искусственным путем при бомбардировке жесткими у-лучами некоторых тяжелых элементов. Было определено отношение заряда частицы к массе, оказавшееся точно таким же, как и у отрицательных электронов. Сейчас, очевидно, уже нельзя сомневаться в существовании позитрона, который рассматривается теперь как одна из элементарных частиц. 6. ЭКВИВАЛЕНТНОСТЬ ВОЛНОВОЙ И КВАНТОВОЙ МЕХАНИКИ. С помощью своего уравнения Шредингер мог приступить к решению проблемы нахождения стационарных состояний квантовой системы и стационарных значений энергии. Таким образом, Шредингер определил энергетические уровни, а значит, и спектральные термы, получив во многих случаях те же значения, которые давала старая теория квантов. Во многих других случаях, однако, величины, полученные Шредингером, отличались от результатов старой теории квантов и при этом лучше соответствовали данным опыта. Самый простой случай — это случай с линейным осциллятором. Еще при самом зарождении квантовой теории Планк произвел квантование энергии 402
линейного осциллятора, положив квантованные значения энергии целыми кратными кванта энергии hv. Но некоторые физические явления (например, полосатые спектры двухатомных молекул) лучше объяснялись''; при предположении, что квантование линейного осциллятора происходит по полуцелым кратным кванта энергии, т. е. энергия равна произведению кванта hv на последовательность чисел 1/2, 3/2, 5/2, • • •> (2и + 1)/2. Так вот, метод квантования по Шредингеру приводил именно к таким полуцелым кратным, существенно отличаясь здесь от старой теории квантов. Квантовая механика Гейзенберга приводила к тем же результатам. Шредингер чувствовал, что здесь речь идет не о случайном совпадении, что за этим совпадением результатов кроется гораздо более глубокая причина — фактическая тождественность волновой и квантовой механики. Такой вывод, строго доказанный Шредингером в его знаменитой работе 1926 г., чрезвычайно поразил физиков того времени, так как понятия и математические методы обеих теорий очень сильно различались. И все^же из доказательства Шредингера несомненно следовало, что квантовая механика представляет собой другую математическую формулировку волновой механики. Волновая механика более близка интуитивным представлениям физиков, требует менее сложных математических средств и поэтому чаще применяется, зато квантовая механика часто гораздо быстрее приводит к желаемым результатам. 7. ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА. Выдвинутые волновой механикой необычные понятия, чтобы окончательно укрепиться, нуждались в опытной проверке. Еще в своем втором докладе Академии наук де Бройль говорил об экспериментальной проверке: «Поток электронов,— писал он тогда, — проходя через очень тонкую щель, должен был бы дать явление дифракции. Именно таким путем, по-видимому, нужно будет искать опытное подтверждение наших идей» *. Речь идет, конечно, лишь о схеме. Можно легко подсчитать, что длина волны, связанной с движением электрона не очень большой скорости, равна, если не принимать во внимание релятивистскую поправку, самое большее нескольким ангстремам **, т. е. порядка длины волны рентгеновских лучей. А мы уже видели, что линии искусственной дифракционной решетки, как бы близко они ни располагались, все же всегда, если не прибегать к методу Комптона, слишком далеки друг от друга, чтобы можно было на них наблюдать дифракцию рентгеновских лучей. Тем более нельзя было надеяться наблюдать дифракцию с помощью простой щели. Еще за несколько лет до того, как де Бройль опубликовал статьи о волновой механике, К. Дж. Дэвиссон провел с сотрудниками лаборатории фирмы «Белл телефон» в Нью-Йорке экспериментальные исследования явления испускания вторичных электронов (т. е. электронов, выброшенных в результате столкновения с препятствием других электронов, называемых первичными) и получил довольно интересные, но трудно объяснимые теоретически результаты. Летом 1926 г. Дэвиссон обсуждал результаты своих опытов в Лондоне с Ричардсоном, Борном и Франком и пришел к выво- * L. De В г о g 1 i e, Quanta de lumiero, diffraction et interference, Comptes rendus de l'Ac. Sc. de Paris, 177, 549 (1923). ** А именно длина волны %, связанная с движением электрона небольшой скорости, 12 24 равна X = ——■ • Ю-8 см (V — в вольтах). Так как нужно применять электроны, ускоренные разностью потенциалов порядка десятков вольт, то достаточно провести простой арифметический подсчет, чтобы получить результат, указанный в тексте. 26* 403
Схема опыта Дэвиссона и Джермера по дифракции электронов (С. J. Davisson, The discovery of electron waves, Les Prix Nobel en 1937.) На плоскость кристалла никеля, показанного в виде куба со срезанным углом, направляется пучок электронов определенной скорости. Цилиндр Фарадея, служащий для сбора дифрагированных электронов, может перемещаться по дуге вокруг кристалла. Кристалл тоже может вращаться вокруг оси, совпадающей с направлением падающего пучка электронов. Таким способом можно измерять интенсивность дифрагировавших лучей в разных направлениях. Эти опыты дали подтверждение (в том числе и количественное) соотношения де Бройля. На рисунке изображены три различных положения кристалла. ду, что его исследования могли бы служить опытным подтверждением теории де Бройля. Возобновив с этой целью опыты, Дэвиссон и его сотрудник Л. Джермер уже следующей весной смогли объявить о замеченном ими явлении дифракции электронов. Пучок электронов падал перпендикулярно плоскости кристалла никеля; дифрагировавшие электроны собирались цилиндром Фарадея, перемещавшимся по дуге вокруг кристалла. Через несколько месяцев Джордж П. Томсон * вместе со своим учеником А. Ридом, вскоре погибшим в автомобильной катастрофе в возрасте всего лишь 22 лет, независимо от Дэвиссона обнаружил дифракцию электронов, направляя их на металлическую фольгу или на кристаллические порошки и применив метод фотографирования, что не только упрощало громоздкое приспособление Дэвиссона, но делало также доказательство дифракции электронов наглядным и допускало непосредственное сопоставление с картиной дифракции рентгеновских лучей. Дэвиссон так комментировал одновременность и независимость опытов, проведенных в Нью-Йорке и в маленьком городке Абердине: «То, что поток электронов обладает свойствами волновых лучей, впервые было открыто в 1927 г. в большой промышленной лаборатории в центре огромного города и в лаборатории маленького университета на берегу холодного и пустынного моря. Это совпадение тем более покажется удивительным, если мы вспомним, что средства, необходимые для этого открытия, имелись в любой лаборатории мира и постоянно употреблялись там уже более четверти века. И все же в этом совпадении не было ничего исключительного. Открытия в физике делаются тогда, когда приходит их время, и не раньше. * Независимо от Томсона дифракция электронов была обнаружена советским физиком П. С. Тартаковским.— Прим. ред. 404
Первая фотография дифракции электронов, которую получили Дж. П. Томсон и А. Рид, направляя электроны на тонкую целлулоидную пленку. (Nature, 1927.) Световое пятно в центре окружено кольцами, напоминающими гаяо вокруг Солнца. Наступает момент, и неизбежное совершается чуть ли не в одно и то же мгновение даже в самых удаленных друг от друга местах» *. Проще можно было бы сказать, что лаборатории уже в течение 25 лет располагали всеми инструментами, необходимыми для открытия дифракции электронов, но что еще не было волновой механики, которая могла бы подсказать эти исследования. Экспериментальная проверка продолжалась с помощью различных приборов и в различных условиях, и, наконец, в 1929 г. Руппу удалось осуществить дифракцию электронов с помощью простой оптической решетки при почти скользящем падении в соответствии со способом, указанным еще Комптоном. Как это часто случается, экспериментальная проверка дифракции электронов, потребовавшая столько изобретательности и усилий первых экспериментаторов, сейчас в результате усовершенствования технических средств представляется нам такой простой, что может быть проведена даже на лекции как демонстрационный опыт. Дифракцию испытывают и атомарные пучки (как это показали впервые в 1929 г. Штерн и Эстерман в опытах с атомами водорода), молекулярные пучки, одним словом — любые корпускулярные лучи. Опыты, проводившиеся при самых различных скоростях, подтвердили точность основных соотношений, связывающих волну и частицу. При больших скоростях экспериментальные данные совпадают с расчетными при учете релятивистских поправок, так что эти опыты являются косвенным доказательством справедливости теории относительности. Явление дифракции электронов сразу же было применено для исследования поверхностных явлений и структуры малых кристаллов. Благодаря *С. J. Davisson, The discovery of electron waves, Nobel lecture, Les Prix Nobel en 1937, Stockholm, 1938. АП5
меньшей проникающей способности электронов они оказались гораздо более подходящими, нежели рентгеновские лучи, для изучения тонких пленок вещества. В частности, этот метод получил промышленное применение при изучении смазочных свойств различных масел и свойств поверхностных слоев различных металлов. Перечислить все случаи, в которых применяется дифракция электронов, нелегко, она стала целой наукой со своими собственными методами, особой техникой и особыми специалистами, работающими в этой области. Но один из примеров ее применения следует упомянуть, так как он широко известен и весьма распространен, особенно в биологии. Речь идет об электронном микроскопе, который построили впервые в 1931 г. фон Боррис и Руска, а затем во Франции в 1933 г. в физической лаборатории факультета наук в Безансоне Р. Фритц и Ж. Ж. Трийя. С помощью электронных микроскопов обычно легко получают увеличение в 20 000 раз, но можно получить увеличение и до 100 000 раз, позволяющее различить две точки на расстоянии примерно 30 А (1 А = Ю-8 см). Понятно поэтому, сколь полезен этот инструмент для медицины и биологии, например при изучении морфологии бактерий, ультравирусов и при исследованиях раковых опухолей. Первый крупный успех применения волновой механики к ядерной физике относится к 1928 г., когда Гамов дал объяснение прохождению а-частиц через потенциальный барьер тяжелых ядер. Через несколько лет, в 1934 г., Ферми с помощью волновой механики удалось очень просто объяснить одно открытое им явление, казавшееся парадоксальным: медленные нейтроны (т. е. имеющие скорость порядка скорости теплового движения) особенно эффективно вызывают искусственную радиоактивность, если ими бомбардировать ядра. Но об этом и о других применениях волновой механики мы будем еще говорить более подробно в следующей главе. Раз волновая механика получила такое широкое применение в ядерной физике, легко понять, что она должна была также найти успешное применение и в теоретической химии для описания и предсказания целого ряда химических реакций, а главное — для объяснения сущности химической валентности, остававшейся до сих пор тайной. Наконец, волновая механика привела к пересмотру всех теорий строения вещества. Сейчас без нее нельзя понять также и целый ряд макроскопических явлений; она стала наукой, необходимой не только физикам, химикам и биологам, но и инженерам. Если считать, что ценность той или иной теории измеряется количеством и значительностью ее практических применений, то вопреки общему мнению следовало бы сказать, что волновая механика — одна из самых плодотворных теорий современной физики. 8. КВАНТОВАЯ СТАТИСТИКА. Представляя фотон как частицу, физики, естественно, попытались получить законы излучения, рассматривая пространство, занятое излучением, как занятое «фотонным газом». К этому газу они применяли те же статистические критерии (с соответствующими изменениями), которые классическая физика применяла с таким успехом к обычным газам для определения распределения скоростей, а следовательно, и энергии между п молекулами газа с общей энергией Е, содержащимися в объеме V. Однако фотонный газ существенно отличается от обычного газа, состоящего из молекул, тем, что в последнем число частиц постоянно, тогда как в фотонном газе оно переменно, так как стенки объема могут поглощать или испускать излучение, т. е. фотоны. Другое различие вытекало из квантовой гипотезы, которая уменьшала число возможных состояний рассматриваемой фотонной системы. С учетом этих двух различий задача ставилась в соответствии с представлениями классической физики в применении к фотонному газу, заполняющему некую полость в черном теле. При этом 406
получался закон излучения Вина, который, как мы видели в гл. 13, противоречит опыту. В 1924 г. индийский физик Д. М. Бозе преодолел это противоречие, предположив, что к фотонам нельзя применять законы статистики обычных материальных частиц, которые до сих пор казались физикам не только единственно допустимыми, но и единственно мыслимыми. Речь идет в сущности вот о чем. Всякая статистическая проблема сводится в общем к определению того, как может распределиться определенное число объектов в определенном числе ячеек. Для простоты предположим, что у нас два объекта, обозначенные знаками + и —, которые должны разместиться в двух ячейках, причем каждая из них обозначается скобками ( ). Согласно классической статистике, возможны следующие четыре распределения: (+)(-); (-)( + ); (+-)( ); ( )(+-)• Но Бозе, учитывая, что фотоны неразличимы между собой, отрицал их индивидуальность, которая в классическом понимании отнюдь не то же самое, что различимость. Поэтому Бозе принял, что первые два распределения — это одно и то же, так что распределение двух фотонов (обозначаемых теперь одним и тем же знаком +) в двух ячейках может произойти одним из трех способов: (-+-)( + ); (++)( ); ( )(++)• Независимо от того, удовлетворительно или нет объяснение Бозе, остается фактом, что, внося в классическое статистическое рассмотрение предложенную им поправку, мы приходим к закону Планка, который, как мы знаем, целиком подтверждается опытом. Эйнштейн редактировал немецкий перевод статьи Бозе. Одновременно он получил от Ланжевена рукопись докторской диссертации Л. де Бройля, в которой тот выводит закон Планка из своей волновой гипотезы. Л. де Бройль заметил, что поскольку с движением частицы связывается распространение волны, то следует принимать во внимание только стационарные волны, соответствующие резонансу в данном объеме, в связи с чем он изменил статистический расчет классической механики. Эйнштейна живо заинтересовали эти результаты де Бройля; он сопоставил их с результатами Бозе в двух своих статьях 1924 и 1925 гг., в которых Эйнштейн применяет новые статистические законы и к обычным газам. В результате была создана интересная теория, объясняющая поведение газов в обычных условиях при не очень низких температурах. Успех этой новой статистики, названной статистикой Бозе — Эйнштейна, побудил физиков рассмотреть вопрос о том, не будет ли целесообразно и в других случаях видоизменить критерии классической статистики. В 1926 г. Энрико Ферми (1901—1954) заметил, что, даже для идеального газа если потребовать выполнения принципа Нернста, то необходимо считать величину удельной теплоемкости при постоянном объеме, даваемую классической термодинамикой для одноатомного газа, лишь приближенным значением, пригодным для высоких температур, но что в действительности эта удельная теплоемкость должна стремиться к нулю по мере приближения температуры к абсолютному нулю. Для объяснения изменения удельной темплоемкости с температурой, нужно, чтобы движение совершенного газа было квантовано. Этой проблеме квантования Ферми посвятил важную статью, появившуюся в том же году в Трудах Академии деи Линчей. Правила квантования, данные Зоммерфельдом, представлялись Ферми недостаточными, потому что, хотя они и приводили к выражению для удельной теплоемкости, стремящейся к нулю по мере приближения к нулю абсолютной температуры, эта теплоемкость, однако, оказывалась зависящей от общего 407
количества газа вопреки всем данным опыта. Поэтому в правила Зоммер- фельда нужно было ввести поправки, учитывая, что у совершенных газов, согласно Ферми, частицы, неразличимы между собой. Опираясь на принцип Паули, Ферми сформулировал свою основную гипотезу: «Предположим, что в нашем газе определенным набором квантовых чисел может характеризоваться не более одной молекулы, и покажем, что эта гипотеза приводит к последовательной теории квантования совершенного газа и что она, в частности, объясняет предсказанное уменьшение удельной теплоемкости при низкой температуре и дает точное значение для константы в выражении для энтропии совершенного газа» *. Эта гипотеза была равносильна принятию для этого газа, подчиняющегося принципу запрета Паули, нового статистического критерия, предложенного почти одновременно и независимо от Ферми П. А. М. Дираком. Этот критерий, если снова прибегнуть к тому простейшему примеру, который мы уже приводили, состоит в предположении, что две частицы могут разместиться в двух ячейках только одним-единственным способом, а именно (+) ( + )■ Обе новые статистики и соответствующие им термодинамические теории, сильно отличающиеся друг от друга, асимптотически переходят в классическую статистику, когда квантовая дискретность становится все менее существенной. В применении к реальным газам различия между этими двумя квантовыми термодинамиками и классической термодинамикой так незначительны, что их невозможно обнаружить. Поэтому новые статистики нельзя было экспериментально проверить по данным о реальных газах. Статистика Бозе — Эйнштейна была экспериментально подтверждена данными об излучении черного тела, а статистика Ферми — Дирака — электронной теорией металлов, как показал Зоммерфельд. Теперь уже считается установленным в физике, что все частицы атомарных масштабов делятся на две категории: одни частицы, подчиняющиеся принципу запрета Паули, как, например, электроны, протоны и некоторые атомные ядра, следуют статистике Ферми — Дирака и называются по предложению Дирака фермионами; другие частицы, не подчиняющиеся принципу запрета, как, например, а-частицы, фотоны и некоторые атомные ядра, следуют статистике Бозе — Эйнштейна; их Дирак предложил называть бозонами. ИНТЕРПРЕТАЦИЯ ВОЛНОВОЙ МЕХАНИКИ 9. ПОЛОЖЕНИЕ ЧАСТИЦЫ В ВОЛНЕ. Как мы уже видели, де Бройль показал, что с корпускулами, которые по традиции рассматривались как частицы материи, совершенно отличной от излучения, связаны волновые явления. Таким образом, де Бройль фактически углубил противоречие волна — частица, показав, что и материя обладает волновыми свойствами. Целью де Бройля было преодолеть это противоречие с помощью единой теории, которая сохранила бы за понятиями волны и частицы их традиционные черты. Научное мышление де Бройля сформировалось в духе классических представлений о физической реальности, заключенной в рамках пространства и времени и подчиненной строгому детерминизму, и он решил, что такого синтеза можно было бы достичь, рассматривая частицу как своего рода особенность волны. Еще в 1924 г. он писал: «Вся эта теория не станет действительно ясной до тех пор, пока не будет определена структура волны и природа связанной с части- * Enrico Fermi, Sulla quantizzazione del gas perfetto monoatomico, Rend. Ace. Lincei, classe sc. fis. mat. e nat., (6), 3, 147 (1926). 408
цей особенности, движение которой можно предвидеть, лишь становясь на волновую точку зрения» *. Совершенно иной и гораздо более смелой была интерпретация Шредин- гера, хотя и он тоже был верен схемам классической механики. Шредингер разрешал противоречие волна — частица, отрицая реальность одного из этих понятий. Согласно этой интерпретации, физической реальностью обладают только волны; частицы не имеют объективного существования, являясь лишь видимым проявлением волнового распространения, точнее говоря, они представляют собой короткие цуги волн. Л. де Бройль, Эйнштейн и другие отвергали такую интерпретацию, в частности потому, что волновые пакеты имеют тенденцию расплываться в пространстве и не могут поэтому представлять собой частицы, обладающие длительной стабильностью. На это Шредингер возражает: «...то, что всегда называли частицей и что все еще и сейчас в силу привычки продолжают так называть, безусловно, не представляет собой идентифицируемую сущность» **. Поэтому он считает, что можно принять его интерпретацию, менее «наивную» и более тонкую, основывающуюся на вторичном квантовании и гораздо более приемлемую для нашего мышления, чем «трансцендентальная интерпретация», принятая теперь большинством теоретиков, о которой мы будем говорить ниже. Как бы там ни было, но интерпретация Шредингера не имела последователей. Л. де Бройль продолжал развивать интерпретацию частицы как особенности волны. Движение этой особенности, связанное с развитием волнового процесса, не подчиняется законам классической механики, являющейся механикой частиц, находящихся только под действием приложенных сил; на него влияют все препятствия, встречаемые волной. Так можно было бы объяснить явления интерференции и дифракции, и вообще вся волновая механика могла бы быть включена в рамки классической физики. Однако развитие этой идеи наталкивалось на серьезные трудности, связанные с тем, что волновая механика, как и классическая оптика, успешно оперирует только с непрерывными волнами без всяких особенностей. После упорных предварительных поисков де Бройль пришел к довольно тонкой теории, названной им «теорией двойного решения», о втором варианте которой, выдвинутом в последние годы, мы поговорим ниже. Но когда де Бройль стал аналитически развивать эту теорию, он столкнулся с трудностями математического характера, которые преодолеть ему не удавалось. Поэтому, получив летом 1927 г. предложение Лоренца написать доклад для V Сольвеевского физического конгресса, который должен был состояться в Брюсселе в октябре того же года, де Бройль, опасаясь критики столь слабо разработанной математически теории, решил представить конгрессу, в котором участвовали крупнейшие физики того времени, так сказать, сокращенный вариант своей теории. В этом новом варианте де Бройль признает существование частиц и помещает их внутрь волны, которая в определенном смысле ведет («пилотирует») частицу; отсюда и название — теория волны- пилота. Однако эта попытка оказалась неудачной. Всеми, в том числе и самим де Бройлем, было признано, что волна я|з является не физической реальностью, а лишь воображаемой волной статистического характера, и что определять движение частицы чем-то, лишенным физического смысла, было бы непоследовательно и неприемлемо для физиков. * L. De В г о g 1 i e, Sur la dvnamique du quantum de lumiere et les interferences, Com- ptes rendus de l'Ac. d. Sc. de Paris, 179. 1029 (1924). ** E. Schrodinger, The meaning of wave mechanics, в книге Louis De Broglie, physicien et penseur, Paris, 1953, p. 24. 409
Вольфганг Паули. В дискуссии, вызванной докладом де Бройля, молодой физик Вольфганг Паули (1900—1958) выдвинул серьезные возражения, которые де Бройль не смог опровергнуть. Шредингер, убежденный в том, что частиц не существует, не мог разделять идей де Бройля. Эйнштейн рекомендовал ему продолжать свои попытки развить эту теорию, хотя и не разделял ее полностью. Молодые же физики, как присутствовавшие на конгрессе, так и отсутствовавшие, приняли интерпретацию Гейзенберга. 10. ПРИНЦИП НЕОПРЕДЕЛЕННОСТИ. Мы уже упоминали о том, что еще в 1925 г. Гейзенберг придерживался феноменологического подхода. Согласно взглядам этого немецкого ученого, физика должна отказаться от всяких моделей и объяснений. С философской точки зрения эта мысль не нова, в сущности это концепция прагматической философии; она же была положена в основу теории относительности. Но принятая за основу новой квантовой механики и доведенная до крайних логических следствий, она сильно способствовала возрождению прагматических гносеологических теорий, выдвинутых в свое время Махом, Оствальдом, Ваилати, и скоро привлекла на свою сторону многих ученых и философов. Как ранее прагматисты XIX века восставали против атомистики, считая ее слишком грубой и наивной, так и теперь новая школа объявила, что причиной кризиса в физике было наивное представление об электроне как о частице, как о «материальной точке» классической механики. Гейзенберг надеялся преодолеть противоречие волна — частица, понимая эти два понятия лишь как некие аналогии и довольствуясь тем, что «совокупность атомных явлений невозможно непосредственно выразить нашим языком». Нужно отказаться от представления о материальной точке, точно локализованной во времени и пространстве. Физика, лишенная всяких метафизических наслоений, может дать либо точное положение частицы в пространстве при полной неопределенности во времени, либо, наоборот, точное нахождение во времени при полной неопределенности в пространстве. Точнее говоря, наша физика может в лучшем случае определить, какова вероятность нахождения в определенный момент того, что мы называем частицей, в некотором объеме пространства (не обязательно совпадающего с физическим пространством). Таково неизбежное следствие введения в физику квантовых скачков. В 1927 г. Гейзенберг, поддержанный Бором и его школой, предложил принять эту неустранимую неопределенность в качестве специфического закона новой квантовой физики. Величину этой неопределенности можно было подсчитать по-разному. Так, Гейзенберг подсчитал предельную точность, с которой можно определить положение и скорость электрона, исходя из перестановочных соотношений квантовой механики. Как показал Бор в 1928 г., волновая механика позволяет еще более наглядно прийти к этому 410
результату. Еще более наглядным представляется следующее рассуждение, основывающееся на мысленном эксперименте, предложенном Бором вниманию физиков в том же году и быстро получившем широкую известность. Предположим, что мы хотим определить положение и количество движения электрона в определенный момент. Самый точный физический метод, который мы можем применить,— это осветить электрон пучком фотонов. Произойдет столкновение электрона с фотоном, и положение электрона будет определено с точностью до длины волны примененного фотона, как это известно из классической оптики и почти само собой очевидно. Поэтому следует применять фотоны минимальной длины волны, т. е. большой частоты, и, следовательно, обладающие большой энергией hv и большим количеством движения hv/c. Но чем больше количество движения фотона, тем сильнее он изменит количество движения электрона. Чтобы положение электрона было определено точно, частота фотона должна была бы быть бесконечной, но тогда бесконечным было бы также его количество движения, так что и количество движения электрона осталось бы совершенно неопределенным. И наоборот, если мы хотим точно определить количество движения электрона, то, как вытекает из аналогичного рассуждения, неопределенным окажется положение электрона. Если выразить количественно это рассуждение, то получится, что если Aq — неопределенность положения, & Ар — соответствующая неопределенность количества движения, то Aq-Ap^h. Если вместо сопряженных величин р и q взять другие две сопряженные величины, например энергию и время, то мы придем к аналогичному неравенству. Эти неравенства представляют собой квантовомеханические соотношения неопределенностей. 11. ИНДЕТЕРМИНИЗМ*. Принцип неопределенности обычно выражают следующим образом: основным принципом квантовой механики является констатация того факта, что всякий прибор и всякий метод измерения изменяют измеряемую величину, причем изменяют ее непредсказуемым образом. То, что приборы изменяют величину, подлежащую измерению, было, разумеется, очень хорошо известно и классической физике. Но известно было также, что, совершенствуя прибор, можно уменьшить ошибки, и потому можно было думать, что в пределе можно теоретически добиться совершенно точных измерений. Однако современные сторонники индетерминизма отрицают законность такого перехода к пределу. Мы не можем утверждать, что ошибка может быть сведена к нулю, не указав одновременно, каков метод экспериментального измерения, лишенный ошибок, или по крайней мере каким он должен быть. А поскольку такого метода измерения нет, то мы, если хотим придерживаться фактов, а не предубеждений, должны сказать, что никакая физическая величина не может быть точно измерена, разве что за счет абсолютной неопределенности другой, сопряженной с ней величины. Во всех своих работах Гейзенберг всегда четко выражал это положение. Так, мы читаем в отрывке, написанном им в 1941 г.: «Когда нужна лишь относительно малая точность, то, конечно, можно говорить и о положении, и о скорости электрона, причем эта допустимая точность с точки зрения критериев нашей повседневной жизни необычайно высока- Но если мы примем во внимание чрезвычайно малые размеры атомов, то эта точность оказывается небольшой, и присущий этому миру малого закон природы не позволяет нам знать и положение, и скорость частицы с любой точностью, которой нам хотелось бы. Хотя и можно поставить опы- * Вместо того, чтобы подчеркнуть новую форму проявления детерминизма в квантовой механике, связанного с ее вероятностным характером, автор не избежал введения «модного» термина индетерминизм, ведущего к весьма путаным философским заключениям.— Прим. ред. 411
