Текст
                    INTEGRALS AND SERIES
Volume 4
Direct Laplace Transforms
A.P. Prudnikov
Yu.A. Brychkov
Computing Center of the USSR Academy of Sciences,
Moscow
O.I. Marichev
Byelorussian State University, Minsk, USSR
and Wolfram Research Inc., Champaign, Illinois, USA
lit
h.,JL f i,>^.i\
<V1040 Wien, Wiedner Hauptstr. 8-10
GORDON AND BREACH SCIENCE PUBLISHERS
New York • Readmg • Paris • Montreux • Tokyo • Melbourne


Copyright © 1992 by OPA (Amsterdam) B. V. All rights reserved. Published under license by Gordon and Breach Science Publishers S. A. Gordon and Breach Science Publishers 5301 Tacony Street, Drawer 330 Philadelphia, Pennsylvania 19137 United States of America Post Office Box 90 Reading, Berkshire RG1 8JL United Kingdom 58, rue Lhomond 75005 Paris France Post Office Box 161 1820 Montreux 2 Switzerland 3-14-9 Okubo Shinjuku-ku, Tokyo 169 Japan Private Bag 8 Camberwell, Victoria 3124 Australia Library of Congress Cataloging-in-Publication Data A Catalogue record for this book is available from the Library of Congress No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, without permission in writing from the publisher. Printed in Great Britain by Bell and Bain Ltd., Glasgow CONTENTS PREFACE Chapter 1. GENERAL FORMULAS 1.1. TRANSFORMS CONTAINING ARBITRARY FUNCTIONS 1.1.1. F(A(p)) and algebraic functions 1.1.2. F(q>(p)) and non-algebraic functions 1.1.3. Derivatives of F(p) 1.1.4. Integrals containing F(p) Chapter 2. ELEMENTARY FUNCTIONS 2.1. THE POWER AND ALGEBRAIC FUNCTIONS 2.1.1. Functions of the form pv 2.1.2. Functions of the form (p+a)fl(p+ft)v Functions of the form p (p+a^ip+b)* 2.1.3. 2.1.4. 2.1.5. 2.1.6. 2.1.7. 2.1.8. 2.1.9. Functions of the form f[ (р+аЛ к, n>4 Functions of the form p^(p ±a ) Various products containing (p +ap+b)v Functions of the form р*(р1/к+а)" for /A?U, 2 Various functions containing (Vp~+a) Various algebraic functions 2.2. THE EXPONENTIAL FUNCTION exp(-ap ) and the power function 2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5. Functions containing exp(-aip +bp+c) 2.2.6. Functions containing exp(/4e f) exp(±ap ) and the power function exp(-ap~ ) and algebraic functions Functions of the form f(p, e raP g-bP> fcP) xix 1 7 8 9 11 11 11 11 21 23 27 37 41 45 45 51 51 53 54 58 61 65
CONTENTS CONTENTS vu 2.3.3. 2.3.4. 2.3.5. 2.3.6. 2.3.7. 2.3.8. 2.3.9. 2.3.10. 2.4. 2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5. 2.4.6. 2.4.7. 2.4.8. 2.4.9. 2.4.10. 2.4.11. 2.5. 2.5.1. 2.5.2. 2.5.3. 2.5.4. 2.5.5. 2.5.6. 2.5.7. Hyperbolic functions of ax algebraic functions for and Hyperbolic functions of i x +xz and algebraic functions Hyperbolic functions of a\±b +x and algebraic functions Hyperbolic functions of ax, the power and exponential functions +[.t Hyperbolic functions of ax~ for btk, the power and algebraic functions Hyperbolic functions of [x] x Hyperbolic functions of f(e x) and the exponential function Functions containing the exponential function of hyperbolic functions TRIGONOMETRIC FUNCTIONS Trigonometric functions of ax Trigonometric functions of ax and the power function цк Trigonometric functions of ax for Ык and algebraic functions _.„ Trigonometric functions of ax and the power function Trigonometric functions of i x +xz and algebraic functions Trigonometric functions of ал+b +x and algebraic functions Trigonometric functions of ax, the power and exponential function +/„ Trigonometric functions of ax~ for №k, the power and exponential functions Trigonometric functions of [x]_ Trigonometric functions of f(e x) and the exponential function Trigonometric and hyperbolic functions THE LOGARITHMIC FUNCTION In (ax) and algebraic functions In (ax~ +b) and algebraic functions Functions of the form ln(i x +a+ix algebraic functions In x, the power and exponential functions The logarithmic function of f(e x) and the exponential function The logarithmic and hyperbolic functions The logarithmic and trigonometric functions ) and 58 61 62 64 66 67 68 70 71 71 75 79 84 85 87 89 91 93 93 97 100 100 102 105 107 107 112 113 2.6. INVERSE TRIGONOMETRIC FUNCTIONS 2.6.1. Inverse trigonometric functions of algebraic functions 2.6.2. Inverse trigonometric functions of the exponential. function +цк 2.6.3. Trigonometric functions of arccosta*^ ) 2.6.4. Trigonometric functions of arccos fit ) and the exponential function 2.6.5. arctan(ax± ), arccottaJT ) and the power function _x 2.6.6. arctan/4e~ ), arccot/(e ) and the exponential function ±;д 2.6.7. Trigonometric functions of arctan (а*~ ) 2.7. INVERSE HYPERBOLIC FUNCTIONS Chapter 3. SPECIAL FUNCTIONS 3.1. THE GAMMA FUNCTION Г(г) Г п(х+а) and the power and exponential functions 3.1.1. 3.1.2. 3.2. 3.2.1. 3.2.2. 3.3. The gamma function of [x] THE RIEMANN ZETA FUNCTION ?(z) AND THE FUNCTION ?(z,v) and various functions and various functions THE POLYLOGARITHM Li (z) 3.3.1. Li (-ax) and the power function 3.3.2. Li (f(e~x)) and the exponential function 3.4. THE EXPONENTIAL INTEGRAL Ei(z) 3.4.1. EHax±l ) and the power function 3.4.2. Ei(ax~_ ), the power and exponential functions 3.4.3. Ei(f(e x) and the exponential functions 3.4.4. Ш(±ах) and trigonometric functions 3.4.5. Ei(±a*) and the logarithmic function 3.4.6. Products of Ei(±a*) and the power function 3.5. THE SINE si(z),Si(z) AND COSINE ci(z) INTEGRALS 3.5.1. si(ax±l/k), Si(ax±l/k), ci(ax±l/k) and the power function 3.5.2. si(f(e~x)), Si(f(e'x)), ti(f(e~*)) and the exponential function 3.5.3. si(a*±W), cHax±l/k) and hyperbolic functions 3.5.4. si(а;Г ), d(ax± ) and trigonometric functions 114 114 116 117 119 120 122 124 126 127 127 127 128 130 130 131 131 131 132 134 134 137 138 142 142 143 144 144 147 149 153
Vlll 3.5.5. 3.5.6. 3.5.7. 3.6. 3.6.1. 3.6.2. 3.6.3. 3.6.4. 3.6.5. 3.7. 3.7.1. 3.7.2. 3.7.3. 3.7.4. 3.7.5. 3.7.6. 3.7.7. 3.7.8. 3.7.9. 3.7.10. 3.7.11. 3.7.12. 3.8. 3.8.1. 3.8.2. 3.8.3. 3.8.4. 3.9. 3.9.1. 3.9.2. 1ЛЛЧТШЧТ!» si (ax ), Si (их ), the exponential and trigonometric functions ci(ax) and the logarithmic function Products of si(axl/k) and c\(axllk) THE HYPERBOLIC SINE shi(z) AND COSINE chi(z) INTEGRALS Ilk Ilk shi(ax ), chi(ax ) and the power function shi(/4e )), chi(/4e )) and the exponential function shitax ), chUax ) and hyperbolic functions shi(ax ), chi(ax ) and trigonometric functions chi(ax) and the logarithmic function THE ERROR FUNCTIONS erf(z), erfc(z), AND erfi(z) The error functions of ax + b and the power function The error functions of ax + b The error functions of ax or of a/x + b//x The error functions of ax~ and the exponential function The error functions of e x and the exponential function The error functions and hyperbolic functions The error functions and trigonometric functions The error functions and the logarithmic function erf(ae ), the exponential function and inverse trigonometric functions Products of the error functions of ax1 Products of the error functions of f(e~x) The error functions and the exponential integral THE FRESNEL INTEGRALS S(z) AND C(z) S(ax± ), С (ax* ) and the power function S(f(e )), C(f(e~x)) and the exponential function S(ax ), C(ax~ ) and hyperbolic functions +l/jfc +\lk S(ax ), С (ax ) and trigonometric functions THE GENERALIZED FRESNEL INTEGRALS S(z,v) AND C(z,\) S(ax± ,v), C(ax± ,v) and the power function S(f(e~x),\), C(f(e'x),\) and the exponential function Ilk 159 160 160 160 160 163 165 167 168 169 169 171 174 177 180 186 193 200 201 202 204 205 205 205 207 209 213 217 217 219 3.9.3. 3.9.4. 3.10. 3.10.1. 3.10.2. 3.10.3. 3.10.4. 3.10.5. 3.10.6. 3.10.7. 3.11. 3.11.1. 3.11.2. 3.11.3. 3.11.4. 3.11.5. 3.11.6. 3.11.7. 3.12. 3.12.1. 3.12.2. 3.12.3. 3.12.4. 3.12.5. 3.12.6. 3.12.7. 3.12.8. 3.12.9. 3.12.10. and the power function S(axUk,\), C(axUk,\) and hyperbolic functions S(axl/k,v), C(axl/k,\) and trigonometric functions THE INCOMPLETE GAMMA FUNCTIONS T(v,z) AND y(\,z) T(\,ax±l/k), Г([х]+\,а), y([x]+v,a) and various functions Г(\,ах±!/к), v(v,ax±'/i) and the exponential function r(v, f(e~x)), y(v,f(e~x)) and the exponential function T(v,ax±l/k), y(\,ax±1/k) and hyperbolic functions T(\,ax±l/k), y(\,ax±llk) and trigonometric functions Products of V(\,a^llk) and yiy&x* ) THE PARABOLIC-CYLINDER FUNCTION ?>v(z) D (a/x) and the power function D , ,(a) and various functions V±[X\ D (ax±llk) and the exponential function D (f(e~x)) and the exponential function D (a/x) and hyperbolic functions D (a/x) and trigonometric functions Products of Dv(a/x) THE BESSEL FUNCTION .Mz) / (ax) and the power function / (ax ) and the power function V Ilk x Ilk J (ax ) and the power function V Ilk ) and the power function 2 : J and algebraic functions v - Jv{a\±b2+x2) and algebraic functions tblxl (ax*1) and the power function / (f(tx)) and the exponential function / (ax ) and hyperbolic functions v +11 к J (a(sinhx)" ) and hyperbolic functions 223 225 227 228 230 230 231 236 241 246 246 246 248 248 251 253 254 255 256 256 260 261 265 266 268 271 271 274 276
CONTENTS 3.12.11. 3.12.12. 3.12.13. 3.12.14. 3.12.15. 3.12.16. 3.12.17. 3.13. 3.13.1. 3.13.2. 3.13.3. 3.13.4. 3.13.5. 3.13.6. 3.13.7. 3.13.8. 3.13.9. 3.14. 3.14.1. 3.14.2. 3.15. 3.15.1. 3.15.2. 3.15.3. 3.15.4. 3.15.5. 3.15.6. 3.15.7. 3.15.8. 3.15.9. ±11 к Jv(ax ) and trigonometric functions / (ae±x ) and trigonometric functions , ±hcl к of e JQ(f(x)) and the logarithmic function / (at ) and inverse trigonometric functions / (ax)J (bx) and the power function / (ax~ )J^(bx~ ) and the power function / (ae~ )J^(at~ ) and the exponential function THE NEUMANN FUNCTION ^(z) Y (ax) and the power function Y (ax ) and the power function v -Ilk Yv(ax ) and the power function Y (f(x)) and algebraic functions e Y (ax~ ) and the power function Y (f(t x)) and the exponential function Yv(ax) and hyperbolic functions Yv(ax') and trigonometric functions ,.v. ±11 k. , . ±11 k. .... Yv(ax ), Jw(ax ) and various functions THE HANKEL FUNCTIONS x~ H™(z) ) and the power function and algebraic functions THE MODIFIED BESSEL FUNCTION /(z) / (ax) and the power function v ilk IJax ) and the power function and algebraic functions and algebraic functions ty.p(-bx^)l (ax ) and the power function Iv(f(t x)) and the exponential function / (ax" ) and hyperbolic functions / (at ) and hyperbolic functions I „(ax ) and trigonometric functions 277 280 281 282 283 293 296 298 298 300 301 302 304 304 305 307 309 311 311 312 313 313 317 321 322 324 326 329 331 331 CONTENTS 3.15.10. 3.15.11. 3.15.12. 3.15.13. 3.15.14. 3.15.15. 3.15.16. 3.15.17. 3.15.18. 3.16. 3.16.1. 3.16.2. 3.16.3. 3.16.4. 3.16.5. 3.16.6. 3.16.7. 3.16.8. 3.16.9. 3.16.10. 3.16.11. 3.16.12. 3.16.13. 3.16.14. 3.17. 3.17.1. 3.17.2. 3.17.3. 3.17.4. 3.17.5. 3.17.6. ±lxl k. I (ae~w/*) and trigonometric functions of e 1 (f(x)) and the logarithmic function I (ae'x) and inverse trigonometric functions J (axr)I (bx ) and the power function J (f(tx))I (at ) and the exponential function М- у k v щ У (ax )Iv(ax ) and the power function / (ax) I (bx) and the power function / (axl/k)Iv(bxl/k) and the power function / (/(e ))Iv(ae ) and the exponential function THE MacDONALD FUNCTION K^z) К (ах) and the power function К (ах ) and the power function ) and the power function J and algebraic functions and algebraic functions (ax ) and the power function К (/(е x)) and the exponential function V Ilk К (ах ) and hyperbolic functions К (f(x)) and hyperbolic functions K^(ax) and trigonometric functions / (ax"k)K (bxl/k) and the power function ** Ilk v Ilk Yv(ax )K^(bx ) and the power function I (ax )K (bx ) and the power function Iх lit V Юг К (ax )Kv(bx ) and the power function THE STRUVE FUNCTIONS Hv(z) AND LJz) H (ax~ ), L (ax~ ) and the power function V V Hv(/(e~x», Lv(f(t~x)) and the exponential function Uv(ax ), Lv(ax ) and hyperbolic functions Hv(axUk), Lv(axUk) and trigonometric functions Hv(ax) and the Bessel function / (ax) Y (ax~ ) - K(ax~ ) and the power function 334 335 336 337 339 340 341 346 349 349 349 352 353 355 356 357 359 363 364 365 366 368 368 370 370 370 375 377 381 383 384
Xll 3.17.7. 3.17.8. 3.17.9. 3.18. 3.18.1. 3.18.2. 3.18.3. 3.19. 3.19.1. 3.19.2. 3.19.3. 3.19.4. 3.19.5. 3.19.6. 3.19.7. 3.19.8. 3.19.9. 3.19.10. 3.20. 3.20.1. 3.20.2. 3.20.3. CONTENTS Yv(f(e~x)) -Hv(f(e~x)) and the exponential function L (ax~ ) and the modified Bessel function I±w(f(t ")) -Lv(f(e~x)) and the exponential function THE ANGER FUNCTION J(z) AND THE WEBER FUNCTION E (z) ±l/k v ±11 к J (ax ), E (ax ) and the power function J (ax), E (ax) and hyperbolic functions J (ax), E (ax) and trigonometric functions THE KELVIN FUNCTIONS beMz), bei^z), kerv(z), keiv(z) ber (ax ), bei (ax ) and the power function ber (ae~rx), bei (ae~rx) and the exponential function berv(ax ), bei (ax ) and hyperbolic functions ber (ax ), bei (ax ) and trigonometric functions Products of the functions beMax1 ), beiv(ax1M), btr'v(axl/k), ЬеГ(ах1Д) ker (ax ), kei (ax ) and the power function ker (ae~rx), keiv(ae~rx) and the exponential function ker (ax ), kei (ax ) and hyperbolic functions ker (ax ), keiv(ax ) and trigonometric functions The Kelvin functions and the logarithmic function THE AIRY FUNCTIONS Ai(z) AND Bi(z) Ai(ax ), Bi(ax ) and the power function K\(axllk), B\(ax k) and the power function Ai(f(e'x) function M(f(e *)), Bi(f(t x)) and the exponential 384 386 387 390 390 391 392 392 392 394 395 397 398 401 402 404 404 405 405 406 407 408 CONTENTS 3.20.4. Products of the Airy functions and the power function 3.20.5. Products of the Airy functions and the exponential function 3.21. THE INTEGRAL BESSEL FUNCTIONS Jiv(z), Kiv(z) 3.21.1. Jiv(ax±l'k), Yiv(ax±l/k), KMax*''*), and the power function 3.21.2. Jiv(axm/2), Yiv(axm/2), Kijax'2) and hyperbolic functions 3.21.3. //v(axlM), Yiv(ax), Kiv(ax) and trigonometric functions 3.22. THE LEGENDRE POLYNOMIALS P (z) 3.22.1. Pn(ax ) and the power function 3.22.2. Pn(f(x)) and algebraic functions 3.22.3. Pn(f(e~x)) and the exponential function 3.22.4. P[x\W and various functions 3.22.5. Pn(cosh ax) and Pn(cos ax) 3.22.6. Products of Pn(f(x)) and the power function 3.23.1. Тп(ах±тП) and algebraic functions 3.23.2. Tn(f(x)) and algebraic functions 3.23.3. Tn(f(e'x)) and the exponential function 3.23.4. Un(ax±m/2) and algebraic functions 3.23.5. Un(f(x)) and algebraic functions 3.23.6. ^„^^e *)) an(* *ke exponential function 3.24. THE LAGUERRE POLYNOMIALS Lv(z) 3.24.1. Lvn(ax) and the power function 3.24.2. L^ax > an(l Ле power function 3.24.3. L"n(ax~ ) and the exponential function 411 412 413 412 416 416 419 419 420 423 424 425 425 3.23. THE CHEBYSHEV POLYNOMIALS Tn(z) AND Un(z) 425 425 427 428 429 430 431 431 431 435 437