ты, позволяющие установить с большой точностью место частицы, но, чтобы провести это измерение, мы вынуждены подвергнуть частицу сильному внешнему воздействию, из-за чего возникает большая неопределенность ее скорости. Таким образом, природа избегает точной фиксации этих наших интуитивных определений вследствие неизбежных возмущений, связанных с любым наблюдением. Если первоначальной целью каждого научного исследования было описать природу по возможности такой, как она есть сама по себе, т. е. без нашего вмешательства и без нашего наблюдения, то теперь мы понимаем, что эта цель как раз и недостижима. В атомной физике невозможно уйти от изменений, которые всякое наблюдение вызывает в наблюдаемом объекте». В этом вопросе о «реальности в себе», имеющем первостепенное значение для научного познания,— непримиримое расхождение между философией современной физики и философией классической физики. Гейзенберг, Бор, Борн и, пожалуй, большинство современных физиков, принимая целиком неопозитивистский тезис, считают, что «реальность в себе», независимо от наблюдателя, не имеет физического смысла. Надо сказать, что термин «позитивизм» не вполне однозначен. Но все же подавляющее большинство физиков понимает под позитивизмом философскую доктрину, которая сводит всю действительность к нашим восприятиям. Любой предмет, например стол,— это лишь комплекс получаемых нами от него восприятий. Вопрос о том, что такое стол «в себе», не имеет смысла, т. е. для неопозитивиста реального мира в себе, не зависящего от нас, как его понимала физика в прошлом веке, такого мира, который посылал бы нам сигналы, вызывающие наши восприятия, организуемые затем нашим мышлением в связные формы, давая нам таким образом мир явлений или ощущений, иной и отличный от реального,— такого реального мира в себе не существует. Недостижимым идеалом физики прошлого века было открыть этот реальный мир, прячущийся за миром наших ощущений. Для неопозитивистов такая проблема лишена всякого смысла. Целью науки является не открытие неких частей абсолютной истины, касающейся внешнего мира, а рациональное координирование многообразного человеческого опыта. Из этого следует, что физические законы — это не «законы природы» в классическом смысле, а удобные правила, пригодные для экономного объединения последовательности наших восприятий, т. е. мы имеем дело не с «открытиями», как говорила классическая физика, а с чистыми «изобретениями». Закон всемирного тяготения не существовал в природе, пока Ньютон не изобрел его, точно так же, как не существовала Девятая симфония, пока ее не создал Бетховен. Против такой интерпретации, совершенно переворачивающей традиционные представления классической физики, решительно восстали сторонники классической концепции. Мы в дальнейшем приведем один очень характерный отрывок, касающийся как раз этого вопроса, — слова, написанные Эйнштейном незадолго перед смертью, а пока ограничимся тем, что процитируем Макса Планка — одного из наиболее авторитетных представителей классического направления. В 1923 г. он писал (а затем многократно повторял иными словами): чОсновой и первым условием любой действительно плодотворной науки является метафизическая гипотеза, недоказуемая, конечно, с чисто логической точки зрения, но которую логика тем не менее никогда не сможет опровергнуть, гипотеза о существовании внешнего мира, мира в себе, совершенно не зависящего от нас, хотя мы и не можем получить о нем непосредственного знания, не прибегая к нашим органам чувств. Это похоже на то, как если бы мы могли наблюдать некий предмет только через очки, цвет которых у каждого наблюдателя был бы несколько иным. Конечно, нам не пришло бы в голову объяснять устройством наших очков все свойства воспринимаемого предмета> 412
хотя при составлении суждения об этом предмете мы и заботились бы о том, чтобы установить, до какой степени тот цвет, в каком он нам представляется, зависит от наших очков. Точно так же научная мысль стремится прежде всего к тому, чтобы было осознано и установлено различие между внешним миром и миром внутренним. Конкретные науки никогда не заботились о том, чтобы оправдать этот трансцендентальный скачок, и поступали совершейно правильно. Если б они поступали иначе, они никогда не добились бы таких быстрых успехов. К тому же, самое главное, никогда не следовало и никогда не следует опасаться опровержений, ибо подобные вопросы не могут решаться путем рассуждений». Именно потому, что этот вопрос нельзя решить путем рассуждений, физики-индетерминисты продолжали верить в то, что всякий физический процесс неотделим от приборов, с помощью которых его измеряют, и от органов чувств, с помощью которых его воспринимают: наблюдаемый объект, приборы и наблюдатель составляют «физическое единство». В гносеологии неопозитивистов до сих пор как будто не удалось найти никакого противоречия*. Именно в этом преимущество их позиции, а не в том, как метко заметил Планк, что они возводят в принцип использование только наблюдаемых величин или постановку только таких вопросов, которые имеют физический смысл, ибо определенная величина является наблюдаемой или имеет физический смысл в зависимости от того, на основе какой теории о ней судят. Классическая физика со своей точки зрения тоже рассматривает наблюдаемые величины и вопросы, имеющие физический смысл.. В философской позиции Гейзенберга и Бора заключается еще одно важное для классической физики следствие: принцип неопределенности был ими сразу же истолкован как отрицание принципа причинности. Бертран Расселл назвал тогда чистейшим софизмом утверждение, что раз явление недетерми- нировано в том смысле, что оно неизмеримо (а именно такой смысл придавал этому Гейзенберг), то, значит, оно также недетерминировано и в совершенно ином смысле, в том смысле, что оно не имеет причины. Чтобы принять точку зрения Расселла, необходимо иметь точное определение причинности, неоспоримый критерий, который бы позволил сказать с уверенностью: такое-то явление есть причина такого-то другого явления. Но такого критерия у нас нет. «Нельзя заставить кого бы то ни было,— писал Планк, один из самых упорных сторонников причинности,— нельзя чисто логическими доводами заставить кого бы то ни было признать причинную связь даже там, где имеется абсолютная регулярность. Достаточно подумать о кантовском примере смены дня и ночи. Понятие причинной связи имеет не логическую природу, а трансцендентальную». Физики всегда связывали понятие причины с нашей способностью предвидеть будущие события. Таким образом, возможность точно предсказывать будущее рассматривается как признак того, что причинная связь существует, не отождествляясь, однако, с этой связью. Но из того, что никакое измерение нельзя считать точным, следует то, что никакое заранее рассчитанное предсказание не может точно соответствовать результатам измерения. Иными словами, физическое событие невозможно с точностью предсказать. Именно такую позицию заняли Гейзенберг, Бор, Борн и физики-индетерминисты. В этом смысле они утверждают, что в природе не существует строгих законов, удовлетворяющих принципу причинности. То, что классическая физика назы- * Утверждение автора, что в гносеологии неопозитивистов до сих пор не удалось найти никакого противоречия, просто является неправильным. На эти противоречия указывали многие философы, и не только марксисты. Да и сама эволюция позитивизма во многом демонстрирует несостоятельность его гносеологических установок.— Прим. ред. 413
вала законами природы, является на самом деле лишь правилами, дающими очень хорошую аппроксимацию, но никогда не обеспечивающими абсолютной уверенности. Новая физика поэтому вынуждена искать во всех физических законах статистическую основу и формулировать их в терминах вероятности. Отсюда вытекает изменение направления поисков и исследований. Например, известно, что, наблюдая радиоактивный распад, Мария Кюри старалась понять, почему определенный радиоактивный атом распадается в данный момент, а другой, соседний атом распадается лишь через тысячу лет. При новой концепции эта проблема ставится иначе: действительно интересной задачей считается определить для данного радиоактивного элемента количество атомов, распадающихся в 1 сек, не стараясь доискаться, как и почему распадается тот, а не другой атом, т. е. не занимаясь индивидуальными судьбами атомов. Против такой концепции сторонники классической физики возражали и возражают словами Макса Планка: «Несомненно, закон причинности недоказуем логическим путем, так что он не истинен и не ложен. Он представляет собой эвристический принцип, некую путеводную нить, нить самую ценную, какой мы только можем обладать, если мы хотим ориентироваться в клубке событий и определять направление, в котором нужно проводить научное исследование, чтобы добиться полезных результатов. И так же как этот закон причинности сразу же захватывает свежую душу ребенка и непрестанно вкладывает ему в уста вопрос «почему?», так же он сопровождает ученого всю его жизнь и ставит перед ним непрестанно все новые проблемы. Наука вовсе не стремится к созерцательному покою после того, как она овладеет точными знаниями, она представляет собой беспрестанный труд, прогрессирующее движение к цели, которую мы хотя и можем поэтически нарисовать себе, но которую мы никогда не сможем полностью охватить нашим интеллектом». Если такая позиция Планка может показаться выходящей за рамки науки, то можно заметить, что некоторые физики неопозитивистского толка также выходили за ее рамки и, делая акцент на субъекте познания, доходили до чисто идеалистических утверждений, иногда проникнутых математическим мистицизмом пифагорейского толка. Зоммерфельд, например, считает, что дуализм волна — частица аналогичен дуализму материя — дух. По Эддинг- тону, физико-математическая вселенная — это призрачный мир (shadow world), построенный избирательной деятельностью нашего разума. По его мнению, одним из наиболее важных последних открытий является откровенное признание того, что «физика имеет дело с миром теней». Очень близкие к этому позиции заняли также Йордан и Джине, а в Италии — Энрикес. 12. ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ. Исходя из соотношения неопределенностей, Нильс Бор пришел к оригинальной философской позиции, высказанной им впервые на Международном конгрессе физиков, состоявшемся в Комо в сентябре 1927 г. по случаю столетия со дня смерти Алессандро Вольта. Бор поставил перед собой вопрос: каким образом для представления такой величины, как электрон, могут быть использованы без противоречий две столь различные между собой модели — корпускулярная и волновая. Он показал, что из-за соотношения неопределенностей эти две модели никогда не могут войти в противоречие друг с другом, потому что чем больше уточняется одна модель, тем более неопределенной становится вторая. Оба эти аспекта, волновой и корпускулярный, не приходят в столкновение, потому что никогда не предстают одновременно: чем более четкими оказываются в каком-либо явлении корпускулярные свойства электрона, тем более незаметными и неясными оказываются его волновые свойства. Одним словом, 414
электрону присущи два аспекта, и он предстает то в одном из них, то в другом, но никогда не предстает одновременно в обоих. Оба эти аспекта взаимоисключают и в то же время дополняют друг друга, как исключают и дополняют друг друга две стороны медали. Ясно, что все, что говорится здесь об электроне, относится, конечно, и к фотону и к любой другой элементарной частице в физике. Чтобы выразить и понятие взаимоисключаемости и понятие взаимодополняемости, Бор назвал оба эти аспекта дополнительными. Согласно Бору, дополнительность является характерной чертой физики; он делает из этого принципа дополнительности чуть ли не философскую доктрину. Некоторым физикам понятие дополнительности представлялось не совсем ясным. Так, Эйнштейн говорил, что ему так никогда и не удалось точно сформулировать его. Де Бройль находит его «un peu trouble» (несколько туманным). Некоторые интерпретируют его как выражение того факта, что электрон не является ни частицей, ни волной в том смысле, как их представляет себе классическая физика, что это нечто совершенно отличное, что можно представить себе лишь при новом способе мышления. Такая интерпретация исходит из многократно высказывавшегося Бором положения о том, что наши физические схемы, или, как он их называет, наши «идеализации» (точно локализованная частица, строго монохроматическая волна и т. д.) — это не соответствующие действительности слишком упрощенные представления нашего разума. Как бы то ни было, Бор и его школа широко применяли принцип дополнительности не только в физике, но и в биологии, пытаясь понять двойной химико-физический и жизненный аспект различных биологических явлений. Мы укажем здесь лишь на интересное применение этого принципа В. Гейзенбергом, который заметил, что «...наше обычное описание природы, и особенно представление о строгой причинности явлений природы, основывается на предположении о том, что можно наблюдать явление, не влияя на него существенным образом. Сопоставление определенного результата с определенной причиной имеет смысл лишь тогда, когда мы можем наблюдать и причину, и следствие, не вызывая в то же время никаких изменений в самом событии. Таким образом, закон причинности в его классической форме может быть, в сущности, определен лишь для замкнутых систем. Но в атомной физике со всяким наблюдением связано, вообще говоря, конечное изменение, причем в определенных пределах неконтролируемое. Этого и следовало ожидать с самого начала в физике, имеющей дело с мельчайшими существующими величинами. Но поскольку пространственно-временное описание физического явления связано с наблюдением этого явления, то отсюда следует, что пространственно-временное описание явлений, с одной стороны, и классический закон причинности — с другой, представляют собой два дополнительных взаимоисключающих аспекта физических явлений». Иными словами, перед физикой встает дилемма: либо описание явлений вне обычных пространственно-временных понятий с сохранением принципа причинности, либо обычное пространственно-временное описание и принятие соотношений неопределенностей. Эта альтернатива, выдвинутая Гейзенбергом и Бором, была воспринята некоторыми физиками как уступка принципу причинности. По их мнению, тип описания по существу не имеет значения, если получаются одни и те же результаты, и нет ничего страшного в допущении, что соотношения неопределенностей сейчас полезны и даже необходимы физике, но не из-за отсутствия причинности в природе, а как поправка к нашему ошибочному представлению о физических частицах, которые мы мыслим себе по типу классических частиц, но которых мы на самом деле еще не знаем. Но, возможно, такая интерпретация несколько искажает идеи Гейзенберга и Бора. 415
13. ВОЛНЫ ВЕРОЯТНОСТИ. Классическая физика тоже была вынуждена ввести законы вероятности, т. е. статистические законы, при построении теории газов (см. гл. 9). Но эти статистические законы представлялись как сумма индивидуальных динамических, т. е. причинных, законов, проследить которые вследствие их многочисленности и сложности человеческий ум неспособен. Статистические законы были поправкой на наше незнание. Позиция же квантовой физики совершенно иная. Мы уже упоминали об этом в связи с законом радиоактивного распада, который не выводится из исследования поведения отдельного радиоактивного атома, потому что судьбой отдельных индивидуальных частиц квантовая физика не интересуется. Статистический закон дается непосредственно, без предварительного перечисления отдельных случаев; в этом существенное отличие статистических законов квантовой механики от аналогичных статистических законов классической механики. Кроме того, квантовая физика не описывает положения и скоростей отдельных частиц, чтобы предсказать их траекторию, как это делает классическая физика. Она дает лишь статистические законы, т. е. законы, применимые к множествам, а не к отдельным объектам. Когда статистический закон хотят применить к отдельному объекту, то возможные предсказания носят лишь вероятностный характер. Например, если половина номеров автомобилей, имеющихся в городе, четные, а половина — нечетные, то мы не можем с уверенностью предсказать, будет ли четным или нечетным номер того автомобиля, который проедет первым; мы можем лишь сказать, что вероятность того, что он четный, равна 1/2. Точно так же если мы рассматриваем свет как состоящий из фотонов и говорим, что энергия пучка света, падающего на зеркало, на 3/4 отражается, а на V4 преломляется, то мы можем сформулировать статистический закон, что из множества фотонов, попадающих на зеркало, 3/4 возвращается назад, a V4 проникает внутрь. Однако этот закон не позволяет нам с уверенностью предсказать, что произойдет, если один- единственный фотон попадет на зеркало; мы можем лишь сказать, что вероятность того, что он отразится, равна 3/4. Примерно в таком духе давалась физическая интерпретация волновой механики. То, что волна, связанная с частицей, была «волной-призраком», лишенной физической реальности, как мы уже об этом говорили, стало ясно сразу же. Но если она не является объективно существующей волной, то какой физический смысл можно ей придать? При изучении явлений интерференции и дифракции классическая оптика принимает, что световая энергия распределяется в пространстве пропорционально интенсивности волны. Если ввести понятие фотона, то при объяснении этих явлений нужно считать, что интенсивность волны в каждой точке пропорциональна числу поступающих туда фотонов. Но экспериментально были осуществлены явления интерференции со столь слабым светом, что фотоны попадали на регистрирующий прибор не потоком, а поодиночке. Таким образом, пришлось принять, что интенсивность волны, связанной с фотоном, представляет в каждой точке вероятность того, что фотон находится в этой точке. Аналогичное рассмотрение можно провести и для электрона, который подчиняется тем же законам дифракции. Итак, мы приходим к следующему основному положению: квадрат модуля волновой функции в любой точке и в любой момент времени есть мера вероятности того, что соответствующая частица находится в этой точке в этот момент. Такую интерпретацию "ф-функции, названной волной вероятности, дали в 1927 г. Гейэенберг и Бор. Здесь речь идет просто о математическом выражении, которому лишь присвоили название, могущее вызвать конкретные физические представления классического типа; на самом деле волны вероятности являются чистыми абстракциями, дающими нам возможность предсказывать изменения вероятности во времени. 416
Выражаясь более конкретно, мы можем сказать, что Бор и Гейзенберг предполагают существование частицы и непрерывной волны о|э, но частица не имеет ни определенного положения, ни определенной скорости, ни определенной траектории. Лишь в момент измерения или наблюдения она может быть обнаружена в определенной точке или с определенной скоростью. Волна \|' дает вероятность нахождения частицы в данной точке в данный момент или наличия определенной скорости. При такой интерпретации, однако, исчезает представление о частице, локализованной во времени и пространстве, уступая место множеству вероятностей или потенциальных возможностей. Волна ^ — это математическое представление вероятности и, следовательно, элемент субъективный, изменяющийся с развитием знаний экспериментатора. При таком подходе противоречие волна — частица преодолевается, как мы уже сказали, с помощью принципа дополнительности. 14. ОБРАТНОЕ ДВИЖЕНИЕ К ДЕТЕРМИНИЗМУ. Пятилетие с 1923 по 1928 г. можно считать одним из самых замечательных периодов в истории физики. Необходимость исследовать мир, недоступный нашему непосредственному восприятию, побуждает физиков создавать все новые и новые теории, конструировать новые модели мира, подчас заменять физическую величину символом и вынуждает их, наконец, оставить традиционные представления и искать опоры в новой философии науки. Здесь нельзя умолчать об одном новом явлении. Оставив в стороне всякую его оценку, мы хотим лишь констатировать его как чисто исторический факт. Классическая физика, зародившаяся в XVII веке в споре с философией того времени, противопоставлялась философии как подлинное знание и как единственно передовая форма интеллектуальной деятельности. Такая полемическая позиция сохранялась физикой в течение нескольких веков, но в первом двадцатилетии XX века она значительно смягчилась, а в пятилетие с 1923 по 1928 г. почти совсем была оставлена, когда горячие споры возникли вокруг вопроса о законах мышления и когда каждый физик стал философом, вооруженным математикой, которая была признана наиболее подходящим способом выражения необычных мыслей. Взаимное недоверие между философами и физиками сейчас гораздо меньше, чем в прошлом веке, и это как раз благодаря событиям, происшедшим за указанное пятилетие. Вклад теоретической физики после 1928 г. можно сравнить с вкладом физиков-теоретиков поколения, последовавшего за Ньютоном. Это работа по систематизации, по наилучшему истолкованию понятий, работа по распространению теории на все новые области практического применения, работа по формированию нового мышления в процессе обучения и популяризации. Одним словом, то, что было первоначально проблематичным, становится теперь аксиоматичным. Однако такой процесс упорядочивания совершается далеко не всегда при всеобщем одобрении и не без враждебных выпадов. Это естественное явление в истории физики, и даже хорошо, что так происходит. Против новых концепций восстали физики старой школы: Лоренц, Планк, Эйнштейн. При открытии V Сольвеевского физического конгресса в 1927 г. Лоренц, который был его председателем, ясно подтвердил свою верность классическому детерминизму. Он сказал: «Представление, которое я хочу составить себе о явлениях, должно быть абсолютно четким и определенным, и мне кажется, что мы не можем составить себе такого представления иначе, как в пространственно-временной системе. Для меня электрон — это частица, которая в данный момент находится в определенной точке пространства. И если этот электрон встречается с атомом, проникает в него и после многих перипетий его покидает. 27 Марио Льоццв 417
Приспособление, придуманное Эйнштейном для опровержения принципа неопределенности с помощью мысленного эксперимента. я создаю себе теорию, в которой этот электрон сохраняет свою индивидуальность, т. е. я представляю себе некоторую линию, по которой этот электрон прошел через атом» *. Год спустя Лоренц умер. Борьбу за детерминизм продолжили Планк и Эйнштейн (мы упоминаем здесь, разумеется, лишь самых крупных представителей этого течения). На следующем Сольвеевском конгрессе в 1930 г. (Эйнштейн всегда аккуратно принимал участие в этих собраниях крупнейших ученых того времени) дискуссия, по словам Бора, «приняла поистине драматический характер». Эйнштейн в ходе дискуссии предложил такой мысленный эксперимент, который, учитывая требования теории относительности, давал опровержение- принципа неопределенности. Этот эксперимент проводится с помощью приспособления, состоящего из ящика с отверстием в одной из стенок, закрывающимся затвором, который управляется помещенным в ящике часовым механизмом. Если в ящике содержится радиоактивное вещество, то можно- сделать так, чтобы в определенный момент, отмечаемый часами, затвор открывался, пропускал один-единственный фотон и сразу же снова закрывался. Взвесив ящик до и после излучения, можно определить массу вылетевшего- фотона и, следовательно, его энергию. Таким образом можно было бы произвести точное измерение времени и энергии без всякой взаимной неопределенности, постулируемой квантовой механикой. Этот пример задал большую работу ученым, которые в конце концов пришли к выводу, что его следует считать несостоятельным. Вспоминая об этом, Бор ** передает те тонкие рассуждения, к которым пришлось, прибегнуть, чтобы опровергнуть доводы Эйнштейна. * Н. Lorentz, Electrons et photons, Rapports et discussions au Vе Conseil de Phvsique- Solvay, Paris, 1928, p. 4. ** N. В о h г, в сборнике Albert Einstein philosopher scientist, Evanstone, 1949. [Русский- перевод этой статьи Бора, носящей название «Дискуссии с Эйнштейном о проблемах теории- познания», имеется в книге: Н. Б о р, Атомная физика и человеческое познание, М., 1961, стр. 51—94.— Прим. перев.] Этот сборник представляет собой обширное собрание статей,, посвященных Альберту Эйнштейну, и чрезвычайно интересен не только благодаря известности представленных в нем авторов (таких, как Зоммерфельд, де Бройль, Паули, Гайтлер, Бор, Борн, Райхенбах, Милн, Инфельд, Лауэ, Гёдель, если упоминать, только самых известных) и ценности этих работ, но и как яркий документ, характеризующий присущее современным физикам критическое отношение к предрассудкам. Хотя. сборник выпущен в честь Эйнштейна, которого все авторы объявляют своим учителем, здесь можно найти острую критику его взглядов, иногда даже довольно резкую, и постоянные упреки в его адрес за приверженность к традиционному способу мышления, за его «строгую приверженность классической теории». Эйнштейн говорил своим близким: «Эта вовсе не юбилейная книга в мою честь, а обвинительный акт против меня». Престарелый ученый вынужден был — и это, пожалуй, единственный случай в изданиях подобного рода — завершить сборник прекрасными «Замечаниями к статьям», в которых он подтверждает свое научное кредо, подкрепляет свою точку зрения многочисленными примерами и высказывает свои опасения относительного того нового направления, в котором движется физика и которое он с горьким юмором метафорически охарактеризовал так: 418
Но Эйнштейна это не обезоружило. В своих статьях, выступлениях, в частных беседах он продолжал защищать основные принципы гносеологии XIX века. Основное расхождение между ортодоксальной концепцией новой физики и концепцией Эйнштейна очень ясно выразил сам Эйнштейн в одной из своих статей, написанных в 1949 г.: чПрежде всего у читателя не должно быть никаких сомнений относительно того, что я полностью признаю тот весьма значительный прогресс, который был достигнут теоретической физикой с помощью статистической квантовой теории. В области механических вопросов, т. е. всюду, где взаимодействие различных структур и их частей можно с достаточной точностью рассматривать, постулируя существование потенциальной энергии взаимодействия между материальными точками, статистическая квантовая теория и поныне представляет собой замкнутую систему, правильно описывающую эмпирические соотношения между наблюдаемыми величинами и позволяющую теоретически предсказывать их значения. До сих пор эта теория является единственной теорией, логически удовлетворительно объясняющей дуальные {корпускулярные и волновые) свойства материи. Те (проверяемые) соотношения, которые содержатся в этой теории, являются полными в естественных пределах, определяемых соотношением неопределенностей. Формальные соотношения, содержащиеся в статистической квантовой теории, т. е. весь ее математический формализм, по-видимому, должны будут в будущем войти в форме логических выводов в любую разумную теорию. Принципиально неудовлетворительным в этой теории, на мой взгляд, является ее отношение к тому, что я считаю высшей целью всей физики: полному описанию реального состояния произвольной системы (существующего, по предположению, независимо от акта наблюдения или существования наблюдателя). Если бы это рассуждение услышал склонный к позитивизму современный физик, оно вызвало бы у него улыбку. Он бы сказал себе: Здесь мы имеем дело с формулировкой в чистом виде некоего метафизического предрассудка, лишенного всякого содержания, преодоление которого было главным философским достижением физиков за последнюю четверть века. Воспринимал ли кто-нибудь ,.реалъное состояние какой-нибудь физической системы"? Может ли вообще кто-нибудь утверждать, что он знает, что следует понимать под ,.реалъным состоянием физической системы"? Как может разумный человек в наше время еще верить в то, что ему удастся отвергнуть наиболее существенную часть нашего знания с помощью этого бесплотного духа? Терпение! Я отнюдь не считаю, что приведенная выше лаконическая формулировка может кого-нибудь убедить. Она должна была лишь указать ту точку зрения, вокруг которой будут свободно группироваться излагаемые ниже элементарные соображения» *. «Наше обсуждение проблем, связанных с истолкованием квантовой теории, слишком затянулось. В заключение я воспроизведу разговор, который я имел с одним видным физиком- теоретиком. Он: «Я склонен верить в телепатию». Я: «По-видимому, она больше относится к физике, чем к психологии». Он: «Да». Какими далекими кажутся годы с 1918 по 1928, когда среди широкой публики стала распространяться теория относительности и когда понятия этой теории, казалось, настолько переворачивали все наши представления, что споры о них превращались в настоящие митинги. Идеи Эйнштейна казались настолько обескураживающими, что заставляли беспокоиться даже церковные власти. Бостонский кардинал в 1928 г. увещевал молодых людей держаться подальше от таких атеистических теорий. Раввин Нью-Йорка телеграфировал тогда Эйнштейну, строго вопрошая его: «Верите ли вы в бога?» А Эйнштейн телеграфировал в ответ: «Я верю в бога Спинозы, который обнаруживается во всеобщей гармонии всех вещей, а не в бога, который интересуется судьбами и делами людей». Раввин решил, что это свидетельствует о вере Эйнштейна, и успокоил верующих. * A. Einstein, Remarks concerning the essays..., в книге Albert Einstein philosopher scientist, Evanstone, 1949. (Есть русский перевод: А. Эйнштейн, Замечания к статьям, Собр. научн. трудов, т. III, стр. 295—296.) 27* 419
В последние годы образовалось ревизионистское течение, возникшее независимо от непосредственного влияния Эйнштейна и нашедшее своего крупнейшего выразителя в лице де Бройля. После Сольвеевского конгресса 1927 г. де Бройль — частью под влиянием тонких соображений Бора и Гейзенберга, частью под действием того одобрения, которое встретили новые идеи, особенно в среде молодых физиков,— присоединился к вероятностной интерпретации волновой механики и сделал ее предметом своего первого официального курса в Сорбонне в 1928 г. Однако нетрудно заметить в изложении вероятностной трактовки де Бройлем некоторую сдержанность. Например, де Бройль, возможно под сильным, хотя и бессознательным влиянием традиции, попробовал в 1941 г. спасти хотя бы часть той опоры, на которую в течение тысячелетий опирались все попытки понять мир, введя принцип «слабой причинности». Суть его сводилась к следующему. Если за явлением А следует одно иэ явлений Bt. В2, . . ., Вп и если ни одно из явлений В не происходит без того, чтобы не произошло также явление А, то мы можем определить А как причину явлений В. Существует, таким образом, причинная связь между А и явлениями В, но нет уже детерминизма в том смысле, что мы не можем предвидеть, какое именно из явлений В произойдет после того, как произошло явление А. Из этого следует, что детерминизм и причинность — две разные проблемы, и принцип слабой причинности может оставаться действительным и при наличии индетерминизма. Но глубокое, возможно бессознательное, беспокойство де Бройля ясно проявилось лишь в последние годы, под действием внешней причины, сила воздействия которой могла бы показаться непропорционально большой, если бы ей не предшествовало долгое внутреннее созревание. Летом 1951 г. молодой американский физик Дэвид Бом частным образом передал де Бройлю текст одной своей статьи, которую он намеревался опубликовать в «Physical Review» и которая действительно появилась там в номере от 15 января 1952 г. В этой статье Бом вновь обращается к детерминистской интерпретации волновой механики в форме теории волны-пилота. Но молодой физик, возможно не зная об аналогичной попытке де Вройля, добавил некоторые тонкие замечания относительно процессов измерения, требуемых этой теорией, замечания, вполне достаточные для того, чтобы отвергнуть возражения, выдвинутые Паули в 1927 г. Статья Бома привлекла внимание де Бройля, который как раз в 1950—1951 гг. избрал темой своего курса в Институте Пуанкаре тщательное и критическое рассмотрение вероятностной интерпретации квантовой механики, пораженный более чем когда- либо силой доводов противников такой интерпретации и неясностью аргументов, приводимых ее сторонниками. Л. де Бройлю стали известны также работы, которые в его же институте проводил другой молодой физик, Жав Пьер Вижье, посвятивший себя разработке теории двойного решения, согласованной с новыми идеями Бома и с общей теорией относительности. Это последнее обстоятельство особенно интересно, потому что до сих пор волновая механика принимала во внимание лишь специальную теорию относительности, не учитывая общей теории относительности. Ясно, что надежда аолучить наконец возможность слить воедино обе крупнейшие физические теории нашего времени не могла не показаться заманчивой де Бройлю. Он действительно подверг новому рассмотрению этот вопрос в двух своих аредварительных заметках, а 31 октября 1952 г. прочел лекцию в Парижском «Centre de Synthese», вскоре вышедшую в виде отдельной брошюры вместе с одной работой Вижье и некоторыми другими документами, в которых заявлялось, что вероятностная интерпретация волновой механики, в которую он верил и которую преподавал в течение 25 лет, должна быть 420
Представление согласно де Бройлю действительной волны и, которую можно разложить на регулярную волну v и особенность щ. (L. Де В г о g 1 i e, Nouvelles perspectives en microphysique, 1956.) Особенность uo имеет вид узкого резкого выброса, который и представляет собой частицу. подвергнута новому критическому разбору. Тому, кто захотел бы упрекнуть его в непостоянстве, де Бройль мог бы ответить словами Вольтера: «L'homme stupide est celui qui ne change pas» *. В разных научных заметках, объединенных в его обобщающей книге, в статьях и лекциях более популярного характера, собранных во второй части недавно вышедшего тома, де Бройль излагает новую интерпретацию которую он дает своей старой теории двойного решения. Согласно этой интерпретации, уравнение распространения волны, связанной с частицей и обозначаемой буквой и, не является линейным; эту волну можно рассматривать как наложение очень острого пика щ (размеры которого, возможно, меньше 10~13 см) на плоскую монохроматическую волну и, обладающую той же формой, что и классическая световая волна, и совпадающую с волной и вдали от особенности щ. Движение этой особенности, которая и представляет собой частицу, вследствие нелинейности уравнения (впрочем, еще неизвестного) распространения волны и, могло бы быть точно определено вдоль линий тока волны v. Волна и (как участок v, так и пик щ) — объективно существующая волна, не зависящая от наблюдателя. Однако он может представить себе волну -ф, всюду пропорциональную v, с коэффициентом пропорциональности, выбранным произвольно, в зависимости от имеющейся у него информации. Таким образом, волна -ф является субъективной волной, но связанной с волной v, чем и объясняется возможность наблюдателя давать точные статистические оценки. Эта новая интерпретация позволяет легко преодолеть трудность, вставшую перед теорией в 1927 г., а именно объяснение явления интерференции. Например, в опыте Юнга с отверстиями прохождение фотона за экран означает, что область особенности щ прошла через одно из отверстий. Размеры щ очень малы по сравнению с макроскопическим диаметром отверстия, поэтому можно вполне принять, что на всей поверхности отверстий волна и совпадает с волной v классической оптики, что и приводит к традиционному расчету полос интерференции. * «Глуп тот человек, который остается всегда неизменным». 421
Эта новая интерпретация волновой механики, как мы уже указали,— детерминистская и вполне укладывается в рамки классических концепций. Соотношения неопределенностей Гейзенберга остаются здесь по-прежнему справедливыми, но они интерпретируются как «неопределенность предвидения», а не как неопределенность установления положения и скорости частицы. По мнению де Бройля, новая теория может открыть перед физикой широкие перспективы. Например, точное знание функции и дало бы полное описание структуры и свойств микроскопических частиц (мезонов и гиперонов), которых открывают все больше и больше. Кроме того, новая теория, как на это указывалось вначале, может привести к слиянию квантовой физики и общей теории относительности в одну общую и единую релятивистскую теорию для всех видов полей. Только будущее сможет дать оценку новой концепции де Бройля, находящейся пока в стадии формирования. Сейчас же объективный наблюдатель может, пожалуй, отметить лишь, что эта новая теория встретила сравнительно холодный прием у физиков, о чем говорит, в частности, довольно малое число работ, посвященных этому вопросу.
ГЛАВА 16 • ИСКУССТВЕННАЯ РАДИОАКТИВНОСТЬ УСКОРИТЕЛИ 1. ПРОТОН. Мы уже говорили о попытках Резерфорда расщепить стабильные атомы, бомбардируя их а-частицами. Если первые полученные им в 1919 г. результаты были ненадежны и восприняты с изрядной дозой скептицизма, едва прикрываемого уважением, которого заслуживали смелые опыты этого новозеландского ученого, то сама идея была столь заманчива, что заслуживала дальнейших усилий, которые в качестве первого надежного результата привели к экспериментальному доказательству существования протона, т. е. иона водорода как составной части атомного ядра. Теоретически существование протона, или, как его первое время называли, нуклона, было постулировано Резерфордом и Нёттоллом еще в 1913 г. и в явной или неявной форме предполагалось, как мы видели, всеми физиками. Но одно дело — принять гипотезу, пусть даже подкрепляемую косвенными доказательствами, а другое дело — установить прямым опытом, что в атомных ядрах действительно существуют протоны. Опыты Резерфорда и Чэдвика, о которых мы уже говорили в гл. 14, повторялись и видоизменялись другими физиками, приводя к аналогичным результатам, которые сами по себе не столь и важны, но зато имели большое теоретическое и психологическое значение, поскольку укрепляли убеждение всех ученых в возможности эффективного взаимного превращения элементов друг в друга. Однако решающее доказательство существования протона, а значит, и возможности истолкования опытов как превращений атомов было получено в 1925 г. П. М. С. Блэккетом, который был учеником Резерфорда в Манчестере и после возвращения из Германии, где был интернирован, вновь стал работать в Кембридже. По предложению Резерфорда и при его поддержке Блэккету удалось получить в камере Вильсона фотографии протона, вылетающего в результате столкновения а-частицы с ядром азота. Это явление происходило чрезвычайно редко. Блэккет просмотрел 23 000 фотографий, содержащих 460 000 траекторий а-частиц, и только в восьми случаях наблюдал вылет протона. Во всех этих восьми благоприятных случаях а-частица, по-видимому, поглощалась атомом, с которым она соударялась, поскольку ее следа после удара не •обнаруживалось. Это позволило Резерфорду в том же 1925 г. дать этому явлению упомянутую выше интерпретацию (см. гл. 14): ядро азота захватывает а-частицу и испускает после этого протон, превращаясь в изотоп кислорода. В результате повторения этих опытов в различных вариантах многими «физиками (Позе, Мейтнер, Боте, де Бройль, Ренге, Констабль) вскоре было твердо установлено, что протон испускается подвергнувшимся соударению ядром в процессе «расщепления» атома. Здесь мы имеем, таким образом, первый твердо установленный пример искусственного превращения элементов. Это было надежно установленное, но чрезвычайно редкое явление, настолько редкое, что нужно было использовать миллионы а-частиц, чтобы получить несколько десятков протонов, а значит, и претерпевших превращение атомов. Этого, конечно, абсолютно недостаточно даже для самого тонкого 423
Две фотографии, полученные Блэккетом п показывающие вылет протона после соударения частицы с ядром азота. (Proceedings of the Royal Society of London, 1925.) Следы оставлены а-частицами, пролетающими камеру Вильсона. Слева на обеих фотографиях виден разветвляющийся след, обусловленный соударением частицы с ядром. Тонкая ветвь следа после соударения соответствует протону, испущенному ядром; более толстый след вызвав новым ядром, образовавшимся после соударения. Видно, что после соударения нет никакого следа а-частицы: как индивидуальность она перестала существовать. Упругое соударение а-частицы с атомом азота. (Proceedings of the Royal Society of London, 1925.) На соударение указывает разветвление на левом снимке, состоящее из двух следов, один из которых обусловлен а-частицей, отразившейся после столкновения и продолжающей свое движение, а второй— ядром азота, пришедшим в движение после столкновения.
химического анализа. Столь незначительное число образующихся протонов было обусловлено не только редкостью соударений, но главным образом тем, что не все соударения приводили к выбросу протона. Снимки в камере Вильсона показывают многочисленные случаи неожиданной остановки сх-частиц, не сопровождающейся испусканием протона. Короче говоря, сх-частицы оказывались неэффективным средством для расщепления ядра с помощью соударения. Как мы уже говорили (см. гл. 15), последующие усилия экспериментаторов направлялись разработанной в 1928 г. теорией Гамова, основанной на волновой механике. Положительный заряд атомного ядра создает вокруг себя сильный потенциал: ядро окружено, как образно выражаются, потенциальным барьером. Интуитивно ясно, что для преодоления этого барьера изнутри или снаружи частица должна иметь энергию больше некоторого определенного значения. Физики были в недоумении, почему а-частицы, испускаемые радиоактивными веществами, имеют весьма малые энергии, недостаточные, согласно классической механике, для того чтобы, так сказать, «пробить» этот потенциальный барьер. Но если связывать частицу с волной, то, как показал Гамов, потенциальный барьер ведет себя по отношению к этой волне как преломляющая среда по отношению к световой волне. И как световая волна, падающая на среду с небольшим поглощением, всегда проникает в эту среду (хотя и с чрезвычайно малой интенсивностью в случае полного внутреннего отражения), а если слой среды очень тонкий, то проходит сквозь него так же и волна, соответствующая частице, падающей на потенциальный барьер, пересекает этот барьер, хотя и сильно ослабленная, даже если энергия частицы недостаточна для его прохождения. Если давать материальной волне вероятностную интерпретацию, то этот результат можно выразить так: даже частица с недостаточно большой энергией имеет некоторую вероятность проникнуть через потенциальный барьер. Это так называемый «эффект Гамова», или, как его еще образно называют, «туннельный эффект». Теория Гамова предсказывает, что при одинаковой энергии падающей частицы вероятность проникнуть через потенциальный барьер тем больше, чем меньше масса частицы. Отсюда сразу следует, что при одной и той же энергии протоны — значительно более эффективное средство для расщепления атомов, чем а-частицы. Дояоявления теории Гамова для бомбардировки элементов применялись исключительно а-частицы на том основании, что, будучи в то время частицами с наибольшей энергией, они представлялись наиболее пригодными для бомбардировки. Энергия вылета а-частиц была измерена еще в начале нашего столетия. Мы приведем результаты в единицах энергии, которые с 1930 г. стали широко применяться в атомной физике. Эта единица — электрон-вольт (эв)— энергия, приобретаемая частицей с зарядом, равным заряду электрона е, при прохождении разности потенциалов в один вольт. Легко подсчитать, что эта единица равна 1,59-Ю-18 эрг. Часто применяется в миллион раз более крупная единица — мегаэлектрон-вольт (Мэв). Наиболее быстрые а-частицы, испускаемые радиоактивными веществами, имеют энергию 8 000 000 эв = = 8 Мэв. В то время, в 1925 г., наиболее мощные индукционные катушки, применявшиеся для получения рентгеновских лучей, давали разность потенциалов не выше 100 000 в. Это означает, что ускоренный в поле такой катушки электрон или протон мог иметь энергию не выше 100 000 эв = 0,1 Мэв, т. е. намного меньше энергии а-частиц. Но теория Гамова зародила все же надежду, потому что она предсказывала, что протоны с энергией 1 Мэв будут иметь такую же эффективность, как а-частицы с энергией 32 Мэв. Поэтому для того, чтобы значительно превзойти по эффективности естественные «снаряды», совсем не требуется электростатических напряжений 425
в миллион вольт, что в то время представлялось совершенно фантастической цифрой и могло бы привести в отчаяние даже самых отважных. Достаточно было, по-видимому, увеличить уже достигнутое напряжение в 5 — 6 раз, что отнюдь не было вне возможностей лабораторной техники того времени. В связи с этим теория Га- •мова дала мощный импульс физикам-экспериментаторам. Они вскоре поняли, что можно получать искусственно ускоренные частицы, которые могут сравняться или даже превзойти по своей эффективности естественные «снаряды», получающиеся при радиоактивном распаде, и освободиться тем самым от необходимости иметь дорогие и редкие радиоактивные вещества. Машина Ван де Граафа. С острия Р], связанного с положительным полюсом динамомашины Di, на движущуюся ленту NtNi стекает заряд, который через острие Pi собирается на полом электроде Ft, создавая на его внешней поверхности положительный заряд. Аналогично отрицательный заряд накапливается на электроде F,. 2. ВЫСОКОВОЛЬТНЫЕ УСТАНОВКИ. Так началась разработка установок, позволяющих получать высокие напряжения. В этом направлении работали многие экспериментаторы (Кулидж, Лауритсен, Туве, Браш и др.), но наилучших результатов добились почти одновременно Ван де Грааф. Кокрофт и Уолтон и Лоуренс. Ван де Грааф исходил из классической электростатической машины, которой после важных услуг, оказанных физике, особенно в прошлом столетии, казалось бы, следовало удалиться на почетное место в музей науки. В 1931 г. Ван де Грааф начал сооружение электростатической индукционной машины, которую проектировал еще Риги в 1872 г. и вновь предложил лорд Кельвин в начале нашего столетия. Сооружение установки было закончено в 1933 г. Электрические заряды, образующиеся на металлическом острие дод действием генератора обычных размеров на несколько десятков тысяч вольт, -стекают с этого острия на непрерывно движущуюся изолирующую подложку (ленту). Эта лента в процессе своего движения проникает внутрь полого электрода больших размеров («цилиндр» Беккариа или Фарадея) и через другое острие, соединенное с полостью, передает свой заряд внешней поверхности электрода, потенциал которого может, таким образом, возрастать теоретически неограниченно. Так были достигнуты разности потенциалов, превышающие 5 000 000 в, с полезной мощностью около 6 кет. Чтобы составить себе представление о прогрессе, достигнутом по сравнению с индукционной машиной XIX века, достаточно напомнить, что в самой мощной электростатической машине того времени, в многодисковой машине Воммельсдорфа. 426
Ускоритель протонов Кокрофта — Уолтона. Две алюминиевые сферы в центре рисунка (верхняя — подвижная) имеют диаметр 75 ел и служат для измерения приложенного напряжения по пробойному расстоянию. удавалось получить разность потенциалов 300 000 в при мощности 1,2 кет. Наибольшее неудобство машины Ван де Граафа заключалось в том, что она должна была устанавливаться в очень большом здании, чтобы избежать разряда — настоящей искусственной молнии — между электродом и стенами здания. Поэтому современные генераторы такого типа окружаются мощным стальным кожухом, в который введен газ при высоком давлении. Таким способом удалось достичь разности потенциалов 2 Мэв при довольно скромных размерах. В лаборатории Резерфорда в Кембридже также ломали голову над тем, как достичь высоких напряжений для получения протонов с целью их использования для бомбардировки атомов. Дж. Д. Кокрофт и Э. Т. С. Уолтон начали работать над этим в 1930 г. и через два года разработали установку, в которой напряжение трансформатора выпрямлялось и умножалось в несколько раз с помощью системы термоионных ламп и конденсаторов. С помощью такой установки эти молодые ученые получили почти постоянную разность потенциалов 700 000 в, которая была приложена к ускоряющей трубке для получения положительных ионов водорода. С помощью специальных электродов эти ионы фокусировались. Таким образом удалось получить ток протонов порядка 10 мка. Машина приняла довольно внушительный вид. В дальнейшем мы познакомимся с историческими опытами, выполненными в том же 1932 г. ее изобретателями. 3. ЦИКЛОТРОН. Существенно иным, значительно более остроумным способом американский физик Эрнест Лоуренс (1901—1960) достиг ускорения заряженных частиц. Возможно, созданию этой новой установки способствовало знакомство Лоуренса с работой немецкого физика Р. Видероэ, 427 Высокочастотный генератор Схема работы циклотрона. (Physical Review, 1932.) Два низких полуцилиндрических электрода А и В, сечение которых показано вверху, помещены в вакуумную камеру, находящуюся в сильном однородном магнитном поле, перпендикулярном плоскости рисунка. К электродам приложено переменное высокочастотное напряжение, так что на диаметре, разделяющем электроды, возникает переменное электрическое поле той же частоты; внутри обоих электродов электрическое поле отсутствует. Если в область между электродами ввести положительный ион в точке а, когда электрод А, скажем, находится под отрицательным потенциалом, то ион будет ускорен внутрь электрода А, опишет благодаря магнитному полю полуокружность и попадет в течку Ъ. Если величина магнитного поля рассчитана так, что время, необходимое иону для прохождения полуокружности и не зависящее ни от радиуса его траектории, ни от скорости, будет точно равно полупериоду колебаний электрического поля, то, попав в точку Ь, ион будет находиться под действием поля, направленного в противоположную сторону, и получит новый импульс к электроду В, пройдет внутри него с большей скоростью полуокружность большего радиуса и попадет в точку с в момент, когда электрическое поле вновь изменит свой знак. Таким образом, ион вновь получит ускоряющий импульс и т. д. который получал атомные частицы большой энергии, не ускоряя их в сильных полях, а сообщая им периодические импульсы. Как бы то ни было, первая установка такого типа создана в 1930 г. Лоуренсом вместе с Эдлефсеном, его первым помощником, в Калифорнийском университете. Эта первая модель имела в диаметре всего 10 см и была собрана из стекла и сургуча. Первая металлическая модель таких же размеров была построена Лоуренсом и М. С. Ливингстоном и могла ускорять ионы водорода до энергии 80 000 эв, хотя приложенное напряжение составляло всего лишь 2000 в. Воодушевленный успехом, Лоуренс построил затем машину диаметром 28 см, с помощью которой ионы водорода ускорялись до энергии 1,25 Мэв. Эта установка описана в знаменитой статье Лоуренса, вышедшей в 1932 г. Эту дату обычно считают моментом рождения циклотрона, как был вскоре назван этот ускоритель. Наиболее крупные циклотроны достигают гигантских размеров, однако принцип их действия довольно простой: суть заключается в обеспечении резонанса между движением иона по спиральной траектории и переменным 428
электрическим полем, в результате чего ионы получают периодические ускоряющие импульсы от электрического поля. Низкий полый цилиндр, разрезанный на две половины, называемые «дуантами», помещен в перпендикулярное основаниям цилиндра сильное магнитное поле, создаваемое мощным электромагнитом с плоскими полюсными наконечниками круглого сечения. К обоим дуантам, находящимся в вакууме, приложено высокочастотное переменное напряжение, создающее переменное электрическое поле в промежутке между дуантами, тогда как внутри каждого дуанта, согласно известной теореме электростатики, поле равно нулю. Образуемые в центре цилиндра ионы входят в один из дуантов и, находясь под действием одного лишь магнитного поля, движутся по круговой траектории, пока вновь не попадут в область между дуантами. Частота электрического поля подбирается так, чтобы время, необходимое иону для прохождения полуокружности внутри дуанта, было равно половине периода колебаний. При этом каждый раз к моменту выхода ионов в область между дуантами электрическое поле меняет свое направление и ионы получают новое приращение скорости при прохождении между дуантами. Поскольку радиусы круговых траекторий внутри дуантов пропорциональны скорости ионов, то время, необходимое для прохождения этих траекторий, не зависит от скорости, так что, если условие синхронизма колебаний электрического поля и времени прохождения ионом полуокружности выполнено при первом обороте, оно будет выполнено и при последующих оборотах. Таким образом, ионы описывают спиралевидную траекторию, состоящую из полуокружностей постепенно увеличивающегося радиуса, пока не достигнут периферии ускорителя, где сильно заряженная отклоняющая пластина выводит их наружу через тонкое слюдяное окно. Ясно, что конечная энергия ионов тем больше, чем больше число импульсов ускорения, т. е. чем больше число совершенных ионами оборотов (обычно порядка нескольких тысяч), которое из-за постепенного увеличения радиуса ограничено размерами магнитного поля, т. е. диаметром магнита. Этот диаметр вместе со значением напряженности магнитного поля определяет достижимую энергию иона. После первой машины Лоуренс в том же году сконструи ровал новый ускоритель с диаметром магнита 94 см и весом 75 т. В 1937 г.. после нескольких лет интенсивной разработки, он сконструировал еще более мощный циклотрон с магнитом диаметром 150 см и полным весом 220 т. способный давать ток 100 мка при энергии 8 Мэв. Громадные успехи развития метода ускорения частиц с помощью циклотрона прекрасно иллюстрируются опытами, в которых непосредственно видно, как частицы вещества, искусственно ускоренные до энергии в миллионы электрон-вольт, проходят 1,5 м в воздухе при нормальном давлении, тогда как раньше их можно было наблюдать лишь при разряде в сильно разреженном газе. Между тем в начале этого века казалось поразительным, что а-частицы испускаются из радиоактивных веществ со столь большой энергией, что проходят без заметного отклонения слой воздуха в несколько сантиметров при нормальном давлении! Применение мощных циклотронов подтвердило, что, как следует из простых теоретических соображений, процесс резонансного ускорения, который мы вкратце рассмотрели выше, происходит лишь в пренебрежении релятивистской зависимостью массы ускоряемой частицы от ее скорости. Чтобы электрон имел такую же кинетическую энергию, как протон, ему нужно сообщить много большую скорость, так как его масса намного меньше. Отсюда следует, что скорость электрона должна быть столь велика, что при этом нельзя уже не учитывать релятивистского изменения массы, и циклотронный принцип ускорения неприменим для электрона. Фактически циклотрон непригоден для ускорения электронов. 429