3.24.4. 3.24.5. 3.24.6. 3.24.7. 3.24.8. 3.25. 3.25.1. 3.25.2. 3.25.3. 3.25.4. 3.25.5. 3.25.6. 3.25.7. 3.25.8. 3.25.9. 3.26. 3.26.1. 3.26.2. 3.26.3. 3.26.4. 3.26.5. 3.27. 3.27.1. 3.27.2. 3.28. 3.28.1. CONTENTS I? (ax ) and hyperbolic functions L"U.ax~m) and trigonometric functions L~"(ax) and Bessel functions n Products of L^(ax~m ) and the power function Ly. . (y) and various functions THE HERMITE POLYNOMIALS Я (z) n H (ax ) and the power function ±11 к H (ax ) and the exponential function 1 -f-m/2 Hn(ax~ ) and hyperbolic functions Hn(ax~m ), the exponential and hyperbolic functions H (ax ) and trigonometric functions Hn(ax~'n ), the exponential and trigonometric functions Products of Hn(aV~x) and the power function H . , (y) and various functions Products of ^rj.iO') and various functions THE GEGENBAUER POLYNOMIALS C" (z) n Cv(ax±m 2) and the power function Cv(f(x)) and algebraic functions C^(/(e *)) and the exponential function СТ.(y) and various functions Products of Cvn(f(x)) THE JACOBI POLYNOMIALS P(*'v}(z) n P (f(x)) and algebraic functions " anc* va"ous functions THE BERNOULLI Bn(z), EULER ?n(z) AND NEUMANN On(z) POLYNOMIALS Bn(ax r), B..(y) and various functions 438 441 443 444 446 448 448 450 453 455 455 458 460 461 461 461 462 465 467 468 468 468 474 476 476 3.28.2. 3.28.3. 3.29. 3.29.1. 3.29.2. 3.29.3. 3.29.4. 3.29.5. 3.29.6. 3.29.7. 3.30. 3.30.1. 3.30.2. 3.30.3. 3.30.4. 3.31. 3.31.1. 3.31.2. 3.31.3. 3.31.4. 3.31.5. 3.32. 3.32.1. 3.32.2. 3.32.3. 3.32.4. 3.32.5. CONTENTS En(ax±r), Е.Лу) and various functions Ore(ax~r) and the power function THE BATEMAN FUNCTION Mz) к (ах) and the power function V II к к (ах ) and the exponential function к (ае ) and the exponential function к (ах) and hyperbolic functions к (ах) and trigonometric functions Products of k^(ax) and the power function Products of kv(ae±x) THE LAGUERRE FUNCTION Lv(z) L (ax) and the power function L (ax~ ) and the exponential function L (ax) and hyperbolic functions L (ax) and trigonometric functions COMPLETE ELLIPTIC INTEGRALS D(z), E(z) AND K(z) D(ax±l/k), E(ax±l/k), K(ax±l/k) and the power function T)(f(x)), E(f(x)), K(f(x)) and algebraic functions T)(f(e~x)), E(f(e~x)), K(f(e~x)) and the exponential function D(f(x)), E(f(x)), K(f(x)) and hyperboUc functions D(f(x)), E(f(x)), K(f(x)) and trigonometric functions THE LEGENDRE FUNCTIONS OF THE FIRST KIND P*(z) V P^(f(x)) and algebraic functions Рц(/(е~*)) and the exponential function Pv'(e~x) and various functions P^coshx), the exponential and hyperbolic functions Pi-i..(y) and various functions 477 477 478 478 479 480 481 481 482 483 483 483 484 484 485 485 485 487 489 489 491 492 493 497 499 501 502
3.32.6. 3.33. 3.33.1. 3.33.2. 3.33.3. 3.34. 3.34.1. 3.34.2. 3.34.3. 3.35. 3.35.1. 3.35.2. 3.35.3. 3.35.4. 3.35.5. 3.35.6. 3.35.7. 3.36. 3.36.1. 3.36.2. 3.36.3. 3.36.4. 3.36.5. CONTENTS Products of P*(f(x)) THE LEGENDRE FUNCTIONS OF THE SECOND KIND Q»(z) Q\fix)) and algebraic functions Q*ifis~x)) and the exponential function ^ and various functions THE LOMMEL FUNCTIONS s B) AND S (z) |i.v |i,v s (ax±l/k), S (ax±l/k) and the power H,V |1,V *^ function s iaxl/k), S jLaxllk) and hyperbolic functions s^v(ax' *), S^v(a functions and trigonometric THE KUMMER CONFLUENT HYPERGEOMETRIC FUNCTION /{(а;Ь;2) jFj (a;b;wx~ ) and the power function ^F^ia^fix)), the power and exponential functions 1F1(a±m[x];b±m[x];a>) and various functions lFl(a;b;a>x±m ) and hyperbolic functions j.Fx(a;b;wx~m ) and trigonometric functions ^ (a;b;a>x) and various functions Products of jf j (а;*;шдс) THE TRICOMI CONFLUENT HYPERGEOMETRIC FUNCTION V(a,b;z) W(a,b;a>x~ ) and the power function ^?(а,Ь,/(х)) and the exponential function .^Ае )) and the exponential function Домс "") and hyperbolic functions *, the exponential and hyperbolic 502 502 503 503 504 3.36.7. 3.36.8. 3.36.9. 3.36.10 functions ±m 3.36.6. W(a,b;wx ) and trigonometric functions 504 504 506 507 508 508 512 513 514 515 516 517 517 517 520 522 527 528 529 3-37. 3.37.1. 3.37.2. 3.37.3. 338. 3.38.1. 3.38.2. 3.38.3. 3.39. 3.40. 3.40.1. 3.40.2. 3.40.3. 3.40.4. 3.41. 3.41.1. 3.41.2. 3.42. 3.42.1. 3.42.2. CONTENTS W(,a,b-,4>x±m) the exponential and trigonometric functions Products {F1(а;Ь;их11к)'?(а,Ъ;-1йхик) and the power function Products 1/'1(а;&;-ше±3?)Чг(а,&;ше±3?) Ilk Products of ЧГ{а,Ь;е>х ), the power and exponential functions Products of function and the exponential THE GAUSS HYPERGEOMETRIC FUNCTION / ia,b;c;z) F (a,b;c;-ax ) and the power function and algebraic functions 21 F (a,b;c;f(e~x)) and the exponential function THE GENERALIZED HYPERGEOMETRIC FUNCTION rht/k F ((a );(b );шх ) and the power function щ п т yi ' )} and Ше exP°nentiaI function F ((a )±[x]:(b )±[x];a>) and various functions THE MacROBERT ^-FUNCTION THE MEIJER G-FUNCTION G™" «V G-function and the power function G-function and the exponential function G-function with [x] in parameters Products of G-functions THETA-FUNCTIONS B.(z,g), e;(z,?) в.(а/х~,ф, B^v.e) THE FUNCTIONS viz), v(z,q), ц(гЛ), M'. Uz,q) viaxm/2),vit~ax), the power and exponential functions viaxm/2,Q), v(e~'",Q) and the power function xvu 530 530 531 532 532 533 533 535 537 546 546 554 557 558 559 559 560 562 563 564 564 565 566 566 566
xviii 3.42.3. 3.42.4. 3.42.5. 3.43. 3.43.1. CONTENTS т/2 т/2 ',%) and the power function \l(ox"" ,X) and the power function 4,q) and the power function THE CONFLUENT HYPERGEOMETRIC FUNCTIONS OF TWO VARIABLES Confluent hypergeometric functions and the power function APPENDIX. ELEMENTS OF THE THEORY OF THE LAPLACE TRANSFORMATION 1. The Laplace transform and its basic properties 2. The application of the Laplace transformation to the solution of differential and integral equations 3. Some comments and references BIBLIOGRAPHY LIST OF NOTATIONS OF FUNCTIONS AND CONSTANTS LIST OF MATHEMATICAL SYMBOLS 567 568 568 568 568 571 571 584 599 601 607 619 PREFACE This is Volume 4 of the series Integrals and Series. It contains tables of direct Laplace transforms F(p) and includes results previously published in similar books and journals. However, many of the results were obtained by the authors and are being published for the first time. Volume 5 of this series contains tables of inverse Laplace transforms and tables of factorization of various integral transforms. The Laplace transformation is used extensively in various problems of pure and applied mathematics. Particularly widespread and effective is its application to problems arising in the theory of operational calculus and in its applications, embracing the most diverse branches of science and technology. An important advantage of methods using the Laplace transformation lies in the possibility of compiling tables of direct and inverse Laplace transforms of various elementary and special functions commonly encountered in applications. In this volume the tables are arranged in two columns. The left-hand column of each page shows original f(x) and the right-hand column gives the corresponding image F(p). The main text is introduced by a fairly detailed list of contents, from which the required formulas can be easily found. A number of Laplace transforms are expressed in terms of the Meijer G-function. When combined with the table of special cases of the G-function [82], these formulas make it possible to obtain Laplace transforms of various elementary and special functions of mathematical physics. Some other
CONTENTS 3.42.3. 3.42.4. 3.42.5. 3.43. 3.43.1. ml 2 \к(ах"" ,Х) and the power function \к(ах ,X) and the power function ,Q) and the power function THE CONFLUENT HYPERGEOMETRIC FUNCTIONS OF TWO VARIABLES Confluent hypergeometric functions and the power function APPENDIX. ELEMENTS OF THE THEORY OF THE LAPLACE TRANSFORMATION 1. The Laplace transform and its basic properties 2. The application of the Laplace transformation to the solution of differential and integral equations 3. Some comments and references BIBLIOGRAPHY LIST OF NOTATIONS OF FUNCTIONS AND CONSTANTS LIST OF MATHEMATICAL SYMBOLS 567 568 568 568 568 571 571 584 599 601 607 619 PREFACE This is Volume 4 of the series Integrals and Series. It contains tables of direct Laplace transforms F(p) ¦ §f(x)e~pxdx and includes results previously published in similar books and journals. However, many of the results were obtained by the authors and are being published for the first time. Volume 5 of this series contains tables of inverse Laplace transforms and tables of factorization of various integral transforms. The Laplace transformation is used extensively in various problems of pure and applied mathematics. Particularly widespread and effective is its application to problems arising in the theory of operational calculus and in its applications, embracing the most diverse branches of science and technology. An important advantage of methods using the Laplace transformation lies in the possibility of compiling tables of direct and inverse Laplace transforms of various elementary and special functions commonly encountered in applications. In this volume the tables are arranged in two columns. The left-hand column of each page shows original fix) and the right-hand column gives the corresponding image F(p). The main text is introduced by a fairly detailed list of contents, from which the required formulas can be easily found. A number of Laplace transforms are expressed in terms of the Meijer G-function. When combined with the table of special cases of the G-function [82], these formulas make it possible to obtain Laplace transforms of various elementary and special functions of mathematical physics. Some other
PREFACE xx formulas, in particular Laplace transforms of general form and those of piecewise-continuous functions, can be found in [80-82]. For the sake of compactness, abbreviated notation is used. For example, the formula ferf(ojc) | ierfc(ax)) К Re pX); |arga|<ji/4V] |arg а|<я/4 /J is a contraction of the two formnlas erf(ajc) -expl^-yl erfc [Re p>0; |arga|<jt/4] (fc) (in which only the upper sign and the upper expression in the curly brackets are taken) and [|arga|<n/4] (in which only the lower sign and the lower expression in the curly brackets are taken). References to formulas written in the form 3.7.1.1. denote Formula 1 of Subsection 3.7.1.; unless other conditions are indicated, к,1,т,п=0ЛЛ—- The Appendix contains a short survey of the theory of the Laplace transformation, and examples of its applications in problems of differential and integral equations. The bibliographic sources, notations of functions, constants, and mathematical symbols are listed at the end of the book. We would be extremely grateful to any readers who draw our attention to oversights, which are inevitable in a work of this size. Chapter 1. FORMULAS OF GENERAL FORM 1.1. TRANSFORMS CONTAINING ARBITRARY FUNCTIONS 1.1.1. Basic formulas 00 F(p) = \e~pxf(x)dx 1. fix) Y+i'oo 2. 27J J tpxF(p)dp Y-i'oo F(p) 1.1.2. f(A(x)) and algebraic functions 1. f(ax) 2. f(x+a) 3. f(ax+b) 4. Q(x-a)fix-a) [a,bx>] [a>0] 5. ГО, х<Ыа \f(ax+b), x>b/a
PREFACE xx formulas, in particular Laplace transforms of general form and those of piecewise-continuous functions, can be found in [80-82]. For the sake of compactness, abbreviated notation is used. For example, the formula ferf(ajc) ] }erfc(ajc)J Г/RepM); |arga|<jt/4Y] |_\|arg a|<jt/4 /J is a contraction of the two formulas erf(ajc) - 4a' erfc [Rep>0; |arg а|<л/4] (in which only the upper sign and the upper expression in the curly brackets are taken) and erfc(ajc) t|arga|<jt/4] (in which only the lower sign and the lower expression in the curly brackets are taken). References to formulas written in the form 3.7.1.1. denote Formula 1 of Subsection 3.7.1.; unless other conditions are indicated, к,1,т,п=0ЛЛ-— The Appendix contains a short survey of the theory of the Laplace transformation, and examples of its applications in problems of differential and integral equations. The bibliographic sources, notations of functions, constants, and mathematical symbols are listed at the end of the book. We would be extremely grateful to any readers who draw our attention to oversights, which are inevitable in a work of this size. Chapter 1. FORMULAS OF GENERAL FORM 1.1. TRANSFORMS CONTAINING ARBITRARY FUNCTIONS 1.1.1. Basic formulas 1. f(x) , Y+ioo y-tco 1.1.2. f(A(x)) and algebraic functions 1. f(ax) 2. f(x+a) 3. f(ax+b) 4. Q(x-a)f(x-a) a ffl>0] 5. [0, x<b/a \f(ax+b), х>Ыа -1 bp/a a e la,bX>] [c>0] la,bX)) №)-;¦
FORMULAS OF GENERAL FORM 6. f(x+a)=f<jc) 7. f(x+a)=-f(x) 8. 9. xnf(x) 10. x~'lf(x) 11. Q(a-x)xvf(x-a) 12. 13. xf(x2) 14. x /(x ) 15. 16. fix {) [aX» A+*-°") [a>0] l-e'p p (-fc)" 1 \t-pxf(x)dx у f(k,-kP / /we p p v+1 (v+l)^t{-aP)'akht Re v>-l; /(л)-У hxk, \x\<r, r3=aX) к -о * -I oo -4 exp - OO Г -3/2 f p2) u exp -ii— J >- 4J p-i/2 17. TRANSFORMS CONTAININU акшшлм runun OO (x4) J70B/pT)F(u)dK 18. xvf(x~1) [Re v>-2] И-1 >¦ ' Г * 20. /,(x)/,(x) — f F,WF2<P-*)* 1.1.3. /(ф(х)) and non-algebraic functions > 2. 3. Q(x-a) X X (l-e~x S (P) /^ 4. fiat: -a) Rev>-1; Rep>0; 1 аГ(р+1 [а>о] ^u« 5. /(asinhx) f/ (au)F(u)du 0 [a>0] "°,a>0 J
6. sinbaxfix) 7. cosh ax fix) 8. sin ax f(x) 9. cos ax f(x) 10. 9(a-x)x|lX XJJbx)f(x) FORMULAS OF GENERAL FORM -a) -F(p+a)] -j[Fip-a)+Fip+a)] -Fip+ia)] (ц+v+l>T(v+l) v V 2 fill hk , \x\<r, 11. 9(x-a)X ХA-е"Ух X/ (be~x)f(x) 12. (l-e (p+v>r(v+l> x- л п [ Re(p+v»0; /(jc)-Y A e"**, t-o г[Р'ц+11 у Re ц>-1; Rep>0; -x "°; aX) oo ^ )-Y А е"*л, |е""|<г, г>е"°; a>0 *»о * J TRANSFORMS CONTAINING ARBITRARY FUNCTIONS 13. Ыа-х)х* X X ,F,ib;c;b (-ар) ; a* (toa) / ! Z ! p oo , I Re м>-1; /Oc)-Y A jt*, |*|<г, г5чг>0 L t-o J 14. A-е"Ух X ,F, ib;c;t [OO -I Re(i>-1; Rep>0; /Ы-Уле"'* 15. 16. A-е X 2Fj(a;6;c;coe ) X X fix) п. [OO -. RepM); /(D-V 4 e"'', | e"* | <r, rSse""; aX) t-o J (p) ;^ -1; Rep>0; 1-е' --**> t-0 1.1.4. Derivatives of fix) I. fix) PF(p)-fi0)
2. fin\x) FORMULAS OF GENERAL FORM p"F(p) - • (i MM,2 n-1 6. xmfn(x) 7. -[x 8. ел4- if /*'@)-0, it-0,1,2 »-l ¦-...-/'"""(О) ОС ОС ОС Jp J"...pJpF(p)(dp)" p p p F(p)} for (и-т-2) ! for m<n for _ (П-1 ) ! Лп-m-l) n (n-m-l)l' W) for m<n (p-n)F(p-n) TRANSFORMS CONTAINING ARBITRARY H 9. 1.1.5. Integrals containing fix) a 1. jf(x,u)du 2. л x 3. Г...( о о 5. fF(p,u)rfu p~nF(p) [Re p>0] p'aF(p) [Re a,Re p>0] FAp)F.(p)
n -ax Г su,, . , 9. e e f(u)du 10. 11. 12. FORMULAS OF GENERAL FORM F(p) p+a F(p) 13. x ue f(u)du 14. 15. 16. \sinbv(x~u)f(u)du ,- Г -1/2 . 17. и si о (P+a) 2F(p) (P+a) [Re p>0] [Re p>0] Г(у + 1 -у)/2) 2v+1r(l+(p+v)/2) [-l<Re v<Re p] г- } [Re p>0] TRANSFORMS CONTAINING ARBITRARY FUNCTIONS 9 18. x~1/2 [cosh VTu 00 19. (V1/2sin VTu f(u)du 20. f(u)du -f(u)du аи- 1 , 7 xu f (u) 3* J Г(и+1) 24. 25. — ) i-ii' f(u)du [Re p>0] [Re p>0] [Re p>0] P [Re p>0] F(alnp) [a,Re p>0] -lnpF(lnp) [Re p>0] [Re p>0] [Rev<l/2; Re(p+a>>0]