Однако ускорение электронов возможно при введении в циклотрон» одной из следующих двух модификаций, предложенных одновременно и независимо В. И. Векслером и Э. Мак-Милланом в 1945 г. *: в синхроциклотроне (фазотроне) частота приложенного к дуантам напряжения уменьшается по мере увеличения релятивистской массы частицы; в синхротроне с ростом релятивистской массы электрона растет величина магнитного поля. Еще один тип ускорителя электронов, бетатрон, был создан Д. Керстом в 1940 г. В нем ускорение электронов происходит за счет электромагнитной индукции. 1932 г.—ГОД ВЕЛИКИХ ОТКРЫТИЙ Год 1932 несколько торжественно, но, пожалуй, не погрешив против истины, называют «великим годом в изучении радиоактивности». В этом году были сделаны четыре фундаментальных открытия, и тот факт, что все они не были неожиданными, что все они имели более или менее далеких предшественников, не умаляет их важности и лишь увеличивает наше восхищение перед теоретиками и экспериментаторами предыдущего периода, особенно Резер- фордом, предвидевшими эти открытия. Открытия эти следующие: открытие положительного электрона (позитрона); искусственное превращение элементов и связанное с этим взаимное превращение материи в энергию? открытие нейтрона — частицы с массой 1 и зарядом 0; открытие дейтериж (тяжелого водорода)— изотопа водорода с массой 2. Здесь мы кратко остановимся на последних трех открытиях, отложив на время для удобства изложения вопрос об открытии позитрона. 4. ДЕЙТЕРИЙ. Возможность существования изотопа водорода с массой 2 предвидел еще Резерфорд. Но ни химический анализ, ни масс-спектрометрия,, которая тогда еще не достигала достаточного совершенства, не позволили обнаружить этот изотоп. Казалось, что и физические и химические методы определения отношения атомной массы водорода к атомной массе кислорода прекрасно согласуются между собой. Но исследование полосатых спектров кислорода показало, что в обычном кислороде присутствуют незначительные следы изотопов с массой 17 и 18. По численным результатам, полученным на основе этих спектроскопических наблюдений, Бирге и Менцель в 1931 г. установили, что для согласования данных об изотопах кислорода со значением массы, приписываемым атому водорода, следует допустить существование изотопа водорода с массой 2, присутствующего в обычном водороде. в пропорции 1 : 4500 по отношению к легкому водороду. Расчет Бирге и Менцеля вновь усилил интерес к вопросу об изотопах, внимание к которому в свое время возбудило предположение Резерфорда, причем интерес этот не ограничивался лишь нахождением еще одного очередного изотопа. Здесь речь шла о совершенно особом изотопе, в том смысле, что его масса должна была вдвое отличаться от массы известного элемента, тогда как массы любых других изотопов отличаются между собой лишь на несколько процентов. Поэтому было интересно узнать, будет ли атом, имеющий удвоенную массу, также химически неотличим от своего изотопа. Гаральд Клейтон Юри (род. в 1893 г.), бывший тогда профессором химии в Колумбийском университете в Нью-Йорке, попытался экспериментально обнаружить существование тяжелого водорода, теоретически установленное Бирге и Менцелем. Теория предсказывала, что жидкий тяжелый водород * Первая работа В. И. Вексдера, касающаяся описываемого здесь принципа ускорения, была опубликована в 1944 г. [ДАН СССР, 43, 346 (1944); 44, 393 (1944)].— Прим. перев. 430
должен испаряться медленнее, чем легкий, так что Юри полагал, что сумеет добиться некоторой степени разделения обоих изотопов с помощью перегонки жидкого водорода. И действительно, этим весьма трудоемким способом ему удалось получить водород, спектроскопический анализ которого указывал на несомненное присутствие водорода с массой 2. В 1932 г. Юри счел возможным опубликовать результаты своего открытия. Наиболее интересным здесь было то, что впервые были замечены различия в физико-химических свойствах двух изотопов, так что их можно было сравнительно легко выделить в чистом состоянии. Юри назвал дейтерием водород с массой 2 и дейтоном его ион. Предложенные позже термины «диплоген» и «диплон» для обозначения соответственно атома и иона тяжелого водорода не привились в физике. i Когда дейтерий соединяется с кислородом, то образуется «тяжелая вода», отличающаяся по свойствам от обычной воды: она замерзает при 3,8° С, кипит при 101,2° С, максимальная плотность тяжелой воды (при 11,5° С) больше плотности обычной воды. В небольших количествах тяжелая вода содержится в обычной. Вскоре после открытия Юри Уошбёрн (1881—1934) предложил отделять тяжелую воду от обычной с помощью электролиза, поскольку при электролизе воды тяжелая вода концентрируется в оставшейся части жидкости. Многие технические установки для производства больших количеств- тяжелой воды, нашедшей многочисленные научные применения, основаны на этом принципе. Уже в 1934 г. в Рьюкане (Норвегия) была запущена установка, производившая 0,5 кг тяжелой воды в день. Открытие дейтерия создало широкие возможности для исследований в различных областях физики. Пожалуй, наиболее интересным свойством дейтерия является возможность, его использования как чрезвычайно эффективного возбудителя атомных превращений при бомбардировке атомных ядер дейтонами, ускоренными в циклотроне. При бомбардировке дейтонов дейтонами образуются ядра трития — изотопа водорода с массой 3, который ученые безуспешно пытались обнаружить в тяжелой воде. Тритий радиоактивен. 5. ИСКУССТВЕННЫЕ ПРЕВРАЩЕНИЯ С ПОМОЩЬЮ УСКОРЕННЫХ ЧАСТИЦ. Вскоре после создания своего ускорителя Кокрофт и Уолтон показали, какую большую помощь смогут оказать ускорители науке. Резер- форд тоже, должно быть, верил в эти новые машины, поскольку, как рассказывают, после нескольких лет упорного труда Кокрофта и Уолтона, стремившихся довести до совершенства свой ускоритель, он, испытывая еще большее нетерпение в ожидании результатов, чем его сотрудники, сказал этим двум молодым ученым: «Ладно, вы уже достаточно поработали, теперь пробуйте». Возможно, что этот эпизод имел место на самом деле, поскольку Резерфорд в заметке от 1932 г. сообщает, что первые опыты были проведены Кокрофтом и Уолтоном с ускоряющим потенциалом 125 000 в. Однако в оригинальной статье этих авторов описываются «опыты, показывающие, что протоны с энергией выше 150 000 эв способны расщепить значительное число элементов» *. Примененный ими метод очень прост по идее. Ионы водорода из специальной трубки для создания каналовых лучей, ускоренные напряжением до 600 000 в, направляются на пленку из исследуемого металла. Возможные продукты расщепления попадают на флуоресцентный экран из сернистого цинка, вспышки на котором наблюдаются через микроскоп. Первым элементом, подвергшимся бомбардировке, был литий; на экране ааблюдались вспышки, число которых было пропорционально интенсивности * Proceedings of the Royal Society of London, Ser. A, 137, 229 (1932). 431
Пучок ускоренных протонов В Схема опыта Кокрофта и Уолтона. Металлическая пластинка А облучается током ускоренных протонов, падающим по направлению стрелки под углом 45° к плоскости пластинки; В — вкран из сернистого цинка, на который сфокусирован микроскоп, служащий для наблюдения сцинтилляций; С — слюдяной экран, обеспечивающий задержку протонов, рассеиваемых на пластинке А. протонного тока. Вспышки были такого же вида, как и при попадании а- частиц на флуоресцентный экран. Чтобы окончательно отождествить частицы, они были исследованы в камере Вильсона и в ионизационной камере, в результате чего исчезло всякое сомнение в их природе. Согласно Кок- рофту и Вильсону, происходит следующий процесс: ядро лития с массой 7 захватывает протон и сразу после этого расщепляется на две а-частицы. Если эта схема соответствует действительности, то обе а-частицы, получающиеся при расщеплении ядра, должны, согласно закону равенства действия и противодействия, испускаться в противоположных направлениях. Это следствие также было подтверждено на опыте с помощью прибора, подобного прибору Кокрофта и Уолтона, но с некоторыми отличиями: в нем имелся еще один флуоресцентный экран с микроскопом, расположеаный с другой стороны литиевой пластинки, замененной тончайшим слоем лития, нанесенным путем возгонки на тонкую слюдяную пластинку. Сцинтнлляционные вспышки наблюдались одновременно на обоих экранах в симметричных точках, что полностью подтвердило тот факт, что а-частицы испускаются парами. Вскоре было определено, что а-частицы испускаются с энергией 8,76 Мэе, почти равной энергии а-частиц, испускаемых торием. Откуда берется эта энергия? Очевидно, не от соударяющегося с ядром протона, энергия которого не превышает одной шестой части энергии одной а-частицы. Однако если сложить массу ядра лития с массой соударяющегося с ним протона, то полученная сумма будет несколько больше массы двух а-частиц. Другими словами, здесь экспериментально заметен дефект массы* если бы в таком процессе \/ 432
можно было расщепить 7 г лития, то исчезло бы чуть больше 18 мг массы — такое количество вещества перешло бы в энергию а-частиц. Таким образом, этот опыт давал не только пример искусственного превращения элементов, но и первое экспериментальное доказательство преобразования вещества в энергию. К этому выводу Кокрофт и Уолтон пришли совершенно естественно, поскольку к тому времени, особенно после убедительных работ Астона, физики уже не сомневались в возможности превращения вещества в энергию. Может показаться удивительным, что, добившись такого экспериментального подтверждения, ученые единодушно с насмешкой отвергли всякую возможность использовать это явление в практических целях как источник энергии. Это объясняется очень просто: освобождение атомной энергии достигалось за счет затраты значительно большей энергии. Применение такого способа освобождения атомной энергии можно было сравнить с получением энергии от гидроэлектростанции путем подъема воды насосами на гору для последующего использования ее энергии падения. После лития Кокрофт и Уолтон исследовали другие элементы: бериллий, бор, углерод, кислород, фтор, натрий, алюминий, калий, кальций, железо, кобальт, никель, медь, серебро, свинец, уран. С помощью этого же экспериментального устройства от всех этих элементов были зарегистрированы вспышки сцинтилляций на экране, указывающие на преобразование ядер, т. е. на превращение элемента. Возникла современная алхимия, как назвал ее Резерфорд в одной популярной книжке. С помощью введенных ранее Астоном обозначений, при которых массовое число элемента указывается в виде индекса при химическом символе элемента, первая реакция современной алхимии была записана Кокрофтом и Уолтоном в следующем виде: F19 + H1==Oie + He4. Это означает, что при соударении протона с ядром фтора протон захватывается, а затем полученное ядро распадается на ядро кислорода и ядро гелия. 6. НЕЙТРОН. Еще в 1920 г. Резерфорд для объяснения результатов опытов по соударению а-частиц с легкими ядрами, о чем мы уже говорили в гл. 14, предположил существование частицы с массой порядка массы ядра водорода и с нулевым зарядом. Правда, согласно Резерфорду, здесь шла речь не о новом типе частиц, а как бы о новом типе водородных атомов, в которых электрон очень близок к ядру и тесно связан с ним. ^Существование таких атомов,— писал он тогда,— представляется почти необходимым для объяснения структуры ядер тяжелых элементов. Действительно, трудно представить себе, как положительно заряженная частица могла бы достигать ядра тяжелого элемента против сил интенсивного отталкивающего поля ядра». В 1921 г. Дж. Л. Глассон безуспешно пытался получить нейтральную частицу в находящейся под высоким потенциалом разрядной трубке, содержащей водород. В 1928 г. С. Розенблюм также указал на экспериментальные трудности обнаружения этих предполагаемых нейтральных частиц, даже если они и существуют. Главных трудностей здесь две: нейтроны, проходя камеру Вильсона, не оставляют в ней следов в виде капелек воды и потому не могут быть обнаружены таким способом; нейтроны нельзя отклонить ни электрическим, ни магнитным полем, так что их невозможно обнаружить и этим классическим электромагнитным методом. Тем не менее авторитет Резерфорда был столь велик и его гипотеза так заманчива и полезна, что существование нейтронов, как они были названы 28 Марио Льошш 433
по предложению Нернста, представлялось всем физикам-теоретикам 20-х годов абсолютно необходимым. В 1929 г. Резерфорд вместе с Чэдвиком предпринял попытку экспериментального обнаружения нейтронов, оказавшуюся,, однако, тоже безуспешной. В 1930 г. В. Боте и Г. Бечер, бомбардируя атомы легких элементов, в частности бериллия и бора, а-частицами от радиоактивного препарата полония, получили весьма проникающее излучение, которое, по их мнению, имело электромагнитную природу и было обусловлено расщеплением бомбардируемого ядра. Ирэн Кюри (1897—1955), дочь Пьера и Марии Кюри, и ее муж Фредерик Жолио (1900—1958) повторили в 1931 г. опыт Боте и Вечера, бомбардируя бериллий и литий весьма интенсивным а-излучением. Они установили, что когда излучение бериллия проходит через парафин или другое вещество, содержащее водород, то вызываемая излучением ионизация возрастает, причем, как они показали, это возрастание ионизации обусловлено вылетом быстрых протонов из парафина. Супруги Жолио-Кюри обнаружили также, что излучение бериллия способно иногда сталкиваться с атомными ядрами, встречающимися на его пути: это явление, подтвержденное также наблюдениями в камере Вильсона, происходит тем чаще, чем легче ядра, которые соударяются. Систематическое исследование супругами Жолио-Кюри поглощения этого нового излучения показало, что оно имеет не электромагнитный, а скорее корпускулярный характер. В последующих опытах была обнаружена способность частиц легко проникать сквозь вещество;, например, они легко проходят свинец толщиной 10 и даже 20 см. Между тем протоны, обладающие такой же скоростью, задерживаются свинцовой пластинкой толщиной даже 0,25 мм, так что это новое излучение не могло состоять из протонов. В 1932 г. Чэдвик задался целью установить, не состоит ли исследованное Жолио-Кюри излучение из нейтронов, согласно гипотезе, выдвинутой Уэбстером. Чэдвик показал, что излучение не может иметь электромагнитную природу, если не отказаться с целью согласования расчетных и экспериментальных данных от закона сохранения количества движения. В частности, в 1932 г. Чэдвик заметил: «...проникающая способность частиц данной массы и скорости зависит только от заряда этих частиц, поэтому ясно, что излучаемая бериллием частица должна иметь крайне малый заряд по сравнению с зарядом протона. Естественнее всего принять, что она вообще не несет никакого заряда. Все свойства излучения бериллия могут быть легко объяснены с помощью такой гипотезы: это излучение состоит из частиц с массой 1 и зарядом 0, т. е. из нейтронов» *. Эта гипотеза сразу же объясняет, почему отбрасывание ядер новым излучением происходит тем слабее, чем тяжелее бомбардируемые ядра. Но как и откуда берутся нейтроны? Чэдвик предложил механизм, аналогичный привлеченному Резерфордом для объяснения искусственного расщепления атомов при бомбардировке а-частицами. Нейтрон является составной частью ядра и испускается в результате соударения частицы с ядром. При соударении а-частицы с ядром бериллия она захватывается ядром, после чего вновь образовавшееся ядро сразу испускает нейтрон, превращаясь в ядро углерода. В уже упомянутых обозначениях указанную реакцию можно записать в виде Ве9 + Не4 = С12 + пи * J. Chadwick, The neutron and its properties, Nobel lecture, Les Prix Nobel en 1935, Stockholm, 1937, p. 4.
если через щ обозначить нейтрон. При бомбардировке бора процесс расщепления ядра описывается следующим образом: B11 + He4 = Nlt + n1. Интерпретация Чэдвика была принята всеми и получила в последующие годы многочисленные экспериментальные подтверждения, большей частью косвенного характера. Были исследованы свойства нейтрона. Его масса очень близка к массе атома водорода, но сосредоточена в значительно меньшем объеме. Поглощение нейтронов веществом происходит при соударении нейтронов с ядрами поглотителя. Поэтому поглощение очень мало и одинаково по всем направлениям. В том же 1932 г. Н. Фезер установил еще одно исключительно важное свойство нейтронов: бомбардируя азот излучением бериллий-полониевого источника, он заметил в камере Вильсона следы, имеющие общее начало. Фезер приписал их расщеплению ядра азота под действием падающего нейтрона. С большим трудом ему удалось различить два разных процесса расщепления: один — сопровождающийся захватом падающего нейтрона, другой — без захвата. Все в том же 1932 г. Лиза Мейтнер и К. Филипп добились расщепления атомов кислорода под действием нейтронов. Впоследствии многие другие расщепления подобного типа были осуществлены экспериментаторами. Мы остановимся в дальнейшем подробнее на этих процессах расщепления. Здесь же мы лишь предварительно заметим, что нейтроны оказались особенно эффективным средством расщепления атомов. Нетрудно понять, чем это обусловлено. «Большая эффективность нейтронов в получении ядерных реакций,— говорит Чэдвик,— легко объясняется. При столкновении заряженной частицы с ядром вероятность ее проникновения в ядро ограничена кулоновской силой взаимодействия частицы с ядром, что определяет минимальное расстояние, на которое может приблизиться частица и которое возрастает с ростом атомного номера ядра и вскоре становится столь большим, что вероятность проникновения частицы в ядро становится очень малой. В случае же соударения нейтрона с ядром ограничения такого типа не существует. Сила взаимодействия нейтрона с ядром очень мала, только на очень малых расстояниях она начинает быстро расти и носит характер притяжения. Вместо потенциального барьера, как в случае заряженных частиц, нейтрон встречает „потенциальную яму". Поэтому даже нейтроны очень малой энергии могут проникнуть в ядро» *. Здесь уместно напомнить, как открытие нейтронов в ядре привело почти сразу к изменению представления о самом строении ядра. Мы уже упоминали, что представление о ядре, состоящем из протонов с примесью электронов, по существу не удовлетворяло никого из физиков. Этой всеобщей неудовлетворенностью объясняется полное единодушие в признании необходимости изменения модели ядра. Однако, как только заходила речь о принятии той или иной новой модели ядра, это единодушие исчезало. Одни полагали, что электроны в ядре связаны с протонами, образуя нейтроны, так что легкие ядра состоят из а-частиц, протонов и нейтронов, а тяжелые ядра могут содержать также несколько свободных электронов. Другие, как, например, Пер- рен, считали, что в ядре имеются специальные группы, образованные одним протоном и одним нейтроном, названные «полугелием». Д. Д. Иваненко высказал предположение, что ядро состоит только из протонов и нейтронов. Вскоре после этого Гейзенберг на основе этой гипотезы * Там же, р. 7. 435
построил теорию, дающую условия устойчивости атомного ядра и законы радиоактивного распада. Гипотеза Иваненко, привлекающая своей простотой и подтвержденная последующими исследованиями ядерных превращений, быстро распространилась и вскоре стала господствующей. Ядро с массовым числом А (ближайшее целое число к массе ядра) состоит из Z протонов и N = А — Z нейтронов. Конечно, Z равно также числу электронов внешней оболочки атома, т. е. атомному номеру. Частицам, образующим ядро, нейтронам и протонам, было присвоено общее наименование нуклонов (был использован ранее существовавший термин, применявшийся, правда, в ином значении). Новая теория внесла изменения в обозначения Астона для ядер. К обозначениям Астона был добавлен еще один индекс, указывающий атомный номер элемента, равный числу протонов в ядре. После нескольких различных предложений были приняты обозначения супругов Жолио-Кюри, которые использовали два индекса слева от химического обозначения элемента: сверху — индекс, указывающий массу, а снизу — ядерный заряд, например "А1. После принятия теории строения ядра сразу определилось число нейтронов и протонов в ядре: число нейтронов примерно равно числу протонов; исключение составляют ядра тяжелых элементов, в которых имеется избыточное число нейтронов. Но какие силы обеспечивают устойчивость ядра? Исследование этих сил было начато Гейзенбергом и Этторе Майорана (1906—1938), молодым итальянским физиком, таинственно погибшим в 1938 г. К проблеме ядерных сил, не решенной до сих пор, мы вернемся в дальнейшем. АТОМНАЯ ЭНЕРГИЯ 7. ИСКУССТВЕННЫЕ РАДИОАКТИВНЫЕ ЭЛЕМЕНТЫ. 15 января 1934 г. Жан Перрен представил заседанию Парижской Академии наук заметку Ирэн и Фредерика Жолио-Кюри, в которой сообщается об открытии искусственных радиоактивных элементов. Продолжая исследование влияния бомбардировки ядер а-частицами, супруги Жолио-Кюри годом ранее установили, что при бомбардировке а-частицами некоторые легкие элементы (магний, бор, алюминий) испускают позитроны. Жолио-Кюри попытались уточнить механизм этого испускания, отличавшегося по характеру от известных случаев ядерных превращений. С этой целью они поместили источник а-частиц, содержащий препарат полония, на расстоянии 1 мм от алюминиевой фольги и подвергли ее облучению в течение примерно 10 минут; затем они поместили эту фольгу над счетчиком Гейгера — Мюллера. Они заметили, что фольга испускает излучение, интенсивность которого спадает экспоненциально во времени с периодом полураспада 3 минуты 15 секунд. Аналогичные результаты были получены с бором и магнием, но для них период полураспада был иной: 14 минут для бора и 2,5 минуты для магния. Аналогичные исследования на водороде, литии, углероде, бериллии, азоте, кислороде, фторе, натрии, кальции, никеле, серебре таких явлений не обнаружили. Но даже этот отрицательный результат позволил сделать определенные выводы: излучение, замеченное у алюминия, магния и бора, нельзя отнести за счет какой-либо примеси в полониевом источнике. Анализ излучения бора и алюминия в камере Вильсона показал, что оно состоит из позитронов. Несомненно, ученые имели здесь дело с новым явлением, существенно отличавшимся от известных случаев ядерных превращений <ш
в следующих отношениях: все вызывавшиеся до сих пор ядерные реакции носили мгновенный взрывообразный характер, тогда как испускание позитронов образцом алюминия, облученным а-частицами, продолжалось и после прекращения облучения. Супруги Жолио-Кюри пришли к выводу, что здесь речь идет о настоящем явлении радиоактивности, проявляющейся в испускании позитрона. Такое истолкование опрокинуло сложившуюся в те годы общую уверенность в том, что атомы, образующиеся при бомбардировке тяжелыми частицами, всегда соответствуют обычным устойчивым изотопам. Энергетические соображения привели супругов Жолио-Кюри к следующему истолкованию явления: сначала а-частица захватывается ядром алюминия с мгновенным испусканием нейтрона и образованием радиоактивного атома, являющегося изотопом фосфора с массой 30 (устойчивый изотоп фосфора имеет массу 31), затем этот нестабильный атом, названный «радиофосфором», распадается с испусканием позитрона, превращаясь в устойчивый изотоп кремния в соответствии с тем же правилом, что и для естественных радиоактивных веществ. Несмотря на чрезвычайно малый выход этих превращений и совершенно ничтожную массу вещества, претерпевшего превращение (лишь несколько миллионов атомов), с помощью тонких экспериментов Жолио-Кюри удалось установить химические свойства полученного элемента. Открытие искусственной радиоактивности было оценено уже тогда как одно из крупнейших открытий нашего века. Физики и другие ученые предвидели его большое теоретическое значение и бесконечное поле приложений в области биологии и практической медицины. Признание заслуг супругов Жолио-Кюри выразилось в присуждении им на следующий год Нобелевской премии по химии, а экспериментаторы всего мира стали повторять их опыты, бомбардируя элементы также другими частицами. В частности, в Англии и Соединенных Штатах, где физики располагали мощными ускорительными установками, начали получать новые искусственные радиоактивные элементы с помощью ускоренных протонов и дейтонов. Так, одним из наиболее крупных успехов опытов на циклотроне в эти первые годы его существования было получение радиоактивного натрия, радия Е и радия F (или полония) при бомбардировке дейтонами большой энергии обычной соли (для получения радиоактивного натрия) и висмута (для получения двух остальных элементов). 8. БОМБАРДИРОВКА НЕЙТРОНАМИ. Как только весть об опытах Жолио- Кюри достигла Рима, Энрико Ферми решил повторить их, применив в качестве бомбардирующих частиц нейтроны. В то время ни один физик не считал нейтроны пригодными для расщепления атомов. Так, Фредерик Жолио в оригинальной работе, призывая своих коллег-физиков повторить его опыты с другими бомбардирующими частицами, не упомянул ни о целесообразности, ни просто о возможности применения нейтронов. Сам Ферми с предельной простотой говорит о причинах недоверия к нейтронам других физиков и о своей собственной счастливой догадке: «Применение нейтронов как бомбардирующих частиц страдает тем недостатком, что число нейтронов, которым можно практически располагать, неизмеримо меньше числа а-частиц, которые можно получить от радиоактивных источников, или числа протонов или дейтонов, которые можно ускорить в высоковольтных устройствах. Но, с другой стороны, этот недостаток частично компенсируется большей эффективностью нейтронов при получении искусственных ядерных превращений. Нейтроны обладают также тем преимуществом, что им свойственна большая способность вызывать 437
1 ^ш h. -1 **.' fz~—^ ?>v_ и' :TL r .. /* A /' *" s»# r Часть реактора Центра ядерных исследований SORIN (Societa Ricerche Impianti Nucle- ari) в Салудже (Верчелли).
■Энрико Ферми в год присуждения ему Нобелевской премии (1938 г.). превращения в том смысле, что число элементов, которые могут быть активизированы нейтронами, значительно больше числа активных элементов, которые можно получить с помощью других видов радиоактивных частиц» *. Новая методика, примененная в старинном физическом институте на улице Панисперна в Риме, бы. ла весьма несложной. Источник нейтронов в виде стеклянной трубки, содержащей порошок бериллия и эманацию радия, помещался внутрь цилиндрических образцов из исследуемого вещества. Таким ■образом, испытуемый образец находился определенное время под интенсивным воздействием нейтронного облучения, после чего его быстро (бегом) переносили к счетчику Гейгера — Мюллера, расположенному в другом помещении, и регистрировали импульсы счетчика. Таким способом Ферми подверг бомбардировке фтор, алюминий, кремний, фосфор, хлор, железо, кобальт, серебро, иод; все эти элементы активизировались, и во многих случаях Ферми мог указать химическую природу образовавшегося радиоактивного элемента. После получения этих результатов Ферми привлек к своим исследованиям несколько молодых физиков из числа своих учеников (Э. Амальди, О. Д'Агостино, Ф. Разетти, Б. Понтекорво) и с их помощью подверг облучению нейтронами 63 элемента, из которых для 37 элементов было надежно установлено явление искусственной радиоактивности. У активизированных элементов не было заметно никакой определенной зависимости явления искусственной радиоактивности от атомного веса бомбардируемого элемента. В процессе этих исследований в том же 1934 г. Ферми сделал еще одно открытие: если активизируемое вещество окружить парафином или водой, через которые нейтроны должны пройти, прежде чем попадут на образец, то эффект существенно усиливается. Типичный опыт ставился следующим образом: в центре маленького цилиндрика из вещества, подлежащего активации, помещалась на определенное время трубка с бериллиевым порошком и эманацией, являющаяся источником нейтронов. Затем вещество помещали в счетчик и определяли интенсивность наведенной радиоактивности. Затем этот опыт повторялся, но на время облучения источник облучения и образец помещались в небольшую полость в центре парафинового блока. При этом интенсивность активации оказывалась существенно большей, иногда в 100 раз. Это явление оказалось совершенно неожиданным для всех, однако Ферми вскоре нашел разумное объяснение. Вещество, содержащее водород, * Enrico Fermi, Radioattivita prodotta con neutroni, Nuovo Cimento, nuova ser., 11, 430 (1934). 439
или, лучше сказать, содержащийся в нем водород замедляет нейтроны значительно сильнее, чем атомы других веществ. Действительно, поскольку массы нейтрона и протона почти одинаковы, при каждом соударении нейтрона с протоном их кинетическая энергия перераспределяется почти поровну. Ферми легко показал, что нейтрон с энергией в миллион электрон- вольт после 20 соударений с атомами водорода теряет свою энергию почти до уровня, соответствующего тепловому возбуждению. Отсюда следует, что, проходя слой вещества, богатого водородом, нейтроны быстро теряют свою энергию, превращаясь в медленные, или тепловые нейтроны, скорость которых определяется тепловым возбуждением. Оставалось еще объяснить тот казавшийся парадоксальным факт, что медленные нейтроны лучше быстрых вызывают ядерные превращения. Более того, как показал сам Ферми и другие, наибольший эффект получается при вполне определенной энергии нейтронов, различной для разных веществ. Волновая механика позволила Ферми объяснить этот парадокс. Аналогичное объяснение дал и Бор, уподобив этот процесс явлению резонанса. Результаты экспериментов по бомбардировке медленными нейтронами превзошли все ожидания. Почти все бомбардируемые элементы дали радиоактивные изотопы. Перед самым началом второй мировой войны было известно уже 400 новых радиоактивных веществ, половина которых получалась при бомбардировке нейтронами, причем у некоторых из них интенсивность излучения была выше, чем у радия. 9. ТРАНСУРАНОВЫЕ ЭЛЕМЕНТЫ. Химический анализ и теоретические соображения, основанные на распределении изотопов, позволили Ферми выделить три процесса получения искусственных радиоактивных веществ. Все три процесса начинаются захватом падающего нейтрона ядром; одновременно с этим ядро испускает либо а-частицу, либо протон, либо ничего не испускает, но во всех случаях ядро превращается в новый радиоактивный элемент. Первые два процесса встречаются чаще при бомбардировке легких ядер, тогда как третий тип — при бомбардировке тяжелых ядер. Весной 1934 г., бомбардируя нейтронами уран и торий, Ферми обнаружил образование сложной смеси радиоактивных элементов, испытывающих ряд превращений с испусканием р-лучей. Ферми и его сотрудники попытались химически отделить носителей этой активности. Эти исследования привели ученых к заключению, что некоторые из этих носителей радиоактивности не являются ни изотопами урана, ни более легкими элементами, а представляют собой элементы с атомным номером больше 92, т. е. совершенно новые искусственные элементы. Ферми, Разетти и Д'Агостино сочли, что первыми получили и опознали элементы с атомными номерами 93 и 94, и назвали их аусонием и эсперием. Однако это открытие было поставлено под сомнение, пока в 1938 г. Отто Хан и Лиза Мейтнер не подтвердили его, установив также образование еще одного нового элемента с атомным номером 96. В 1940—1941 гг. два первых трансурановых элемента были, можно сказать, вновь открыты, и тогда их назвали нептунием и плутонием, чтобы сохранить аналогию с планетной системой. Во время второй мировой войны и в последующий период был получен добрый десяток искусственных трансурановых элементов. Кроме нептуния и плутония, достаточно хорошо известны элементы с атомными номерами 95 и 96, названные соответственно америцием и кюрием. Все трансурановые элементы радиоактивны и имеют самые разнообразные времена жизни: нептуний — около 2 суток, плутоний — 24 000 лет, америций — 500 лет, кюрий — 5 месяцев. 440
Особенно большое значение благодаря своему военному применению имеет плутоний, который получают в Соединенных Штатах в значительных количествах с помощью циклотронов, бомбардируя уран сначала дейтронами, а потом нейтронами. Уже к концу 1942 г. было получено 0,5 мг плутония — количество, достаточное для изучения его основных химических свойств. Позднее, преодолев громадные технические трудности и вложив гигантские средства, плутоний стали производить в весьма больших количествах в атомных реакторах, но цифры держат в секрете. 10. РЕАКЦИЯ ДЕЛЕНИЯ. В 1938 г. Ирэн Жолио-Кюри и П. Савич заметили, что в уране, активизированном по методу Ферми, присутствует элемент, сходный с лантаном. Эти опыты были повторены в том же году Отто Ханом и Ф. Штрассманом, подтвердившими результаты своих французских коллег и установившими, что новый замеченный ими элемент представляет собой именно лантан. Истолкование этого явления вызвало замешательство среди физиков. Говорят, что первой догадалась об истинной природе этого явления Лиза Мейтнер, работавшая с Отто Ханом и Штрассманом в Институте кайзера Вильгельма в Берлине, и что, поняв важность этого открытия, она, будучи еврейкой немецкого происхождения, бежала не без приключений в Голландию и прибыла в Копенгаген к Бору и О. Фришу — другому немецкому физику, еврею по национальности, работавшему раньше в Институте кайзера Вильгельма и эмигрировавшему затем в Данию. Фактически это явление было объяснено почти одновременно в конце 1938 — начале 1939 г. несколькими физиками: Ханом и Штрассманом, которые, по-видимому, не очень были уверены в своем объяснении, Мейтнер и Фришем и Фредериком Жолио-Кюри. Согласно этому объяснению, атом урана, подверженный бомбардировке нейтронами, испытывает новый тип расщепления, причем атом, в который попал нейтрон, раскалывается на две более или менее равные части. Этому явлению вскоре было дано название деления. Жолио-Кюри сразу понял чрезвычайную важность этого нового типа атомного распада. Здесь все можно объяснить чуть ли не на пальцах. Как мы уже упоминали, в ядрах легких элементов число протонов и нейтронов примерно одинаково, а с увеличением атомного номера относительное число нейтронов увеличивается. Так, в ядре урана отношение числа нейтронов к числу протонов равно 1,59, тогда как для элементов середины периодической системы оно колеблется между 1,2 и 1,4. Отсюда следует, что если атом урана распадается на две части, то общее число нейтронов в осколках деления должно для достижения устойчивости самих осколков деления стать меньше числа нейтронов, содержавшихся в исходном ядре. Таким образом, при делении атома урана освобождаются нейтроны. Они могут в свою очередь вызвать деление других атомов, и так делее. Отсюда видна возможность цепной реакции, аналогичной химическим цепным реакциям при взрыве. Ф. Перрен, сын Жана Перрена, в том же 1939 г. опубликовал первый расчет «критической массы», необходимой для того, чтобы началась цепная реакция. Это была, конечно, весьма предварительная оценка, имеющая сейчас лишь чисто исторический интерес. Теперь мы знаем, что ни при каком количестве обычного урана цепная реакция начаться не может, потому что нейтроны, получающиеся при делении атомов урана-235, были бы поглощены за счет так называемого «резонансного захвата» атомами урана-238 с образованием урана-239, который в результате двух последовательных р-распа- дов переходит в нептуний и плутоний. Только для таких делящихся веществ, как уран-235 и плутоний, существует критическая масса. 441
Расчет потери массы при делении атома урана позволил, кроме того, предвидеть, что процесс деления должен сопровождаться выделением энергии в 165 Мэв. Это громадная энергия, в четыре раза превосходящая полную энергию, освобождаемую при осуществлении всей цепочки радиоактивного распада урана, заканчивающейся свинцом. Идеи Жолио-Кюри были вскоре экспериментально подтверждены. Более того, удалось установить, что ядро урана захватывает медленные нейтроны и затем делится. В результате теоретического рассмотрения Бор пришел к выводу, что делению подвергается не обычный уран с массой 238, а его изотоп с массой 235. Несколько позже, в 1940 г., А. О. Нир подтвердил экспериментально это предсказание Бора, обнаружив также, что другим легко делящимся атомом является атом плутония *. Таков примерно уровень, достигнутый ядерной физикой накануне второй мировой войны. После этого густой покров тайны, непроницаемый для простого человека, покрыл ядерные исследования. Даже специалисты, кроме некоторых посвященных, узнали о научных и технических достижениях в области ядерной физики лишь из лаконичных- военных коммюнике: 6 августа 1945 г. атомная бомба была сброшена на японский город Хиросиму, вызвав апокалиптические разрушения и жертвы. После окончания войны стали просачиваться кое-какие сведения о гигантской интенсивной работе по осуществлению проекта использования атомной энергии, выполненной проживающими в Соединенных Штатах учеными. В 1945 г. Г. Смит опубликовал в Принстоне официальный отчет правительства **, содержащий все сведения, которые можно поведать широкой публике. О некоторых принципиальных научных и технических вопросах отчет умалчивал, о других говорил лишь весьма неопределенно. В результате этого и сейчас, когда непосвященные ученые описывают какие-либо атомные процессы, представляющие военный интерес, они вынуждены основываться лишь на рассуждениях, которые «частная» наука никогда не сможет по понятным причинам экспериментально проверить. В официальном отчете сообщается, что идея использования атомной энергии в военных целях была выдвинута группой иностранных ученых, бежавших от фашизма в Соединенные Штаты, из которых в отчете называются Л. Сцилард, Э. Вигнер, Э. Теллер, В. Р. Вайсскопф, Э. Ферми. Этой группе удалось заинтересовать президента Соединенных Штатов Рузвельта, для чего они воспользовались помощью Эйнштейна, который написал президенту знаменитое письмо: «Некоторые работы Ферми и Сциларда заставляют думать, что элемент уран может стать новым важным источником энергии... что можно было бы использовать при создании бомбы громадной мощности». Президент принял решение оказать государственную поддержку этим исследованиям, и они сразу же были засекречены. Усилия по получению атомной энергии в больших количествах имели две различные цели: управляемое медленное освобождение энергии для промышленных нужд и создание сверхмощного взрывчатого вещества. Вторая цель была совершенно безотлагательной в тот трагический период мировой истории. Однако очень скоро ученые поняли, что наиболее быстрым способом достижения второй цели является осуществление первой. Как мы уже говорили, делению подвержены атомы плутония и урана-235. * Теория деления тяжелых ядер до работ Бора была развита в 1939 г. советским физиком Я. И. Френкелем.— Прим. ред. ** Atomic Energy for Military Purposes. (Есть русский перевод: Г. Д. Смит, Атомная энергия для военных целей, М., 1946.) 442
Энрико Ферми у мемориальной доски, установленной на наружной стене теннисного корта Чикагского университета, где им был запущен первый атомный котел. Надпись на доске гласит: «Здесь 2 декабря 1942 г. человек впервые осуществил цепную реакцию и этим положил начало овладению освобожденной ядерной энергией». которого в природном уране лишь 0,7%. Атомная бомба требовала огромных количеств урана-235, который очень трудно отделять. При медленном получении энергии не требуется предварительного разделения, необходимы лишь большие количества урана, и в качестве побочного продукта получается плутоний. Отсюда возникла идея «атомного котла», названного так, возможно, из-за простоты его конструкции. Это название теперь имеет лишь исторический интерес, поскольку оно вытеснено более подходящим названием «ядерный реактор». Первоначальным назначением атомного котла было не получение энергии, а производство плутония в количествах, необходимых для создания атомной бомбы. Важной проблемой было уменьшение числа нейтронов, захватываемых ураном-238 за счет резонанса; они выпадают из цепной реакции, хотя и полезны как обогатители, т. е. при получении урана-239, превращающегося затем в нептуний и плутоний. Поэтому нужно было как можно скорее выводить быстрые нейтроны из массы урана, отнимать у них кинетическую энергию и вновь направлять в уран в виде тепловых нейтронов, чтобы вызвать деление урана-235. Эту функцию замедлителей могли выполнять атомы тех легких элементов, в столкновении с которыми нейтроны теряют значительную часть своей энергии, не вызывая в то же время изменения этих атомов. До сего времени найдено лишь два вещества, пригодных для этих целей: 443
тяжелый водород (в виде тяжелой воды) и углерод. Тяжелая вода очень, дорога, поэтому остановились на углерод в форме графита. Первый атомный котел, или ядерный реактор, из чередующихся слоев: урана и графита, спроектированный и сконструированный Ферми в сотрудничестве с Андерсоном, Ццнном, Л. Вудзом и Г. Вейлем, начал работать 2 декабря 1942 г. на теннисном корте Чикагского университета. Его мощность составляла 0,5 вт; через десять дней она была доведена до 200 вт. Это была первая установка ядерной энергетики, ставшей теперь одной из наиболее развитых отраслей современной промышленности *. Чтобы надлежащим образом подчеркнуть важность этого события для прогресса человеческого общества, надо было бы, наверное, найти какие-то особо- торжественные слова. Первая опытная установка позволила провести точное экспериментальное исследование процесса получения плутония, которое привела к заключению, что этот способ дает реальную возможность изготовления плутония в количествах, достаточных для изготовления атомной бомбы. К концу 1943 г. проект создания атомной бомбы вошел в фазу реализации. Первый экспериментальный взрыв был успешно произведен в 17 часов 30 минут 16 июля 1945 г. на воздушной базе Аламогордо, примерно в 200 км от Альбукерке, в пустыне штата Нью-Мексико. 11. КОСМИЧЕСКИЕ ЛУЧИ. Еще Кулон тщательпо исследовал экспериментально явление постепенного разряда электроскопа, предоставленного самому себе (см. гл. 7). Однако с открытием радиоактивности и ионизующего действия излучения, испускаемого радием, физики начали понимать, что предложенное Кулоном объяснение разряда по меньшей мере чересчур упрощенно. К 1903 г. это явление было вновь исследовано многими физиками (Дж. Мак-Леннан, Э. Ф. Бертон, Э. Резерфорд, Г. Л. Кук), которые, экспериментируя с электроскопами, заключенными в сосуды со свинцовыми экранами и без них, установили, что разряд замедляется, если воздух в сосуде возобновлять, предварительно фильтруя его через влажные ватные тампоны, или если сосуд экранировать свинцовыми пластинами. Эти опыты показали, что объяснение Кулона нельзя считать достаточным, потому что разряд происходит также и по причинам, отличным от предположенных Кулоном. И поскольку как раз в эти годы, как мы видели, было открыто у-излучение, испускаемое радиоактивными веществами, а Джоли и Пуль показали, что радиоактивные вещества рассеяны по всей земной коре, то явление самопроизвольного разряда электроскопа приписывалось влиянию у-излучения радиоактивных веществ, присутствующих в земной коре. В течение нескольких лет это объяснение принималось без возражений всеми физиками. Первым, кто привлек внимание к его недостаточности, был, пожалуй, Доменико Пачини (1878—1934), который в результате своих систематических опытов, проводившихся с 1908 по 1911 г., пришел к выводу, что излучение имеет внеземное происхождение. В 1909 г. Гёккель (Швейцария) поместил электроскоп на воздушный шар и обнаружил, что на высоте 4000 м он разряжается быстрее, чем на уровне моря. С 1911 по 1913 г. австрийский физик Виктор Гесс (род. в 1883 г.), которому в 1936 г. была присуждена Нобелевская премия за его открытие, повторил опыты Гёккеля, подтвердив и дополнив его результаты. Если электроскопы разряжаются на большой высоте быстрее, чем на уровне моря, то трудно уже продолжать считать, что это явление обусловлено факторами, связанными с земной корой. Гесс весьма осторожно выдвинул гипотезу о том, * В Советском Союзе первый ядерный реактор, который также является первыми во всей Европе, был запущен 25 декабря 1946 г. академиком И. В. Курчатовым.— Прим. ред. 444