10 FORMULAS OF GENERAL FORM 26. jjQ(VTu)f(u)du 27. 28. 29. j (x-u) lJv(a(x-u))f(u)du 0 Hh) [Re p>0] [Rev>-1; Rep>0] 2 2 p +a 2 p +a' F(p) [Rev>-1; Rep>|Ima|] I p +a [RevX); Rep>|lma|] 30. \(x-ufjy(a(x-u))f(u)du о «¦ Ba)vr(v+l/2) [Rev>-l/2; Rep>|lma|] ¦p+1 p +a X X / (aV (x-u) (x-u+b)) X X /2] f Xf(u)du [Rev>-1; Rep>|lma|; 32. ff]>iexpr «i [2) и F{ 4p_ F(p> [Rev>-1; RepX)] TRANSFORMS CONTAINING ARBITRARY FUNCTIONS 11 33. \jo(a\x2-u2)f(u)du [Rep>|lm a\) 34. a'(gV)-'/2nry) -2 2\ V (p+4 p [Re v>-l; Rep>|lm > 35. —u -f(u)du F(\p2+a2) [Re p>|Ima|] 36. -f(u)du x 37. \j0QVu(x-u))f(u)du >2 2 [Rep>|lma|] [Re p>0] v/2 38. I l^-^l X о X/ (aVu (x-u) )f(u)du [Re v>-l; Re p>0] 39. X/ [Rev>-1; Rep>|Im a|/2]
12 FORMULAS OF GENERAL FORM TRANSFORMS CONTAINING ARBITRARY FUNCTIONS 13 40. -b, tx + u X XJl(aVxTx+uJ)f(u)du x 41. U(a(x-u))f(u)du 42. J(X-, u)"' X X/ (aVx-u)f(u)du 43. X/ (a(x-u))f(u)du X X/ (aV(x-u) (*-«+*)) X y,f(u)du 4S.](x-u)v/2: X/ 46. jlo(a\x2-u2) 0 Xf(u)du X [Re p> |Ima |/2] 1 F(p) [Rev>-1; Rep>|Rea|] p+«lp2-a2 Ftp) [RevX); Rep>|Rea|] [Re v>-l/2; Rep>|Re a\] p -a [Rev>-1; Rep>|Rea|; 1j [4p (Rev>-1; Rep>0] [Rep>|Rea|] 47. 49. /(x) 50. v/2 X X/ (aVu(x-u))f(u)du v/2 л>/2. 52. x I (x+u) X 0 X/ (aVx(x+u))f(u)du 2 2,-1/2 a > [Rev>-1; Rep>|Rea|] X/V(dx -u )f(u)du 48. /(x)+ F(Ap*-a") + a\ = — f(u)du [Rep>|Rea|] 2 2 I p -a -f(u)du tRep>|Rea|] [Re pX)] [Rev>-1; Re p>0] ГГ 2 2 i Ap -a -p 2 [Rev>-1; Re p> | Re a |/2]
14 53. FORMULAS OF GENERAL FORM -bu /x+u 54. 55. [<*-"> ° ' X О XFx(a\c-Mx-u))f(u)du «• иы 57. JV«; (ar)j f(u)du -F(b) [Re p> | Re a |/2] [Re p>0] Г(с)р ¦F(p) [Re cX); Re p>max(O,Re U] [Re p>0] \f(u)du [r«r, 2m+2n^r+q; Re i >-l, it-l,2,...,m; RepM)] (-1)*— [coth (lSp)](~vF(p) V~p [k-Q,V, Rep>0] Chapter 2. ELEMENTARY FUNCTIONS 2.1. THE POWER AND ALGEBRAIC FUNCTIONS 2.1.1. Functions of the form xv, Q(±x + a)xv, [x\n T(v+1 ! 1. X i i | i 2. x" I , n-l/2 3. x 4. 6(a-x)xv 5. b(a-X)xn v+ 1 p [Rev>-1; n! n+ 1 p [Re pX>] Bn-l Rep>0] ) ! !/я _« n+1 / 2 2 p [Re pM» 1 vri P [Rev>-1; n\ n+ 1 P [a>0] k'+l ,Up) a>0] /I ! -ap p"+1 6. 9(a-x n-l/2 ~ ap B/1-1)!! [a>0] (ap/2) 2V
14 FORMULAS OF GENERAL FORM fx+u X /j (cn/x(x+u))f(u)du 54. [Rep>|Rea|/2] [Re p>0] 55. l(x-u)c ' X Г(с)р' X jfj (a;c;Ux-u))f(u)du [Re cX); Re p>max(O,Re X>] *• Jo'.fH-- ^> [Re p>0) 57. Го'"" J rg (a) _1_ Г„т,и+1 ^? p J r+l,q p f(u)du [xq\ Im+ln^r+q; Rei>-1, /t-1,2 m; Rep>0] (-1)*— [ •p 0,l; Rep>0] Chapter 2. ELEMENTARY FUNCTIONS 2.1. THE POWER AND ALGEBRAIC FUNCTIONS 2.1.1. Functions of the form x", 9(±x + a)xv, [x] 1. x1 2. x" n-1/2 3. x' 4. 9(a-x 5. 9<a-x)x 6. 9(a-x)x n-l/2 [Rev>-1; Rep>0] и! n+ 1 P [Re p>01 „n n + 1 /2 2 p [Re pX)] 1 -¦y(v+l,ap) [Rev>-1; aX)] rt ! n ! - ару ( op) n +l n +l ,Ln к ! p p k-0 laX» _1) ,, n-1 [fl>0] (др/2) P -^-!-erf(/a"p)
16 ELEMENTARY FUNCTIONS THE POWER AND ALGEBRAIC FUNCTIONS 17 7. Q(x-a)xv 8. B(x-a)x 9. %(x-a)x -n-l/2 10. 8<jt-a)jt -n-1 П. M 12. 13. M* 1 2. (X+zf pv+l [a,Re pX>] П \ —ар у ( up ) [a,Re p>0] , . n и- 1 /2 + Г(П+1/2) [a.Re p>0] erfc(v^) . ,.t. ,4, A-n-1 it С 1 - ^~Р| Ei(-ap) [a,Re p>OJ 1 [Re p>0] ep+l P(ep-1J [Re p>OJ i " 1-е' к k i И [Re p>0] 2.1.2. Functions of the form (x+z)v, (a-x 1. (x+zf v+ 1 [Rep>0; | arg г | 3. 4. 5. 6. 7. 1 (x+z)' 'x+z x+z 1 (x+z) 3/2 1 U+z) 8. (a-*)' 9. Jt + Z 10. (x-af 11. e(л- nl [Re p>0] [Rep>0; | arg z | <я] J|ep2erfc(/pT) [Rep>0; | arg г | <я] - ep2Ei(-pz) [Rep>0; | arg i \ <л] — - 2Snptpzerfc(.Sp~z~) V~z [Rep>0; |argz|<n] i + peP2Ei(-pz) [Rep>0; |argz|<n) -<zp v + 1 7(v+l,-ap) [Rev>-1; o>0) ep2[Ei(-ap-pz)-Ei(-pz)] [|argz|<n or z>a, a>0] -ap [fl.Re p>0] - t~bpEi(bp-ap) la>b>0]
18 ELEMENTARY FUNCTIONS THE POWER AND ALGEBRAIC FUNCTIONS 19 12. х-а к^0 к\ [a,Re p>0] 2.1.3. Functions of the form xv'(x+zf. Ыар) I. x»(x+z)v 2. x\x+zf V . . • . V 3. x (x±iz) 4. 5. 6. 7. 8. (x + z) 1/2 (x+z) ¦3/2 X+Z x+z n - 1 / 2 ДГ + 2 ; pz) ; Rep>0; |argz|<ji] v+1/2 /i z) p) pi/2 e K [Re v>-l; Rep>0; |argz|<ji] H/2 , [Rev>-1; Rep>0; - -v+1/2 2D_2vl (/277) [Rev>-1; Rep>0; |argz|<n] pl/2 /7 > [Re v>-l; Rep>0; |argz|<n] r<v+l)zvep2r(-v,pz) [Re v>-l; Rep>0; |argz|<n] (-D"+1z"ep2Ei(-p2)+ У (к-т(-г)П k*\ p* [Re p>0; (-l)%z'!-1/2epzerfc(/F7) ?TPl 2, к ш 1 [Rep>0; |argz|<n] 9. 10. 11. ,- 1/2, , 12. x (a-x) 13. (x+z) ¦fx (x+a) 15. x*(x-a)\ 16. ^ _ v , . -v-l/2 17. jc {.x-a) 18. jc (jc- . -v-3/2 ) [Rep>0; |arg z|<n] B(n+l,v+l)a|1+v+11/-1(n+l, n+v+2; -ap) [Re |i,Rev4; a>0] [Rev>-1; a>0] [a>0] [Re ^..Re v>-l; | arg A +e/r) | <л; а>0] r(v+l)a|1+v+1e"ap4r(v+l, ix+v+2; ap) [Rev>-1; a,Rep>0] Г(у + 1)(аУ+и\ [Rev>-1; a,Rep>0] r(l/2-v)e-ap/2 2v [Rev<l/2; o,Rep>0] [Rev<-l/2; a,Rep>0]
20 ELEMENTARY FUNCTIONS 19. x'\x-a)~m 20. na erfc(v'ap) [a,Re pX)] x-a A; [Rev>-1, vt^O; a,Re pX)] 2.1.4. Functions of the form x*(x' +z)v, x*(a-x' )\ for 2. 2 2 . n + 1 +г ) [Hv+1/2(pz)-yv+1/2(pz)] [Re p,Re г>0] [Re ц>-1; Re p,Re z>0] l-v,-ipz)l| [Re v>-1; Re p,Re z>0] 4. n ! 2 dp - cos pz si (pz)] J- [Re p,Re zXJ] — [sinpzci(pz) - 5. '«- 1 / 2 . 2 2 . и + 1 (д: +2 ) n!2" "''dp - sinpz^-C(pz)jj| [Re p,Re z>0] THE POWER AND ALGEBRAIC FUNCTIONS 21 m- 1 / 2 7. 2 2 X +z 8. x»( 9. 10. 11. x"~U2X 1/4 [Re p,Re zXJ] (**)]} l[sit z sin ci(pz) - cos \pz-^j si(pz) j 1 + Ц [Re p,Re i>0] (т-2«!(-р2г2) [Re ц.>-1 I I k i 2 ; RepX); |argz|<n 1/2 [Rev>-1; aXJ] ц + 2 v + 1 ~ 2 B 2 2 1 ii+v+O- a P 2> 2^ ' 4 [Re p.,Re v>-l; a>0] (-l)"/j(f" 2 dp* -X [a>0]
22 12. x»(a-xl/k)v 13. (*2-a 6 (s-fr) 15. ,, n+l 2 24v 16. x (x -a ) 17. X 18. ELEMENTARY FUNCTIONS a p /,-ц), A(ifc,v+1) Д<*,0) [Re |i,Re v>-l; a>0] Г(у+1 +1/2 [Rev>-1; a,Rep>0] i(-ap-6p) - e"opEi(ap-6p)] ; Rep>OJ ^-v; [Re v>-l; a,Re p>0] v + 3/2 я Bа) (-1) [Rev>-1; a,Rep>0] <-l)"rf" dp'1 [a,Re p>0] [a,Re p>0] JL-H3 , THE POWER AND ALGEBRAIC FUNCTIONS 23 19. 20. Ilk .v x -a) 21. 2 2 д: -а 22. 2 2 л: -a 23. 4 4 -a 24. \-ax ilk [a,Re p>0] XG ,0,*+/ I к I a p [Rev>-1; a,Rep>0] Г(у-1) , v-1 I1 P v- 1 T2sinvJi vc [Rev>-1; a,Rep>0] P [a,Re p>0] m-3 - <-l)meapEi(-ap) 4 + 2 sin [ap-^1 d(ap) - 2 cos [ap-^f ] si p i -1 [a,Re p>0] nkl p 1/2 -v-1 -X 2Jt+/,2Jt| Z [Re v>-l; o,Re p>0]
24 25. ELEMENTARY FUNCTIONS Ik УЛ ,A(Jt,(l-v)/2) [Re ц>-1; Re v<l; a,Re pX)] 2.1.5. Functions containing Vx+z 1 (x+2z) /x+T 2. 4. 5. 7. x(x+z) 1/2 erf 2/F [Rep>0; |argz|<n] [Rep>0; |argz|<n] Vwz [Rep>0; |arg w|,|arg erfc(pn>) erfc <pz) [Re v>-l; Re pX); |arg z|<л] v /2 , У Z pz/2,, [Rep>0; | arg i|<n] [Rev>-1; Rep>0; |arg z|<n] [Re p>0; |argz|<n] Sx THE POWER AND ALGEBRAIC FUNCTIONS 25 2.1.6. Functions containing ix ±z for 2. 3. ) ( Г^ Х+Л X +Z \x(x2+z2) 4. [r-0 or 1/2] 5. <(f xNl + zx ±<zx ' [r-0 or 1/2] P PS [Re p,Re г>0] nz _ (pz) -J_ (pz)] [Re p,Re zX)] )~ 2) x Xy (l-2v)/4 N1 [Re p,Re z>0] Д(*,(у±у)/2) ; Rep>0; |argz|<n] / -3 ) / 2 -X / A(Jb,l-r±v/2), Д(*,1/2) [Re ц>-1; RepX);
26 ELEMENTARY FUNCTIONS 6. <Цх-а)[[х+1х2-а2У- Ц^-К -\x-\x2-a2 J J [o,Rep>o] 7. XI \x+ix2-a2) + 8. Г71 XI \х+Лх2-а2) + <[(¦ 9. /A-Л"гХ ГГ, П X | 11-И l-aJ77T)V- [г-0 or 1/2] 10. *ц(а* -1 2aKv(ap) [o,Re pX)] [a,Re p>0] xG ' lRe(tv+k\j.)>-k; Re ц>-1; а>0] 2k+l,2k\ I к , I Д(?,0), Ли, 1/2) . i42 -(-1) Г7Т [a,Re p>0] THE POWER AND ALGEBRAIC FUNCTIONS 27 2.1.7. Functions of [л:] 1. 2. 3. 4. 5. 1 ([*]+!) (-1) 7. [r-0 or 1/2] 8. о in 1 [*] ! (±1 ) [ B [x] (±1 X ] ) I j IX] [Re p>0] [Re pX)] [Re p>0] [Re p>0] — sinh ¦§• arctan e (Re p>0] [Re p>0] [Re p>0] l-e"p fcosh^-i p \cos <e-p/2)}
28 11. 12. 13. 14. ELEMENTARY FUNCTIONS D +cos(e-p/4)] : x] D 1-е -p -cosh /I J cos /i D + sin(e-p/4)] (-1) lx] D [*] + !) ! cp/4 1-е "" /2p + COSh [г - Р I 4 sinhj 4) ¦ fe"p/4)l -sin J I /I JJ VJ ) \ /I ,. в(п-х) lx] ! "• ,-p (n-l) !p exp(e ") Г(п, е lnd [Re pX)] 2.2. THE EXPONENTIAL FUNCTION 2.2.1. exp(-ax ) and the power function 1. e „ v -ax 2. x e з. l p+a [Re(p+a)>0] [Re v>-l; Re(p+a)>0] 1 (p+a) [Rev>-1; b>0] — y(v+l, ab+bp) THE EXPONENTIAL FUNCTION 5. exp(-ax ) 6. 7. x"exp(-ox2) I" 8. x exp(-ax 9. x exp(-ax ) 10. x exp(-ax ) 11. в(х-Ь)ехр(-ах2) 12. (x-b)vtxp(-ax2) 13. ехр(-ал: 1 (P+a) ' [*,Re(p+a)>0] ab+bp) [Re a>0] Ba) (v + 1 ' 7 [Rev>-1; Rea>0] [Re aX)} [Re a>0] [Re <z>0] [Re a>0] a>0] [Re v>-l; A,Re o>0] 19 [Re a>0]
30 14. xvexp(-ax ELEMENTARY FUNCTIONS 15. ехр{-спЛс) 16. 17. 18. д:1/2ехр(-а/3с) 20. F2[-l-' 3' t' --its)- [Rev>-1; Rea>0] [Re pX>] B<z)v+1 18PJ -2v-2 [Rev>-1; Rep>0] ( — 1 I I [Re p>0] a . a +2i , 2+ 4 [Re p>0] [Re p>0] J|exp(^) [Re p>0] erfc [Re p>0] THE EXPONENTIAL FUNCTION 31 22. ^ум;у-' *,/ к , I a I к р Bя) V~T" ' ' ' [Re v>-l; Re pX) for kA, Re a>0 for t>k, Re(p+a)>0 for l-k] //jfe 2.2.2. exp(-ax ) and the power function , v -alx 1. x e 2. 3. (N IV+U/Z f] ^v [Re a,Re p>0] dp [Re a,Re p>0] [Re a,Re p>0] 4. i FtA +2/сГр)е" 2Jp3 [Re a,Re p>0] 5. [Re fl.Re p>0] 6. f1 (v+ 1 ) / 2 aW2 + V - 2 • 4 2 'J 0^2[2 *• 4 J [Re a,Re p>0]
32 7. ELEMENTARY FUNCTIONS j+v, 2+v;- [Re a,Re p>0] -ox ) Bn)(k+l)/2-1 XG°'k. -X [Re a.Re p>0] 2.2.3. exp(-ax ) and algebraic functions 2Г(у+1) Га exP [J •x [Rev>-1; 6,Rep>0] 6 F- ¦fx [A,Re a>0] 6 (x-b)-alx -a /x 4. [A.Re px>] Л pz+a/z — e er [Re a.Re pX); | arg z | < л] 5. 1-е 1-е 7. 9. [Rev>-1; Rea,Rep>0] THE EXPONENTIAL FUNCTION 2.2.4. Functions of the form f(x, e ax, e , e ,...) 1. (l-e 2. ч »,i -ax.v 3. д: A-е ) 4. I * <~1>v [Rev>-m-l; Re a,Re p>0] a dp'1 ia [Rev>-n-l; Re a,Re p>0] [Re v>-2; Re a,Rs p>0] v + l ' ' a [Re v,Re a.Re p>0] [Re a.Re p>0; u-1,2,...] [Rev>-1; Rea,Rep>0] [Re a,Re p>0] [Re a.Re p>0] 33
34 10. z + e. 11. - A x 13. 1-е"* 14. i( 5- -ттт X 16. -L 17. 1A-e 18. l<l-e X (l-e 1 , -ox -bx. (е "e > ELEMENTARY FUNCTIONS -ab (-во , hR az [A,Re a,Re pX); | arg 21 < л] [Rev>-1; Rea,Rep>0; z«S[O,l]] ± In Г(р) + [ P-JI In p ± p + •jlnBn) [Re pX)] ~ In (p+C) [Re(p+a),Re(p+A)>0] ln P+b (Re p>-Re a,-Re A] [Re p>-Re a,-Re b] (p+2a) ln (p+2a)+(p+2i) ln (p+2i) - [Re p>-2Re a,-2Re b) ,n (P+a) (p+b) p(p+a+b) ¦ [Re p>0,-Re a,-Re i,-Re(a+A)] Xln[p+(m-j)a+(n-k)b] [Re p>0,-'«Re a,-;iRe b,-Re(ttm+nb)] THE EXPONENTIAL FUNCTION 35 19. ijd-e 20. -4-(l-e p ln p- (p+a) ln (p+a) - (p+b) ln (p+b) + (p+a+b) ln (p+a+b) [Re pX),-Re a,-Re A,- У (- 1 lP+(m-f)a+(n-k)b]X -k)b] [Re pX),-mRe a,-«Re A,- x X ]J1[l-exp(-a 22. 23. 24. -ax -b x e -e X 1-е -bx 1-е 25. 1-е -bx (- 1 ) a V , . k+m | /—in :;—7, / (~D р+в.+в.+... ijx)] ...+a.\ In p+a.+a.+...+a. / it) { /, /2 / [0<«i^«; Re p>0,Re p>-Re a +a +...+e ; 1У, У2 V the notation ) means that the ith member of the 4 - sum contains I'.' I terms which differ by the subsets of indices /, / ,..., / from the set /-1,2 n [Re c>0; Re p>-Re a,-Re b] '(p+a)/Bc), (p+b+c)/Bc)] 1пГ (p+b)/Bc), (p+a+c)/Bc)J [Re cX); Re p>-Re a,-Re b] 1-е [Re cX); Re p>0,-Re a,-Re 6,-Re(a+A)l [р/с, (p+a+b) IС (p+a)/с, (p+b)lc [ReOO; Rep>O,-Rea,-Re A,-
36 ELEMENTARY FUNCTIONS 1-е 28. 29. - / X I к , v (z + e ) 30. 31. [z+(ex-l)-//*]v 32. q-e"*I1 У (-i)**"*'in to [Re cX); Re pX),-HRe с] p-v4-l; и,») [Rev<l; Re oX); |arg(l-u)|, ,p/a) , >-1; Reo>0; |arg(l+i (In) ) v / ц r Гц+ ll ;^"~ГЫ -k [Re | ; |argz|<n] v , - p :- 1 V r^ x Bя) [Ren>-1; Re p>0; |argz|<n] /,1-р), A(*,l-v) [Re m->-1 ; Re p>0; |arg г|<л] Г(м,+ 1 )пк fJ(,k+l -к a[V-+l U2k+l,2k+l " да,0), да,i/2) ДОМ/2) , Д(/,-р-ц) [Re ц>-1; a,Re p>0] да,о> 33. A-е-*)»1 THE EXPONENTIAL FUNCTION лк_ 37 34. 35. \a-e | 36. A-е-'I1 / / t | v аГ Д(А,О), [Re (x>—1; c,Re <2я) '-' Д(/,1-р), Ji+tMl I _-* J2*+/,2*+/ , да,i/2) [Re ц>-1; a,Rep>0] n(kla) 1 cos(vn/2) L v J *,l-v), Да, (l-v >-1; Rev<l; a,Re pXi] n(kla) Zpcos(vn/2) Lv г x -* Да,1-v), A(A,(l-v)/2) [Re ц>-1; Rev<l; a,Re p>0]
38 37. 38. X 39. A-е Yx ELEMENTARY FUNCTIONS 40. A-е 2Bя) / - 1. A«,H+D. 2k+l,2k+l A(*,0), A(*,(l-v)/2)J [Re ц>-1; Rev<l; o,Re p>0] а) УГ(ц+1)Г(у+1) J X Ы,к+1^ак д(Л0)) д(/ ^ [Re p>0; Re v>-l for 0<ж1, Re | o>l, Re(|i+v)>-l for a-1] а] Г(у+1)Г(р) for А(/,-ц), A(/t,v+l) Mk,Q), Д(/ ,-р-ц.) [Re ц>-1; Re p>0 for o>l, Re v>-l for (Ko<l, Re(p+v)>0 for o-l] v , u. + p а Г I a [Rev>-1; o.RepX)] , Д(*,0) J THE EXPONENTIAL FUNCTION 39 41. (l-e~Vx X(e -Ixlk .v a) -X ЭД+/ 1 P [Re n,Re v>-l; 42. A-е Х)ЦХ дГГ(у+1)Г(р) / p a* A(*,0), [Rev>-1; 0<a<l; Re p>0] 43. A-е Х)ЦХ J_ a [Re n,Re v>-l; o>0] , Д(*,0) 44. A-е /2(+v/2)'~2гГ(ц+1) X 1 + ze -Ixlk X [r-0 or 1/2] ±1,1 VG*'2*+' z* Xt72t+/,2Jt+/|Z A(*,(v±v)/2), Л(/,-р-ц) J [Re ц>-1; 2/:Re p>-( 1+1) /; | arg z 1 <я]
40 45. A-е Vx ELEMENTARY FUNCTIONS /?(+v/2Irr(p) ±i]V [r-0 or 1/2] 46. A-е) )' X H 1 + ze - l x / к [r-0 or 1 ] 47. [r-0 or 1/2] 48. <l-e~Vx x[(wi-e' [r-0 or 1/2] U+''2k+l> A(*,(vTv)/2), ), A(*,l-2r+v/2)] A(*,(v±v)/2), Д(/,-р-ц) J [2tRe n>-(l+l»-2it; Re p>0; |argz|<n] 1 -2 r, /2(+v/2)'гГ(ц+1) A(*,0) , -X C2k,k+l L* A(/t,l-r±v/2), AOU/2), А(/,-р-ц) [Ren>-1; Re p>0; |argz|<it] /2"( + v/2) 'ГГ(р) X^+/,2*+/|Z ДЛ0)> A(*,l-r±v/2), A(*,l-r+v/2)' -1; Re p>0; P. -2r [Re p,Re(p+v)>0] THE EXPONENTIAL FUNCTION 41 49. (l-e )v - -(-lJr(' [r-0 or 1/2] l + t~X-A\ ^I 50. -[(ZJ^77)\ 1-е + lz-^l 1-е~л)"] 51. la-e~x)~+r[[Va+ a-e'x] -(-lJ^- -<l a-e [r-0 or 1/2] 52. (Ье [r-0 or 1/2] p+v/2+l-2r [Re p,Re(p+v)>0] XP 1/2-v p+v-1/2 г'-l [Re p>0] 2 r- 1 0,v,-p [Re p, Re(p+v)>0; 0<а<1 or o>l, Re ц>-1] A(*,0) , A(*,v), A(i.-p-n) [Re p,Re0fcp+/v)>0; 0<a<l or a-l, Re ц>2г-3/2 or a>l. Re ц>-1]
42 53.(l-e~Vx x[a-a-e-x)l/k]-+rx ELEMENTARY FUNCTIONS ¦(л- J 7^ -x, -4 a - ( 1 - e ) [M) or 1/2] / / * А(*,0), A(*,U+v)/2), A(/t,l-2r+v/2) A(?,v) , Д(/,-р-и.) [Re м>-1; Re(*n+/v)>-*; (КЖ1 or o-l, Re p>2r-l/2 or a>l, Rep>0] 1/2 Г I—г '¦ 2.2.5. Functions containing exp[-«x ±b' I. ,1/2 exp (- 2 ч [Re o,Re ft,Re(p+W>0] П 2 1/2 erfc(u )- ,h 2 21 Xexp^-Mx +a J +a - — exp [a'J b -p J erfc(«+) J- [Re c,Re b,Re(p+b)X)] 31 -e^erfcte )erfc(u ) 1 / 2 [Re o,Re *,Re(p+W>0] THE EXPONENTIAL FUNCTION 43 -v- 1 / 2 2+a2) x2 + a2 '(- Xexpl-Wx +a 5. (*-a);1/2X Xexp^-Mx -a 6. (x2-a2>;3/4X Xexp[-Wx -a J -1/2 (x-a) 7. x+a 8. (x+a)v(x2-a2) 4 X (- Xexp 9. (x2-a2);l/2X x-H x 2 - a 2 J X x[( Xexp(frJx2-a J + + (x-^lx2-a2) X Xexp[-Mx -a JJ [Rev<l/2; Re a.Re A,Re(p+A)>0) -— exp I -en p -b ) erfc (f_) - [a,ReA,Re(p+W>0] Jl' 1/4 2 f -1 2 [a,Re *,Re(p )erfc(» X exp (-^x2-a2) [o,Re *,Re(p+W>0] [Rev<l/2; Re o,Re ft,Re(p+A)>0] 2a [o>0; Rep>O|Reft|] 2.2.6. Functions containing exp(/"(x)> 1. exp(-ae -p, a) [Re oX))
44 2. exp(-ae~x) 3. A-е Vexp(-aex) 4. (l-e~Vexp(-ae~x) ELEMENTARY FUNCTIONS a~"y(p, a) [Re p>0] THE EXPONENTIAL FUNCTION 45 (z+e 6. (l-e-x)vexp(-aeb:/i) 7. (l-e'Vx X exp(-ae""'x/*) 8. (l-e-x)vx 9. (l-e"x)vx Xexp[-a(l-e~x) l [Re v>-l; Re pX>] B(p,v+lI/!'1(p;p+v+l; -a) [Rev>-1; RepX)] ^, |p,mp+v+l; - j,el [Rev>-1; Rep>0, |arg(l+z" Г(у+1)^1/2/ — ' Bn)(k~l)/2 к A(Z.-p-v) [Rev>-1; Rea>0] < *- 1 ) / 2 * [** Д(*,0), [Rev>-1; RepX)] Bя)а-1)/2 /r*+'[/t* A(*,0), [Re v>-l; Re pX)] ( * - 1 ) / 2 ' [a [Re a,Re pX)] 10. A-е X)VX v t/k xexp[~a(ex-l)(/ ] 11. (l-e"x)vx Xexp[-a(e*-ir'M] 12. A-eVexpl-- 2.2.7. Functions of [x] 1. a[xl 3. [x]a[xl 4. 5. ( [*]+*) (lx]+b)s a[x] 9(n-je) [Rev>-1; ReaX)] хСГ1,Ы\ [Re a,Re pX)] v/2 a/ [Re v>-l; Re pX)] , A(*,0) [Rep>ln|o|] !-e-P l-q"e-"P p 1-ae p I4—ae-p(l-ae-p)-2 [Rep>ln|c|] 1-е"" P [Re p>ln|o|; ep-l Ф(ае Lin(ae"p) [Rep>ln|e|]
46 7. [x] 8. S. '*1 9. 10. 11. 12. 13. [x] +m a2[x] 2[x]+l (-1)" 2[x]+l a4'*' 4[x] + l a4'*' 4 [x]+3 Ax] 14. f——Q(n-x) lx) ! 15. Ax] ([*]+!)! 16. -^ <2[x] ) ! д2[х] 7 - B ELEMENTARY FUNCTIONS [Rep>ln|o|] cmp e - ] a p [Rep>ln|o|] -p/2 [Re p>21n|a|] [Rep>2ln|a|] l-ae-p/2 p/2) [Re p>4ln | a _-3p/4l-e"p|,.. l + ae"p/4 4a [Rep>41n|a|] f^L1 + ge"^4-2 arctan(ae-p/4)l p [ !-ae p J i 1 ¦* . " P ехр(ае"р)Г(л, ае"р) ep-l [exp(ae p) - [|arge|<n] l-e"pfcosh,..-i cos (ее [|arg о|<л] [|arga|<n] THE EXPONENTIAL FUNCTION 47 18. 4 [*] D[ж] ) ! 9 9' <4[x] ) ! 20. 4 [x] D 1-е -P [cosh(ae p/4) + cos<ae"p/4) P [|arga|<it] 1-е" P [|arga|<it] ep/4 l~2lp" [sinh(ae'p) + sin(ae"p)] [|arga|<n] 1 1- D[x] 22. 4 [x] <4[x]+2)! Д4[х] 3 • D[x]+2)! .4 [x] 24. D[x]+3)! p/4 1-t ^-/2 I <-/2 [|arg а|<л] j- sinh^[cosh(ae"p/4) - cos(ae p/4)] a p [|arga|<it] sinh f sinh U e-p/4l sinM e-p/4 2 1 J 1 1/2 [|argo|<n] 3p/4 1 - e - p e' —^ [sinh(ae "") - sin(ae 2a p [|arga|<ai] 4[x] ,3p/4 l-( 5 5' D[x]+3) ! - COS I 1/2 [|arga|<it] [x] ! [|arga|<n]
48 ELEMENTARY FUNCTIONS THE EXPONENTIAL FUNCTION 49 27. 28. (±l)lx]a[x] ( [*]+!) ! ( [*]+!) a[x] [x] ! ([x + In а - р - Ei(±ae-"p)] [|arga|<n] X ['- n-1 , ..ж x . [x] 2 [x] (- I ) g . [x] (- I ) g [ж] ! [|arg о|<л] 30. 31. -г-. ! B[ж] (±l)[x]a2lx] + ехр(±а2е"р) + 11 [|arg о|<л] B[ж]+2) ! ( [*]+!) / 1 Г *. 1 i 1 V t X (|arg 33. 34. 35. 4'*' !D 0 ep/4(l -e"p) [erf(ae-p/4) [|arg (-1) (±l)[Xl 2M ! ( [ж]+п) 37. (±DIxl 4M ! } 9 iLLilitx]. < B[ж]) ! L J • тЩ^ттт^2 42 43. 44. B ( [ B ( B 1*1 x] ! [*1 [X] Г д:1 [x] ! ( ) ! J + 1 !) ) 1 lx <2Гх1 ) 2 a } > [X] ! M lx] + 1) ! lalx] ([x] ! 1-е - p " г 12 berBae-p/4) 1 . „Л^"'^-' Л Sm% beiBae-p/4 -р/4)-/оBае-р/4) ^[-Jf' -p/2 f. а -p s exp^t^-e X1 [|argo|<it] [Rep>lnD|o|)l [Rep>lnD|o|)l [Rep>lnD|o|)] е"р- [Rep>lnD|o|)] -рЛ/2
50 ELEMENTARY FUNCTIONS HYPERBOLIC FUNCTIONS 51 45. (±D tx] BГл-1 ) ! ^ [x] ! ) 2B [x] + l) 46. (±B[х М-2НП Xa 2[x) [Rep>21nB|a|)] ep-lfarcsin 77 l -p/2)\2 [Re p>21nB/|a|)] 54. (.;.)¦ *¦ Uf Хв(л+1-х) 47. <-l Л Г*1! X\B[x]) ! 2[x] 2.3. HYPERBOLIC FUNCTIONS 2.3.1. Hyperbolic functions of ax ,, (fxl!) [|arga|<n] 1. Tsinhaxl [cosh ax) 2 2 , P -a \p_ [Rep>|Rea|] 49. (-1 2W B[x1 ) ! 51. (-i Xa 52. 53. B Где!) !Ги2Ь1 ( [x] ! L 2[.x]-1 1-е - p expBae p |arga|<n] |argo|<n] [Rep>21nD|a|)] 2Г'-1 [Rep>21nD|o|)] 2. sinh ax 3. cosh fsinh ax\ [cosh axj 5. 1 со shax 1 cosh ax p \\- l " * " ' )—; Rep>n|Rea| 2a2 [Re p>n|Rea|] [Rep>2|Rea|] 2aJ [Rep>-|Reo|] ?_ 2 a 1 a) a [Rep>-2|Re a\]
52 ELEMENTARY FUNCTIONS HYPERBOLIC FUNCTIONS 53 7. sinbax) cosh ax) 8. [cosh ax) lb<x<c} 0 [0<x<ft or x>c] 9. sinh ax sinh bx 10. sinh ax cosh 6x 11. cosh ax cosh 12. s i nhax s i nhbx 13. tanh ox 14. (coshox-1) p -a [p е-Ьр "~2 : р —а cosh ab) fcosho*)' ¦ai V [sinh ab) 2 2 p -a 1^1 [sinhaij (cosh ac] ¦a< [sinh ac) ( ("sinh ac\ Г cosh acj f f 2abp [p2-(a+b) 2] [Rep>|Reo a(p2-a2+b2) P(p2-a2-b2) Ip2-(a+bJ] [p2-(a-bJ] [Rep>|Reo|-|Re*|] [Re p>0] -, 2v+l a | a [Rea>0; Rev>-l/2; Rep>Re(vo)] 15. (cosh x-cosh6)j r(v+l)r(p-v)sinhv6PvP(coth b) [-KRe v<Re p; ft>0] 2.3.2. Hyperbolic functions of ax and the power function (sinh ax) 1. x 2. x [coshaxj fsinhax") [cosh ax) 3. x 4. ж sinh ax"| cosh ax) 2Tsinh ax) [cosh axj 5. x n_1/2jsinhax| [cosh ax) 6. ^1/2(Smhax\ [cosh axj 7. — sinh ax [Rev>-C±l)/2; Rep>|Rea|] ЧП+1 n\ X 2 2 p -a <it+ 1-6) /2] (n+l ) r \2k+6 Rep>|Rea|; 6' [Rep>|Reo|] 2 (p2-a2K[p(p2+3a2) aCp2+a2) [Rep>|Reo|] -I 2 2I/2 p+ip -a ' 2 2 p -a [Rep>|Rea|] J!( «i?±?Z31/2 21 P2~a2 j [Rep>|Rea|] [Rep>|Reo|]
54 ELEMENTARY FUNCTIONS HYPERBOLIC FUNCTIONS 55 8. x~3/2sinhax 9. xv fsinh ax\n 1 [cosh ax) 10. x sinh ax ¦. 1 . , 2n 11. — sinh ax 12. iSinh2n+1 13. ^si 14. s'nh 15. ^si [Rep>|Reo|] [Rev>-l-(l±l)n/2; Rep>n|Rea|] (-1)* m! у m+ 1 [Rep>n|Reo|] x [Rep>2/i|Reo|] -2„-1 * ы t-o . p+Bn-2k+l)a XU1p-Bn-2k + l)a [Rep>B/i+l)|Reo|] [Rep>2|Rea|] [Rep>2|Reo|] - -7 arccoth — + 4- arccoth — [Rep>3|Reo|] 16. —sinh ax x 17. —г 18. s i ahax с oshax 19. x tanh ax 20. — tanh ax 21. x coth ax 22. Q(b-x)x (sinh алЛ 1 [cosh ax) 23. 24. sinh ax Tsinhax"] [cosh ax) + ^arccothj За1мр2-3а2 1П [Rep>3|Reo|] -v- 1 [Rev>0; Rep>-|Reo|] 22v-!a, [Rev>-1; Rep>-|Reo| [Re v>-2; Re pX>] [Re p>0] [Re v,Re p>0] ~ , bp-ab) 1, bp+ab)] [Rev>-(l±l)/2; *>0] 1 v, [4>0] , bp-ab) , bp+ab) [Rep>|Reo|;
56 ELEMENTARY FUNCTIONS HYPERBOLIC FUNCTIONS 57 25. sinh ax cosh ax 26. 1-coshax 27. 28. 29. 30. 31. 32. 1-co shax ax-sinhax ax-si nhax со shax-coshix cos hax-coshbx 33. si ahax-axcоshax - у EH-bp+ab) ± j EH-bp-ab) [Rep>|Rea|; 6>0] [Rep>|Rea|] p\a _ы2±?. p I p-a [Rep>|Rea|] [Rep>|Re a\ 1 I1" 2 2 p -a [Rep>|Rea|,|Re6|] _2 2 [Rep>|Reo|,|Re 6|] s inhax-axcoshax 1 [Rep>|Rea|] 2 p-a [Re p>|Re a|] sinhax-axcosbax 1 Lp^)inZ±R - 2apj 35. s inhax-2axcoshax - 36.1- 1 x xcoshax 37 l a x s inhax 38. 4 - e coth ax 2 T> 2^ 2 x s i nh ax 40. 41. sinhaxs i nhbx s inhaxs i nhbx 42. 43. s inhaxcoshftx s i nh ax xcoshBax) [Rep>|Re a]] ,2-4a'J [Rep>|Rea|3 [a,Re p>0] la) [a,Re p>03 [a,Re p>0] 4 p -(a+6) [Rep>|Reo| + A (p-ft) -a2 (p-a)-A 4 p-(a-*) [Rep>|Reo|+|Re/»|] [Rep>|Re a)- In Г [<z,Re p>0]
58 ELEMENTARY FUNCTIONS HYPERBOLIC FUNCTIONS 59 2.3.3. Hyperbolic functions of ax for b?k and algebraic functions 1. sinh crfx 2. cosh атГх 3. x (sinh afx\ I cosh атГх I 4. x"sinh a/x . n-l/2 , i— 5. д: cosh aYx 6. д: sinh a/x 7. д: sinh ai^3c 8. д: cosh p [Re p>0] [Re p>0) [Re v>-E±l)/4; Re pX>] . и+ 1 . / <-') ^ _ 2 я + 1 я + 1 2 p [Re pX)] [Re p>0] 4p Xexp [Re p>0] 8p7/2 [Re p>0] P [Re p>0] 1 a X 9. xl/25iahafx 10. 11. X 12. д; 1/2sinha/x 13. 14. д; [cosh a-fx) 15. — sinh a-fx 16. x _2/3|sinh« [cosh ад: -1/3 -1/3 2p' [Re p>0] 2p+a2 [Re p>0] icosha^J 2^"J [Re p>0] ^expl^lerf [Re pX)] [Re p>0] [Re p>0] [Re p>0] 3_ 2a [u-2p"'/2(a/3K/2; Re p>0]
60 ELEMENTARY FUNCTIONS „ v/, //<2*L 17. x < (ax ) [cosh v + 1 / 2 - v - 1 z Bл) (/ -] Xl-г iv>-l-4r: RepX>; 6-|^ 18. л l 2 [Re p,Re -1/2 19. Xx + Z cosh a/x ^- /r [2 cosh a/7-*/a/7erf /7 L 2/7 -«""'•erf [Re p,Re i>0] 20. (cosh *xj /x s i nh [ Bn+l ) a/x] i nhaifx 2(p2-*2I/4 fsinhBj [cosh B) 4Л j -, 4Д-1П -2-ij -2Aft; Re p> I Re ft I Lft2-p2 P J [Re p>0] lf 1 + 2 У (-1 [Re pX>] HYPERBOLIC FUNCTIONS 61 23.4. Hyperbolic functions of \x*+xz and algebraic functions Notation: 2^=2 lz(p±\p2-a2) az jnliv ill 2 ~2~, 2. — cosh(<M;c2+xz) [Rep>|Rea|; |argz|<n] (p2-a2)z exp(z ) [Rep>)Rea|; |argr|<n] 3. 1 [cosh(aix +xz)j л A±1)/2 , j-J 2 2, +1/2 (p+-<p -a ) 2a 2 2 p -a - exp(z_) [Rep>|Rea|; ~2""" 2 [Rep>|Rea|; 3 /2' x2+xz)"| +xz)J , ( 2+1 ) / 2 [Rev>-E+l)/4; Rep>|Rea|; 6. x+z /7 [Rep>|Rea|; _ ГегГ(/7~)") Л . 1
62 ELEMENTARY FUNCTIONS 7. (x2+xz)~3/*X (sinhiaix +xz)} 'J . L i 2 Г ^cosh(aix +xz)J [Rep>|Rea|; |argr|<n] : U+4-i;c2+;cz x fsinh(dx2 + z V Ч П 2 [cosh(tfix +z ) x*WV [Rep>|Reo|; |argr|<n] -1/2 9. (siahWx +zl) 1 1 ! 2* 2 Icosh(ai x +z ) гA±1)/2г^Г[Л/4(У1 [Re p> | Re a\; Re rX); » -2"'r(-l p 2 - a 2 ±ia) ] j 2 T 2.3.5. Hyperbolic functions of a\±b +x and algebraic functions Notation: и =2 '*(-! p 2+a2±a), "±= 6(p±"l p2 -a2) -bp/2 ЬГ~2~2] X cosh(ai bx-x ) HYPERBOLIC FUNCTIONS 63 . , 2 2,-1/2 (b -x ) + X cosh(i -X - 2 [Л [*>0] 3. e(x-b)x"sinh(J x2 -b2) a + 1 <r р „ 2 2 , ( ff + 1 ) / 2 ff+ (p -a ) [<r-0 or 1; b>0; Rep>|Reo|] 4. (*-* p -a [6>0; Rep>|Reo|] 2 2 I p -a fsinh(ai x -b ) H f—2 2 [cosh(ai д: -i ) Xexp(-Wp -a ) [6>0; Rep>|Rea|] (x-b) (x + b) ¦ +3 / 2 X fsinh(uix -й ,±1 0; Rev>-1; Rep>|Reo|] -1/2 7. 1 fsinh(aJx2-62) ¦-ft1) 0; Re p>|Rea|]
64 ELEMENTARY FUNCTIONS o (Г. 2 ,2,-l/2w 8. x (x -* ) X Xcosh(a<lx2-*2) (bp) 2 2,,/!^^'» (p-a) [(Г-0 or 1; 6X); Rep>|Rea|l 9. u2-*2>;1/2 Xcosh(aix -4 ) [fc>0; Rep>|Re<z|] fsinh(aJx -b ] 4 na \~2- [b>0; Rep>|Rea|] Y 2.3.6. Hyperbolic functions of ax, the power and exponential functions . fsinh ox) . [cosh ax) [Rev>-C±I)/2; Rep>|Rea|,|Rea|HRe(M] 2. (l-e -bx _ -ex 3. cosh ax -bx -ex . e -e . . 4. stnh ax [Rep>|Rea|,|Rea|+Re b] 2 2 2 Z (p+ft) -a2 [Re p>|Re a|-Re 6,|Re a|-Re c] 2 2 [Re p>|Re a|4{e 6,|Re a|HRe c] HYPERBOLIC FUNCTIONS 65 5. e'bx-e~cxcoshax 1, (p+cJ-g2 у 1П— г 1 (p+bJ [Re (p+ft) X); Re (p+c) > | Re a | J 6. д:~ (ae Xsinh сд: а с ,_ (p+d) 2 -а2 с (p+d) - се xsinh ax) ~ 2 lnp+*-c [Re(p+6)>|Rec|; Re(p+d)>|Re <z|] fsinh ax") 7. exp(-*x2)] \ I cosh axl [Re 8. x exp(-to') fsinhax) [cosh ax) Г(У+1) 2 . 2 ¦)hh X?> I; Re v>-C±l)/2) 9. хехр(-йх [cosh ax) [Re 6>0] 10. xV*/xJ I [cosh axj r. ,-Ь+1)/2„ ,- гх. Гч [(p-a) Kv+lQVbp-ab) ~W*l)/2 + (p+a) [Re6>0; Rep>|Reo|] Kv+1QVbp+ab)]
66 11. ELEMENTARY FUNCTIONS I cosh ax! ax 12. l+ax-e xsi nhax Vn 2b <(Г-3)/4 -2 [ir-0 or 1; Rei>0; Rep>|Rea|] [a,Re pX)] 2.3.7. Hyperbolic functions of ax~ for ft**, the power and algebraic functions 1. e [cosh aSx [Re p>0] 2v ¦ . x e [cosh атГх) ГBу+2) v + 1 Bр) exp a2+b2 [ 8р [Rev>-E±l)/4; Re p>0] з. _Le /x [cosh aiTx [Re p>0] HYPERBOLIC FUNCTIONS 67 4. [cosh(a/x)J [Re*>|Rea|; Re pX)] _ чг/2-2 -6/Jt 5. x e X ('sinh(a/x)>| H I [cosh(a/x)J /it 2р п—3)/4 -2Y b p-a p _ - ., . (<r-3)/4 -2/6 p + a p I + (ft+a) e [<r-l or 3; 6>0; Re6>|Rea|; fsinh(ax+c/x)>| 4 f [cosh(ax+c/x)J (sinh d\ [cosh dj \ , p + t \d-~ la" Ik, и -rs((*+c)(p+a)/F-<;)(p-<2)) ' 4 p-a - ± ±rs (F-c) (p-a) / (b+c) ip+a) )ui\ . 2 2.1/4 .,2 2.1/4 r~(p -a ) ; s-(b -c ) ;-i Re*>|Rec|; Rep>|Rea( 2.3.8. Hyperbolic functions of [x] 1. *Wsinha[x] 1-е -p be p sinha l-2be'pcOsha+b2e-2p [Re p>ln|A| 2. b Ы cosh a [x] 1-е"" 1-*е "cosha [Rep>ln|6| + |Rea|] . [*] 3. , j sinh a [x] 1-е -p ¦ arctanh й е рs inha p co sha [Rep>ln|6| + |Rea|]
68 4. i-T-coshaW ELEMENTARY FUNCTIONS - In A -26e"pcosh a+b2e'2p) 5. lx] fsinh(aW+c)| !lcosh(afx]+c)J [Rep>In|6| + |Rea|] —^ exp(*e~pcosh a) X fsinh(*e"psinh а+сЛ [cosh(*e sinh a+c)) HYPERBOUC FUNCTIONS fsinh 5. j [a(l-e )] cosh 6. sinh (a* 1-е x) cosh [Re p>0] [Re p>0] 69 2.3.9. Hyperbolic functions of fie ) and the exponential function Notation: 6 sinh cosh (ae x) 2. A-е 3. (W sinh cosh sinh ( cosh аг fp+6. 1 . p+6 . a Л (V-1+б' 2 +1; — [Rep>-(l±l)/2] [Rev>-1; Rep>-(l±l)/2] г f?+A 1 e P+6 . a21 1^2[ 2 ;2+6' 2 +V+1;4~J [Rev>-1; Rep>-(l±l)/2] 7. (l- fsinh I cosh S. . [sinh I 1 ' (ah-e~x) 1-е' -x I cosh 9. A-е Vx fSinhr n -x X-l [a(l-e ) cosh a6Bf|+v+l,pl [Re v>-E±l)/4; Re p>0] /ir(p)ff]1/2"Tp/2<fl) l2J Vp-l/2<a) [Re p>0] [Rev>-l-/6/Bt); Rep>0] 4. A-е x)vx cosh ШЛ-р) [Rev>-l; Rep>-/8/<2*)] "(f 10. tanh|4Heax-l 22p/, [Re p>0]
70 ELEMENTARY FUNCTIONS 2.3.10. Functions containing the exponential function of hyperbolic functions 1. exp(-asinhx) 2. exp(- a cosh д:) 3. —-exp(-acosh /x) л esc pn [J (a) - / (a) ] [Re c>0] csc pn cos(px)txp(a cos x)dx - -nlp(a) [Re c>0] [Re a>0] 4. 1 's i nhx ; exp(-a sinh д:) 5. 1 's i nhx 6. sinhvftx exp(-a coth bx) л а 8 + У [Re oX)] [Rea>0; Rep>-l/2] [Rea>0; Rep>Re(vW] TRIGONOMETRIC FUNCTIONS 71 2.4. TRIGONOMETRIC FUNCTIONS 2.4.1. Trigonometric functions of ax Notation: X = —^——'— fsin ax' 1. [cos 2. | sin ax \ 1 +a [Rep>|Ima|] p +a [Re p>|Imo|] 3. j cos ax | 4. sin ад: [Rep>|Ima|] 2 Я. - 1 [Re p>n\lm a\] 5. cos ax 2" ^0 Wp2+(«-2*Ja2 [Re p>n|Im o|] 6. [cos ax) 7. | sin ax p 2a p(p2+4a2) \p2+2a2 [Rep>2|lmo|] r^ [sinh^X !v+1(v+l)aL 2a -1 [Re p>Re v Im a]
72 8. Q(b-x) sin ax cos ax 9. 6 T-*|si 10. 11. Q(n-x) 12. sin x cos д: ("sin ax) [cos ax) [b<x<c] or x>c] ELEMENTARY FUNCTIONS ja\ e~bp fcos ab~\ ±a\ \ [sin abj [*>0] 1 -ре P2 + 1 p+e -pn/ 2 1+e -ря P2+1 \ cos ab) »Usini+ p2+al[ [ [cos ab) (cos ab ±a\ [sin ab fcos асП' 4 • [sin acj ("sin ac) [cos acj TRIGONOMETRIC FUNCTIONS 14. 6 ?-. 15. 16. 8(n-x)sinVA:cos д: 17. 18. sin ax sin /-1 (p2+4X2)(p2+4(X+lJ)...x X ...( 2V [Re v>-l] p2+(v+lJ [Re v>-l] n ! -mpn. —[l-(-l)"" e "'""] X 2abp [p2+(a+bJ][p2+(a-bJ} [Re p>|lma| 73 13. 6 -j-x sin x n ! П U-l П [P X (p2+4(UlJ)...(p2+4(X+/-lJ): X [B/+2X)!]' 19. sin ax cos йд: 20. cos ax cos bx а(р2+а2-Ь2) [p2+(a+*J][ [Rep>|Ima|+|Im *|] P(p2+a2+b2) [p2+(a+bJ][p2+(a-bJ\ [Rep>|Ima| + |Im *|]
74 21. sin "ax ELEMENTARY FUNCTIONS sinfcc cos bx 22 2-=- s inftx s i nnx sinx 24. cos[Bn+l)x]tanx 25. 26. 27. 28. 1 со sh6±s i пах s max со she±s i пах 1 [+2bcosax+ft' s max b+ip+na 2a rt+1 [<z,6,Re pX)] -1 ±(-1) ft-tp+na 2a —1 1 [".ffr + a-z-pl . fft-a-zVH ; a,Re p>0] [Re p>0] n-1 p2+Brt+lJ [Re pX)] [a,Re p>0] [a.Re p>0] l-ft"L P [|*|<I; a,Rep>0] f ; a,Rep>0] TRIGONOMETRIC FUNCTIONS 2.4.2. Trigonometric functions of ax and the power function [cos ax) 75 fsinax"! _ n 2. x [cos axj 3. xl 4. [cos 2 j sin ax] [cos axj 5. x 6. x -l/2p cos axj sin ax cos ax 7. — sin ax + (p-ia) ] 2 2 (v+1)/2 , (p +a ) [cos и [«-(v+l)arcten(a/p); Re v>-C±l)/2; Rep>|Ima|] sin и n! p n+l x A '""I l±l)/2; Rep>|Ima|] lap U+6 , 2 2,2 2 2 (p +a ) [p -a [Rep>|Ima|] (p2+a2K\p(p2-3a2) [Rep>|Im a\] а(Ър2-а2) _ Al ^ ^ Л (-1) JiTT~2 2 dp [ p +a J [Rep>]Im a| 2 +a2 + 1/2 [Rep>|Im a\] arctan — P [Re p>|Im a\\
76 8. x~3/2sinax 9. x sin ax\n cos ax 10. isi , , 1 . 2n+l 11. —sin ax 12. isin 13. -Ц-вп 14. isii ELEMENTARY FUNCTIONS [Rep>|Im a\] sin и [u-(v+l)arctan((fj-2A)a/p); Re v>-l-(l± Re pxi|Im a|] (-1) n + 1 /i - 1 22« Xln [ " [Rep>2n|Ima|] n 2 2 л lnp !2n Л 1* i X arctan Bn-2*+l)a [Rep>Bn+l)|Ima|] [Rep>2|Ima|] [Rep>2|Ima|] •| arctan -^ - j arctan —- [Rep>3|Ima|] TRIGONOMETRIC FUNCTIONS 77 15. —jsin ax 16. fsina^i [cos axj 17. cos (ax-ab) 18. sin ox cos ax 19. 20. 6 be-^U cos л: 21. 1-cosax - arctan ^ ^ arctan ^ [Rep>3|Ima|] . ( 1 ± 1 ) / 2 о [(p+ia)" 7(v+l, bp+iab) + [Rev>-C±l)/2; ЬХ)} . ( 1±1 ) /2, 2 llo(bp-iab) + I0(bp+iab)] ( 1 ± 1 ) / 2 -[(p+id)~*> r(v+l, bp+iab) + lT(y+\,bp-iab)} [Rep>|Ima|; -p л I 2 [Re p>0] (P2 + D : [Re p>0] [Rep>|Ima|]
78 ELEMENTARY FUNCTIONS 22. 1-cosax [Rep>|Ima|] 23. ax-slпах 24. ax-slnax 25. cos ax-co s bx 4*4) + p arccot -д" - a [Rep>|imo|] у ap In 1 +^y + (p +a Jarccot-^ - ap\ L v n ) J [Rep>|lma|] I.P^ I1" 2 2 p +a [Rep>|Ima|,Um 26. со s ax-co s bx 27. 28. slnax-axcosax slnax-axeо sax 2 2 , ¦?¦ In P .+a . - a arctan — + b arctan — 2 2.2 n p p +b ^ [Rep>|Ima|,Hm*|l arccot ?. ap a 2 2 p +a [Rep>|Im a\] a-p arccot' [Rep>|Ima|] 29. slnax-ax со sax yj(p2+a2) arccot ^- [Re p>|Ima|] 30. si sinax X Bax cos ax-sin ax) [Rep>|ima| TRIGONOMETRIC FUNCTIONS 79 31. s i naxs i nix 1 in P2+(a+b) 2 4 p2+(a-*J [Rep>|Imo|+|bn6|] s i naxs i nfcx 2 -~ arctan ^ ^ -r 1 p+a2-b 2 _, 2 + 4 p2+(a+*J [Rep>|ImaH rarctan 2^p . + p-a 2 ,2 33. s i naxсosbx Cretan 27 -f-^ 2 p-a2+*2 4 [Rep>|lma|+|lm6|; ±p2±*2+a2>0] 2.4.3. Trigonometric functions of ax for №k and algebraic functions 1. fsinox' [cos ax' [1-е,.,] [u-p7Do); a,Rep>0] COS U sin и v I Si nax I cos ax iA±I)/2r(v+i) 2Ba) XD ,.,(¦ I 4 8 cl I I v. / j --I} [Rev>-2+l; a,Rep>0]