что излучение, вызывающее разряд, носит внеземное происхождение, не исключая, однако, возможности атмосферного происхождения. Другие физики, и в частности В. Кольхёрстер, поднявший электроскопы на высоту до 9000 м, подтвердили, что разряд электроскопов может происходить на больших высотах даже в 8—10 раз быстрее, чем на поверхности земли. Кольхёрстер заметил, что если излучение носит внеземной характер, то оно должно обладать исключительной проникающей способностью, по крайней мере в 5—10 раз больше, чем у самого жесткого 7~излУчения радиоактивных источников, поскольку, чтобы действовать на поверхности земли, это излучение должно пройти всю толщу атмосферы. Прерванные на время войны опыты были вновь начаты в 1922 г. Боуэном и Милликеном, которые запускали с горы Сан-Антонио в Техасе электроскопы-самописцы на высоту до 16 000 м и получили противоречивые результаты: скорость разряда электроскопов, т. е. увеличение ионизации, оказалась непостоянной на определенной высоте. Эти результаты, казалось, исключали внеземное происхождение излучения и подтверждали выдвинутую ранее гипотезу о распределении радиоактивности в толще атмосферы. За этим последовали годы сомнений в природе явления, определить которую не могли с помощью применявшихся экспериментальных методов, потому что запуски зондов в атмосферу были дорогостоящим и трудным мероприятием и давали часто сомнительные результаты. Чтобы обойти эту трудность, Кольхёрстер в 1923 г. в Германии, а двумя годами позднее Милликен и Камерон в Америке решили исследовать излучение, продвигаясь не вверх, а вниз, как это делал в Ливорно в 1911 г. Пачини, проводя опыты на трехметровой глубине в море. Кольхёрстер определял ионизацию в глубокой расщелине в альпийском леднике. Милликен и Камерон опустили электроскопы под воду озера в Калифорнии до глубины 20 м. Эти опыты были повторены Э. Регенером на озере Констанца на глубинах до 220 м. Таким образом, было установлено, что ионизующее действие излучения убывает с увеличением глубины погружения. Такой результат тотчас привел к заключению, «что излучение имеет внеземное происхождение. Из опытов следовало, кроме того, что излучение обладает очень большой проникающей способностью, потому что оно способно проникать сквозь толщу воды, эквивалентную утроенной толщине всей земной атмосферы. Если проникающую способность можно было считать мерилом энергии, то новому излучению следовало приписать энергию, намного превышающую энергию всех до сих пор известных излучений земного происхождения. Все эти экспериментальные данные убедили Милликена в том, что излучение имеет внеземное происхождение (с 1926 г. он располагал даже доказательством их внегалактического происхождения). Поэтому в своей работе 1925 г. он предложил удачное название космические лучи для обозначения внегалактического излучения, непрерывно бомбардирующего Землю. Однако гипотеза о том, что это излучение образуется в верхних слоях атмосферы, просуществовала еще несколько лет, и не без некоторых оснований, как мы скоро увидим. Поэтому для ионизующего фактора, вызывающего разряд электроскопов в указанных условиях, продолжали и, кстати, продолжают до сих пор пользоваться названием проникающее излучение. После установления внеземного происхождения космических лучей возникла проблема выяснения природы этого излучения. В 1927 г. Д. В. Скобельцыну первому удалось получить фотографию следов космических лучей в камере Вильсона. Учитывая исторический период, в который возникла эта проблема, период около 1929 г., время полного триумфа волновой механики, следует сказать, что не столь важно было знать, являются ли космические лучи фотонами или электронами, сколь важно было непосредственно определить их энергию. Соответствующие исследования были проведены 445
в Пасадене Милликеном и Андерсоном классическим методом наблюдения отклонения движущегося заряда в магнитном поле. Была построена вертикальная камера Вильсона, помещенная в мощнейшее магнитное поле. Летом 1931 г. были получены первые результаты, поразившие всех исключительно большим значением измеренной энергии лучей — порядка миллиарда электрон-вольт, тогда как достигнутая до сих пор энергия излучения радиоактивных веществ не превосходила 15 миллионов электрон-вольт. Исследование траекторий космических частиц и их искривления позволило Андерсону, Милликену и впоследствии многим другим физикам (среди пионеров того времени упомянем Пикара, известного своим знаменитым подъемом в стратосферу, и Бруно Росси, совершившего экспедицию в Асмару в 1933 г.) установить довольно сложный характер ионизующего излучения, состоящего из а-частиц, очень быстрых электронов, протонов, нейтронов, позитронов и у-излучения. Чтобы четко различить в камере Вильсона положительные и отрицательные частицы, проще всего было бы определить знак кривизны их траектории в магнитном поле. Однако энергия этих частиц столь велика, что их траектории очень слабо искривляются магнитным полем, в котором находится камера Вильсона. В связи с этим Андерсон решил поместить в камере Вильсона горизонтальную свинцовую пластинку толщиной 6 мм; при прохождении такой пластинки частица существенно замедляется и при выходе из нее легче отклоняется магнитным полем. Первые фотографии, полученные в августе 1932 г. с помощью такого простого видоизменения камеры Вильсона, обнаружили новый факт, наиболее важный во всей этой серии опытов: существование частицы с массой, равной массе электрона, но с противоположным зарядом. Эти фотографии не допускали иного истолкования: знак кривизны указывает на то, что частица заряжена положительно, а величина кривизны и значение энергии после прохождения свинцовой пластинки таковы, что эта частица не может быть протоном. В сентябре 1932 г. Андерсон уже мог объявить об открытии положительного электрона, или позитрона, предсказанного, как мы знаем, теорией Дирака. Весной 1933 г. Блэккет и Оккиалини с помощью такого же прибора с добавлением счетчика Гейгера — Мюллера, автоматически регистрирующего прохождение космических лучей, подтвердили это открытие. Открытие позитрона было первым фундаментальным вкладом исследований космических лучей в ядерную физику. Как всегда в таких случаях, это открытие тотчас привело к усилению интереса специалистов по атомной физике к изучению космических лучей, которое до этого времени рассматривалось как некое побочное направление по сравнению с главной линией физических исследований. В период с 1925 по 1932 г., как мы уже отмечали, считалось, что проникающее излучение, наблюдаемое на поверхности земли, идет непосредственно из внегалактических областей, проникая сквозь всю толщу земной атмосферы. Но после того как был установлен многокомпонентный состав этого излучения и его сходство с продуктами искусственного расщепления атомов в лабораторных условиях, появилось подозрение, не является ли проникающее излучение вторичным продуктом, возникающим при соударениях первичного излучения с атомами земной атмосферы. С 1933 по 1937 г. накапливались подтверждения такой точки зрения, так что теперь нет уже сомнения в том, что проникающее излучение возникает в земной атмосфере при соударении первичных космических лучей с атомами атмосферы. В 1934 г. Андерсон и Неддермайер по анализу некоторых следов в камере Вильсона вынуждены были заключить, что эти следы вызваны не электронами, как сначала казалось, а новым типом частиц с массой, промежу- 446
Первая фотография следа позитрона, полученная Андерсоном. (С. Anderson, The production and properties of positrons, Les Prix Nobel en 1936.) Энергия позитрона, пересекающего свинцовую пластинку (черная горизонтальная полоска), уменьшается от 63 миллионов эв до 23 миллионов эв, так что радиус кривизны его траектории уменьшается. Магнитное поле перпендикулярно плоскости фотографии. точной между массой электрона и массой протона; временно их назвали Х-частицами. Впоследствии это наблюдение было подтверждено наблюдениями других экспериментаторов. Между тем в 1935 г. японский физик Юкава из Осакского университета, исследуя потенциал заряженной частицы, вывел теоретически возможность существования частицы с массой, промежуточной между массой электрона и массой протона, но, не зная еще о наблюдениях Андерсона и Неддермайера, заключил, что, «поскольку такая частица никогда не наблюдалась на опыте, изложенная выше теория, по-видимому, неверна». Эту частицу, существование которой было окончательно установлено в 1937 г., Андерсон предложил назвать мезотроном, а Бор — мезоном. Оба термина указывали на промежуточную массу этой частицы между массой электрона и массой протона; постепенно термин «мезон» стал преобладающим. 447
С 1947 г. исследования мезонов значительно продвинулись вперед, в частности благодаря работам Лэттеса, Оккиалини, Пауэла и Э. Лоуренса. Было установлено, что масса мезона, открытого Андерсоном, равна примерно 290 электронным массам, а заряд может быть как положительным, так и отрицательным. Был открыт также другой мезон, с массой, равной 210 электронным массам, после чего первый мезон стали называть я-мезоном или пионом, а второй — ^-мезоном или мюоном. С внедрением новой техники фотопластинок (ядерных эмульсий) исследователи открыли и продолжают открывать значительное число новых частиц с массой больше массы пиона, носящих общее название тяжелых мезонов, и есть указания на существование частиц с массой, большей массы нуклона. Тяжелые мезоны могут иметь положительный, отрицательный или нулевой заряд, а их среднее время жизни много меньше, чем у пионов, которое и так чрезвычайно мало (несколько стотысячных долей секунды). Значительное число непрерывно открываемых новых частиц, по-разному называемых и обозначаемых различными учеными, привело к некоторой путанице, так что в 1954 г. некоторые физики предложили новую классификацию и новые обозначения для элементарных частиц. Легкими мезонами (или L-мезонами) были названы мюоны и пионы; тяжелыми мезонами (или /^-мезонами) — частицы тяжелее пиона, но легче протона; гиперонами (или У-частицами) — частицы с массой, промежуточной между массой нейтрона и дейтона. Происхождение космических лучей до сих пор остается тайной для нас, хотя было выдвинуто несколько гипотез. Все они наталкиваются на серьезное препятствие — объяснение громадной энергии, сконцентрированной в космических лучах, которая по расчетам составляет в среднем 6 миллиардов электрон-вольт (с максимумом в области выше 20 миллиардов электрон-вольт), т. е. в 1000 раз больше энергии, связанной с радиоактивными явлениями, в 150 раз больше максимальной энергии ускоренных частиц, полученной в настоящий момент в мощнейших циклотронах *, и по крайней мере в 30 раз больше энергии деления урана. Одной из последних теорий происхождения космических лучей является теория Ферми, в которой предполагается механизм ускорения за счет соударения протонов с блуждающим в межзвездном пространстве ионизованным веществом. Можно ожидать, что изучение данных приборов, помещаемых на борту искусственных спутников Земли, первый из которых был запущен в Советском Союзе 4 октября 1957 г., откроет новую главу в познании космических лучей и строения вещества. 12. ПОЛЕ ЯДЕРНЫХ СИЛ. Основной задачей ядерной физики является познание природы сил взаимодействия составных элементов ядра. Еще с 1910 г., с исследований Резерфорда, показавших резкое отклонение а-частиц в окрестности атомного ядра, стало ясно, что вблизи ядра действуют уже не такие силы, как того требует классическая механика. В 1932 г., после принятия модели ядра, состоящего из протонов и нейтронов, стало ясно, что для взаимного удержания частиц в ядре должна существовать сила притяжения между составными частями ядра, не зависящая от электрического заряда (притяжение между протоном и нейтроном, между двумя нейтронами) и способная преодолеть кулоновское отталкивание (между протонами). Так появилась идея о поле ядерных сил, которое обеспечивает устойчивость ядра и действие которого ощущается лишь * Сейчас в синхроциклотронах уже получены частицы с энергией около 600 миллионов электрон-вольт, а в протонном синхротроне в Серпухове энергия протонов достигает 76 миллиардов электрон-вольт, т. е. много больше средней энергии первичных космических лучей.— Прим. перев. 448
на расстояниях порядка ядерных размеров. Природа этого поля пока еще неясна; неясно также, связано ли оно с частицами так же, как и электромагнитные поля. Теперь можно считать общепризнанным, что ядерные силы не могут быть электрического происхождения, поскольку нейтрон лишен электрического заряда. Они не могут также иметь гравитационный характер, так как расчет дает для сил гравитации значение в 1038 раз меньше требуемого. Поэтому следует заключить, что мы имеем здесь дело с новым типом полей. После экспериментального обнаружения мезона теория Юкавы завоевала большое доверие; физики строят аналогичные ей другие теории полей ядерных сил, рассматривая их как мезонные поля *. Были предприняты также удачные попытки построения единой теории электромагнитного и мезонного полей. Во всяком случае, сейчас физики признают реальное существование ядерного поля в той же мере, в какой признается существование электромагнитного и гравитационного полей. Характерной особенностью ядерных сил является их чрезвычайно малый радиус действия. Действительно, на достаточно больших расстояниях взаимодействие между частицей и ядром сводится к кулоновскому отталкиванию двух точечных зарядов с силой, обратно пропорциональной квадрату расстояния между зарядами. С уменьшением расстояния между зарядами достигается некоторое критическое расстояние R, начиная с которого величина силы отталкивания начинает отклоняться от закона Кулона; это расстояние R называется радиусом ядра и может быть определено экспериментально. Было найдено, что R пропорционально кубическому корню из массового числа А с множителем пропорциональности, равным 1,42 «Ю-13 см, называемым радиусом нуклона. Отсюда следует, что объем ядра пропорционален А, а плотность всех ядер практически одинакова и имеет чрезвычайно большое значение. Эта особенность ядерных сил навела Бора на мысль о капельной модели ядра, оказавшейся наиболее удачной из всех предложенных моделей. Бор уподобляет ядро жидкой капле; так же как и и капле, в ядре плотность не зависит от числа образующих его частиц. В модели Бора каждая ядерная реакция распадается на два последовательных этапа. На первом этапе каждая частица, приблизившаяся к ядру, захватывается им, и ее кинетическая энергия быстро распределяется между составными частями ядра. На втором этапе избыточная энергия испускается в виде 7_излУчения или же случайно концентрируется в одной частице ядра, приобретающей достаточную энергию, чтобы покинуть ядро. Поэтому испускание частицы из ядра подобно испарению молекулы. В заключение следует заметить, что природа ядерных сил известна сейчас еще недостаточно. Они, по-видимому, носят характер притяжения, примерно в 100 раз более интенсивного, чем силы электростатического взаимодействия, имеют очень малый радиус действия, не зависящий от заряда частицы, но, возможно, зависящий (пока неизвестным образом) от ее спина. * Одной из первых теорий ядерных сил, послуживших основой мезонной теории Юкавы, является теория советских ученых Иваненко — Тамма, появившаяся в 1934 г.— Прим. ред. 29 Марио Льоцци
БИБЛИОГРАФИЯ ИЗ-ЗА ОТСУТСТВИЯ СЛОЖИВШЕЙСЯ ТРАДИЦИИ И ШКОЛЫ ХОРОШИЕ ОБЩИЕ РАБОТЫ ПО ИСТОРИИ ФИЗИКИ ДО СИХ ПОР ВЕСЬМА РЕДКИ. В ПРОШЛОМ ВЕКЕ ВЫЛИ ПОПЫТКИ СОЗДАНИЯ ТАКИХ РАБОТ; ИЗ НИХ СЛЕДУЕТ УПОМЯНУТЬ: W. WHEWELL, History of the Inductive Sciences from the Earliest to the Present Times, London, 1837 (3 тома). (Есть русский перевод: У э вел л, История индуктивных наук, т. I, II, III, СПБ, 1867.) Написанная с кантианских позиций, эта книга представляет собой скорее не историю физики, как мы ее теперь понимаем, а совокупность отдельных философских очерков, касающихся различных разделов физики, а в последнем томе и других наук. БОЛЕЕ СВЯЗНЫМИ, ПОЛНЫМИ И ТОЧНЫМИ ЯВЛЯЮТСЯ СЛЕДУЮЩИЕ ПУБЛИКАЦИИ: J. С. POGGENDORFF, Geschichte der Physik, Berlin, 1879; F. ROSENBERGER, Die Geschichte der Physik, Braunschweig, 1882—1890 (2 тома). (Есть русский перевод: Ф. Розенбергер, История физики, М., 1936.) R. CAVERNI, Storia del metodo sperimentale in Italia, Firenze, 1891—1900 (6 томов). Это — история развития физики в Италии, особенно в XVI—XVIII веках, богатая фактами и неопубликованными ранее данными. Однако пользоваться ею следует с известной осторожностью, поскольку она насквозь пронизана антигалилеевскими предубеждениями автора. Е. НОРРЕ, Geschichte der Physik, Braunschweig, 1926. Эта книга богата фактами и библиографическими ссылками, как правило, верными. Особое внимание уделяется развитию физики в Германии. Изложение заканчивается 1895 годом. A. EINSTEIN, L. INFELD, The evolution of Physics, New York, 1938 (пятое издание вышло в 1955 г.). (Есть русский перевод: А. Эйнштейн и Л. Инфельд, Эволюция физики, 2-е изд., М., 1956; см. также А. Эйнштейн, Собр. научн. трудов, т. IV, стр. 357—543.) Это больше чем история физики; это своеобразный труд по философскому обоснованию в исторической взаимосвязи теории относительности и теории квантов. LYNN THORNDIKE, A History of Magic and Experimental Science, New York, 1923— 1958 (8 томов). Весьма полный труд; может оказаться полезным для справок. Рассмотрение заканчивается XVII веком. М. GLIOZZI, Storia del pensiero fisico, в «Enciclopedia delle matematiche elementari», v. Ill, p.te II, Milano, 1950. Содержит обширную библиографию оригинальных работ, специальных исследований, работ общего характера, к которой мы и отсылаем читателя в дополнение к настоящим замечаниям. 450
ПРЕИМУЩЕСТВЕННО БИОГРАФИЧЕСКИЙ ХАРАКТЕР НОСЯТ СЛЕДУЮЩИЕ РАБОТЫ; PH. LENARD, Grosse Naturforscher, Miinchen, 1929. Ложное убеждение автора в превосходстве германского разума часто лишает изложение объективности и ясности суждений. P. F. SCHURMANN, Historia de la fisica, Montevideo, 1936. Компиляционная работа, состоящая примерно из ста расположенных в хронологическом порядке биографий физиков. ИЗ РАБОТ ПО ИСТОРИИ ФИЗИКИ XX ВЕКА УПОМЯНЕМ СЛЕДУЮЩИЕ: F. SODDY, The story of atomic energy, London, 1949. Автор ограничивается только историей освобождения атомной энергии. Изложение носит подчас технический характер. W. WILSON, A hundred years of physics, London, 1950. Дана история физики только последнего столетия. ИЗ РАБОТ, ПОСВЯЩЕННЫХ ИСТОРИИ ОТДЕЛЬНЫХ РАЗДЕЛОВ ФИЗИКИ, УПОМЯНЕМ ЛИШЬ СЛЕДУЮЩИЕ РАБОТЫ, КАСАЮЩИЕСЯ МЕХАНИКИ: E. MACH, Die Mechanik in ihrer Entwicklung historisch-kritisch dargestellt, Leipzig, 1883 (4-е изд., 1901). Эта работа стала теперь классической. R. DUGAS, Histoire de la Mecanique, Nef-Chatel, 1950. Кроме классической механики, здесь рассматривается история релятивистской и квантовой механики. Книга изобилует цитатами из оригинальных работ, которые, однако, не сопровождаются даже библиографическими данными. НАПОМНИМ ТАКЖЕ О СЛЕДУЮЩИХ ДВУХ ХОРОШО ИЗВЕСТНЫХ В ИТАЛИИ УЧЕБНИКАХ: F. CAJORI, A History of Physics in its elementary Branches, New York, 1899. Весьма сжатое рассмотрение классической физики; особое внимание уделено вкладу американских ученых. В итальянском переводе, выполненном Д. Гам- биоли и вышедшем в 1909 и 1930 гг., добавлена глава «Физика XX века», несколько замечаний и пять (во втором издании) обширных приложений об итальянских физиках, о беспроволочном телеграфе и о международном конгрессе физиков в Комо в 1927 г. R. PITONI, Storia della fisica, Torino, 1912. Особое внимание уделено итальянской физике, однако приводимые сведения не всегда проверенные. ВО ВСЕХ ОБЩИХ РАБОТАХ ПО ИСТОРИИ НАУКИ ИМЕЮТСЯ БОЛЕЕ ИЛИ МЕНЕЕ ОБШИРНЫ Е РАЗДЕЛЫ, ПОСВЯЩЕННЫЕ ИСТОРИИ ФИЗИКИ. УКАЖЕМ НЕСКОЛЬКО ТАКИХ РАБОТ: A. MIELI, Manuale di storia della scienza, I, Antichita, Roma, 1925. В переработанном и сильно расширенном виде в сотрудничестве с Брюне выпущено последующее издание во Франции: A. MIELI, P. BRUNET, Histoire de science, Antiquite, Paris, 1935. Обе работы ограничиваются античным периодом развития науки. Около 50% текста обеих работ отводится антологии оригинальных рукописей соответственно в переводе на итальянский и французский языки. F. ENRIQUES, G. DE SANTILLANA, Storia del pensiero scientifico, vol. I, «II mondo antico», Milano, 1932. Эта работа, отличающаяся более философским подходом, чем предыдущая, также прервана на первом томе; Вышедшая в 1937 г. в Болонье книга «II Compendio di storia del pensiero scientifico» тех же авторов содержит как бы схему задуманной ими работы и, освобожденная от изложения и анализа конкретного содержания наук, представляет собой обзор истории научной мысли сквозь призму философских взглядов самих авторов. G. SARTON, Introduction to the History of Science, Baltimore, 1927—1948 (3 тома в 5 книгах). Это самая обширная аналитическая история науки начиная с XIV века, снабженная богатой библиографией. В ней рассмотрено развитие культуры всех народов. W. С. DAMPIER, A History of Science and its Relations with Philosophy and Religion, Cambridge, 1929 (4-е изд., 1948). Большое внимание уделено истории физики вплоть до наших дней. BISTOIRE generale de sciences, publiee sur la direction de M. R. Taton, Paris, 1957— 1964 (2 тома). 29. 451
ИЗ СПРАВОЧНИКОВ УПОМЯНЕМ: J. СН. POGGENDORFF, Biographisch-literarisches Handworterbuch zur Geschichte der exakten Wissenschaften, Leipzig, 1863 (2 тома). Продолжен другими авторами по периодам: 1858—1883 гг. (1897 г., 2 т.); 1884— 1904 гг. (1902—1904 гг., 2 т.); 1904—1922 гг. (1925—1926 гг., 2 т.); 1923— 1931 гг. (1936—1938 гг., 4 т.); 1932-1953 гг. (1956—1961 гг., 4 т.). Это ценный био-библиографический словарь деятелей точных наук, ставший теперь классическим. ROYAL Society of London, Catalogue of Scientific Papers, 1800—1900, Cambridge, 1867— 1925. Колоссальный библиографический труд с изданным отдельно (1908—1914) предметным указателем в 4 томах; Два последних тома посвящены физике. Продолжением этого труда является INTERNATIONAL Catalogue of Scientific Literature, публикуемый Международным советом Лондонского Королевского общества. Научная литература разделена по 17 отделам, помеченным буквами алфавита. Физика помечена буквой С. Опубликованные тома охватывают период с 1901 по 1913 г. ИЗ НАИБОЛЕЕ ВАЖНЫХ ЖУРНАЛОВ ПО ИСТОРИИ НАУКИ ОТМЕТИМ СЛЕДУЮЩИЕ: ISIS— международный обзорный журнал, посвященный истории науки и ее культурному влиянию. Основан Г. Сартоном в 1913 г. Публикует оригинальные исследования, заметки, обзоры и обширную критическую библиографию. ARCHIVIO di storia della scienza, позже назывался «Archeion», а с 1947 г. «Archives internationales d'histoire de sciences». Основан в 1919 г. А. Мьели в Риме, сейчас выходит в Париже и является официальным органом Международной академии истории наук. Публикует оригинальные работы, протоколы Академии и обширную критическую библиографию. REVUE d'histoire des sciences et de leurs applications. Выходит в Париже и содержит оригинальные работы на французском языке. PHYSIS— журнал по истории науки, основанный в 1959 г. Домом Галилея (Domus galileana) в Пизе, Флорентийским институтом и Музеем истории науки, Национальным музеем науки и техники в Милане и Итальянской группой истории науки. Выходит во Флоренции. ВЕСЬМА ПОЛЕЗНЫМ ИСТОЧНИКОМ ЯВЛЯЕТСЯ: EXTRAITS du Bulletin signaletique, Histoire de sciences et des techniqes — выпускается с 1957 г. Центром документации Французского национального центра научных исследований (C.N.R.S.) в Париже. В нем систематически освещаются содержания журналов, отмечаются статьи по истории науки и краткие аннотации, но без критических оценок.
именной указатель Абрагам (Abraham) 308 Абриа (Abria) 268 Авогадро (Avogadro) 237, 252, 273, 338, 342, 344, 348, 350, 351 Адам (Adam) 82 Адаме Д. К. (Adams J. С.) 138 Адаме У. С. (Adams W. S.) 330 Альберт Великий (Albertus Magnus) 27, 33 Альберт Саксонский 27, 49, 50 Аль-Бируни 26, 28 Альдини (Aldini) 192, 197 Аль-Кабаяки 36 Аль-Наиризи- (Анариций) 26 Аль-Рази 26 Альхазен (Alhazen) 28—34, 58, 59, ИЗ— 117 Аль-Хазини 26 Амага (Amagat) 227 Амальди (Amaldi) 439 Амичи (Amici) 145, 210, 211 Амонтон (Amontons) 162, 222 Ампер (Ampere) 206, 244, 251—257, 261, 268, 280, 283, 286, 374 Анаксагор 136 Ангстрем (Angstrom) 217 Андерсон (Anderson) 209, 402, 444, 446—448 Андраде (Andrade) 317 Антинори (Antinori) 316 Анри (Henri) 348 Анфимий из Траллеса 32 Араго (Arago) 201-203, 205—210, 213, 224, 225, 250, 251, 253-255, 260, 265, 315 Арган (Argand) 162 Аристотель 8—12, 14, 21, 25—28, 43, 49, 51, 53—56, 69, 70, 74, 76-78, 86, 96, 128, 130, 160 Армстронг (Armstrong) 184 Аррениус (Arrhenius) 270, 311 Архимед 12—16, 27, 49, 52, 73, 88 Арцбергер (Arzberger) 224 Астон (Aston) 381—384, 433, 436 Атвуд (Atwood) 44 Аюи (Найу) 180, 303 Байен (Вауеп) 191 Байт (Baisch) 335 Балло (Ballo) 75 Бальмер (Balmer) 386, 387, 390 Бальяни (Baliani) 69, 94, 96, 97, 130, 229, 327 Банкалари (Bancalari) 277 Барбаро (Barbaro) 60, 114 Барбе (Barbeu) 174 Барберини (Barberini) 90 Баркла (Barkla) 342, 375, 379 Барлоу (Barlow) 251, 257, 260, 280 Барроу (Barrow) 140 Бартоли (Bartoli) 334 Бартолин (Bartholin 123, 147 Бауэр (Bauer) 344 Баччелли (ВассеШ) 224, 226 Беккариа (Beccaria) 177—181, 184, 186, 187, 243, 244, 249, 273, 426 Беккерель A. A. (Becquerel А. А.) 305— 307, 312 Беккерель А. С. (Becquerel А. С.) 246, 252, 260, 263, 277, 305 Беккерель Ж. (Becquerel J.) 305 Беккерель Э. (Becquerel A. E.) 277, 305, 306 Бекман (Beckmann) 335 Бекман (Beeckman) 97 Белл (Bell) 283 Беллани (Bellani) 220 Белли (Belli) 182 Бенасси (Benassi) 192 Бенедетти (Benedetti) 44, 52, 54, 55, 56, 67, 69, 88, 95, 96, 101 Беннет (Bennet) 182, 184, 195 Бенценберг (Benzenberg) 316 Берар (Berard) 213, 227 Беренс (Behrens) 243 Бернулли Даниил (Bernoulli D.) 156, 158, 237 Бернулли Доменико (Bernoulli D.) 109 Бернулли И. (отец) (Bernoulli J.) 158, 169 Бернулли И. (сын) (Bernoulli J.) 160, 237, 238, 396 Бернулли Я. (Bernoulli Y.) 92, 154 Вертело (Berthelot) 226 Берти (Berti) 99 Бертоле (Bertollet) 222, 246 Бертолоний (Bertholonius) 194 Бертон (Burton) 444 Берцелиус (Berzelius) 254 Бессель (Bessel) 221 Беттини (Bettini) 31 Вечер (Becher) 434 Биаджо Пелакани, Биаджо из Пармы (Biagio Pelacani, Beagio da Parma) Био (Biot) 201, 202, 205, 207, 223, 230, 250, 251, 253-257 Бирге (Birge) 430 Блэк (Black) 166, 168 Блэккет (Blackett) 387, 390, 402, 423, 424, 446 Бозе (Bose) 407, 408 Бойль (Boyle) 74, 98, 100, 101, 104, 105, 107—111, 126, 127, 138, 145, 168, 224, 226, 231, 237, 343 Болтвуд (Boltwood) 345, 366 Больцман (Boltzmann) 240, 318, 334—336, 347—352 Bom (Bohm) 420 Боме (Baume) 225 Боненберг (Bohnenberg) 243 Бор (Bohr) 379, 386, 388-393, 395-397, 399, 410-418, 420, 440-442, 449 Борд (Bord) 156 Борелли Д. A. (Borelli G. A.) 89, 94, 100, 111, 112 Борелли Д. Б. (Borelli G. В.) 74, 94. 316 Борн (Born) 354, 399, 403, 412, 418 Борри (Borri) 64 Боррис, фон (von Borris) 406 Боскович (Boscovich) 86, 153, 276. 372 Боте (Bothe) 358. 423, 434 Ботто (Botto) 265 Боуэн (Bowen) 445 453
Боэций (Boetius) 25 Браве (Bravais) 303, 305 Бранка (Branca) 164 Браш (Brasch) 426 Бреге А. Л. (Breguet A. L.) 221 Бреге Л. Ф. (Breguet L. F.) 209 Бредли (Bradley) 117, 124 Бридж (Bridge) 33, 34 Бриллюэн Л. (Brillouin L.) 343 Бриллюэн М. (Brillouin M.) 339—341 Броун (Brown) 346 Бругманс (Brugmans) 277 Бруно (Bruno) 53, 95, 96 Бруньятелли (Brugnatelli) 223, 244, 245 Брэгг У. Г. (отец) (Bragg W. Н.) 305, 379 Брэгг У. Л. (сын) (Bragg W. L.) 304, 376, 396 Брюстер (Brewster) 201, 202, 204, 207, 217 Бугер (Bouguer) 56, 109, 161, 162 Буйо (Bouillau) 91 Бульо (Boulliau) 111, 137 Бунзен (Bunsen) 168, 218, 219, 235, 271, 309 Буоно (Buono) 111, 212 Бурдон (Bourdon) 101 Буридан (Buridan) 27, 50, 69 Бюффон (Buffon) 175 Бэкон P. (Bacon R.) 33, 35, 38, 61, 95, 168 Бэкон Ф. (Bacon F.) 65, 80 Бэнкс (Banks) 185, 198, 244 Бьеркнес (Bjerkness) 241 Вазари (Vasari) 45 Валли (Valli) 197 Ваилати (Vailati) 410 Вайскопф (Weisskopf) 442 Ван-де-Грааф (Van de Graaf) 182, 426 Ван ден Брейк (Van den Broek) 379 Ван дер Ваальс (Van der Vaals) 238, 339, 343, 351 Вандермонд (Vandermonde) 222 Вант-Гофф (Van't Hoff) 270, 349 Ван Трооствик (Van Troostwijk) 244 Варбург (Warburg) 339 Варениус (Varenius) 138 Вариньон (Varignon) 88 Варки (Varchi) 55 Варли (Varley) 290 Вассали (Vassalli) 184, 224, 243, 252 Вебер В. (Weber W.) 252, 253, 256, 257, 261, 262, 268, 278, 283, 286, 287, 297 Вебер X. (Weber H.) 352 Вейль (Weil) 444 Векслер В. И. 430 Вельтер (Welter) 254 Вентури (Venturi) 30, 52 Вератти (Veratti) 175 Верде (Verdet) 207, 275 Вестон (Weston) 271 Вивиани (Viviani) 68, 69, 79, 89—91, 97, НО, 112, 316 Вигнер (Wigner) 442 Видеман (Wiedemann) 291, 310 Видероэ (Wideroe) 427 Види (Vidi) 101 Вижье (Vigier) 420 Вийяр (Villard) 308 Виллари (Villari) 275 Вильке (Wilcke) 166, 167, 180 Вильсон В. (Wilson W.) 104, 423, 424 Вильсон Ч. (Wilson С.) 298, 326, 358, 391, 425, 432-436, 445, 448 Вин (Wien) 335—337, 339, 340, 351, 407 Винер (Winer) 346 Винклер И. (Winkler J.) 172, 173, 176 Винклер К. Л. (Winkler К. L.) 221 Вителлий (Vitellione, Vitellio, Witelo) 32, 33, 57, 58, 113 Витрувий (Vitruvius) 15, 24 Волластон (Wollaston) 213, 216, 225, 243, 245 Волькенауэр (Wolkenauer) 63 Вольта (Volta) 180—186, 194—198, 222— 224, 231, 242—246, 249, 260, 263, 414 Вольтер (Voltaire) 136, 155, 421 Вольф (Wolf) 155 Воммельсдорф (Wommelsdorf) 426 Вудз (Woods) 444 Гайтлер (Heitler) 418 Гален 28, 29 Галилей (Galilei) 9, 12, 15, 30, 41, 42, 49, 51-55, 61, 63, 66, 68-82, 84, 86— 92, 94-97,104, НО, 111, 114, 115,122— 124, 128, 131, 132, 144, 153, 156, 157, 160, 162, 208, 229, 316, 327, 331 Галлей (Halley) 64, 109, 124, 128, 134, 137, 138, 199 Гальвакс (Hallwachs) 310, 311 Гальвани (Galvani) 190—197, 223, 242, 243, 245, 263, 375 Гальда (de Haldat) 277 Гамильтон (Hamilton) 156, 207, 208, 341, 399, 401 Гамов (Gamov) 46, 425, 426 Гарно (Garnot) 279 Гаррисон (Harrisson) 221 Гартман (Hartmann) 64 Гассенди (Gassendi) 89 Гаудсмит (Goudsmit) 402 Гаусс (Gauss) 252, 261, 262, 268 Гедель (Godel) 418 Гейгер (Geiger) 345, 366, 376, 377, 436, 439, 446 Гейзенберг (Heisenberg) 392, 399, 400, 403, 410—413, 415, 416, 420, 422, 435 Гей-Люссак (Gay-Lussac) 205, 213, 223, 224, 228, 231, 254, 343 Гейслер (Geissler) 217, 290 Гейтель (Geitel) 307, 311 Гейтсбери (Heytesbury) 28 Гекк (Эккьо) (Heck, Ecchio) 109 Геккель (Goeckel) 444 Геллибранд (Gellibrand) 64 Гельмгольц (Helmholtz) 218, 234—238, 252, 257, 267, 268, 283, 288, 297, 344, 345, 351 Генри Дж. (Henry J.) 251, 260, 267, 268 Генри У. (Henry W.) 244 Герард Кремонский (Gherardo da Cremona) 31 Герике, фон (Guericke) 102—105, 107, 126, 161, 228 Герон Александрийский 18—20, 23, 24, 27, 44, 119, 130, 164 Герц (Hertz) 286, 288, 291, 294, 310, 311, 317—320, 338, 387 Гершель В. (Herschel W.) 145, 212, 213 454
Гершель Дж. (Herschel J.) 202, 204, 207, 217, 274 Гесс (Hess) 444 Гиббс (Gibbs) 347 Гизель (Giesel) 308, 365 Гильберт (Gilbert) 65-67, 124—127, 130, 170, 248 Гио (Guyot) 173, 175 Гирн (Hirn) 234 Гитторф (Hittorf) 270, 290, 310 Глассон (Glasson) 433 Глитчер (Glitscher) 326 Гогэн (Gaugain) 252 Голар (Gaulard) 281 Гольдштейн (Coldstein) 290, 291, 365 Гольц (Holtz) 182 Готро (Gautherot) 245 Гравезанд (Gravesande) 190 Грамм (Gramme) 281 Грассманн (Grassmann) 256 Грегори Дж. (Gregory G.) 144 Грегори Д. (Gregory D.) 139 Грей (Gray) 181, 186 Грен (Gren) 229, 242 Грехем (Graham) 221 Грец (Graetz) 334 Гримальди (Grimaldi) 65, 69, 121—123, 125, 134, 147—149, 152, 200, 203, 217 Грин (Green) 190, 207, 271, 272 Грове (Grove) 271 Гросло Делиль (Groslot De L'Isle) 61 Гроттгус (Grotthus) 246, 247, 269, 270, 273 Грюнайзен (Griineisen) 354 Гуи (Gouy) 346, 347 Гук (Hooke) 105, 109, 122, 137, 138, 140, 145, 148-150, 152, 221 Гульельмини (Guglielmini) 89, 316 Гюйгенс К. (Huygens С.) 90, 91 Гюйгенс X. (Huygens Chr.) 31, 61, 84, 91—94, 116, 117, 121, 123, 128, 130, 133, 137, 147-152, 153, 157, 160, 164, 200, 201, 204, 396 Дагерр (Daguerre) 213 Д'Агостино (D'Agostino) 439, 440 Даламбер (D'Alambert) 95, 154, 156—158 Далибар (Dalibard) 175 Далла Белла (Dalla Bella) 187, 189 Дальтон (Dalton) 224, 228, 230 Даниэль (Daniell) 225, 270, 271 Данте (Dante) 37, НО, 241 Данти Дж. Б. (Danti G. В.) 45 Данти И. (Danti E.) 60 Дарвин (Darwin) 227 Д'Арсонваль (D'Arsonval) 253 Дати (Dati) 111 Дебай (Debye) 354, 358 Де Бройль Л. (De^Broglie L.) 140, 208, 331, 339, 397-399, 401, 403, 404, 407-410, 415, 418, 420-423 Де Бройль М. (De Broglie M.) 397 Дебьерн (Debierne) 307, 345, 368, 369 Дезагюлье (Desaguliers) 140, 170 Дезорм (Desormes) 228 Декарт (Descartes) 31, 33, 50, 74, 78, 82—86, 92, 94, 95, 100, 115—120, 122—124, 129, 130, 134, 142, 143, 149, 150, 155 Деламбр (Delambre) 254 Деларош (Delaroche) 227 Делафосс (Delafosse) 303 Делор (De Lor) 175 Дельсоль (Delsaulx) 346 Делюк (Deluc) 221, 222, 243 Делягир (De La Hire) 222 Деметрий Фалерский 12 Демокрит 8, 21, 71, 136 Деталь (Deschales) 217 Дженкин (Jenkin) 267 Джермер (Germer) 404 Джине (Jeans) 337, 339, 340, 414 Джоли (Joly) 367, 444 Джордани (Giordani) 86 Джорджи (Giorgi) 262 Джоуль (Joule) 228, 232—237, 264, 265, 278 Дзамбони (Zamboni) 246 Дивини (Divini) 87 Диггес (Digges) 61 Дидро (Diderot) 154 Дирак (Dirac) 400, 402, 408, 446 Доллонд (Dollond) 160, 216 Доминис (De Dominis) 59, 77 Допплер (Doppler) 210, 211, 396, 399 Дорн (Dorn) 360 Дрейпер (Draper) 213 Друде (Drude) 229, 337, 358 Дьюар (Dewar) 345, 353 Дэви (Davy) 220, 224, 229, 245, 248, 251, 254, 274, 283 Дэвиссон (Davisson) 403, 404 Дюамель (Duhamel) 131 Дюгас (Dugas) 140 Дюлонг (Dulong) 167, 220, 224, 225, 228, 233, 251—253 Дюма (Dumas) 369 Дюфе (Du Fay) 170, 172 Дюэм (Duhem) 27, 44, 50, 52, 54, 74, 278, 283 Евклид 21—23, 27, 29, 49, 59, 60, 70, 259 Жамен (Jamin) 204 Жансен (Janssen) 218 Жолио-Кюри (Joliot)-434, 436, 437, 441, 442 Жюрен (Jurin) 89 Зеебек (Seebeck) 213, 259, 263 Зеебер (Seeber) 303 Зееман (Zeeman) 297, 299, 374 Зильберман (Silbermann) 168 Зольднер (Soldner) 329 Зоммерфельд (Sommerfeld)[;342, 391, 392 Иваненко Д. Д. 435, 436 Ингенгоуа (Ingenhouse) 170, 172 Инфельд (Infeld) 276, 325, 356, 418 Иордан Неморарии (Jordanes) 27, 49, 54 Йордан (Jordan)^ 399, 414 Кабео (СаЬео) 69, 124—126 Кавалло (Cavallo) 182, 184, 225 Кавальери (Cavalieri) 144 Кавендиш (Cavendish) 139, 179, 186, 187, 190, 191, 223, 244, 273 Кайзер (Kayser) 386 455
Кальете (Cailletet) 227 Камерлинг-Оннес (Kamerlingh Onnes) 339, 340, 354 Камерон (Cameron) 445 Кант (Kant) 93, 132 Кантон (Canton) 161, 179, 180, 184 Кантони (Cantoni) 346 Каньяр де Латур (Cagniard de la Tour) 226, 227 Капица П. Л. 354 Карбонель (Carbonelle) 346 Кардан (Cardanus) 35, 37, 52, 54, 55, 58, 60, 67, 68, 95, 98, 136, 164, 248 Карлейль (Carlisle) 244 Карман (von Karman) 354 Карно Л. (Carnot L.) 156, 230, 316, 317 Карно С. (Carnot S.) 38, 49, 56, 230, 236, 312 Каролюс (Carolus) 209 Карре (Carre) 225 Карсель (Carcel) 162 Касани (Cassani) 59, 61, 78 Кассина (Cassina) 348 Кассини Дж. (Cassini G.) 109 Кассини Ж. Д. (Cassini G. D.) 124 Кастелли (Castelli) 70, 79, 87, 88, 112, 125 Катер (Kater) 93 Кауфман (Kauffman) 307, 308, 326 Квинке (Quincke) 204, 270 Кеезом (Keesom) 354 Кельвин — см. Томсон У. Кениг К. P. (Konig С. R.) 204 Кениг С. (Koenig S.) 155 Кеннеди (Kennedy) 212 Кеплер (Kepler) 32, 58, 61, 77, 113-117, 123, 130, 131, 133, 136, 137, 168 Керр (Kerr) 209, 275 Керст (Kerst) 430 Кестнер (Kaestner) 31 Кеттелер (Ketteler) 211 Киннерсли (Kinnersley) 178, 248 Кирван (Kirwan) 184 Кирхгоф (Kirchoff) 218, 219, 260, 286— 288, 317, 333 Кирхер (Kircher) 99 Клапейрон (Clapeyron) 231 Кларк С. (Clarke S.) 140 Кларк Л. (Clark L.) 261, 271, 281 Клауэиус (Clausius) 235—238, 270, 274, 347 Клейст (von Kleist) 173 Клеман (Clement) 228 Клеро (Clairaut) 139, 156 Клерселье (Clerselier) 119, 121 Клингенстерн (Klingenstiern) 160, 165 Клуэ (Clouet) 226 Книппинг (Knipping) 305 Кнудсен (Knudsen) 92 Кокрофт (Cockroft) 426, 427, 431—433 Колладон (Colladon) 254 Коллингем (Collinghem) 28 Коллинсон (Collinson) 175, 178 Кольдинг (Colding) 232, 236 Кольрауш (Kohlrausch) 252, 260, 270, 283, 286 Кольхерстер (Kolhorster) 445 Коммандино (Commandino) 14, 52 Комптон (Compton) 355, 357—359, 396, 403, 405 Констабль (Constable) 423 Конфедератов И. Я. 6 Конфильякки (Configliacchi) 249 Коперник (Kopernicus) 52, 77, 86, 130 Кориолис (Coriolis) 95, 315, 316 Корню (Cornu) 209 Кост (Coste) 140, 147 Коте (Cotes) 139 Копти (Cauchy) 207 Крамере (Kramers) 392, 397 Краутер (Crowter) 375 Крелле (Crelle) 272 Крениг (Kronig) 237 Кристи (Christie) 261, 274 Кришнан (Krishnan) 308 Кроуфорд (Crowford) 228 Крукс (Crookes) 218, 290-293, 296, 307, 344, 345, 361, 363, 364 Крюкшенк (Cruickshank) 243, 244 Ктезибий 16—18 Кудрявцев П. С. 6 Кук (Cook) 444 Кулидж (Coolidge) 312, 426 Кулон (Coulomb) 184, 187—190, 249, 250, 256, 268, 271, 274, 277, 283, 444, 449 Кундт (Kundt) 228, 275 Курлбаум (Kurlbaum) 334 Курно (Cournot) 317 Кьярини (Chiarini) 86 Кюри И. (Curie I.) 434, 436, 437, 441 Кюри П. (Curie P.) 306-310, 345, 360, 363, 365, 434 Кюри-Склодовская (Curie-Sclodowska M.) 306—309, 339, 340, 360, 365, 368, 369, 376, 377, 414, 434 Кюро де ла Шамбр (Cureau de la Chambre) 119, 120 Кюрте (Curtet) 247 Лаборд (Laborde) 309 Лавуазье (Lavoisier) 167—169, 184, 227, 237, 243 Лагранж (Lagrange) 54, 156—158, 180, 181, 207, 271, 315, 341 Ладриани (Ladriani) 224 Лайман (Lyman) 386, 390 Ламберт (Lambert) 161, 162, 164, 212, 222 Ламе (Lame) 207 Ландсберг Г. С. 358 Ланжевен (Langevin) 279, 324, 339, 340, 349, 374, 377, 407 Лаплас (Laplace) 93, 109, 158, 167—169, 184, 190, 201, 205, 223, 228, 237, 241, 250—252, 254, 256, 271, 283, 350 Латер (Later) 360 Лауритсен (Lauritsen) 426 Лауэ (von Laue) 303—305, 418 Леблан (Le Blanc) 35, 54 Леви-Чивита (Levi Civita) 328 Левкипп 8 Лейбниц (Leibnitz) 84, 94, 95, 101, 116, 139, 151, 155, 165, 338 Лека (Lecat) 330 Лекланше (Leclanche) 271 Лемери (Lemery) 180 Лемонье (Le Monnier) 176, 190 Ленард (Lenard) 291, 297, 299, 312, 355 456
Ленгли (Langley) 215, 216 Ленд Э. X. 260, 265, 268 Леонардо да Винчп (Leonardo da Vinci) 30, 31, 37, 38, 43—53, 58, 60, 61, 78, 96 Леопарди (Leopardi) 86 Лесли (Leslie) 213 Либри (Libri) 249 Ливингстон (Livingston) 428 Линде (Linde) 225, 227 Линдеман (Lindemann) 353, 354, 381 Линней (Linne) 180 Лино (Lino) 107, 108 Лшшман (Lippmann) 291 Лихтенберг (Lichtenberg) 182, 183 Ллойд (Lloyd) 204, 208 Локк (Locke) 71 Локкайер (Lockyer) 372 Ломмель (Lommel) 216 Лоренц (Lorentz) 212, 297, 299, 319—323, 332, 337, 339, 340, 343, 354, 357, 384, 409, 417, 418 Лоуренс (Lowrence) 426—429, 448 Лошмидт (Loschmidt) 343 Лука (Luca) 79 Лукас (Lucas) 143, 144 Лукреций Кар 67, 125 Льоцци (Gliozzi) 5 Лэттес (Lattes) 448 Люммер (Lummer) 335, 337 Мавролик (Maurolycus) 52, 57, 58, 113, 114 Магалотти (Magalotti) 111 Маганьяти (Magagnati) 73 Магно (Magno) 102 Магнус (Magnus) 215, 223—225 Маджотти (Magiotti) 100 Майер A. (Mayer A.) 372, 373 Майер И. (Mayer J.) 228 Майер Ю. P. (Mayer J. R.) 232—234, 236, 238 Майкельсон (Michelson) 209, 211, 212, 319— 324 Майокки A. (Majocchi A.) 213 Майокки Дж. (Majocchi G.) 280 Майорана (Majorana) 436 Макке (Macquer) 229 Маккуайр (Macquire) 100 Мак-Кой (McCoy) 370 Мак-Леннан (McLenan) 444 Мак-Миллан (McMillan) 430 Максвелл (Maxwell) 179, 210, 237, 238, 240, 257, 262, 268, 274, 275, 283—288, 297, 298, 320—325, 329, 332, 334, 336, 338, 339, 341, 347, 348, 352 Мальбранш (Malebranche) 155 Малюс (Malus) 201 Мандельштам Л. И. 358 Манфреди (Manfredi) 124 Маральди (Maraldi) 109 Марат (Marat) 169 Мариа (Maria) 160 Мариани (Mariani) 87 Марианини (Marianini) 245, 258, 260, 261, 267 Марино (Marino) 175 Мариотт (Mariotte) 94, 100, 109, 133, 212, 343 Маркони (Marconi) 289 Марсден (Marsden) 376, 377, 380 Марсили (Marsili) 111 Марум (van Marum) 226, 244 Марцелл 13 Марчи (Marci) 142 Маскерони (Mascheroni) 224 Массой (Masson) 267, 281 Маттеуччи (Matteucci) 197, 210, 214, 260, 277 Max (Mach) 88, 131, 139, 238, 318, 347, 410- Медичи Л. (Medici L.) 91, НО, 112 Медичи К. (Medici К.) 90 Мейтнер (Meitner) 435, 440, 441 Меллони (Melloni) 213—215, 252, 263 Менделеев Д. И. 226, 369, 379, 393 Менцель (Menzel) 430 Меран (de Mairan) 95, 105, 163, 225 Мерсенн (Mersenn) 44, 56, 70, 74, 84, 86, 87, 89, 92, 98—100, 107, 119, 114 Меуччи (Meucci) 283 Микелотти (Michelotti) 252 Миллер Д. К. (Miller D. С.) 212 Миллер У. A. (Miller W. А.) 217 Милликен (Millikan) 356, 445, 446 Милн (Milne) 418 Минковский (Minkowski) 325 Миттелыптедт (Mittelstaedt) 209 Мичерлих (Mitscherlich) 221 Можон (Mojon) 243 Мозли (Moseley) 378, 379 Молле (Molle) 281 Молль (Moll) 251 Монгольфье (Mongolfier) 106, 223 Монж (Monge) 222, 226, 246 Монте, Гвидо Убальдо дель (Gu;dobald№ Del Monte) 52, 54, 68, 70 Монферрье (Montferrier) 106 Мопертюи (Maupertuis) 155, 399 Mop (Mohr) 232 Морзе (Morse) 261 Морикини (Morichini) 274 Морленд (Moreland) 100 Mop ли (Morley) 211, 212 Морози (Morosi) 231 Мороццо (Morozzo) 243 Моссотти (Mossotti) 217, 224, 274, 284 Мулэн (Moulin) 344 Мушенбрек (Musschenbroek) 161, 164, 165, 173, 180, 190 Мюллер (Muller) 436, 437, 446 Нагаока (Nagaoka) 376—378 Наккен (Nacken) 326 Наттерер (Natterer) 226, 227 Herpo (Negro) 267, 280 Неддермайер (Neddermeyer) 446, 447 Нейман (Neumann) 207, 268, 283 Неккам (Neckam) Неренберг (Norrenberg) 202 Нернст (Nernst) 270, 339, 340, 353, 354, 407, 434 Неттол (Nuttall) 423 Нидман (Niedmann) 260 Николь (Nicol) 203 Никольсон (Nicholson) 182, 197, 244 Нир (Nier) 442 Нобель (Nobel) 302, 310 Нобили (Nobili) 213, 214, 252, 257, 263, 268 457