80 3. x sin ax cos ax 1 Isinax /3c Icos ax 5. —sin ax 6. sin aiTx 7. cos a-ix 8. tan aiTx ELEMENTARY FUNCTIONS i П. ^ Usiau) 2a\0\ ' BaK cos и cos uj L ; a,Rep>0] sin v [cos v г l/4[8aj +na)/(8a); a,Re pX)] [a,Re p>01 2J7eXPlp [Re p>0] [Re p>0] [Re pX)] 9. x fsinaVx [cos a-fx TRIGONOMETRIC FUNCTIONS [secvn 81 10. xnsin ,, n-l/2 i— 11. x cosai'x 12. 13. x sin 14. x cos a/3c 15. 16. x cos a/3c _v+3/2 v+l| 2 p ^CSC vn exP" 8^ X [Re v>-E±l)/4; RepX)] « i. n ¦*¦ i [Re pX)] 22V [Re pX)] [Re pX)] 8p ' [Re pX)] P [Re pX)] ^r + ^ [Re pX)] [Re p>0]
82 ELEMENTARY FUNCTIONS TRIGONOMETRIC FUNCTIONS 83 17. x~ [cos ат/~х 18. x sin атГх 19. x 1/2cos afx 20. x~ 21. — 22. ( . 1/3' _2/3sinax X Usax1'3 '±3/4 [в?]] [Re p>0] [Re p>0] [Re p>0] [Re p>0] я erf [-2-1 [Re p>0] 3(A±1)/2| ш/4, , 3.//4 _ " so,i/3<"e )+ -Ш74- . -3n//4 2; Re p>01 24. -1/2 25. 26. cos - bx\ Si 27. x~U2X s i па тГх 28. cost Bn+l ) атГх] cos a/jF — e erf [Re p,Re z>0] ^ 2тГр> ¦fpz S— -2 si 2V~p' 2 sinh fl/ll 2УТ [Re p,Re i>0] (sinB 2(p2-62I/4 [cos5 14(,рг+Ьг)А-аг, 2В-агс1апF/р)-Л6; aX); Rep>|Im6|] [Re p>0] [Re p>0] 23. Sin cos Bn) '7\ / 1/2p-v-'rU [fa V (i-T,/2 СЦН A(*,6/2),A(*,(l-6)/2)J ; Re v>-l-/6/B?); a,Re p>0] -1/2 29. l-2icosa /3c+6 ' ; a,Rep>0]
84 ELEMENTARY FUNCTIONS -//* 2.4.4. Trigonometric functions of ax'""" and the power function 1. x (sin(a/x)\ 2. (sin(a/x)} [cos(a/x)j 3. x (si [cos(a//x)J ЛШ)П(а (v+l)/2 [Rev>-2; a,Re pX>] (kerB/Jp)J [a,Re p>0] ±2r(-2v-2) sin 1+1)/2 ло'2[~2~' 4 v' 4 J [Re v>-3/2; a,Re pX)] TRIGONOMETRIC FUNCTIONS 85 6. COS ; a,Rep>OJ 2.4.5. Trigonometric functions of ix^+xz and algebraic functions Notation: z. =2 Iz('lp2+<2 ±p) 2. +xz) / >z/2 f? *l[2 217^+^ [Rep>|lma|; |argz|<n] fHp2+.21 \ exp(-z) (p +a )z [Rep>|Ima|; |argz|<n] 5. ^-cos-^ 2 , A 2" [a,Re pX>] [a,Re p>0] 3. (X+z) '/2X f +xz)\ [COS(B1X +Xz)j -1/2 4. (x + z) 1/2 + 1 /2 i p2 + a' - exp(-z) [Rep>|Ime|; |argz|<n] г*\[ z\ 2 2] 1 p +a ' [Rep>|Ima|; |argz|<n]
86 ELEMENTARY FUNCTIONS ( 2+1 ) /2 5. (x + z) /2 (sinicAx | 1 2 Г [cos(oix +xz)J 6. X-1/2 X+Z (sin( X [Rev>-E±l)/4; Rep>|Ima|; |argz|<n) П z [erfi (*^T) •7 ° Z+{ 1 [Rep>|Ima|; |argz|<n) TRIGONOMETRIC FUNCTIONS 87 2.4.6. Trigonometric functions of a\±b +x and algebraic functions Notation: v± = b(\p +a ±p) Xcos(aibx-x ) -bpl2 . ле /„ lb>0) 7. sin(a X 8. (X2+XZ) 1/2X [Rep>|Ima|; |argz|<n) 'H » fsi sin b' и/2„ [zl 2 2 *o^ +a' [cos 6j [6-v arclan(a/p); Rep>|Ima|; |argz|<n) -1/2 9. n 4 X- -2 + z2' +Z I2v+-z(i p г + а г±а); Rep>|Ima|; Re zX)l XC0S(l2 3. 6(x-6)x X Xsin^-lx -i ) 4. (x-6) 1/2X Xcos(a4x2 -b ) 5. ¦2-62: 2 ,2. [u -2 '6(o±i a2-p2); *>0! 0* + 1 СГ ab p % , 2 2, ( o-+ 1 ) / 2 (p +a ) [cr-0 or 1; *X); Rep>|Ima|] ); Rep>|Ima|] [*>0; Rep>|Ima|]
88 ELEMENTARY FUNCTIONS TRIGONOMETRIC FUNCTIONS 89 (х-*) (sin(Jx2-b2) 2 -* ) 7. (x-b) -1/2 x+b л (sin(a«lx2-*2) • J [cos(o<lx2-*2) c a. 1 ,1. -I / 1 8. x (x -b ) + x Xcos(aix 2-62> 9. > •x X costal x -6 ) fsin(o<lx2-*2) 11. 'X X [(x+ix2-b2) + + (х-\хг-Ъ2) } X 2 ГТ, (sin(cAx-b) Xl 2 -b _± 1 / 2 hfa~ Xli'-v-3/4 1/4tot) [*X); Re v>-l; Re p> | Im a | ] 'O VTb T [ 1 lb>0; Rep>|Ima|] '.(¦ / 2 2 , o- / 2 (p -a ) [<r-0 or 1; *>0; Rep>|Ima|] [v \ fy " 0; Rep>|Ima|] [b>0; Rep>|lma|] 2b"\ \K(b\p2+a2) sin d) cos [rf-v arcten(a/p)\ Re p>|Im a|; b>0\ 2.4.7. Trigonometric functions of ax, the power and exponential functions Sin OX cos ax] . ( 1 ± 1 ) / 2 Tb [Rev>-C±l)/2; 2. (l-e"*x) 'sin -i x_ -ex 3. — cos ax -bx _ -ex 4. 7Г- sin ax Rep>|Ima|] -*[*?*)] Rep>|Ima|] a2+(p+c) 2 -1 г 1 a+(p+b) [Re p>|lm a|-Re i,|Im а I-Re c] 5. [Re p>|Im a|-Re i,|Im a|-Re e] e bx-e cxcosax 1 . (p+c) 2+a2 -In (P+*) [Re p>-Re b, I Im a | ч?е с] 6. x~ (аё~ xsin ex - -dx . — ce sin ox) ас 2 c*+(p+b) p+d с [Re p>|Im c|-Re A,|lm a|-Re d] .A±1) / 2 2 _ a{p+b)arccot 2±t 2 c 7. e [cos axj [Re *>0]
90 ELEMENTARY FUNCTIONS 8. 2(sin ax) \ \ [cos ax) 2B*) (v+1)/2 xexp P2-a2 exp [Re v>-C±l)/2; Re *X)] i ap Ab p+i a D {P+iA 9. xe -te2fsi sin ax I cos ax . < 1 + 1 ) / 2 xerfc Xerfc [Re bx» p+i a + (p-ia)exp 1 + 1 4* X 10. [cos axj ,. -1/2 11. x e Icos ax (p+i e)) [Re6>0; Rep>|lma|] sin u cos u [и+- BЙ'/2(J p 2 + a 2±p)'Л; Re *>0; Re p>|Im a] ] 12. x e -m_-bix\sitiax cos ax fsin u [cos и [u : see 2.4.7.11; Re *>0; Rep>|Ima|] TRIGONOMETRIC FUNCTIONS 91 2.4.8. Trigonometric functions of ax for k?k, the power and exponential functions 1. e -6/7 fsi sin avx [cos <z/x . ( I±1 ) / 2 Xerfc Xerfc i I _j_ ^p b-i a [Re p>0] b+ia) 4p , /—fsin a/F - v -bv x 2. x e < [cos a/x i('±1)/2rBv+2) X exp <2p) i ab v+ 1 exp [4P J 4p J ^-2v-2 [Re v>-E±l)/4; Rep>0] - 1 -bVl 3. — e ¦fsin a [cos . (l±l)/2 + exp erfc [Re p>0) , 1 4. — e ¦fx [cos a/x cos [С(ф) - cos 4>J 1-С(ф)-5(ф)] ; Rep>0]
92 ELEMENTARY FUNCTIONS 5. xve [cos(a I x)j 6. xLI e \cos(a/x)) . (l±l)/2 . (l±l)/2r (v+n/2 <*+г [Re 6>|Im a|; Re p>0] r=- fsiny 1 ^ [cos vj ,„.,,/, [v - I2p)ul {\ a1 + b2 ±b)U1; Re6>|Ima|; Re p>0] . -3/2- 1 I lcos(a/x)l sinw Icos (cos v ±V~\ ¦ [v : see 2.4.8.6; Re6>|Ima|; Re p>0] _ -1/2 -6/л: 8. x e X ^r exp [-2rs cos (Л+?) sin/?' [cos D [2Л-агсшп (a/p), 2B-arctan (c/p), . 1 2 1/4 2 2 1/4 r^(p +a ) ; s-(b +c ) ; |; Rep>|Ima|] 9. (sin(ax+c/x)\ Ч Г [cos(ax+c/x)\ (sin?"] [cos E) [A,B,r,s; see 2.4.8.8; E-BVlrs sin И+В); Re b> | Im с |; Re p> | Im a | ] TRIGONOMETRIC FUNCTIONS 93 2.4.9. Trigonometric functions of [x] 1-е -p : ps ina |Rep>ln|*|+|Im a|] 1-е -p 1-be p cosa |Im a\] 3. [x] -b^arctan ^""sinfl l-iepcosa [Rep>ln|6| + |Im [x] -ln(l-2*e"pcosa+*2e2p) [Rep>In|6|+|Ima|] 5. [x] fsin(e[x]+cI cos(a[x]+c)l e exp(*e~pcos a) X |sin(ie sina+c)| X [cos (be sin a+c)) 2.4.10. Trigonometric functions of f(e~ > and the exponential function f1! Notation: 6=< > 0 sin -x 1. < (ae x) cos Г (sin я] арГ(р)Ы WBa,0) + I [cos a I p cos [sin a [Re p>-6]
94 ELEMENTARY FUNCTIONS Jsin (ae x) cos 2 г [Rev>-I; 3. ' (ae~x) cos 4. A-е sin cos 5. <l-e~Vx sin cos [Re v>-I; Re p>-6] . v + 1 l,2k+l [Rev>-I; Rep>-/6/B*)] „o,*+/1 Bk_) uat+//H a) [Rev>-I; a.Re pX)] Sin -x 6. 1 [a(l-e'x)] I cos +2±l = nP)Up+sBa,0) [Re p>0] 7. A-e'Vx sin cos a°B(v+6+l,pJF3| f(v+6+l)/2 6+1/2, (p+v+6+l)/2, (v+6)/2+l; -a IA <p+v+6)/2+l [Rev>-C±l)/2: Rep>0] TRIGONOMETRIC FUNCTIONS 95 (sin | 8. \ (ail-e x) cos 1/2-р [Re p>0] 1 + 1 9. A-e-Vx fsin . -1 ;] {ail-e x)\ [cos J ,P\ X [Re v>-E±0/4; Re p>0] sin cos ад l/2-p p-1/2 (a)) (a)i [Re p>0] 11. A-c Sin [aX cos 2XJ A(/fc,6/2),A(/Ul-6)/2),Aa,-p-v) [Rev>-l-/6/B*); Re p>0] sin 12. A-е? [ax Icos тГШТ(р) ro,k+i \Bk) 2* ; a,Rep>0] 13. Sin |—r- X-l (a\e -1) cos (sin pit) (-2p) X [cos pn) [Rev>-E±l)/4; Re p>0]
96 ELEMENTARY FUNCTIONS TRIGONOMETRIC FUNCTIONS 97 14. (l-e Xsinia'ie x-l) 15. U-<fV1/2X Xcos(a4e~x-1) 2" [a,Re p>0] Г(р+1/2) [a,Re p>0] 2.4.11. Trigonometric and hyperbolic functions fsinh ax] 1. i win bx [cosh axj 2ap p2+a2+b2 [Rep>|Rea| -x v sln 16. A-е V-j [aX COS 17. п-е'У sin [ cos х«Гх-1Г1/2] [sin 18. A-eV-l lax cos [Re v>-l-/6/BJfc); a.Re p>0] [Rev>-3/2; aX); Re p>-(l±l)/4] Vnkl ¦¦ ,p + v Jfc+Л/ (fa Bя) ' [Rev>-l-//Bt); aX); Re p>-lS/ Ok) ] fsinh ax} 2. -I >sinax I cosh ад; I fsinh ax\ 3. 1 Vcosbx (cosh ax) 6. — sinh ax sin ax 2ap [Rep>|Rea| 2 2_, 2 p -a +b [p2+(ia+bJ][p2+(ia-bJ]\p [Rep>|Rea| + |Im4|] 4. i i с J. fsinh «1 [cosh ax) fs'n sinhvax-j (cos s ax bx\ bx) 1 I [Re p>|Re a\ A± 2V f Г/ [ \(p~Vi x г a(p2-2a2 P3 l)/2r + 2 a J v + 1) l+r L(p+va-i«/<2a)J [<p+va+J6)/Ba)JJ [Re v>-C±l)/2; Re p>|Re(va)| ^arctan^y [Rep>|Rea|
98 ELEMENTARY FUNCTIONS 7. — cosh ax sin ax 8. — sinh ax cos ax 9. — A -cosh ax cos ax) 10. —- sinh ax sin ax x 11. —X x X <l-cosh ax cos ax) 12. ^4 s l пах s i ahbx fcosh ?/x sin a/3c 13. [sinh ?/x cos a/x 1 Bа Л 1 f2a Л ~2 arctan —— +1 + -у arctan 1 [Re p>|Re a| + |Im a\) 1, р 4 p-2ap+2a [Rep>|Rea| + |Ima|] [Rep>|Re a| f [arctan fl|+ll + arctan f^- p-2ap+2a" * p' [Re p>|Re а|ч f [arctan (Ц +l] + arctan (Ц -l) - [Rep>|Re a| 2i, 1 L,(p+b+i [*{ b+ia) . (p+b-ia)] 2b J *[ 2b Jj [Rep>|Re й| .3/2 { [Re p>0] TRIGONOMETRIC FUNCTIONS 99 14. *1/2X Tsinha/x sin a/x" [cosh a/x cos a/x 3/2 [Re p>0] sin/ cos1 2 [COS /• 2 15. X sinh bVx sin a/3T| cosh ftVT cos aVT [Re p>0] 16. fcosh a/x sin sinh a/x cos a/x [Re pX)] 17. fsinha/x sina/x [cosh a/3c cos a/3c cos +лр)/Dр); Re p>0] 18. fcosh a-fx sin a/x I sinh a/x cos a/x л Га , 1/4Цр sin « [u-(o +яр)/Dр); Re p>0] 19. i fcosh a/x sin a/3c I sinh a/x cos a/x [Re p>0]
100 ELEMENTARY FUNCTIONS 20. x~l/2coshbSxx (sin ax) X cos ax 21. x~3/4X 22. ;T3/4X X (rosh a/3c± 23. cos (a sinh x) ¦exp - sinf Ap +4 a I I cos t» [v-ab1/ Ырг+Ааг) +2~'arctan (a/p); Re p> | Im a | ] [а2/<8р)П X (sinh a/3c±sin a /3c) [Re p>0] [Re pX>] ¦j cscpn U (w) + J (-ta) - [a,Re p>0] 24. Xsinh cosha-cosx [Re a,Re p>0] 2.5. THE LOGAMTHMIC FUNCTION 2.5.1. In (ax) and algebraic functions 1. Inx --(C [Re p>0] 2. [Re p>0] THE LOGARITHMIC FUNCTION 101 3. xlnx >4- 1 -lnp] . n-l/2, 5. д; In x [RepX); Re v>-IJ n ! V 1 UI.±-c-*' [Re pX)] iv^ft ,;; 2 > т4—r-c-inDp) 2 я n + 1 / 2 I ,.4, 2 Л - 1 F/1 [Re pX)] 6. —— \nx -J^[C + lnDp)] [Re pX)] 7. J " V 4- 1 dv I p [RepX); Rev>-1] 8. xv\n2x 9. 6(a-;c)ln x [Rep>0; Rev>-1] lrr.- - e^ln a - In p - C] 10. 11. [eln [a,Re p>0]
102 ELEMENTARY FUNCTIONS 12. 6(;c-a)ln- [a,Re p>0] -j eap [Ei2(-ap) - 2 In a Ei(-2ap)] [a,Re p>0] [a.Re p>0] 15. B- 1 [Re p>0] 2.5.2. ln"(ax +b) and algebraic functions 1. Ыах+Ь) 3. 4. x lntec+ft) [a>0; [a,4,Re p>0] [a>0; |argi|<n] eb"Ei(ap-bp)] [|arg(ax+4) |<л for x>0; Re v>-l for 4тЧ; Re v>-2 for 6-1; Re p>0] THE LOGARITHMIC FUNCTION 103 6. (ax+b) X Ei(-ap-bp)} [Re p>0] (-1)"T(|H ,11 Г v" \h~ X. „I* rfv L [|argto+M Re ц>-п-1 * 1 Ц-4 |<к for for ft-1; X 1 ,, v,*i.^PI ¦1,|A V+^, fljj x>0; Re ц.>-1 for Re p>0] 7. 4-[In a - siiap)sia(ap) - ci(ap)cos(ap)] [Re a.Re p>0] 8. i[2 In a - eapEi(-ap) - . [a,Re p>0] 9. 10. Inl 1-aVl [Re a,Re p>0] [a.Re p>0] 11. _*.2*+/ \_k (In) к + ( / - 3 ) / 2 2k+l,2k akx Д(/,-у),Д(Л,1),Д(*.1) [Re v>-l-l/k; |arg a|<л; Re p>0] ]
104 12. xvlaa+ax~'/k) ELEMENTARY FUNCTIONS 13. 14. xvln|l-a;c -//4, <2я)*+ 4 + < /-3) /2 u2/t+/,2/t X |- д<*,о),да,о) [Re v>-l; | arg a | <л; Re p>0] ] ( /-3 ) / 2 34+Z.34 i(/,-v) , Д(&, 1), Д(Л x I-' l-Z/i; a,Rep>0]] /2 'ffl' Д(А,0),Д(Л,0),Д(Л,1/2) [Rev>-1; a,Re p>0] 15. In In Г(x + a) (x+b)] x + a+6 17. X.la[x(a-x)] — [cosh(ap)shi(ap) - sinh(ap)chi(ap)] [a,Re p>0] e(a+b)p[EH-ab)Ei(-bp) - XEi(-ap-bp)] [Rep>0; [a>0] i ap 18. [a>0] THE LOGARITHMIC FUNCTION 105 2.5.3. Functions of the form In Их* +a+ix+ ) and algebraic functions а+т/x-i a) [Rep>0; | arg 21 <л] [a,Re p>0] 3. "apl i-[AT0(ap) + e"aplnBa)] (a,Re p>0] fX + Z [Rep>0; |argz|<ji] 7. ; +z [a,Re pX)] -YQ(pz)] +1 In z [Re p,Re r>0] [Re p,Re r>0] о 1 , -Y0(t)]dt ap [a,Re p>0]
106 ELEMENTARY FUNCTIONS 9. In(<lx +z i X +Z 10. ln(«l x2+2xz+x+z) 11. <!+«"*> -X l+axl/k ± 12. l+ax -ilk ±\ax-llk) 13. e(a-x)xvx Xln I - 14. -Y0(pz)] [Re p,Re 2>0] [Re p>0; |argi|<n] X | — Д(Л,1/2),Д(Л,0) [r-0 or 1/2; Re v>-l-//BA); |arga|<n; Re p>0] 2r-l/2 -v-1 2 /2 -*y x | — A(k,r),A(k,r) [r-0 or 1/2; Re v>-l-r//A; |arga|<n; Re p>0] , v + 1 / 2 -v-1 a-lX и1 A(k,0),A(k,0) [Re v>-l; a>0] / / 2-1 i+Z,2i X A(k,0),A(k,l/2) [a,Re p>0] THE LOGARITHMIC FUNCTION 2.5.4. In"*, the power and exponential functions 107 . v -ax . n 1. x e In x v±JJ__ ш ( v±i I. e!II (v + i ) /2 Y[ 2 '2' 4aJJ r(v+i: Da) [Rev>-1; Rea>0] or [Rev>-1; ; Re p>0] - v -aVT. n 2. x e In x 2 '1'4pl [Re v>-l; Re p>0] « v -a/x, n 3. x e )n x (v+l)/2 4. 1 -l±l/2 -a/x, 5. x e In д; [Re a,Re p>0] [Re a,Re p>0] [Re a,Re p>0] 2.5.5. The logarithmic function of f(e x) and the exponential function [a>0; Re p>-a]
108 2. 3. il-e ELEMENTARY FUNCTIONS [aX); Re p>-2a] [Re v>-l; a>0; Re p>-a] [Rev>-I; a>0; Rep>-/ia] 5. * 2ax+ +... [a>0; Rep>-o] 7. 8. x >ln(l + e "J)-ln2 , -ад: 1-е [aX); Re [a>0; Re p>-a] oo [a,Re v,Re pX)] 9. [Rev>-1; Rep>0; |arga|<n] THE LOGARITHMIC FUNCTION 109 10. A-e'Vx и. (i-<fVx Xln|l-ae 12. (l-e Xln|l-ae -te/i. 13. 14. 15. A-cVx Xln[l+a(l-e x)t/k] [Re v>-l; | arg a | <n; Re p>-llk] I , + l 3k+t,3k+l Д<и-р),Д(*,0),Д№,1),Д<*,1/2) [Rev>-1; a,Rep>0] лГ(у + 1 v+1 i+/,3W [Rev>-1; aX); Rep>-l/k] + 2^Г Р 2p [p/a+m [OX); Rep>0] [aX); Re p>0] I PT(p) ck,2M \ к
по 16. A-е Vln[l+ ELEMENTARY FUNCTIONS I PT(p) r,2k,k+l \-к 17. (l-e~Vx 18. (l-e Xlan+a(ex-l)l/k] 20. A-е Vx [Re v>-l; | arg a | <n; Re p>0] пГ(р) -*.2 Aa,l),A(A,0)>A(Jfc,l/2),AU,-p-v) [Re v>-l-l/k; a.Re p>0] лГ(р) г.гк.к+1 -к -аA-е ) 1 1 е"Ух A(/,-v) Д(?,0), Rev>-1; <2л)*+ ,Д<*,0> a,Re p>0] lP + V ,да, 3 + V + 1) /2 1) ,дал/2) 1 „2Ы,*+/ -/t 2*+/2Jfc+/M7 [Re v>-l-l/k; |arga|<n; Re p>0] .ft» ГГГГ2 ^ Bn) T(p+v+l) Д(/,1-р),Д(Л,1),Д(^,1) [Re v>-l; | arg a | <л; Re p>-l/k) THE LOGARITHMIC FUNCTION 111 21. (l-e'Vx nlp + v „2i+/,i+/ I -i Bл.) ' [Re v>-l-//?; |arga|<n; Re p>0] 22. (l-e'Vx [Re v>-l; | arg a | <n; Re p>-l/k] A+ae ) (TikJr- Xln(-Jl+ae"/x/i± [r-0 or 1/2; Re v>-l; Rep>-//B/t); |arga|<n] XlnHl+ае ± a. J 2r ' / 2 -* [r-0 or 1/2; Rev>-1; Rep>-rl/k; |arga|<n] 25. 9(a-x)(l-e x)v X X In [e' Ha-x)/Ok) - i v + I 2fc+l ,2s+/ -1] [a>0; Re.
112 26. eOc-a)(l-e~Vx ELEMENTARY FUNCTIONS ±ГеГ[х~а) /k -1] [a, Re p>0] al THE LOGARITHMIC FUNCTION 2.5.7. The logarithmic and trigonometric functions 113 1. sin ax In x pKa1 [Rep>|Ima|] p arctan — - Ca - -| In (p2+a2) 2.5.6. The logarithmic and hyperbolic functions fsinhaxl 1. \ Unx [cosh ax) 1 2. <*2-aV1/2X Xsinh(Mx -a )x Xln хЛхг-аг s inh(H x2+2xz Xln- 4. ln(sinhax) 5. In (cosh ax) Jx2+2xz i X +2XZ+X + Z 2(p-a) [Rep>|Rea|] —-rln(p-a) [a>0; Re p>|Rei|] ¦In (p+a) - [Rep>|Re4|; [a,Re p>0] 2. cos ax In x (sinax) 3. xvj llnx ^cos ax) 4. — sin ax In x 5. 6. (x2-fl2)-1/2X I 2 2 x+4x -a Xln 7. ln|sinax| ^—j a arctan ^ + Cp + ¦?¦ In(p2+a ) +a L " J [Rep>|Ima|l , 2 2. ( V+ 1 ) / 2 I , (p +a ) [cos b sin ft hMv+1) - fcot A| 1 }• arctan — [tan ft] PJ [6-(v+l)arctan(a/p); Re v>-C±l)/2; Rep>|Ima|] - arctan — С + A In (p2+a ) [Rep>|Im a|J [a,Re p>0] arctan (pH [a>0; Rep>|Ima|] [a,Re p>0] [a,Re p>0]
114 ELEMENTARY FUNCTIONS 8. ln|cosax| 9. la(l-2bcosax+b2) [a,Re pX)] • 2 , 2 г , г a b \ 1 p 1 A,1,l-ip/a;b l2,2-ip/fl 1,1,1+ip I a;b a+i p 3 2 L, _. , F [2,2+ip/a [a,4,Re p>0] 2.6. INVERSE TRIGONOMETRIC FUNCTIONS Some formulas containing inverse trigonometric functions can be obtained by means of the relations arcsin x = arccos il-д: = 7 ~ arccos x, O^x^l; arctan x = arccot — = 5- - arccot x = arccos = arcsin —-— X 2. 1 z- 1 ir 2.6.1. Inverse trigonometric functions of algebraic functions 1. Q(a-x)X farcsin (x/a) X-l [arccos (x/a) IQ(ap) - LQ(ap) - -ap [a>0] farcsin (x/a)} (v+D/2, v/2+1; 1/2, (v+3)/2, v/2+1, Iarccos 2 3 3/2, 2 2, (v+3)/2; a' v/2+2, v/2+2 p y(v+l,ap) [Re v>-l-(l±l)/2; a>0] INVERSE TRIGONOMETRIC FUNCTIONS 115 3. 6(a-x)xX farcsin (x/a)} X [arccos (x/a)) 2p f?+ I0(ap)- apl —QD ~QD apLx(ap)- 1+ A-е -ape ) 4. I arccos 1 / 2 -v-1 G, , 2 4Bя)(/-3)/2 МЛ 2/1ТBя) A №,1/2) I /2-1 k+MMl ; a>0] I I a p 0, 5. 9(x-a)X farcsin (x/a) X I I arccos (x/a) [a,Re p>0] 6. 9(х-а)д: X farcsin (x/a) [arccos (x/a) r- v + t Г -v/2 . vna r A I v/2+l;aV/4 1/2, v/2+1, -v/2 A/2, ±ap~vr<v) F (v+3)/2,v/2+2j 3l3/2, 1/2 ;a2p2/4 np Hv+1) [a.Re p>0]
116 7. 6(x-a)jcvx farcsin f\I/Bk) ELEMENTARY FUNCTIONS x I arccos \a' 8. e[x-\a2+b2) x X arcsin - 9. arccos- x+ix2+a2 о.м 1 / 2 -v- 1 О I 2/2ТBя)//2' / a p la.Re p>0] oo - f [cosh b(p-t)K [Aa2+b P P la,b,p>0] )dt [Re a,Re p>0] 2.6.2. Inverse trigonometric functions of the exponential function farcsin 2. 6(a-x)(l-e Vx farcsin ; (arccos [e JJ [a>0; Re p>- я 1 T(p+v) of i'*v -al 1. /,p), 0 J 2/ Л+/+1.0 -al 1, да,i/2), о j [Rev>-1; a>0] INVERSE TRIGONOMETRIC FUNCTIONS 117 3. 6(x-a)(l-e~Vx farcsin . I [e<«-««^j [arccos дал), [а>0; „1.1 al G., ... e 0,Д(/,-у-р) al Ш,\-р), о, ± 2.6.3. Trigonometric functions of arccos (ал Notation: Ь= , it. 2 2. F-D/2 1. jr(a -x ) X v arccos f)} i M-+ в + 1 Г(ц+1)/2, ц/2+1; a2p2/4l ^ 3[l/2,(M-y+6)/2+l,(M.-y+6)/2+lJ 6 ц + 6 + 1 яу ar p Гц+2 ХГ IX [(ц+у+б+3) /2, (ц-у+6+3) /2J 2 3C/2,(Ц+у+6+3)/2>(ц-у+6+3)/2] [Re ц>-1; а>0] 2. ;Г1/2(а2-*2Г1/2х 5 v arccos-^- 2) J-Bv-l)/4[^JJ [яХ)]
118 , -1/2. 2 2,-1/2 3. jc (a -x ), x ELEMENTARY FUNCTIONS П 2n+j\ arccos^j 4. a I/Bk) (-1 2 n[ 2J n+i/2 /F-1)/B*),1/2-в,ц+1/2 -x , A0fc,F-v+l)/2) дал/2) [Re )i>-l; a>0] 5. ; aV/4' 41/2, ц/2+1, (ц+1)/2+б -ц+1 6 ц+8+1 _ - 2 nv a1^ рГ -ц.-6-l X ^3/2, (ц+3)/2, ц/2+6+1 X2f3 , l/2+б -1) X 2 2 p+v/2-6, l-v/2-б; ap/4 2 3[3/2-б, 1-Ц./2-6, C-ц)/2-6 [a, Re p>0] INVERSE TRIGONOMETRIC FUNCTIONS 119 6. . 2 2-1/2 (x -a ) _,_ 1/2 X cos v arccos f) [a,Re p>0] 7. M 6- 1 ) / ( 2* ) , 1 / 2-6 ^ |i+ 1 / 2 а р ла,1/2), ла.б [a,Re p>0] 2.6.4. Trigonometric functions of arccos f(fx) and the exponential function Notation: 6 1. sin(v arccos e ) 2p/a+la [a,Re p>0] p I a 2a 2. (l- -ax. X cos(v arccos e ) ~V I ЛГп fp + av + g p-av + a)"I 2a • 2a j\ -l [a,Re p>0] 3. e(a-jc)(l-e «{«•[* (sin Г /(x-a)/Bi)l\ x|cosLvarccose J; fv-1 -/яГ л(;д-р), да,1/2), AD,v/2), Aa,-v/2), [Re i
120 4. 6(x-a)(l-e~V X ELEMENTARY FUNCTIONS x^tvarccosx xe cos Ha-x)/Bk) fv NУШ {2k) /|l + Aa,F-v+l)/2) [Re |i>-l; a,Re p>0] 2.6.5. arctan (ax ), arccot(a;c+ ) and the power function 1. farctan ax] [arccot ax) [Re o,Re p>0] 2. jc'J farctan ал| (arccot ax) яГ(у+1) ГП-Г(у) f1' v+1 W apv 2 3[ + na~v~ ' vn „ fv + 1.1 v + 3 p2l ~2(v+l)CSC2 Г2 2 '2'T'2 v 4a ' [Rev>-C±l)/2; Rea,Rep>0) 3. farctan ал) [arccot ax) + - a [Re a,Re p>0] INVERSE TRIGONOMETRIC FUNCTIONS 121 4. arctan [Re a,Re p>0) 5. arctan(a/3c+l) + + sin: [Re a.Re p>0] 6. xvarctan aVx яГ(у+1) па t r. v+i 2 (v+1)cosvn1 ip Г(у+1/2) v+l/2 /22' *' 2' 2 ар [Rev>-3/2; Reo,Rep>0) 7. x arctan [ax ] - ._ i+(/-3)/2 *+/4 2 Bя) A(/,-v), ла,1/2), да,i/2), о [Re v>-l -// Bi); Re a,Re p>0] ,t+1 a x 8. x arctan — 1/2, 1; -a'pV4 2'31з/2, (l-v)/2, l-v/2 2 2-, v+l vi r. fv+1 1 v + 3 a p 1 -a cos—2 l 21—2—' ~2'—2 ' 4 I v -a v+2 a P 2 2 p [Re v>-l; Re a,Re p>0]
122 9. x arctan - ELEMENTARY FUNCTIONS n Л1/2'1; а2р ¦Н)л 3/2, 1/2-v 2 v + 2 [Rev>-1; Rea.RepX)) 4. A-е Vx INVERSE TRIGONOMETRIC FUNCTIONS I Xarctan[a(e -1) d1: 2Bn)*+'r(v+p+l) ~ ,1-p), Да,1/2), 1 ) , дал/2), о) [Re v>-l-//Byfc); Rep>0; |arga|<n] 123 -2k 10. X arctan [ax~'/ak)] k+l,k+l -2k 2Bя) k* ( / -3 ) / 2 *+/+!,*+! I 0, [Re v>-l; Re a,Re p>0] 2.6.6. arctan/(e ), arccot/(e *) and the exponential function 5. (l-e"x)vX Xarctan[a(e -1) /^^-'(p+v+l)^ 2Bn)*+/ ' дал-/», дал/2), i Aa,v+D, дал/2), о [Re v>-l; Re p>-l/ Bk); | arg a | <л] 2k [arctan 1. \ It?") [arccot 2. (l-e X arctan 3. A-е-Ух X arctan Г [Rep>-(l±l)Rea/2] Г(у+1)г-"'1 дал/2), i A(/,-v-p), О [Re v>-t; Re p>-// Bk); | arg а | <л] Г (v+1 ) /~v ' rk*l,k*l I 2k ,1/2), Ml,p+v+l) ,1/2), 0 [Re v>-l; Re pX); | arg a | <n] 6. A-е Xarctan[a(l-e -x I/Bk). ) ] 7. (l-e~Vx Xarctan[a(l-e Г(р) 2*n*"'zp Да,1/2), 1 [Re v>-l -// B*); Re p>0; | arg a | <я] Да, 1/2), Г(р) 2 я / -2* 0, , 1/2), A(/,-v-p) [Re v>-l; Re p>0; I arg a | <л]
124 ELEMENTARY FUNCTIONS INVERSE TRIGONOMETRIC FUNCTIONS 125 2.6.7. Trigonometric functions of arctan (ax ) Notation ion: 6={J} X X (cos (ap/2) j >X [Rev>-C±l)/2; Re a.Re p>0] _„_„_, fsin(vji/2)] p ц T(n+v+l)J l (cos(vji/2)J , -v/2; -a2p2/4 1/2, - + vap ц [sin(vn/2)J 2; -a2p2/4 3/2, (l-n-v)/2, l- + a|1+v+2/>B(-n-v-2,n+2) X2f3 (cos(ця/2)J Гц/2+1, (ц+3)/2; -a2p2/4 1 (з/2, 2+(ц+у)/2, C+n+v)/2J [sin(nji/2)J Г(ц+1)/2, ц/2+1; -a2p2/4 A/2, C+ц+у)/2 [Re |i>-l-a; Re a,Re p>0] X2f3 3. . v. 2 ..v/2 4. JC (JC +1) X , p., Ilk l/k.W2 5. x (x +a ) x ]} i 6. /2 X cos (v arctan 7. arctan as'mbx \-acosbx -V-1.-VH+1/2 v I / Bk) 2k+l,2k да,в/2), [Re (t>-l-/8/(it); Re p>O;|arg а|<я*//) /яГ(у+1) 2pv+wz fcos(p/2+a)l ±\ к (sin(p/2+a)J [Re v>-l; Re p>0; | arg a | <n] ,.1/2B)] --v- 1 , - v , |i+ 1 / 2 4 I / Bk) Лк,к*1 Д(А,1/2) [Re ц>-1: Re p>0; | arg a \ <лк/0 s-a/2D \2p-a [a,Re p>0] 00 ь У oo к a [a,*,Re pX>]
126 ELEMENTARY FUNCTIONS 2.7. INVERSE HYPERBOUC FUNCTIONS Laplace transforms of inverse hyperbolic functions see in Sections 2.5 and 2.6 after the following substitutions: arcsinh z = ln(z-H 2 +1) = -i arcsin(iz), arccosh z = ± ln(z+<l z - 1) = arccos(iz), arctanh z = у In -г^г~ ~ ~' arctanto), г^г arccoth z = -j In y^y = i arccot (iz). ! Chapter 3. SPECIAL FUNCTIONS I f 3.1. THE GAMMA FUNCTION T(z) 3.1.1. T~n(x+a) and the power and exponential functions 1 1. 2. 3. ru+n 1 V(x+a) v(e'p) [p>0] [p,Re aX)] m+l)|Me~p,: [Re k>-l; p>0] 4. [ReX>-l; p,Rea>0] 5. TTxTTT (t+\) « + Q+D [Re X>-1; a,p>0] [Re p>0] ; Rep>0] [Re X,Ree>-l; Re p>0]
126 ELEMENTARY FUNCTIONS 2.7. INVERSE HYPERBOLIC FUNCTIONS Laplace transforms of inverse hyperbolic functions see in Sections 2.5 and 2.6 after the following substitutions: Chapter 3. SPECIAL FUNCTIONS arcsinh z = ln(z+<l z + 1) = -i arcsin (iz), arccosh z = ± ln(z+<l z - 1) = arccos(iz), arctanh z = -* In т~ = ~г arctan (iz), arccoth z = ^ In jrrj = г arccot(iz). 3.1. THE GAMMA FUNCTION T(z) 3.1.1. Г п(х+а) and the power and exponential functions 1. 1 ru+n v(e"p) [p>0] 1 T(x+a) [p,Re a>0] Га+1)ц(е'рД) [Re X>-1; p>0] 4. [Re »-l; p.Re a>0] (x-a) 5. га+1)ц(е"рД,а) [Re Я>-1; a,p>0] 7. Г2((+1) [Re pX)] [Re X>-1; Re p>0] [Re X.,Re q>-1; Re pX)]
128 SPECIAL FUNCTIONS THE GAMMA FUNCTION 129 3.1.2. The gamma function of [x] 1 1- Г([х]+3/2) 2[д] 2. .4 [x] 1 TB[*]+3/2) 3. 4. 6. L ¦* J • 7 Г( Г( [jc]+3/2) 1 |arga|<rt] erf [|arga|<n] 1-е -р [|arga|<n] V- 1 " a p [|arga|<jt] [Re р>1п|а|] ГBу) 1-е"р 2v-1 р [|arga|<n] l—j [J2vBae"p/2)cosvn -p/2. -p/2, EvBae"p/2)sinvn] Г( 1 ЛГ( [jc] /2-Я/2+1) 10-T([x]/2+l) X 1 X^ li. Г( [х] /¦ 2+n+l) [jc] ! i- [x] ! X-p ГB 14. Bfjcl ) !a ».2^' [jc] ! ) Г( Г( э" iae"p [JnBiae"p)+iEnBiae"p)] [|argfl|<n] l^c'l »p/2r е""*[/ CteViH Biae-p)] [|arga|<n] l-e -P [|ar|a|<n] l-e - P 2v-2 a p [|arga|<it] [jarga|<n] I^e-/2beivBae-p/2) a p [|arga|<n]
130 SPECIAL FUNCTIONS ,6. [х]!Г([x]+v+l) Xcos [|arga|<ji] 3.2. THE REEMANN ZETA FUNCTION ?(z) AND THE FUNCTION 3.2.1. t,(n[x]+[L) and various functions 1. alxk([x]+2) 2. (±l)WoIxltB[x]) [Rep>ln|a|] e"p-l -p/2 . e я) coth(/Ie"p/2n) [Rep>21n|a| a p № ГA-ае"р) - 4- 5- ( M-) [Re p>ln|a|] IRep>ln|a|] 6. tx] (-1)" 1-е' (n-1)! p [Re p>ln|a|] U-oe") .~P\ THE POLYLOGARITHM 3.2.2. t,(.[x]+\i, v) and various functions ep-l ap [Rep>ln|a/v|; (Ц) 1-е -p [x] ! n, v-ae ,~P\ .v) (Re p>ln|a/v| 3.3. THE POLYLOGARITHM Un(z) 3.3.1. Lin(-axr) and the power function Notation: 2 / - / _L?_1 f, a pkL0(n-k)l{m p [Re p>0; 2. x Li)t(-ax) (v+1) sinvn lv+l,...,v+l (-1) Г(у) V ар n+l п+1 1-v, 2,...,2 4 [Re v>-2; Re p>0; |arga|<n]
132 3. ^U2(-a 4. xvUn(-axr) SPECIAL FUNCTIONS 3 + Зя2С+4!;C) у у (p/a)k 12 12 [RepX); |arga|<n] [k/2] r 2lA, l- (к -2l)ir [Re v>-r-l; r,Re p>0; I arg a | <л] !s in t(v+A+1)я/г] 3.3.2. 1лA(/(е" )) and the exponential function P l [Re p>-l 2. ип(-в 3. (l-e 1,!,...,!, p+l;-a [Rep>-1; -aB(v+l,p+l) / (p+v+2,2,...,2 [Rev,Rep>-l; |arga|<it] THE POLYLOGARITHM 133 4. (l-e &'~"Г(у+1) Bn)*-'/v+1 0,0,...,0,A(/,-p-v)J [Rev>-1; Rep>-l/k; |arga|<jt] 5. A-е x)vUn(-aex) 11+2 '1+1{2-P,2 2 sinpn n*i « [Re v>-l ;Re p>0; | arg a | <л] 6. A-е Vx 7. (l-e'Vx xUn(-a(l-e ,k*l I -* r [Rev>-1; Re pX); |arga|<n] к1 "'Tjp) Jt.t*l*n It [Rev>-1-M; Rep>0; |arga|<n) 8. (l-e"x)vX xUn(-a(l-e x) Uk) А'""Г(р) ^t^»J *-: [Re v>-l; Re pX); | arg a | <л) -к
134 9. <l-e~Vx xUn(-a(ex-l) ') 10. A-е Vx 11. (l-e"Vx SPECIAL FUNCTIONS p+l,l,..,l; e ла (v+1) s invji fp+v+l.v+1, ..,v+l;a [Re v,Re p>-l; I arg a | <it] ~k+l,k+l+n i - G,., , , _ a [Re v>-1; Re p>-l/k; | arg a | <л] G* +l+n,k+l , Д(Л,0),0,0,...,0 [Rev>-14//t; Rep>0; 3.4. THE EXPONENTIAL INTEGRAL Ei(z) 3.4.1. Ei(ax~ ) and the power function [Re(p+a)X); 2. Ei(ax) [Re p>a>0] 3. x EH-ax) 4. 5. x Ei (±ax) 6. 7. 8. x 1/2Ei(ax) 9. THE EXPONENTIAL INTEGRAL -1' "— p+a 135 \ [Rev>-1; Re(p+a)>0; |argz|<n] r(v+l)cotvJl+ F(v) x V + 1 a(p-a) '-1'1 "' a J [Rev>-1; Rep>a>0] К Re p>o>0 Re(p+a)>0; |arga|<Jt ¦}] /n V?t , Vp+a+V~p ITTln _rz pvp+a p [Re(p+a)X>; [Re(p+a)>0; |arga|<n] [Re p>a>0] - In lbx>)
136 10. 11. x 1/2[Ei(-a/x) + + Ei(a/x)] 12. xvm(-axl/k) 14. SPECIAL FUNCTIONS -ab v 1 -e -I, :-0(fc+l: (-aft) _? [6,Re(p+a) X); | arg a | <л] [Re p>a>0] 1/2^-v-l Г + 1"р (*)' [Re v>-l; Re p>0 for kit. Re eX) for l>k, Re(p+e)X) for [Re a,Re p>0] V 2 [Re a,Re p>0] ,F3(l,l;2,2,l-v;ep)l 15. Ei(-f) [Re a,Re pX>] THE EXPONENTIAL INTEGRAL 137 16. ^ м V-гч- , —l/к. 17. x Ei(-ax ) [Re e,Re pX» x - 0 [Re a,Re pX>] 3.4.2. Шах±1 к), the power and exponential functions m Ы 1. xvexp(ax ) X I / ¦ r2k,k+l\ (a X I Д(*,0),Л(*,0> [Re v>-l; Re pX); I arg a | <jt] 2. p) -2V (b+a)p)] JRe p>a>0 ' \Re(p+a)>0; | arg а | <л 3. (p+a)) r2/TpE.( /Re p>a>0 0; |arga|<:ri j"J . -1/2 o/xr 4. л; el ]^[cos + sin 2-fap siBiTap)] [Rep>0; I arg a I <л]
138 5. SPECIAL FUNCTIONS ¦И) 6. xvexp(ax ) X X Ei(-ax + e 8. X X [Ei ^[cos 2т/~ар та + sin 2т/ар ciBVap)] [Rep>0; |arge|<jt] Bя) yff ( 3*+ О / 2-2 и2А+;Д [a | Д (it, 1 > [Re v>-l -Ilk; Re p>0; | arg a | <jt] [a,Re p>0] p>0] 3.4.3. Ei(/(e x) and the exponential function 1. Ei(-ae 2. Ei(-ae [Re o>0] y pa [Rep>0; | arg a | < THE EXPONENTIAL INTEGRAL 139 3. d(x-b)Ei(-ae •?-— Ei(-aA +1- Г(-р, ae*) [*,Re a>0] 4. - v(P, 5. 7. (l-e 8. exp(a/)Ei(-a/) [6,Rep>0; I arg a \ <л] pa -tip. "ft ч -ae ) [b,Rep>0; |argo|<n] Г(у+1 2ji ( t-1 ) /2 k 1 / 2 "к+(Н,М 0,A(/,-p-v) [Rev>-1; Rea>0] , -v - 1 *+l,/ f[oV [Rev>-1; Ree,Rep>0] „31 f 23[ [Rep>-1; | arg a | <я] 9. exp(ae х)Ш(-ае х) 1-P.0 0,0,-p [Rep>0; | arg a | <л]
140 10. 9(x-ft)exp(±ae ) X хШ(+аех) SPECIAL FUNCTIONS _e-bp у k-0 k -Ыа + b)] 11. X exp(aeU/k) x 12. (l-<fVx Xexp(ae Ы1к) х 13. A-eVx xEi(-a(l-e x)Uk) 14. (l-e~Yx XEi(-a(l-e [.., Г(у+1 Д«,1-р),Д(?,1),Д(*,1> [Re v>-l; Re p>-///t; | arg a | <л] 2я [Re v>-l; Re pX>; | arg a | <it] ГРГ(р) *) /2 „2*,* Uk+l 3 ( k-\ ) /2 Uk+l,2k+l [Rev>-1; Ree,Rep>0] Г"Г(р) O,A(/,-p-v) [Re a,Re p>0] THE EXPONENTIAL INTEGRAL , v + p 141 15. A-е 16. A-eVx Y —Hie xEi(-a(c-1) ) 17. A-е Хехр(аA-е~х)М)Х 18. A-е Xexp(a<l-e~VM)X xEi(-a(l-ex) l 19. A-е Ух Хехр(а(ех-1)М)х ХШ(-а(ех-1)'/к) [Rev>-1; Re e>0] [Re aj?e p>0] k1 /2 1~рГ(р) r2k,k+l \{a\ 3 ( к - l ) / 2 ?+;,2?+n [zfcj [Re v>-l; Re pX>; | arg a|<л] , 1/2,-pp. , ^ k Г/.у 2ji 3 (?-1 ) / 2 и2/Ы,/Ы[а) [Re v>-l -l/k; Re p>0; | arg a | <л] Ski v + р BЯ)C*-5)/2+/Г(у+р+1) [Re v>-l; Re p>-l/k; | arg a | <jt]
142 SPECIAL FUNCTIONS THE EXPONENTIAL INTEGRAL 143 Vkl 20. <l-<fVx xW-Л x<;:2-|(f) хШ(-а(ех-1) Uk) [RevW/i-l; Rep>0; |arge|<n] 3.4.4. Ei(±ax) and trigonometric functions -X 3. [Rev>-1; Re(p+a)X>; |arge|<n] Г(у+1 ^-j [ln(p+a) -i|)(v+l)] X [Rev>-l; Re(p+o)>0; (sinbx) 1. 1 YEi(-ax) [cos 6xJ fn^ 2. I \Ei(ax) [cos bx) 1 rf»|J<P+qJ+»2 - Г + < > arctan \b\ p+a\ I arg a\ <л] [b>0; Rep>a>0] 3.4.5. Ei(±ax) and the togarithmic function 1. In x Ei(-ax) 2. In x Ш(ах) [Re(p+o)>O; | arg а | <л] -ln2(Ca)+f^ О [Re p>a>0] 5. x"ln x Ei(-ax) 6. ^[ ln(p+a) - ? -M r (p+a)n+1 [Re(p+a) >0; I arg а | <л] 3.4.6. Products of Ei(±ax) and the power function 1. x [Rev>-1; Rep>0; |arge|<n]
144 SPECIAL FUNCTIONS THE SINE AND COSINE INTEGRALS 145 2. Лк-да,-»*, -si^fi - ii2(jrbr) " Ц + In a In b - In (p+a+ft) + In (p+a) - 1 I ftj / [Re (p+o+6) >0; | arg a |, | arg b | <л] 3.5. THE SINE si(z), Si(z) AND COSINE ci(z) INTEGRALS 3.5.1. si(ax±l/k), Si(ax±l/k), z\(ax±llk) and the power function Notation: б lci(ax)J , Гаге t an (pIa)\ P[\n\\+p2/a2) [o,Re p>0] 2. Si (ax) [o,Re p>0] 3. x 1ci(ax)J 4. x si (ax) 5. xci(ax) 6. /xsi(ax) 7. /xci(ax) 8. —si (ax) ( v+2 ) av + i4cos(vji/2)l v/2+l,v/2+l,(v+3)/2 3/2,v/2+2; -p2/a2 cos(vji/2) sin(vji/2)l > + l 3 2(l/2,(v+3)/2; -p2/a2 [Rev>-1; o,Rep>0] 2 2 +a p(p [o,Re p>0] 3a' arctan - [o,Re p>0] 1/2 2p 3/2 arccos- [o,Re p>0] Г-Т—2 11/2 p +a +p i P[2(p2+a2)\ ~2p: [o,Re p>0] I p +a +p 2 2 -Iе \P [o,Re p>0] arccos- p +a +p
146 9. — aiax) Sx 10. e(b-x)si(ax) 11. в(Ь-х)сЦах) 12. si (ax2) 13. s 14. Jsi(a/x)} \ci(a/x)J 15. — SPECIAL FUNCTIONS (a,Re pX>] - 2e~bpsi(ab) + я - 2 arctan - a 1 + Ei(-bp+iab) + Ei(-bp-iab)] [a,b>0] a [a,Re p>0] -f^erfcf-^;) [Re p>0] 6 + 2 1 + 26) l,6/2+l,v+6/2+2;-a/Dp) 2,6/2+2,3/2+6 [Rev>-1; a,Rep>0] [a,Re p>0] 16. THE SINE AND COSINE INTEGRALS , v + 1 / 2 - v - 1 J_ P 147 ci 2/2TBji) //2-1 0,Д(Л,6/2),Да,A-6)/2) (Rev>-1; a,Rep>0] 2/t 17. \d(a/x)j SI 18. xvi (ax ci -I/ilk). ± p (kerB/ap')J [o.Re p>0] r^V"-1 2/2ТBя) //2-1 X -r /t; a,Rep>0] 3.5.2. si(/(e x)), Si(/(e x)), ci(/(e *)) and the exponential function Notation: б si _x (ae x) -p\ {s\n(pn/2)\ r(p)J t I p I Icos(pn/2)J SI 2. J (ее*) ci [C(a,p) [a,Re p>0] jJsiCa)] ap|S(a,-p) " lci(a) [a>0; Re [C(a,-p)
148 3. (l-<fVx ci 4. (l-<fVx 5. a-fVx 6. <l-<fVx ci 7. (l-<fVx ci SPECIAL FUNCTIONS .' [fa I Д(М-Р),1 [Rev>-1; a,Rep>0] 2VT [Rev>-1; a>0; Re p>-//Bi)] 2i+;+i.;+i [ a U [Revi-1; a,Rep>0] fp 2vT 0,A(/,-p-v) ; o.Re p>0] k+l+i T2tV Ы+1,м\[ а) p + v 2/2ТBя)'/2r(p+v+l) 2k A(ifc,l-6/2),A(ifc,(l+6)/2I [Rev>-1; o>0; Rep>-;/BA)] THE SINE AND COSINE INTEGRALS 149 8. U-<fx)vX si X\ la(e-l) ci x ,-t/Qk), p + v 2/2ТBя)' 3/2r(p + v + l [Rev>-H/(bt); a,Rep>0] 3.5.3. sii,ax±l/k), d(ax±l/k) and hyperbolic functions Notation: u(p,6) = - PF(v + 2) ¦ cos v+2 2(v+2)a v+2 Tsinh bx) 1. -^ ^si(ax) [cosh bx) 0; Rep>|Rei|] fsinhftx") [cosh bx ) [o>0; Tsinh bx\ 3. xv\ Шах) [cosh bx) u(p~b,l) +u(p+b,\) (Re v>-C±l) /2; eX>; Re p> | Re * | ]
150 fsinhta] 4. xv\ Yci(ax) [cosh bx) fsinhftx") j 5. x-j xj W [cosh bx) fsinhftx] 6. x\ \a(ax) [cosh ftxj fsinhta") 7. /^ Ui(ax) [cosh ftxj SPECIAL FUNCTIONS u(p-b,Q) + u(p+b,0) [Re v>-C±l) /2; eX); Re p> | Re * | ] (p-ft) (p + ft) J ч arctan ^— + arctan 3a2l a a J [a>0; Re p> | Re 61 (p-b) +a (p+b) +a J [a>0; Rep>|Re6|] p-b +a (p-b) +a -p+b 2 2 (p-b) +a 1/2 x 1 N (p+b) +a -p-b\ I /H -t- , I - —" I у — (p+bJ+a2 1/2 1 (p-b) 1 3/2 arccos- \ (p-b) 2+a2+p-b 3/2 [a>0; Rep>|Re6|] arccos- THE SINE AND COSINE INTEGRALS 151 fsinhftx") 8. ifx\ Шах) [cosh bx) 1 9. ±—l \si(ax) ifx[cosbbx) 10. fsinhftx] \ci(ax) [coshftxj 11. fsinhftx") 9(c-x)J ^ [cosh bx) XsHax) N (р-йJ+а2+р-г» z -b\ , ,. 2 2 (p-b) +a 1/2 _ 1 N(p+bJ+a2+p+b P + b[ (p + bJ + a'' 1/2 1 (p-ft) 1 3/2 arccosh J2 2 (p-b) +a +p-b - 3/ 2 (p+b) [a>0; Rep>|Re6|] arccosh J2 2 I (p+b) +a +p+b ¦arccos- \ (p-bJ - arccos - (p-b) +a +p-b a [a>0; Rep>|Re*|] - arccosh - + a2+p + b тГр~+Ъ [a>0; Rep>|Re*|] i(ac) + 2 arctan —^j + i Ei(-cp+bc+iac) - - i Ei(-cp+bc-iac)] + -^g he'0?'1* x X si (ас) + 2 arctan p + b i Ei(-cp-bc+iac) - i Ei(-cp-bc-iac) V [a,b.cXS]