Нолле (Nollet) 171, 173, 176 Норманн (Normann) 64 Нортмор (Northmore) 226 Ньепс (Niepce) 213 Ньюкомб (Newcomb) 209 Ньюкомен (Newcomen) 165 Ньютон (Newton) 50, 77, 82, 84, 86, 88, 94, 116-118, 127-151, 153, 154, 156-158, 160, 161, 199—201, 203, 204, 213, 221, 228, 242, 273, 276, 317—319, 322, 327, 328, 338, 374, 391, 396, 412, 417 Озу (Auzout) 100 Оккам (Occam) 27 Оккиалини (Occhialini) 402, 446, 448 •Олива (Oliwa) 111 Ольденбург (Oldenburg) 138 Ом (Ohm) 257—261, 264, 268 Онести (Onesti) 289 Орезм (Oresm) 28 Оствальд (Ostwald) 86, 238, 245, 270, 347, 410 Оэнз (Owenes) 360 Пальмьери (Palmieri) 280 Паоли (Paoli) 231 Папен (Papin) 105, 165 Пардиз (Pardies) 151 Паркер (Parker) 278 Паскаль (Pascal) 44, 56, 98—102, 107, 117 Паули (Pauli) 408, 410, 418, 420 Пауэл (Powel) 448 Пачини (Pacini) 444 Пачинотти A. (Pacinotti A.) 264, 281, 282 Пачинотти Л. (Pacinotti L.) 264 Пашен (Paschen) 326, 335, 337, 387, 390 Пеано (Peano) 347 Пейдж (Page) 281 Пекле (Peclet) 261 Пельтье (Peltier) 263 Пенлеве (Painleve) 326 Перкин (Perkin) 312 Пернтер (Pernter) 117 Перрен Ж. (Perrin J.) 291—295, 339, 348—350, 388, 404, 435, 436, 441 Перреи Ф. (Perren F.) 441 Перье (Perier) 99 Пивати (Pivati) 172 Пиз (Pease) 212 Пикар (Picard) 138, 169, 221, 446 'Пикеринг (Pickering) 390 Пиксий (Pixii) 254, 278, 280, 281 Пикте (Piktet) 213, 227, 254 Пирсон (Pearson) 212 Планк (Planck) 235, 303, 331, 336-342, 351, 352, 354-356, 395, 398-400, 402, 407, 412—414, 417, 418 Планта (Planta) 172 Планте (Plante) 246 Плантон 8, 21, 28, 53, 81 Плиний Старший 24 Плотин 53 Плюккер (Plucker) 217, 290 Поггендорф (Poggendorff) 232, 252, 259, 260, 264 Позе (Pose) 423 Полени (Poleni) 135 Понтекорво (Pontecorvo) 439 Попов А. С. 289 Порта (Porta) 41, 58—62, 64, 65, 67, 95, 109, ИЗ, 114, 123, 136, 144, 164, 212, 272 Праут (Prout) 297, 372, 384 Прингсгейм (Pringsheim) 335, 337 Пристли (Priestley) 161, 176, 178, 179, 181, 186, 222, 244 Протагор 71 Пти (Petit) 167, 220, 351—353 Птолемей 23, 24, 27, 31, 59, 70, 75, 114 Пуанкаре (Poincare) 241, 257, 286, 317, 319, 321, 339-341, 387, 420 Пуансо (Poinsot) 203 Пуассон (Poisson) 158, 190, 205, 207, 256, 271-274, 283 Пуйе К. (Pouillet С.) 252, 253 Пуйе М. (Pouillet M.) 159, 168, 239, 253, 260, 277 Пуль (Poole) 444 Пфафф (Pfaff) 243 Пьетро Перегрино (Pietro Peregrino) 36, 37-39, 63, 66 Равессон-Мольен (Ravaisson-Mollien) 30 Разетти (Rassetti) 439, 440 Райх (Reich) 218, 316 Райхенбах (Reichenbach) 418 Раман (Raman) 357—359 Раманатан (Ramanathan) 359 Рамсден (Ramsden) 172, 173 Рамсей (Ramsay) 307, 346, 361, 365, 369 Ранкин (Rankine) 235, 236, 238 Раньери (Ranieri) 69 Рассел (Russel) 413 Реаль (Real) 90 Регенер (Regener) 344, 445 Региомонтан (Regiomontanus) 45 Реех (Reech) 317 Резерфорд (Rutherford) 307, 308, 339, 344, 345, 360-367, 370, 371, 376-381, 388, 390, 393, 423, 427, 430, 431, 433, 434, 437, 444, 448 Рейнольде (Reynolds) 386 Рёмер (Romer) 124, 164 Рен (Wren) 94, 133 Ренальдини (Renaldini) 111 Ренге (Ringuet) 423 Рентген (Rontgen) 299—302, 305 Реньо (Regnault) 220, 224—226, 233 Реомюр (Reaumur) 164, 222 Рессел (Russell) 371 Рив (De la Rive) 248, 250, 258, 263 Риги (Righi) 288, 289, 301, 311 Рид (Reid) 404, 405 Ридберг (Rydberg) 386, 387, 390 Риккати (Riccati) 158 Риман (Riemann) 256 Риснер (Risner) 31 Риттер (Ritter) 213, 243, 245, 297 Ритц (Ritz) 387, 391 Ритчи (Ritchie) 281 Рихлер (Richler) 218 Рихман Г. В. 165—167 Ричардсон (Richardson) 403 Риччи (Ricci) 97, 98 Риччи-Курбастро (Ricci-Curbastro) 328 Риччоли (Riccioli) 69 Рише (Richer) 93 458
.«Робер (Robert) 106 Роберваль (Roberval) 92, 100 Робертсон (Robertson) 244 Розенблюм (Rosenblum) 433 (Ройдс (Royds) 366 ,Рокко (Rocco) 55 Романьози (Romagnosi) 249 Роско (Roscoe) 218 Росс (Ross) 370 Россетти (Rossetti) 221 Росси (Rossi) 446 •Роуланд (Rowland) 217, 234, 257 Рубенс (Rubens) 337, 339 Рудберг (Rudberg) 223 Румкорф (Ruhmkorff) 281 'Румфорд (Томпсон ) (Rumford, Thompson) 162, 221, 229, 231 Рунге (Runge) 386 Рупп (Rupp) 405 Руска (Ruska) 406 Руфини (Rufini) 15 Рэлей (Стретт ) Дж. У. (Rayleigh, Strutt J. W.) 210, 224, 271, 335-337, 339, 344, 358, 359, 361, 364 Рэлей Р. (Rayleigh R.) 364, 367 ■Савар (Savart) 158, 159, 250, 253, 256 Савари (Savary) 251 Савёр (Saveur) 135, 136, 158 Саверьен (Saverien) 62, 142, 161 •Савич (Savitch) 441 Сагредо (Sagredo) 74, 77 Сакробоско (Sacrobosco) 70 Салуццо (Saluzzo) 181 Сальвиати (Salviati) 74, 76—78, 96 Сарпи (Sarpi) 59, 61, 64, 65, 78, 79, 144 Сачердоте (Sacerdote) 244 •Сеген (Seguin) 232 Секки (Secchi) 100, 265 Седла (Sella) 110, 344 Сен-Венан (De Saint-Venant) 316 Сенека (Seneca) 24, 141 Сигер (Сигерий) (Sigero, Sigerio) 38 Сименс (Siemens) 261 Симмер (Symmer) 177, 181 Симплиций (Simplicius) 51, 74 ■Скальеро (Scaligero) 136 Скобельцын Д. В. 445 Слэтер (Slater) 397 Смит (Smyth) 442 Снеллиус (van Snel) 116, 134, 138 Содди (Soddy) 307, 361—363, 365, 367, 369—372, 378, 379, 381, 383 Сократ 8 Сольве (Solvay) 339 Сомерсет (Somerset) 164 Соссюр (De Saussure) 183, 213, 222 Сото (Soto) 28 Спаланцани (Spallanzani) 194, 346 Спасский Б. И. 6 Спиноза (Spinoza) 419 Станкари (Stancari) 222 Стевин (Stevin H.) 49, 55—57, 96, 101, 230 Стеллути (Stelluti) 109 Стерджен (Sturgeon) 251, 278 Стефан (Stefan) 334—336, 351 Стоке (Stokes) 211, 298, 320 Стони (Stonev) 297. 299, 344, 386 Стюарт (Stewart) 372 Сцилард (Szilard) 442 Сэвери (Savery) 164 Табит бен-Курр 49 Тальбот (Talbot) 217, 218 Тартаковский П. С. 404 Тарталья (Tartaglia) 10, 27, 52—54, 80, 96 Таунли (Tawnley) 108 Телезий (Telesio) 53, 95 Теллер (Teller) 442 Тенар (Thenard) 213 Теплер (Topler) 182 Терци (Terzi) 106 Теснер (Taisner) 55 Тимирязев А. К. 6 Тиндаль (Tindall) 214, 215, 229, 235 Тисьон (Thicion) 346 Тодзетти (Tozzetti) 111, 316 Томпсон см. Румфорд Томсон Дж. Дж. (Thomson J. J.) 292—298, 307, 308, 312, 358, 372—378, 380, 381, 393 Томсон Дж. П. (Thomson G. Р.) 404, 405 Томсон У. (Кельвин) (Thomson W., Kelvin) 220, 234, 262, 268, 271, 272, 288, 344, 360, 373, 374, 376 Торричелли (Torricelli) 11, 56, 79, 87—89, 91, 92, 97-102, 107, 108, 111, 135 Траверс (Travers) 365 Тремери (Tremery) 252 Трийя (Trillat) 406 Туве (Tuve) 426 Тэйлор (Taylor) 158 Уаллис (Wallis) 94, 133, 134 Уатт (Watt) 165, 166, 225, 230, 312 Уилсон (Wilson) 180 Уитстон (Wheatstone) 209, 217, 260, 261, 277 Уленбек (Uhlenbeck) 402 Уокер (Walker) 184 Уолтом (Walton) 426, 427, 431-433 Уолш (Walsh) 190, 191 Уотсон (Watsen) 176, 381 Уошбёрн (Washburne) 431 Уэбстер (Webster) 434 Уэвелл (Whevell) 269 Фабброни (Fabbroni) 245 Фабри (Fabri) 107 Фавр (Favre) 168 Фалес Милетский 8, 66 Фарадей (Faraday) 86, 187, 226, 244, 250— 251, 255, 264-278, 283—287, 297, 345, 404, 426 Фаренгейт (Fahrenheit) 162, 164, 234 Фаянс (Fajans) 371 Феддерсен (Feddersen) 288 Фезер (Feather) 435 Феличи (Felici) 26g, 283 Фельдгауз (Feldhaus) 43 Ферма (Fermat) 23, 24, 119—121, 152, 155, 156, 200, 399 Ферми (Fermi) 406—408, 437, 439—444, 448 Феррарис (Ferraris) 283 Фехнер (Fechner) 260 Фидий 12 459
Физо (Fizeau) 78, 208—211, 221, 320, 325 Филипс (De Filiis) 109 Филипп (Philipp) 435 Филлипс Р. (Phillips R.) 276 Филлипс Т. (Phillips Т.) 266 Филон 17, 18 Филопон 25, 27 Фитцджеральд (Fitz-Gerald) 319, 320 Флекк (Fleck) 371 Фома Аквинский 27, 33 Фонда (Fonda) 176 Фонтана (Fontana) 87, 225 Фор (Faure) 246 Форбс Дж. Д. (Forbes J. D. ) 214 Форбс Дж. (Forbes G.) 209 Фохт Вильгельм (Voigt W.) 374 Фохт Вольдемар (Voigt V.) 321 Фракасторо (Fracastoro) 61, 66 Франк (Franck) 403 Франклин (Franklin) 160, 174—179, 181, 184, 186, 190, 191, 249, 284 Франческо да Бути (Francesco da Buti) 38 Фраунгофер (Fraunhofer) 143, 213, 216— 218 Френель (Fresnel) 199, 203—207, 209—211, 214, 221, 275, 344 Фридрих (Friedrich) 305 Фритц (Fritz) 406 Фриш (Frisch) 441 Фроман (Froment) 279 Фуко (Foucault) 209, 210, 218, 278, 279, 315, 316 Фуркруа (Fourcroy) 243 Фурье (Fourier) 258, 260, 262, 263, 368, 400 Хаген (Hagen) 337 Хазенёрль (Hasenohrl) 339 Хан (Hahn) 370, 440, 441 Ханкель (Hankel) 243 Харрис (Harris) 264 Хевеши (Hevesy) 371 Хейберг (Heiberg) 15, 19 Хладни (Chladni) 158, 159 Хоксби (Hauksbee) 105, 170, 171, 222, 290, 310 Хоппе (Норре) И Хоуп (Норе) 221 Хуттель (Huttel) 209 Цейсе (Zeiss) 312 Цельсий (Celsius) 111, 164, 220, 223 Цинн (Zinn) 444 Цицерон (Cicero) 13 Цолльнер (Zollner) 211 Цукки (Zucchi) 144 Чапский (Czapski) 271 Чези (Cesi) 109, 110 Челлини (Cellini) 44 Чилдрен (Children) 247, 248 Чинья (Cigna) 181, 225 Чэдвик (Chadwick) 379, 380, 423, 434, 435 Шаппюи (Chappuis) 224 Шарль (Charles) 106, 223 Шварцшпльд (Schwarzschild) 330 Швейггер (Schweigger) 252, 259 Шеель (Scheel) 221 Шейнер (Schemer) 115 Шмидт (Schmidt) 307 Шотт (Schott) 104, 105 Шрединтер (Schrodinger) 208, 401—403, 409, 410 Шталь (Stahl) 168 Штерн (Stern) 405 Штрассман (Strassmann) 441 Штрёмер (Stromer) 112, 164 Штурм (Sturm) 213 Шульце (Schulze) 213 Шустер (Schuster) 310 Эддингтон (Eddington) 329, 414 Эдисон (Edison) 283, 312 Эдлефсен (Edlefsen) 428 Эйлер (Euler) 118, 154—158, 160, 168г 271 317 396 Эйнштейн (Einstein) 139, 276, 318, 321 — 330, 339—341, 344, 347—349, 351—356, 359, 385, 395—397, 399-401, 407—410, 412, 415, 417-420, 442 Эйри (Airy) 117, 190, 207 Экснер (Exner) 346 Эльстер (Elster) 307, 311 Эмпедокл 21, 136 Эндрюс (Andrews) 227 Энрикес (Enriques) 414 Эпинус Ф. А. С. 179—181, 184, 186, 190. 271, 273, 274 Эрберт (Erbert) 310 Эрман (Erman) 254 Эрмит (Hermite) 400 Эрстед (Oersted) 245, 248—254, 257, 263, 265, 268, 287, 294 Эстерман (Esterman) 405 Этвеш (von Eotvos) 327 K)3~(Hughes) 283 Юинг (Ewing) 65, 125 Юкава (Yukawa) 447, 449 Юм (Hume) 318 Юнг Дж. (Young J.) 209 Юнг Т. (Young T.) 117, 199-201, 204, 206, 213, 229, 234, 257, 421 Юри (Urey) 430, 431 Якоби В. С. 280 Якоби К. Г. (Yacobi К. G.) 261, 399 Янссен (Janssen) 63
ОГЛАВЛЕНИЕ ОТ РЕДАКЦИИ 5 ГЛАВА 1 • АНТИЧНОСТЬ 7 ЭЛЛИНСКИЙ ПЕРИОД 1. УРОВЕНЬ ТЕХНИКИ И КУЛЬТУРЫ (7). 2. АРИСТО- ТЕЛЬ(8). ЭЛЛИНИСТИЧЕСКАЯ ЭПОХА з. АЛЕКСАНДРИЙСКИЙ МУЗЕЙ (12). 4. АРХИМЕД (12). 5. АЛЕКСАНДРИЙСКИЕ МЕХАНИКИ (16). 6. ФИЛОН (17). 7. ГЕРОН (18). 8. ОПТИКА У ГРЕКОВ (21). 9. ОПТИКА ЕВКЛИДА (21). 10. ОПТИКА ПТОЛЕМЕЯ (23). 11. КАТОПТРИКА ГЕРОНА (23) ПЕРИОД УПАДКА 12. ЭНЦИКЛОПЕДИИ (24). 13. ФИЛОПОН (25) ГЛАВА 2 • СРЕДНИЕ ВЕКА 26 МЕХАНИКА 1. МЕХАНИКА У АРАБОВ (26). 2, УНИВЕРСИТЕТЫ (26). 3. ПЕРВЫЕ ШКОЛЫ МЕХАНИКИ НА ЗАПАДЕ (27). •ОПТИКА 4. АЛЬХАЗЕН (28). 5. ТРУДЫ АЛЬХАЗЕНА И ЗАПАДНАЯ НАУКА (31). 6. РОДЖЕР БЭКОН (33). 7. ЛИНЗЫ И ОЧКИ (34). МАГНЕТИЗМ 8. КОМПАС (35). 9. ПЬЕТРО ПЕРЕГРИНО (37). ТЕХНИКА Ю. ВЛИЯНИЕ ПРОГРЕССА ТЕХНИКИ НА ФИЗИКУ (39) ГЛАВА 3 • ВОЗРОЖДЕНИЕ 43 ЛЕОНАРДО ДА ВИНЧИ 1. ЛЕОНАРДО-ИЗОБРЕТАТЕЛЬ (43). 2. ГИДРАВЛИКА И ГИДРОСТАТИКА (44). 3, ПОЛЕТ ЧЕЛОВЕКА (45). 4. О ЦЕНТРАХ ТЯЖЕСТИ (49). 5. СТАТИКА (49). 6. ДИНАМИКА (50). 7. МЕТОД (51). МЕХАНИКА 8. КУЛЬТУРА XVI ВЕКА (52). 9. ВКЛАД ИТАЛЬЯНСКИХ МАТЕМАТИКОВ В РАЗВИТИЕ ФИЗИКИ (53). 10. ДЖОВАН БАТТИСТА БЕНЕДЕТТИ (54). 11. СИМОН СТЕВИН (56) ОПТИКА 12. ФРАНЧЕСКО МАВРОЛИК (57). 13. ИЗОБРЕТЕНИЕ ПОДЗОРНОЙ ТРУ, БЫ (58). МАГНЕТИЗМ И ЭЛЕКТРИЧЕСТВО н. магнитное склонение и магнитное НАКЛОНЕНИЕ (63). 15. ПЕРВЫЙ ИТАЛЬЯНСКИЙ ТРАКТАТ ПО МАГНЕТИЗМУ (64). 16. УИЛЬЯМ ГИЛЬБЕРТ (65). 17. РОЖДЕНИЕ НАУКИ ОБ ЭЛЕКТРИЧЕСТВЕ (66). ГЛАВА 4 • ГАЛИЛЕО ГАЛИЛЕЙ 68 ПИЗАНСКИЙ ПЕРИОД l. ИЗОХРОНИЗМ КОЛЕБАНИЙ МАЯТНИКА (68). 2. ПЕРВЫЕ АНТИАРИСТОТЕЛЕВЫ РАБОТЫ ГАЛИЛЕЯ (68). ПАДУАНСКИЙ ПЕРИОД з. МЕХАНИКА (70). 4. OnblTj С ТЕРМОСКОПОМ (70). 5. ПЕРВИЧНЫЕ И ВТОРИЧНЫЕ СВОЙСТВА (71). 6. ВТОРИЧНОЕ ИЗОБРЕТЕНИЕ ПОДЗОРНОЙ ТРУБЫ (72). ГАЛИЛЕЙ В АРЧЕТРИ 7. АЭРОСТАТИКА (73). 8. О ГЛАВНЕЙШИХ] СИСТЕМАХ МИРА (74). 9. ПРИНЦИП ИНЕРЦИИ (7 5). 10. ПРИНЦИП, ОТНОСИТЕЛЬНОСТИ (75). И. ГОДИЧНОЕ ДВИЖЕHHEi ЗЕМЛИ (76). 12. СКОРОСТЬ СВЕТА (77). 13. ДИНАМИКА (78). 14. МЕТОД (80).
ГЛАВА 5 • ОТ ГАЛИЛЕЯ ДО НЬЮТОНА 82 ОБЩАЯ МЕХАНИКА 1. РЕНЕ ДЕКАРТ (82). 2. УЧЕНИКИ ГАЛИЛЕЯ (86). 3. ЭВАНДЖЕЛИСТА ТОРРИЧЕЛЛИ (87). 4. ДЖОВАНШГАЛЬФОНСО БО- РЕЛЛИ (89). 5. МАЯТНИКОВЫЕ ЧАСЫ (90). 6. ХРИСТИАН ГЮЙГЕНС (91). 7. ПОЛЕМИКА О ЖИВОЙ СИЛЕ (94). ГИДРОСТАТИКА 8. ДАВЛЕНИЕ ЖИДКОСТЕЙ (95). 9. ЗАКОН ПАСКАЛЯ (101). 10. ПНЕВМАТИЧЕСКАЯ МАШИНА (102). 11. ЗАКОН БОЙЛЯ (107). 12. БАРОМЕТРИЧЕСКИЕ ФОРМУЛЫ (109). АКАДЕМИИ НАУК 13. АКАДЕМИЯ ДЕИ ЛИНЧЕЙ (109). 14. ЛОНДОНСКАЯ И ПАРИЖСКАЯ АКАДЕМИИ (НО). 15. АКАДЕМИЯ ОПЫТОВ (ПО). ОПТИКА 16. ОПТИКА5КЕПЛЕРА (113). 17. ЗАКОНЫ ПРЕЛОМЛЕНИЯ (115). 18. ПРИНЦИП ФЕРМА (119). 19. ДИФРАКЦИЯ (121). 20. ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ И СКОРОСТЬ СВЕТА (123). МАГНЕТИЗМ И ЭЛЕКТРИЧЕСТВО 21. работы по магнетизму после ГИЛЬБЕРТА (124). 22. ЭКСПЕРИМЕНТЫ ГЕРИКЕ ПО ЭЛЕКТРИЧЕСТВУ (126). ГЛАВА 6 • ИСААК НЬЮТОН 128' МЕХАНИКА 1. ПРАВИЛА РАССУЖДЕНИЯ (128). 2. МАССА (129). 3. СИЛА (130). 4. ВРЕМЯ И ПРОСТРАНСТВО (132). 5. ЗАКОНЫ ДВИЖЕНИЯ (132). 6. ЦЕНТРОСТРЕМИТЕЛЬНОЕ ДВИЖЕНИЕ (133). 7. ДВИЖЕНИЕ В ЖИДКОСТИ (134). 8. АКУСТИКА (135). 9. ВСЕМИРНОЕ ТЯГОТЕНИЕ (136). ОПТИКА Ю. «ОПТИКА» НЬЮТОНА (140). 11. ДИСПЕРСИЯ СВЕТА И ПРИРОДА ЦВЕТОВ (141). 12. ЗЕРКАЛЬНЫЙ ТЕЛЕСКОП (143). 13. КОЛЬЦА, ДИФРАКЦИЯ И ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ В «ОПТИКЕ» НЬЮТОНА (145). 14. КОРПУСКУЛЯРНАЯ ТЕОРИЯ (148). 15. ВОЛНОВАЯ ТЕОРИЯ (149). ГЛАВА 7 • ВОСЕМНАДЦАТЫЙ ВЕК 153 МЕХАНИКА 1. ПОПЫТКА СИНТЕЗА (153). 2. ПРИНЦИП ДАЛАМБЕРА (154). 3. ПРИНЦИП НАИМЕНЬШЕГО ДЕЙСТВИЯ (155). 4. АНАЛИТИЧЕСКАЯ МЕХАНИКА (156). 5. АКУСТИКА (158). ОПТИКА 6. АХРОМАТИЗМ ЛИНЗ (158). 7. ФОТОМЕТРИЯ (160). ТЕПЛОТА 8. ТЕМПЕРАТУРА И ТЕРМОМЕТРЫ (162). 9. О ПОЯВЛЕНИИ ПАРОВОЙ МАШИНЫ (164). 10. УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ (165). 11. ПРИРОДА ТЕПЛОТЫ (168). ЭЛЕКТРИЧЕСТВО 12. ЛЕЙДЕНСКАЯ БАНКА (169). 13. БЕНДЖАМИН ФРАНКЛИН (174). 14. ТЕОРИИ ЭЛЕКТРИЧЕСТВА (176). 15. ДЖАМБАТТИСТА БЕККА- РИА (177). 16. ПИРОЭЛЕКТРИЧЕСТВО (180). 17. ЭЛЕКТРОФОР (180). 18. ШАРЛЬ ОГЮСТЕН КУЛОН (184). 19. ЛУИДЖИ ГАЛЬВАНИ (190). 20. АЛЕССАНДРО ВОЛЬТА (194). ГЛАВА 8 • ОПТИКА ФРЕНЕЛЯ 199< ВОЛНОВАЯ ТЕОРИЯ 1. ПРИНЦИП ИНТЕРФЕРЕНЦИИ (199). 2. ПОЛЯРИЗАЦИЯ СВЕТА (201). 3. ВОЛНОВАЯ ТЕОРИЯ ФРЕНЕЛЯ (203). 4. ОПТИКА ГАМИЛЬТОНА — ЯКОБИ (207). 5. СКОРОСТЬ СВЕТА (208). 6. НЕПОДВИЖЕН ЛИ ЭФИР ИЛИ ЖЕ ОН УВЛЕКАЕТСЯ ПРИ ДВИЖЕНИИ ТЕЛ? (210). 7,„ НЕВИДИМЫЕ ИЗЛУЧЕНИЯ (212). 8. СПЕКТРАЛЬНЫЙ АНАЛИЗ (216).
ГЛАВА 9 • УЧЕНИЕ О ТЕПЛОТЕ 220 ПОВЕДЕНИЕ ТЕЛ При НАГРЕВАНИИ i. тепловоеграсширение (220). 2. ТЕПЛОВОЕ РАСШИРЕНИЕ ГАЗООБРАЗНЫХ ВЕЩЕСТВ (222). 3. ПАРЫ (224). 4. СЖИЖЕНИЕ ГАЗОВ (225). 5.УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ ГАЗОВ (227). ПРИНЦИПЫ ТЕРМОДИНАМИКИ е. кризис начала xix века (228). 7. принцип КАРНО (231). 8. ПРИНЦИП ЭКВИВАЛЕНТНОСТИ (231). 9. ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ (234). 10. МЕХАНИЧЕСКАЯ ТЕОРИЯ ТЕПЛОТЫ (235). КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ и. природа теплоты (236). 12. кинетическая ТЕОРИЯ ГАЗОВ (237). 13. СТАТИСТИЧЕСКИЕ ЗАКОНЫ (238). ГЛАВА 10 • ЭЛЕКТРИЧЕСКИЙ ТОК 242 ПЕРВЫЕ ИССЛЕДОВАНИЯ 1. ГАЛЬВАНИЗМ (242). 2. ХИМИЧЕСКОЕ ДЕЙСТВИЕ ТОКА (244). 3. ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА (247). МАГНИТНОЕ ДЕЙСТВИЕ ТОКА 4. ОПЫТ ЭРСТЕДА (248). 5. ГАЛЬВАНОМЕТР (251). 6. ЭЛЕКТРОДИНАМИКА АМПЕРА (25 3). ЗАКОН ОМА 7. ПЕРВЫЕ ИССЛЕДОВАНИЯ СОПРОТИВЛЕНИЯ ПРОВОДНИКОВ (257). 8. ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ (260). ТЕПЛОТА И ЭЛЕКТРИЧЕСКИЙ ТОК 9. термоэлектрический эффект (263). 10 ЗАКОН ДЖОУЛЯ (264). РАБОТЫ МАЙКЛА ФАРАДЕЯ п. электромагнитная индукция (265). 12. ЭЛЕКТРОЛИЗ (268). 13. ПОСТОЯННЫЕ ЭЛЕКТРИЧЕСКИЕ ЭЛЕМЕНТЫ (270). 14. ТЕОРИЯ ПОТЕНЦИАЛА (271). 15. ДИЭЛЕКТРИЧЕСКАЯ ПОЛЯРИЗАЦИЯ (272). 16. МАГНИТООПТИКА (274). 17. СТРОЕНИЕ МАТЕРИИ (275). 18. ДИАМАГНЕТИЗМ (277). 19. ПРИМЕНЕНИЯ (278). ЭЛЕКТРОМАГНИТНАЯ ТЕОРИЯ МАКСВЕЛЛА 2о. описание электромагнитного ПОЛЯ (283). 21. ЭЛЕКТРОМАГНИТНАЯ ТЕОРИЯ СВЕТА (286). 22. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ (288). ГЛАВА И • ЭЛЕКТРОН 290 1. КАТОДНЫЕ ЛУЧИ (290). 2. ПРИРОДА КАТОДНЫХ ЛУЧЕЙ (291). 3. ИЗМЕРЕНИЕ ЗАРЯДА И МАССЫ ЭЛЕКТРОНА (294). РЕНТГЕНОВСКИЕ ЛУЧИ 4. ПОЛУЧЕНИЕ РЕНТГЕНОВСКИХ ЛУЧЕЙ (299). 5. ПРИРОДА РЕНТГЕНОВСКИХ ЛУЧЕЙ (302). РАДИОАКТИВНЫЕ ЯВЛЕНИЯ 6. РАДИОАКТИВНЫЕ ВЕЩЕСТВА (305). 7. ИССЛЕДОВАНИЕ НОВЫХ ИЗЛУЧЕНИЙ (307). 8. ЭНЕРГИЯ РАДИОАКТИВНЫХ ИЗЛУЧЕНИЙ (308). ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ И ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ 9. НОВЫЕ СПОСОБЫ ПОЛУЧЕНИЯ ЭЛЕКТРОНОВ (310). 10. ОБ:ОРГАНИЗА- ЦИИ НАУЧНЫХ ИССЛЕДОВАНИЙ В XX ВЕКЕ (312). ГЛАВА 12 • ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ 315 МЕХАНИКА XIX ВЕКА i. суточное движение земли (315). 2. критика НЬЮТОНОВСКИХ ПРИНЦИПОВ (316). НА ПУТИ К ТЕОРИИ ОТНОСИТЕЛЬНОСТИ з. ЛОРенцево сокращение (319). 4. ЭЛЕКТРОМАГНИТНАЯ ТЕОРИЯ ЛОРЕНЦА (320). СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ 5. относительность времени И ПРОСТРАНСТВА (321). в. СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ (323).
ОБЩАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ 7. ТЯЖЕЛАЯ МАССА И ИНЕРТНАЯ МАССА (327). 8. ОБЩАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ (327). 9. ЭКСПЕРИМЕНТАЛЬНЫЕ ПОДТВЕРЖДЕНИЯ (329). 10. О СУДЬБЕ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ (330). ГЛАВА 13 . ФИЗИКА ДИСКРЕТНОГО 332 КВАНТЫ 1. МАТЕРИЯ И ЭНЕРГИЯ (332). 2. ИЗЛУЧЕНИЕ «ЧЕРНОГО ТЕЛА» (332) 3. ПРОТИВОРЕЧИЯ КЛАССИЧЕСКОЙ ТЕОРИИ (335). 4. КВАНТЫ (337). 5. ТРУДНОСТИ, ВЫЗВАННЫЕ ГИПОТЕЗОЙ КВАНТОВ (340). ПОСТОЯННАЯ АВОГАДРО 6. ПЕРВЫЕ ОПРЕДЕЛЕНИЯ ПОСТОЯННОЙ АВОГАДРО (343). 7. О ГОЛУБОМ ЦВЕТЕ НЕБА (343). 8. ВЫЧИСЛЕНИЕ ВЕЛИЧИНЫ N ПО ДАННЫМ АТОМНОЙ ФИЗИКИ (344). 9. БРОУНОВСКОЕ ДВИЖЕНИЕ (346). 10. ВЫВОД ЧИСЛА АВОГАДРО ИЗ '^ТЕОРИИ КВАНТОВ (351). УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ Ц. ЗАКОН ДЮЛОНГА И ПТИ (351). 12. ЯВЛЕНИЯ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ (354). ФОТОНЫ 13. ЗАКОНЫ ФОТОЭЛЕКТРИЧЕСКОГО ЭФФЕКТА (354). 14. КВАНТЫ СВЕ- 4 ТА (355). 15. ЭФФЕКТ КОМПТОНА (357). ГЛАВА 14 • СТРОЕНИЕ МАТЕРИИ 360 РАДИОАКТИВНЫЙ РАСПАД i. радиоактивные превращения (Зво). 2. природа а-ЧАСТИЦ (363). 3. ОСНОВНОЙ ЗАКОН РАДИОАКТИВНОСТИ (367) 4. РАДИОАКТИВНЫЕ ИЗОТОПЫ (369), НЕКВАНТОВЫЕ МОДЕЛИ АТОМА 5. ПЕРВЫЕ ПРЕДСТАВЛЕНИЯ О СЛОЖНОМ СТРОЕНИИ АТОМОВ (372). 6. АТОМ ТОЙСОНА (373). 7. АТОМ НАГАОКА- РЕЗЕРФОРДА (376). 8. ИСКУССТВЕННОЕ РАСЩЕПЛЕНИЕ ЭЛЕМЕНТОВ (380). 9. НЕРАДИОАКТИВНЫЕ ИЗОТОПЫ (381). 10. МАТЕРИЯ И ЭНЕРГИЯ (383). АТОМ БОРА И. СПЕКТРАЛЬНЫЕ СЕРИИ (386). 12. ТЕОРИЯ БОРА (388). 13. ТЕОРИЯ ЗОММЕРФЕЛЬДА (391). 14. ПРИНЦИП СООТВЕТСТВИЯ (392). 15. СТРОЕ НИЕ АТОМОВ (3 93). ГЛАВА 15 • ВОЛНОВАЯ МЕХАНИКА 395 НОВЫЕ КВАНТОВОМЕХАНИЧЕСКИЕ ТЕОРИИ i. распространение стати- СТИЧЕСКОГО ЗАКОНА РАДИОАКТИВНОСТИ НА ИЗЛУЧЕНИЕ (395). 2. АНТИТЕЗА ВОЛНА — ЧАСТИЦА (396). 3. ВОЛНА, СОПРЯЖЕННАЯ С ЧАСТИЦЕЙ (397). 4. КВАНТОВАЯ МЕХАНИКА (399), 5. ВОЛНОВЫЕ УРАВНЕНИЯ (401). 6. ЭКВИВАЛЕНТНОСТЬ ВОЛНОВОЙ И КВАНТОВОЙ МЕХАНИКИ (402). 7. ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА (4 03). 8. КВАН ТОВАЯ СТАТИСТИКА (406). ИНТЕРПРЕТАЦИЯ ВОЛНОВОЙ МЕХАНИКИ 9. положение частицы в вол НЕ (408). 10. ПРИНЦИП НЕОПЕРДЕЛЕННОСТИ (410). И. ИНДЕТЕРМИНИЗМ (411). 12. ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ (414). 13. ВОЛНЫ BE РОЯТНОСТИ (416). 14. ОБРАТНОЕ ДВИЖЕНИЕ К ДЕТЕРМИНИЗМУ (417). ГЛАВА 16 • ИСКУССТВЕННАЯ РАДИОАКТИВНОСТЬ .... 423 УСКОРИТЕЛИ 1. ПРОТОН (423). 2. ВЫСОКОВОЛЬТНЫЕ УСТАНОВКИ (426). 3. ЦИКЛОТРОН (427). 1932 г.—ГОД ВЕЛИКИХ ОТКРЫТИЙ 4. [дейтерий (430). 5. искусственные ПРЕВРАЩЕНИЯ С ПОМОЩЬЮ УСКОРЕННЫХ ЧАСТИЦ (431). 6. НЕЙТРОН (433). АТОМНАЯ ЭНЕРГИЯ 7. ИСКУССТВЕННЫЕ РАДИОАКТИВНЫЕ ЭЛЕМЕНТЫ (436) 8. БОМБАРДИРОВКА НЕЙТРОНАМИ (437). 9. ТРАНСУРАНОВЫЕ ЭЛЕМЕНТЫ (440).Ю. РЕАКЦИЯ ДЕЛЕНИЯ (441). 11, КОСМИЧЕСКИЕ ЛУЧИ (444). 12. ПОЛЕ ЯДЕРНЫХ СИЛ (448). БИБЛИОГРАФИЯ 450 ИМЕННОЙ УКАЗАТЕЛЬ 453