152 SPECIAL FUNCTIONS THE SINE AND COSINE INTEGRALS 153 fsinhfct 12. Q(c-xU [cosh bx Xd(ax) fsinhfct) 13. I \si(axz) [cosh bx) -2e-cp+bcd(ac) Ei(-cp+bc-iac) l + {р~Ь2J) 1 + (ac) - In [ ЕЦ-cp-bc+iac) - Ei(-cp-bc-iac) - [a>0; Rep>|Re*|] 3.5.4. si (ад: ), z\(ax ) and trigonometric functions Notation: see 3.5.3 fsinfctl 1. i Vsi(ax) [cos bxj p-i b p+i b arctan •3+ i b~\ a J 2lp*-b') i-arctan - 2ap [a>0; Rep>|Im*|] -b) 14. -I Ui(a/x) [cosh*xj 15. x U2\ \x [cosh bx) X ci(a/3c) 16. J [cosh bx 17. fsinh ix [coshftx rfc [o>0; ri c [a>0; Rep>|Re*|] i _ i —^j keiBVap-ab) + —±-тkeiBVap+ab) la>0; Rep>|Re*|] - —7TkerB»'ap-ai) ± —WkerBv'ap+ai) —W 0; Rep>|Re*|] 2. fsinfct] J ki [cos bx) fsinftx"! 3. xv\ Шах) [cos bx) fsinix] 4. xv| УсНах) [cos fej p-i b l + (p-jftJ/a2 - I ±^ Cretan ¦ 2bp [a>0; Rep>|lmi|l [u(p+ib,\) +u(p-ib,D] Г [Rev>-C±l)/2; a>0; Rep>|lm*|] i) \-[u(p+ib,0) +u(p-ib,O)] lj [Rev>-C±l)/2; a>0; Rep>|Imi|]
154 fsin&cj 5. x< Ysi(ax) [cos bx) SPECIAL FUNCTIONS II I(p+ib){(p+ibJ+a2] (p-ib) [(p-ibJ+a2]\ 3a2ll X arctan p+l + arctan p ' I a a (p2+b2) (p2+a2-b2J+4b2p2 fsin bx\ 6. x\ Va(ax) [cos bx) а2Ь-ЪЪ+ЗЬр2\ j Г In С \ 2 2 31 21 I a p-3b p+p ) 3 a [arctan?>J [C-i Z)-2ap/(a2-*2-p2); a>0; ' ' II I (p+ib) 1 ЫA+А1±Ш1) ibJ I a2 J (p-ib) f 2b» [ j Гбр 1пл-(р2-б2)г] p 2+6 2 ) 2 [ (p2-62) 1 niA+lpbB) p2+a2-b2J+462p2)/а4, Я-агсшпB6р)/(p'+a-b1); a>0; Rep>|Imi|] THE SINE AND COSINE INTEGRALS 155 Tsin bx\ 7. Yx< VsHax) [cos 6xJ 2+a2 1/2 N (p-j \ ЛИ- p-i (p-ibJ+a2 "^ЫЬ+ш3'2' X arccos• (p+ibJ+a +p+ib 3/2 •arccos- f(p-ibJ+a2+p-ib [a>0; Rep>|Im 8. sin cos bx jlj ' |j 1 N (p+ibJ+a2+p+ib (p+ibJ+a2 1/2 p-i ¦J (р-г й) 2+а2+р-г 6 (p-ibJ+a2 1 1/2 3 / 2 ' X arccosh 4 (p+ibJ+a2+p+i b_ 1 „ _J (p-t6J+a2+p-tfrl - arccosh- [a>0; 9. 1 (sinbx) V~x [cos •nf'l -arccos- - arccos- [a>0;
156 SPECIAL FUNCTIONS THE SINE AND COSINE INTEGRALS 157 1 fsin bx\ 10. -±-4 \d(ax) тГх [cos bx) fsin bx) 11. B(c-x)\ \x [cos bx) X si(ax) fsin bx) 12. 6(c-xW ^ [cos ixj X ci(ax) -* i (p+ibJ+a2+p+ib —arccosh laX); Rep>|Im*|] (p-ibJ+a2+p-ib\ i '" Г i X si(ac) + 2 arctan f . , + + i Ei(-cp+iac-ibc) - i ЕЦ-cp-iac-ibc) + + -p±TEhe-cp+ibcsi(ac) + 2 arctan -^ + + i ЕЦ-cp+iac+ibc) - i Ei(-cp-iac+ibc) \ la,b,c>0] Ц-cp+iac-ibc) + + EH-cp-iac-ibc) -2e~cp~ibca(ac) - }_ i A ЕЦ-cp+iac+ibc) + Ei(~cp-iac+ibc) - [a.6,00) fsin bx\ , 13. \ Шах [cos bx) 14. (sinbx) i ^s [cos bx) 15. x Ш\ \х [cos bx) X cHafx) fsin 6x1 f „ 16. si f [cos&cj Ух "¦ la + l-k [a>0; Rep>|Im *|] */'}[ I ? 1 erfcM—11 [a>0; Rep>|Imi|) YHV [a>0; Rep>|Im*|] ]_ib keiBVap-iab) [a>0; Rep>|Im [aX>; Rep>|Im6|)
158 SPECIAL FUNCTIONS THE SINE AND COSINE INTEGRALS 159 v U [[ cos ax) fcos ax\ fsi(ax) sin ax) 1 npr(v + 2)fsec(V3l/2)Kfv,, v + 3. 2av+1 lsec(W2) /. fv+1 22. sin*±^ [RepX); |arga|<n] 5-1) X 19. x/2X \(sin(ax/2)) ХИ >ci(ax)+ [[cos(oj:/2)J fcos(ax/2Л +\ ^Si(ax) [sin(ax/2)J 20. x/2X X [cos атГх ci(aV^c) + + sina/x si(a v 3-v Rev>-1; a,l Re pX); 6' ,1/2 4p2+a2 [a,Re p>0] [Rep>0; |arga|<n] -J4p2+a2 — +a 23. cos cos ( sin rj-.v + l /2 -v-l у к I p /2Bя) (I)' 2k- [Rev>-1; Rep>0; |arga|<n] 3.5.5. si(ax ), Si (ax ), the exponential and trigonometric functions cos sinu cos u fcos и Л (sinuj 21. x1/2x X [COS a/x ci(a/3c) + [Rep>0; |arga|<ji] fsinu _1 exp(u+)] VEH-2u+) [cosuj [u+-i/ b I 2 (-1 4 p 2 + a 2 ±2p; a,Re *>0; Re p>0]
160 2. SPECIAL FUNCTIONS |cos v [sinv cos ("sin И exp(t>+H №i(-2»+ (cos »J /2M a 2 + 4 * 2±2*); a,Re pX); Re 3.5.6. ci(ax) and the logarithmic function н-й [a,Re p>0) 3.5.7. Products of si(axl/k) and ci(ax///:) /2кBя) 2к+1/2~2 Ш {[a_) -3*+il [2k) [Re v>-l; Re p>0; | arg a | <л] U THE HYPERBOUC SINE AND COSINE INTEGRALS 161 f 2. chi (ал) 3. 4. 5. x JsbHaxA {сЪЦах)) In[a2/(p2-a2)] [Rev>-2; Rep>|Rea|; v + 2 43C/11 1 ^3/2, 2, 2; [Rev>-1; Rep>|Rea|; +1 l 3 3. ? 2' 2' p2 (v+l)av+1[s i n2(vJi/2) J f(v+l>/2,(v+l>/2,v/2+n_ r(v+2)p , (v+3)/2; (v+2)av fsin2 у I 1 С1 (cos2(vji/2)J3 2[3/2, v/2+2;p2/a2 J [Re v>-C±l)/2; Rep>|Rea|; 3.6. THE HYPERBOLIC SINE shi(z) AND COSINE chi(z) INTEGRALS 3.6.1. shi(axl/k), chUax' *) and the power function 6. x3shi(ax) p3(p2-a2K p[\a[(a+p)/(a-p)] 1. shi(oA:) , Г1п[(р+й)/(р-а)Л 7. x chi (ax) 11р4-
162 SPECIAL FUNCTIONS THE HYPERBOLIC SINE AND COSINE INTEGRALS 163 8. x2shi(ax) 9. x2cbi(ax) 10. x shi(ax) 11. xchi(ax) shi(ax) 13. shi(ax) 2aBp2-a2) , 1 fH(P+«) p2(p2-a2J р[]пЦа+р)/(а-р)]\ -"-'¦ 222 ^ P(p2-a2J fln[(p+a)/(p-a)]l р(рг-а2) 2р2\ы[(а+р)/(а-р)}\ 2 ^ 2 fln[a2/(p2-a2)] 2,, 2 2., [Rep>|Rea|; [Rep>|Reo|; 14. x1 15. ch i (afx) 16. shi chi , IIBk). (ax ) 6 + 2 -2 -1 , 2F+2)A+26 A, 6/2+1, v+6/2+2; aV'/4 Хз 2[б+3/2, 6/2+2 б Re v>-6/2-l; Re p>0; |arg a\<л; [RepX); |arga|<n] x — ['• *; Rev>-l-/6/B*); Re p>0; |arg a|<п.; 3.6.2. shi(/(e x)), chi(/(e *)) and the exponential function tion: 6=|J} Notation: 1. Jshi(ae *)] 1сЫ(ае"д:I lr2,i a ?G3,5 4~ l-p/2, 1/2, 1 6/2,6/2, (l-6)/2,(l-6)/2,-p/2 [Rep>-(l±l)/2]
164 SPECIAL FUNCTIONS THE HYPERBOLIC SINE AND COSINE INTEGRALS 165 2. (l-e'Vx (shi(ae x) / J " \chi(ae~x) 3. <l-e~Vx 4. <l-e~Vx chi 6 + 2 4F+2)A+26; 3 4 1, б/2+l, (p+6)/2+l; a21A ) 2, 6+3/2, 6/2+2, (p+6)/2+v+2J [Re v>-l; Re p>-5] a A(U-p), A(/t,l/2), да,б/2>, да,б/2>, 4/IX/p Л,6/2), Д(?,6/2), дал) [Rev>-l-/6/<2*); Rep>0) [Rev>-1; (-1)'-гBп)*+1/2Г(Р)с2*,/ U 3.6.3. sid(ax ), chi (ал1 *) and hyperbolic functions 1. sinh bx shi(ax) 2. cosh fcx shi(ax) 3. sinh bx chi (ax) 4. cosh ix chi (ax) j |in[(p+a-6)/(p-a-6)] ~*W [ (a-b+p) I (a+b-p) ] [-«-.,.»«. p-A p+61ln [ (а+6+р) / (a-b-p) ] J 2a2) l [jlJ1 (p~* 4 2fl2) jjln[a2/((p+ftJ-fl2)] 2 2. ln[fl2/((p+6J-a2)]]
lbb 6. -4 Ш(ах) x [cosh *xj 1 7. —^-[sinh ax-shi(ax)] [Re [Rep>|Rea|] 8. ^-[sinh ax-shi (ex)] ?- \3a\a2~P2 In ?±^ - и {-) + x 2, p ^ ^ [Rep>|Rea|] 9. fsinhixi тГх [cosh bx) \-chi(a-/x) _ 1 ; |arga|<ji] 10. sinh a/x [Re p>0; | arg a | sinh M(fl*Gc) J THE HYPERBOUC SINE AND COSINK 3.6.4. shi(ax1 /k), chi(axUk) and trigonometric functions 2 2 2 Notation: (p = arg(p -a +b +2abi), ¦ф = arg(p2-a2-b2-2bpi) 1. sinixshi(ax) 2. cas bx shi (ax) 3. sin ix chi(ax) 4. cos ix chi (ax) 4(p2+*2) (p-aJ+b 4(p+*2) 2(p2+*2) 2(p2+*2) ю/
168 SPECIAL FUNCTIONS »• if"" (sinijc) 5. Ц VshHax) (cos bx) ; Rep>|Rea| ^ if" [sin bx\ 6. -Ц Vshi(ax) (cos bx) ; Re p>|Re a| 7. 1 (s i n foci Sx cos йх| 3.6.5. chi(ux) and the logarithmic function [Rep>|Rea|; 2. -^ [Rep>|Rea|; THE ERROR FUNCTIONS 3.7. THE ESROR FUNCTIONS erf(z), erfc(z), AND erfi(z) 3.7.1. The error functions of ax+b and the power function 169 1. (Ы(ах) | \erfc(ax)J 2. л r [erfc(ax)J 3. x1 r | [erfc(ax)J 2a К Re p>0; |arga|<n/4\"| _ Г(у/2+1) ., v+1 X/. (v+l)/2,v/2+l; a V/4 l/2,(v+3)/2 хГ(у/2+3/2)рх (v+2)/Hav+2 v/2+l,(v+3)/2; a'V/4 3/2,v/2+2 Ol p v+ 1 01я! L «L.(/le)*-»x Xexp 8a' К Re pX); largo |<я/4У|
168 5. SPECIAL FUNCTIONS sin bx\ [cos bx) Vshi(ax) [\a\<\p+ib\,\p-ib\; Re/»|Re a| . [sin их] 6. M Uhi(ax) (cos bx) [\a\>\p+tb\,\p-ib\; Rep>|Rea| cos bx fp+l, т/p-i [Rep>|Im*|; |arga|<ji] 3.6.5. chi(ax) and the logarithmic function [Rep>|Rea|; 2. ^[chi [Rep>|Rea|; THE ERROR FUNCTIONS 3.7. THE ERROR FUNCTIONS erf(z), erfc(z), AND erfi(r) 3.7.1. The error functions of ax + b and the power function 169 1. (Ы(ах)  lerfc(ax)] 2. x [erfc(ax)J 3. lerfc(a*)J Иы] KRepX); |arga|<n/4\"| |arg а|<л/4 /J - Г( (v+ ( Х2Ц + T(v y/2+1) .. 1 )/na (v+l)/2,v/2+l; ap2/4") l/2,(v+3)/2 j /2+3/2)pw (y+2)/nav+2 xf( M W v/2+l,(v+3)/2; fl"V/4 3/2,v/2+2 T(v+1) PV + 1 1 *-0 p Xexp 8c' D, I P ) J KRep>0; |arga|<*/4
170 4. xi (erf(a*) [erfc(ajc)J 5. -^erf(ex) 6. B(b-x)\ (erf(ax) ) H Г [trfc(ax)) 7. (tif (ax+b) \ [tTtc(ax+b)) 8. x (tTi(ax+b) "I {tifc(.ax+b)\ SPECIAL FUNCTIONS 2a p1 [4a- ¦/nap p [lj К Re p>0; |arg а|<я/. |arg a\<n/4 Ei [Rep>0; |argal<n/4] lull. Ч p\l) p \trtc(ab)j lbx>] Aa' erfF) К Re pX); |arg а|<л/4\] |arg a|<n/4 Jj p"+1lerfc(A)J' Xexp Re p>0; |arga|<n/4 |arg THE ERROR FUNCTIONS 171 3.7.2. The error functions of ax + b \erfc(u/*) 2. erfi(u/Jc) 3. 4. x (erf(a/jc) lerfc(a/x) 5. 1 0 4 p+a {Rep,Re (p+a )>0 Re (p+a2)>0 pH p-a [Re p,Re(p-a2)>0] p+a Rep,Re (p+a2)>0 Re (p+a )>0 vrtp v ' _ fl _,_3 3 a2] , fo|r(v+l X2Fi[l'v+2;2; ~V]+\lj~P^T fRe(p+a2)>o, {^v^:f2; Rep>0}l ¦^ X [Rev>-1; Re(p+a2)>0]
172 6. x [erfc(aVT)/ 7. x 8. [erfc(a/x)J 9. 10. x~ [erfc(a/x) SPECIAL FUNCTIONS (-1)%! 0 t , Re p,Re (p+a2)>0 Re (p+a )>O Vn dp Rep,Re (p+a )>O| Re (p+a )>0 ±i ±-L-f^r +arctan-J + яр 0 3 (p+a' 2p 3 / 2 Re p,Re (p+a )>0 Re (p+a )>0 з[р-а 1 , 2 2 I np [Re p,Re(p-a2>>0] •? arctan Rep.Re (p+a2) >0 Re (p+a2)>0 THE ERROR FUNCTIONS 173 11. 12. i- 13. -erfi(aVT) 14. (erf(a-Sx+b) ] 4 15. x 16. Уяр V~p-a [Re p,Re(p-a2)X)l In p+a +a Ap+a -a [Re p,Re(p+a2)X)l 2 arcsin — [Re p,Re(p-a2)X)l pi p+a [Rep>0; |arga|<n/4] , f lip «+ 1 erf (Ю pi p+a [Rep>0; |arga|<n/4] dp t2 expl-^—¦^i erfc 2 I p+a ab p+a 2a p2(P+a M/2[ <p+a2J--f(l-2?2)X :<p+a2)-Z>2p2] [Rep>0; |arga|<n/4] b*V p+a'
174 17. SPECIAL FUNCTIONS 2-/лр 3/2 [RepX); |arga|<n/4] 18. , erf erfc + / - 1 ) / 2 l.-v), 1 Bл) Re >-l-6//Bi); Re p>0; |arg а|<л/4; 3.7.3. The error functions of ax or of aifx + b/ifx °Р^-±^7Г(у)х 1) р гпр 1/2; -а2р2/4 3/2,l-v/2,(l-v)/2 V+ 1 ¦И) X f(v+l)/2; -в2р2/4] :if3 * 3(il/2,v/2+l,(v+3)/2j !|3/2,v/2+2, (v+3)/2J THE ERROR FUNCTIONS 175 D" U 2 2 5T**o C/2) k (it! [Rep>0; |arga|<n/4] [Re рХУ, |arga|<n/4] 4. x erf ¦/яр 2v + 2 v+1/2) F f 1.3.1 v. О v+l/2 lf2[l'I'2"V' aP}± Г(-у-1/2) v+ l ) X/2lv+l;v+2,v+4; «2P| + 0|Г(у+1) v+ 1 >-l; Rep>o\l >0 |J 5. e rf я! IHU2(a2p)'/4 У *-о к ! [Re p>0; |arga|<n/4] ferf f 6. xJ H1 p2Llo [Rep>0; |arga|<n/4]
176 7. ;T^erfU 8. lerfM 10. ferf 1 [erfc -и ш 11. /x 12. SPECIAL FUNCTIONS 4a XL, Ba/p) + K} <2a/p)L0Ba/p)] [Rep>0; |arga|<n/4] -2 Ei(-2a/p) [Rep>0; |arga|<n/4] 2a [Rep>0; |arga|<n/4] r ( *+ / - 1 ) / 2 k+l+l,l 0 KRev>-l; Rep>0 [*,Rep,Re(p+aZ)>0] n+ 1 ¦/яр j[ *-o /t! Ip+a \p+a'\Z Kl/2B i p+a [*,Re p,Re(p+j ] THE ERROR FUNCTIONS 3.7.4. The error functions of ax and the exponential function 177 Notation: б 1. ferf (ax) I (erfc(aAc)j 2. exp(-a2At2)erf(ax) 3. «(p-v.v+Dt-2-^] -a2 C+v-p)/2,(v-p)/2+l,3/2j I 2 J Vn (p-v) f-v/2,U-v)/2, (p-v)/2;-a 2, 1/2 ¦/я (p-v+1) (l-v)/2, l-v/2, (l+p-v)/2;-a' (p-v)/2+1, C-t-p-v) /2,3/2 -v)>-0; Rev>-l\"l 1 /J 4a r[4a; [|arga|<n/4] 1 erfc -exp - 4a' [4a [Rep>0; |arga|<n/4]
178 4. xvexp(-bx )arf(ax) SPECIAL FUNCTIONS аГ(у _ v ,.2 2. 5. x exp(+a x ) (erfi(ax)\ \erfc(ax)j 6. exp(-a x )afi(ax) 7. -i /2) 4r I. 1 ±.1±._ ?_.? ( v + 2) /2 Ti Г'2'2'21 i '4 ap (v+3)/2 X v4r v + 3 1.3 3. a2 p2 x Ц 2 '2'2'2' b '4b [Rev>-2; Re A,Re(a2+A)>0] r(v) Г1,1/2;±р2/Dа2) Snap* 2 2ll-v/2,(l-v)/2 1 fcot(vn/2)) v-t-П v + l 1 С L I—5— 2 a [csc(vn/2)J *¦ > 2"! ftan(vn/2)"l 2av+ |sec(v;t/2) 4a [Re v>-C±l)/2; Re p>0; |arga|<a/4] 2a/i - exp Aa' Ei - [Re p>0; |arga|<n/4] -21n[l±—-1 [Rep>0; |arga|<n/4l THE ERROR FUNCTIONS 179 8. Vnp V ] x ¦/яр 3 1.3 1. a2 b2 ¦ T(v+2) X v + 2 [Re v>-3/2; Re p,Re(p+a2)X)] 9. xvexp(+a x ) X erfc S-l/y.v+1/2 -v-1 xC^'Mf1)^ x|-. :,0) J [Re v>-l-6//BA); Re p>0; |arga|<n/4] 10. exp<-|-)erfcf—1 2 ferfi , 11. expfFS_)J (_? ^IH Qa/p)-Y Qap)] тГр~ тГр [Rep>0; v + 1 (v+ 1 ) / 2 sec vn x [Re v>-3/2; Re p>0; | arg a | <л/4] 12. у яр - cosBa/p)siBa/p)] [Rep>0; |argo|<n/4]
180 SPECIAL FUNCTIONS 13. -exp<-—-)erfc — [RepX); |arga|<n/4] 14. xvexp(+a2x llk) X erfi erfc (З/2-б) (*-1 ) + ( / - 1 ) / 2 ^:;;in x x — Д(А,1/2) ; Re p>0; |arg а|<л/4] 3.7.5. The error functions of e and the exponential function fll Notation: б = ferf 1. \ (ae~x) erfc 2. erfc (ее) (erf 3. \ (aex) erfc fefte) | ^ B+1 [Rep>-(l±l)/2] 0 n! , n! la. il П+1 , ../1+1 11 p (p+1) p+1.3 р+Ъ р+Ъ. [erfc(a)J Г/Re p>0; |arga|<n/4\l L\|arga|<n/4 /J THE ERROR FUNCTIONS 4. (l-e erf erfc (ae~x) 5. (l-e erf erfc (ae л) 6. erf erfc [ae -Ixlak) erf erfc (aex) 181 Г1/2,(р+1)/2,р/2+1; -a2 X/J 1 + 3 3l3/2,(p+v)/2+l,(P+v+3)/2j [Rev>-1; Rep>-(l±l)/2] fl/2,(p+l)/2; -a l3/2,(p+3)/2+v [Rev>-1; Rep>-A±1)/21 /If [Rev>-1; Rep>-8//Bi>] 3/2,C-p)/2 ±-^Г 1-P f-v,p/2; -a 2' 2
182 8. A-е SPECIAL FUNCTIONS erf [ erfc , be/Bk). [ae ] 9. <1-е~УГ [a(\-e'x)} erfc erf 10. A-е V-j (<Al-e~x) erfc 11. (l-<fV'x erfc •I/ v"' X- Bji) 1 */2 2k 0,A(/,-p-v) ; RepX)) B(v+2,p) x l/2,v/2+l,(v+3)/2; -a X3f3l 1 + (i3/2,(P+v)/2+l,(p+v+3)/2j [Re v>-C±l)/2; Re p>0) Vn x/2 l/2,v+3/2; -a 3/2,p+v+3/2 B(v+l,p) [Re v>-E±l)/4; Rep>0] V21 рГ(р) „Ы-6,6+/1 f a 2' / 2 u/+i,jt+;+i Aa,l/2),0,A(/,-p-v) [Re->-!-«//B*); Re p>0] THE ERROR FUNCTIONS 183 12. A-е erf erfc 13. (l-e'Vx erf erfc 14. (l-e";ic)vX erfc [a(e -1) 15. ехр(+Л 2X)\ (ae x) erfc УЫ рТ(р) сб,Ь/-и-б| ffe 0,A(/,-p-v) KRev>-l;Rep>0\ Re p>0 /' V2lv+' A(U-p>,1 к I 2+ /- I Г (v+p+1) *1Д(/,1-р Re v>-l-6l/Bk); /Re p>0; |arga|W4\l 1|argc|<n/4 /J р+ 1 3 ' 2 ->2 '>+а J [Rep>-(I±l)/2]
184 SPECIAL FUNCTIONS 2 2x (erfi r 16. exp(+a e Ц (ae) erfc 17. A-е Vexp(+aV2x) x (erfi _ ) erfc 18. (l-e И -x X-{ (ae л) erfc 2a [Rep>-1; |arga|<n/41 3/2,(p+v)/2+l,(p+v+3)/2j B(v+l,p)x fp/2,(p+l)/2; a2) [Rev>-1; Rep>-(l±l)/2] [Rev>-1; Rep>-(l±l)/2] 19. erfc C/2-6) ( * - 1 ) X [Rev>-1; THE ERROR FUNCTIONS 185 20. {\-e~xfexp(+a2exlk) X [erfi I erfc r [ae 1-6 , т_, C / 2-6 ) ( k- 1 ) X [Rev>-1; Rep>-//Bt); |arga|<n/4ll 21. exp(a2e x)erfi(J \-e'x) exp(a /2) p+ 1 /2 Г(р)Х xM(l-2p)/4,(l+2p)/4(a } [Re p>0] 22. A-е erfi [ erfc С [ k+i,2k*l \{k 0U/2),A(/:,0),A(/,-p-v [Rev>-l-6//BJt); Rep>0] 23. A-е Vx r_ 2., -x.-l/k Xexp[+a A-е ) ] X erfi [ erfc •Г/ рГ(р) д1-6Bп)C/2-6)(*-1) ; Rep>0; |arga|<n/4]]
186 24. SPECIAL FUNCTIONS /I/p+l я1 5 Bл)фГ(р+ц+1 Хехр[+а2<е*-1ГМ]х erfc 25. (l-e"Vx Хехр[+а2<е*-1)/Д]х erfc [cp-C/2-6)(*-l)+/-l; Re v>-l-//B*); Re p>-/6/ BA); I arg a | <n/4l 1 -6 Xljk*l,2k+l \[k [cp: see 3.7.5.24; Re v>-l-//BJt); ); |arga|<n/4] 3.7.6. The error functions and hyperbolic functions Notation: ы1(р)=-^-ехр -^ erfcf^J, Г( v, . v+3 3 v „ Г(у/2 + 1) _ [v + 1 v , , 1 v+3. p2 2 2 '2 "+4acp 4a2 j erfc K). THE ERROR FUNCTIONS 187 J \дл н.(р) = 4- erf(a/F) + -^-erfc(\ а2с+pc) , p[ J LI 2v + 2 fsinh йдс1 1. i Verf(ax) (cosh toj fsinh bx] 2. ^ j-erfc(ajc) (cosh bx) fsinh бх") 3. xv\ УетЦах) [cosh bx) \ 4. fsinh йдс" [cosh i>x fsinh bx] 5. в(с-х)\ \eTf(ax) Icoshtaj [Rep>|Re*|; |arga|<n/4] J l-^-z--ul(p-b)±ul(p+b) [p) p -ъ [|arga|<n/4] u2(p-b) + u2(p+b) [Rev>-E±l)/2; Rep>|Re*|; - u2(p-b) ± u2(p+b) [Rev>-C±l)/2; |arga|<n/4l ¦e-cp+bcerf(ac) 2(рн [c>01
188 (sinhbx) 6. в(с-дс)-| S-erfc(ajc) [cosh bx) SPECIAL FUNCTIONS (b) fsinh bx\ 7. -j \erf(ax+c) [cosh bx) ) 8. i Verfcdzx+c) [cosh bx) fsinh fccl 9. < \ed(a-/x) [cosh faj 1 p -I 1 -cp+bc , —rye erfc (ac) + 1 „-«P-Ac erfc(ac) ± [C>0] fl^ff 3 [pj p -* [Rep>|ReA|; |arga|<n/4l [pj p -ь [|arga|<n/4] (p-b)lp-b+a2 (p+b)ip+b+a [Rep,Re(p+a )>|ReA|] 10. fsinh bx\ [cosh bx) (sihbbx\ 11. xvJ U [cosh bx) 1 a (p+b)ip+b+a [Re(p+a )>|Re*H -3/2 [Rev>-2+l/2; Rep,Re(p+a2)>|Re A|] THE ERROR FUNCTIONS 189 (sinh ft*^ 12. xvj Urfc(aV^) [cosh AacJ [Re v>-C±l)/2; Re(p+o2)>|Re 13. . (sinhbx) [cosh bx) u4(p-b) + u4(p+b) [Rep,Re(p+a 14. (sinhbx) 2] Urfc(aV^) [cosh йдс] p-b) ± u Щ\{р-Ъ)-Л11+(р+Ъ)- [Re(p+a2)>|ReA|] _, x arctan — + {p-b) a '(p + b) Vn(p-b) _ 1 Vn(p+b) [Rep,Re(p+a2)>|Re АЦ -arctan . fsinhb) 16. x W ] Urfc(aV^) [cosh A.xJ arctan ± ± arctan + (p + b) [Re(p+a )>|Re*H
190 SPECIAL FUNCTIONS 17. x~U2Sinbn bx erf (cr/x~) 18. sinh bx] (cosh bx) 19. cosh ЪтГх erf(a-Zx) 20. x" 1/2sinh*VTerf(aVT) т, -1/2 . ,2A+1, <— 21. x sinh ivx x X eriiafx) 22. А Г (erfc(a/x)J 21-" f f«l <-!)* X arctan k-o[kjVp- a Vp-nb+2kb [Re p>n\Re b\; |arga|<n/4] I 2~ I 2~ ip-b+a -a ip+b+a -a [Rep,Re(p+a2)>|ReA|] pi p+fl xexp 14—1 erf 2p [Rep,Re(pK!2)>0] [Rep,Re(p+a ) 2n+l Xexp||n-^| ^-| [Rep,Re(p+a2): •7— ±erf ab Re p,Re(p+a )>0 Re(p+a )>0 THE ERROR FUNCTIONS 191 fsinh bx\ 23. i Verf(aVx+c) [cosh bx) fsinh *дс^ 24. ^ Verfc(a/xTc) [cosh ixj I fsinh f 25. ^ ( (cosh 26. xv\ UrfM (cosh *xj ^/х-* 27. xvi Verfc [cosh ixj 28. fsinh bx I cosh Jac us(p-b) + u5(p+b) [Rep,Re(p+a2)>|ReA|] - U5(p-b) ± us(p+b) [Re(p+a )>|ReA|] 2 , p - r p) p -b [Rep>|Re*|; u6(p-b) +u6(p+b) [Re>-C±l)/2; Rep>|ReA|; |arga|<n/4] [Rep>|Re*|; |arga|<n/4] Ip2+*2](P2-*2J 2{p-b) p(_2 [Rep>|Reft|; |arga|<n/4]
192 SPECIAL FUNCTIONS A 29. A erfcM coshfcc {-/x) 30. sinh**erf (_JL\ , fsinhfccl r ¦> 31. 4 erfcU x (cosh fccj У-/х~> , fsinh fccl 32. -U x [cosh 6xJ LrfcM 6xJ ^^ 33. [coshfcc 2(p-6) [Rep>|Re*|; |arga|<n/4] [Rep>|Re*|; |arga|<n/4] [Rep>|Re6|; |arga|<n/4] 4a 4a exp(-2av p+o) [Rep>|Re*|; |arga|<n/4] 2(p-b) X i 2 Ap-b+a ¦-it -1 + [c>0; Re p,Re(p+a )>|Re b\] i THE ERROR FUNCTIONS 193 34. [cosh bx p-b+a2-a)} X IP 1 Л p-b+a ¦+1 Ap+b+a [c>0; Re p,Re(p+a' 3.7.7. The error functions and trigonometric functions Notation: see 3.7.6, , 1/2 W2 ,2 p -Й 1. fsinfcc] -^ ^e (cos bx} > [u. (p+ib) + u (p-ib)] [Rep>|Im*|; |argo|<n/4] fsin te^ 2. -^ Urfc(ax) (cos ixj I 2,2 pi p +b [u^p+ib) + u^p-ib)] i 3. хЦ Yerf(ax) cos bx) [|argo|<n/4] [u Лр+ib) fsin[(v+l)tp]l [cparg(p-iW; Re v>-E±l)/2; Rep>|lm*|; |arga|<n/4]
194 SPECIAL FUNCTIONS fsinfcc] fz'l 4. x 1 >eric(ax) -i ШЛр+ib) + uAp-ib)] [costej [lj 2 2 [Re v>-C±l) /2; | arg a | <л/4] (sinbx) 5. 8(c-xH Verfiax) [cos bx) 6. 8(с-д;)-{ terfc(ax) [cos bx] (sin bx) 7. \ Verf(ax+c) [cos bxj (sinbx) [cos ixj ("cos 6c] ("sir r±p1 Mx [sin be) [cos 6c) X erf (ас) + -4 }-x 2 1 X >^ll}erf(ac+^Lt]\ 4a2 J 1 2a )\ sin be cos 6c p+ii exp erfc(ac) - (p+ib) 2 1 [c>0] mft|; |arga|<n/41 erfc(c) [' [pi p~ + b' [l [|arga|<n/4] THE ERROR FUNCTIONS 195 9. fsinta] i Urf [cos bx) bu a /I [Rep,Re(p+a':)>|Imi|] 10. sin bx\ cos bx) bu 2)-J ^ (p+a2) [Re(p+a2)>|Im *|] 11. [cos bx) 12. fsinix") [cos 6xj >-ib [Re v>-2+l/2; Re p,Re(p+aZ)>|Im *|] -2v -2 а 2 (v+1 )v^ X 2Д1 X [Rev>-C±l)/2; Re(p+a2)>|Imft|] 13. x lerf(fl/7) [cos 6xJ 1/2 [Re p,Re(p+a
196 SPECIAL FUNCTIONS . ,,(sin*x) 14. xU2\ Urfc(a/x") (cos bx) 15. _.,, fsin bx) x l/2i U [cos *xj 16. x . fsin bx [cos *x 17. x sin"*xerf(a/x) 18. . (sinix" *[cos ix krf(a/x) 2/1 .2.,2 3/2J/TT [Re(p+o2)>|Im*|] i Г i arctan a + 'p+ i b Vp+ i b + -—3— arctan a Jp-ib Vp-ib) [Rep,Re(p+a2)>|Imi|] 1 fj[_l_arctan_^_: 1 :—-arctan a— + 2 . 2. ,1/2 ~ 1 - /i . и « 2 t__ у (-1) k-°Wip+inb-2kib X arctan - 1p+inb-2ki b ; |arga|<n/4] 2 II ¦* p+ z p+ z й+a -a +a ip-ib+a -a [Re p,Re(p+a2)>IIm*|] THE ERROR FUNCTIONS 197 19. cos bSx erf( 20. 21. 22. x 1/2sin*/xX C 1 [erfc(a/x)J 23. fsin^x] ] ^er [cos *xj ¦exp - pi p+a 4p+4.2j 2p3/2 Xexp erfi ab [Re p,Re(p+o )>0] ? Xerfi ab [Re p,Re(p+aZ»0] | У ("l)"+f I X ph*0 [ к J 2n-2k+l [Re p,Re<p+a p +а р + J 1-erfi 2/p" [f Re p, Re(p+o )>0 Re(p+a2)>0 [иЛр+ib) + а Лр-ib)] [Rep,Re(p+a
198 SPECIAL FUNCTIONS 24. -I Verfc(aVx+c) (cos bx) 25. cos bx (sinbx) 26. xv\ erf (cos bx) 27. sinbx cos bx V[us(p+ib) + u$(p-i b)] [Re(p+a2)>|Im6|] -rfb exp{-2aVJ^Tb)j [Rep>|Imi|; |arga|<n/4] [u uAp-ib)] [Re>-C±l)/2; Rep>|Imi|; |arga|<n/4] [а -(v+D/2 (sin[(v+l)cpn x\ У [cos[(v+l)v]J [9-arg(p-/6); Re p> | Im b |; |arga|<n/4] (sinbx 28. x\ S-erfl — I cos bx THE ERROR FUNCTIONS 2*P 199 29. x] HCb= cos bx] ^Sx} 30. isinteerf|-^ 3i.l|'intaU^ cos taj M 1 \sinOX\ _c ( a) 32. -i-rJ Uric MM x 2 [cos bx) № lj [ 2(p+ib) " -exp(-2aVp-i b) 2<,p-ibJ [Rep>|lm*|; |arga|<n/4] _1+аУр-г [Rep>|lm*|; |argo|<n/4] i Ei(-2a/p+7T) - a^p-z b) [Re p> | lm * |; | arg a 1 <n/4] [Rep>|Im*|; |argo|<n/4] -i 6) _ l+2aVp-t Aa b) + <,p-ib)Ei(-2aVp-ib) [Rep>|lm*|; |arga|<n/4]
200 33. Icosfcc SPECIAL FUNCTIONS 1 j[|2(p+r6) a p+ib+a 1 b+a ¦Zjjj exp[-2c{\ p - i b+a2 +a)] x A p-i b+a [oO; Re p,Re(p+az)>}lm *| ] fsinfccj / -. (Of I ^ {cos fccrK-^J {JItTpTTTT exp[-2c(^+77^-a)] x ¦+1 4 p+ z b + a 1 2(p-ib) a [oO; Rep,Re(p+a )>|Im 6|] 3.7.8. The error functions and the logarithmic function -2v -2 1. xvln(bSx)ert(aSx) ItTR (v+i: fv+l,v+3/2 X J \ 2 '[v+2; -pia2 n^ 2 fl/2,v+l b2 г 2a X 2v + 2 2 v + 2 (v+1)(p+a2)v+1 3 2[v+2,v+2;p(p2+a2L [Rev>-1; Rep,Re(p+a2)X); THE ERROR FUNCTIONS 201 2. p|2"" a C+1n 4-21na+1n -a- p+a [Re p,Re(p+o )X)] 3.7.9. erf(ae"*), the exponential function and inverse trigonometric functions fares in 1. i (e )Verf(ae ) larccos j farcsin 2. exp&eA (e )\X ^arccos X erf (ae~x) aVn k Q[p+1 2 2[3/2((p+3)/2 >/2+l I l/2,(p+D/2,p/2+l;-a' F I 3 3[3/2,(p+3)/2,(P+3)/2 [Rep>-C±l)/2] QJp+l 2 ^3/2, (p+3)/2 J l+' lx L(P+3)/2j fl,(P+D/2,(P+D/2;a2i| X/, 3 3[з/2,(Р+3)/2,(р+3)/2 J [Rep>-C±l)/2]
202 SPECIAL FUNCTIONS 3.7.10. Products of the error functions of ax U к Notation: Д = 1 p+a2+b2 1 " _?2, . 2. x erf (ax) 3. eric (ax) 4. х" 5. erf(a/x)erf(*/x) 6. л 1/2erf(a/x)erfF/x) [Rep>0; |arga|<n/4] dp n[p [Rep>0; |arga|<n/4] + 2erf[-^r-] -erf2 Г [|arg а|<л/4] .. Г 1 dp'1' [Rep,Re(p+2a2)>0] —— arctan — + ] 1 - arctan ¦ I p+a J p+a i p+a + ^^ arctan ip+b ip+b' [Re p,Re(p+a2+*2)X)] -*- arctan-^ Vnp [Re p,Re(p+a2+*2)>0] THE ERROR FUNCTIONS 203 7. x/2erf(a*Gc)erf(bSx) 8. x 1/2erfc(a/7)erfc(^> 9. 10. x" 1/2erfi(a/x)erf(a/x) 11. - тГр arctan [Re p,Re(p+a2+62)>0] = % - arctan arctan н l2 /p /p + arctan- ab Д/р [Re(p+a2+*2)>0] 4a' v + 2 4 3 Cl/2,l,v/2+l;a4/p2 13/4,5/4,3/2 [Rev>-2; Re(p-e )>0; |arga|<n/4] [Re(p-a)>0; |arga|<n/4] 1/2,1,v+3/2; aVL/4 [3/4,5/4,3/2 [Rev>-3/2; Re pX); |arga|<n/4]
204 SPECIAL FUNCTIONS 12. erf(a/x)erfcF/x) x X erf (cfx) 2 np - arctan - p+a p+a^ - arctan - ac \p+b с I p+c — arctan ab Д 4 р+с [A-i p + a2 + b2 + c2; Re p.Re(p+a2+*2+c2)X)] 3.7.11. Products of the error functions of f(e x) ~х)етЦае~х) л<р+2) 3'4 [Re р>-2] /2,l,(P+2)/4; a2/4"| 3/4,5/4, 3/2, (P+6)/4j 2. xerfi(ae~ n(p+2J fl/2,l,(p+2)/4,(p+2)/4; a2/4l X4F5 [3/4,5/4,3 /2, (p+6) /4, (p+6) /4j [Re p>-2] 3. (l-e X erf (ae x) X/. 4[3/4,5/4,3/2,(p+6)/4+v [Re v>-l; Re p>-21 THE FRESNEL INTEGRALS 205 4. A -e~x) verfi (a ^-b(v4p)x A/2,1,v+3/2; a2/4\ 3 4[3/4,5/4,3/2,p+v+3/2j [Rev>-3/2; Rep>0] 3.7.12. The error functions and the exponential integral 1. Ei(-fcc)erf(a/x) 2 1да+4 p+a +b p +•! p+a p+a +•! p+a t с p-J a +* [Re *,Re p,Re(p+oZ+*)>0] 3.8. THE FRESNEL INTEGRALS S(z) AND С B) 3.8.1. S(ax±l/k), C(ax±l/k) and the power function Notation: б = 2. |C(ax)J CS(ax)"l C(ax) +a + 1/2 [o,Re p>0] v+6+3/2.-» ,. p B6+1) [B6+l)/4,Bv+5)/4,Bv+3)/4+5i 3 4(B6+5)/4,6+1/2; -a2/p2j [Rev>-6-3/2; o,Rep>0]
206 3. x -m{S{axA \c(ax)\ 4. xS(ax) 5. 6(b-x) \ I {C(ax)) 6. (S(ax2)) ( 8. SPECIAL FUNCTIONS p-a [a,Re p>0] гГрК? p2+a2-p 2 2 > + ¦ [a.Re p>0] 1/2 za)"I/2 X [(p+za)"I/2erf(/Fp+TaT) + (p-ia) la,bX>] cos Cl -v fcos cp"J  [ф-р2/Dа); Rep>0] Sna л 3/2 4р [Re р>0] ^B6+l)pv+B [Re v>-B6+5)/4; Re p>0] 9. x~3/4C(aVx~) THE FRESNEL INTEGRALS JV(± 207 10. хЧ <ox'v~') с 11. \c(a/x)j 12. 4 2^ [Re pX)] 2 _-v- 2* X |-. Д(*,B±1)/4),Д(*,B+1)/4),0_ [Re v>-l-B±l)Z/Dt); a,Re p>0] i-fl - e 1'2op(cos /2Tp ± sin [o.Re p>0] Mr,^l .v+1/2 -v-I , , f/_ , ¦. Ikr,- ^ P G4*+' [Ml [I 2Bя)(/)/2 2*+/+1Д[1 а> W 0 [Rev>-1; a,Rep>0] 3.8.2. S(f(e'x)), Cif(e'x)) and the exponential function [S(ae"x) lc(ae"x) 23 + i /2 i±i/2 <5±1)/яBр+2±1) fBp+2±l)/4,B±l)/4;-a2/4 2 3[Bp+6±l)/4,F±l)/4,l±l/2 +l/2; |argo|<n]
208 2. (S(aex) \c(aex) 3. A-eVx (S X 4. (l-<fVx 5. x SPECIAL FUNCTIONS 3 + l /2fll±l /2 X2F3| fB±I-2p)/4,B±I)/4;-a2/4 F±l-2p)/4,F±l)/4,l±l/2 , av v[\ ) ¦ 2p+2+l + ^—^— i -~-р sin —e—-. л YJKp ^2 > 4 [a,Re p>0] [Rev>-1; 4*Re v>-B±l)/; |arga|<n] (v+i) сим \(Щ I v+ i 2*+/+i,z+i [ aj Г(у+1 2 Да,1-р),Д(*,<2+1)/4),Д<*,B±1)/4),1 [Re v>-l; Re p>0] ?1 ff_ ; Re p>0; |arga|<n] THE FRESNEL INTEGRALS 209 6. (l [IK 2k e ) ] 6.A,-v) ,Д(А,B+1)/4),Д(А,B±1)/4),1 0,A(/,-p-v) [Rev>-1; a,Rep>0] 7. A-е" 5 С 8. A-е S С v + p l+Uk+l 2Bn)' 'r(v+p+l) f-V 1 flJ [a,Rep>0; r+i ' 2 Bji) T(v+p+l [a>0; Rev>-1; 4*Re p>-B±l)fl 3.8.3. S(ax±llk), C(ax±Ulc) and hyperbolic functions Notation: u(p,6) - 3 / 2' f26+l 2v+5 2v + 3 ,K 26 + 5 x 1 a 2v + 3,K 26 + 5 c 1 а 1 ' Г~^0; 4~'6"^;~ 2 ' n ' v+ ( 2 6 + 5) / 4 f26+1 ,7,64-5 26 + 5 K. 1 a
210 fsinh bx] 1. \ \S(ax) [cosh bx) fsinh bx] 2. 1 YC(ax) [cosh bx) Isinhbx] 3. xvj is (ax) [cosh bx) fsinh Axl 4. хЦ \C(ax) [cosh ftxj 5. -1/2 [cosh bx SPECIAL FUNCTIONS VI [¦I (p-b) 2+a2-p+b^ 1/2 (p-b)l(p-b) 2+a2 1/2 ¦J (p+b) 2+a2-p-b (p+bL (p+bJ+a2 la>0; Rep>|Re*|] 1/2 (p-ftJ _ N (p+bJ+a2+p+b) l/2n (p+bL (p+b) 2+a2 [a>0; Rep>|Reft|] u(p-b,l) + u(p+b,l) [Re v>-5/2; a>0; Re p> | Re * | ] u(p-bfi) +u(p+b,0) [Re v>-3/2; a>0; Re p> | Re b | ] 1 ln p+a-b-V2a (p-b) ^ if p-b p+a-b + V2a (p-b) P+a + b-V2a Vp+b p+a+b+V2a(p+b) [a>0, Rep>|Re*|] THE FRESNEL INTEGRALS 211 , fsinh bx] 6. x~l/2\ \C(ax) [cosh ixj . p+a-b-V2a (p-b) p+a-b+V2a(p-b) + 1 . р+а+Ь-тПа(p+b) Vp+b p+a+b+V2a(p+b) [a>0; Rep>|Re6|] 7. 8. fsinh bx} [cosh bx) fsinh bx) )\ \C(ax) [cosh bx) S(ac)\e b с - с p - b с - с b-p b+p X eri(Vcp-bc+ i ac) - ,-1/2 - (p-b-ia) eri(V с p- b с - i a c)) + /2 X X erf(Vcp+bc+ i ac) - _t /o "^ - (p+b-ia) eri(Vcp+bc- i ac)]> [a,b,c>0] C(ac)\e il Ь С - С p - Ь С - С p e b-p b+p X erf(Vcp-bc+ iac) + . 4-l/2 + (p-b-ia) srf(Vcp-bc-i ac)] + X erf(Vcp+bc+ iac) + ia)~[ 2 srf(Vcp + bc-i ac)] [a,b,cX>]
212 9. fsinh foe") i (cosh bx ) SPECIAL FUNCTIONS Vna (siahbx) 10. i \С(атПс) [cosh bx) fsinh bx) 11. xv\ \S(a-/x~) cosh fa: fsinh bx | 12. xvi \C{a-/x) (coshfoj 13. ,,. fsinh bx] x-3/4 \ (cosh bx) fsinh Лх) ,, [cosh for/ V*J XexP[-i [Rep>|Re I VHa 8 X/ -1/4 3/2 X [Rep>|Re6|] V(p-b,l) + V(p+b,l) [Rev>-7/4; Rep>|Re*|] H(p-*,0) +V(p+b,0) [Rev>-5/4; Rep>|Re*|] 1 Л (p-ft) 1 1 /4 (p+i) tRep>|Re*|] 1/4 + cos V2a (p-ft))j X (sin V2a (p + 6) + cos ^2a (p+i)) i [a>0; Rep>|Re*|] THE FRESNEL INTEGRALS 213 15. - cos v'2a(p-*)) + X (sin /laTp+TT - cos V2a(p+b)) > [a>0; Rep>|Re6|] 3.8.4. S(ax±Uk), C(ax±l/k) and trigonometric functions Notation: Л-i (P cp = arg(p2+a2-i2-2iftp), ?1/2f и(р,б), w(p,6): see 3.8.3; m 2cos ^ + p, y_= Rl/2sin | ± 6; 6 = fsinixl \ \S(ax) (cos bx) (p+;6J+a2-p-iJ>) 1 /2 (p+i Z»)i (p+i b) +a +a (p- p- ii )J J + a (P-i 2 6 -p+I J + a 6) 2 1 / 2 p * [a>0; Rep>|Im(>|]
214 (sin bx\ 2. i YC(ax) [cos bx) (sinbx) 3. xvi YS(ax) [cos bx) f si nbx] 4. xv\ \C(ax) cos bx) 5. 2\ \S(ax) (cos Z>jcJ 6. x l [cos bx) l \C(ax) SPECIAL FUNCTIONS (-1 (p+ib) 2+a2+p+ib) 2 2 (p+ib)i (p+ib) +a (p-ibJ+a2+p-tb) (p-ib)\ (p-i b) 2 + a2 ,-1/2 „ _ .,J(b) ф -cp la>0," Rep>|Im*|] ,1) +u(p-ib,\)] (Re v>-5/2; a>0; Re p> |lm b\ ] (Re v>-3/2; a>0; Rep>|ImA|] 1 ,_ p+a+i b-V2a (p+i b) - +/* p+a+tb+V2a(p+ib) J ln p+u-tj>-^2a(p-ij))l Vp-i b p+a-ib+V2a(p+ib) (a>0; Re p>|Im 6|] 8/n 1 /p+T 1 p-ib-a , p+a+i' b-V2a(p+ib) + > p+a+i b+V2a (p+i b )'¦ jn p+a-i b—J2a (p-i b) Vp-i b p+a-ib+V2a(p-ib) [a>0; Re p>|Im b\] THE FRESNEL INTEGRALS 215 fsin bx\ 7. Q(c-xH VS(ax) [cos ixj — с p - i b с — с p + i b c-i Xerf(Vcp+i ac-ibc) - •^-1/2 - (p-ia-ib) erf(Vcp-iac-i be)] + p+i \-r[(p+ia+ib)'U2 X Xed(Vcp+i ac + i be) - .-1/2 - (p-ia+ib) "''erf(Vcp-iac+ГЪс)] (sinbx) 8. в(с-х)\ \С(ах) [cos ixj Xerffi'cp+iflc + i + (p-ia+ib)~U2erf(Vср- i ac+ i be)] + i -1/2 + _.bUp+ta-ib) X X erf(Vcp+ iac-i be) + ib)'1Пe + (p-ia-ib)'1Пerf(Vсp-iac-i be)] [a,b,c>0] 9. [cos bx) \S(aSx) Г7Техр(-
216 (sin bx\ 10. 1 \C(aSx~) [cos bxj SPECIAL FUNCTIONS (sinbx) 11. xvj \S(aVx~) [cos bxj fsin bx\ 12. xvj \C(aSx~) [cos bxj 13. x _,. (sinbx\ 3/4J 1 [cos ?xj 14. cos 0) -q. p+1 X/i/4[8p+86ij + 1 (p-ib) 3/ 2 ' [Rep>|Im4|] (Rev>-7/4; Rep>|Im*|] [v(p+ib,0) + v(p-ib,O)] (Rev>-5/4; Rep>|lm*|] 1' 1 4! 11 I(p+ib) J\ a1 ) 1/4 v[4'8p+8*iJ -ib) l /4 I4'8p-8ft« (p-ib) p+i b , _ -V 2 a ( p + / b ) X (sin Vla(p-i i)+cos Vla(p-ib)) [a>0; Rep>|Im*|] X (sin V2a (p+i b) +cos V2a (p+ i b)) + f THE GENERALIZED FRESNEL INTEGRALS 217 15. (sin bx I cos bx 16. x 1/2[cosaxC(ax) ± sin ax S(ax)] 17. ,(C(ax2) ± sin ax 1 p+i -V 2 a ( p + i b ) X X (sin V2a (p+i b) -cos /2a (p+i b)) -Jin , n-ih\ 11 + e X(sin ^2a (p-i ft)-cos V2a (p -i b)) [a>0; Rep>|Im*|] r 1 4a тЛГ(р+а) \_(Vp+a+-/a) p+a-iTa 1 / 2 ¦ X b-arctan- 1 /~4a(Vp+a+Va) l / 2 Xln- (a,Re p>0] 1 / 2 ' (т/p+a+Va) +Vp+a / 2 +Vp+a —-Г (sin9| f^ci(q» +si [<p-p /Da); a,Rep>0] 3.9. THE GENERALIZED FRESNEL INTEGRALS S(z,\) AND C(z,v) 3.9.1. S(ax±//A,v), C(ax±/M,v) and the power function Notation: б = ¦ 1. C(ax,v) vlsin Г(у) J p [cos(vn/2)J ((p-arg (p-to); Rev>-l-8; a,Rep>0]
218 (S(ax,\) \C(ax,\) 3. дф-х) (S(ax,v) \c(ax, v) 4. x11 . II Bk) ч (ax ,v) SPECIAL FUNCTIONS av+6r(n+v+6+l) lt + V + 6+1. r. P (v+6) X [6+1/2, (v+6)/2+l; 2, 2 -a /p [Re [cos(vn/2)J ; a.Re p>0] r(v) J'sin(vn/2)>| e-bp (S(ab, ~~MC(<2i, p [cos(vn/2)J p \C(ab,\) Y(v, bp+iab) v, ip-iai)] (г + 6)р^+^ + 6)/2+1ГГ f(v+6)/2,n+(v+6)/2+l;-aW4 X/J [6+1/2, , Г(ц+1)Г(у) Jsin(vn/2>] рц+1 [cos(vn/2)J [Re ц>-1; ReBM.+v)>-2-6; Re p>0] 2v-3 / 2,v-l/2 , ц+l/2 ч/ Д(/,-ц),1 xl-г 1 0,A(fc,F+v)/2),A(i,(l-6+v)/2) [Ren>-1; ReB*(i+/v)>-2*-6; a.Re p>0] 6. x1 THE GENERALIZED FRESNEL INTEGRALS v + 6 ( v + а)/2-Ц- a p 219 7. x^J (ax" С v+6 (v+6)/2; 6+1/2, (v+6)/2+1,(v+6)/2-u) cos(v/2-n)n X,F 1 \ \ 3[n+2,n-v/2+2,n+C-v)/2j l cos (vn/2)J [Re(v-2(i)<4; a,Rep>0] X -r [a,Re pX>; 3.9.2. S(f(e~x),\), C(f(e~x),\) and the exponential function m Notation: 6 = (S(ae'x,\) \c(ae~x,\) fS(a,p+v) p[C(a,\)} pap[C(a,p+\) + ?i?±vifsin[(p+v)Jl/21l pap [cos [(p+v)n/2] J [Rep>0; Re(p+v)>-(l±l)/2]
220 2. S(aex,\) C(aex,\ 3. A-е л, C(ae x,\ 4. A-е SPECIAL FUNCTIONS t p (S (a,v-j Пес a,v-p)| a,v-p)J [a>0; V + 6 (/H-H+v)/2+l ;-a2/4l (cos(vn/2)J 1; Rep>0; Re(p+v)>-e] f(v+6)/2, (p+v+6)/2; -a21A '[6+1/2, (v+6)/2+1, (p+v+6)/2+n+l 1; Re p>0; Re(p+v)>-6] i I 4 THE GENERALIZED FRESNEL INTEGRALS 221 S(aeX,v) C(aex,\) v + 6 2(v+e: (v+6)/2,(v+6-p)/2-n; -a /A 6+1/2, (v+6) /2+1, (v+6-p)/2+l sin[(v-p)n/2)]| cos[(v-p)n/2)]J -|i,p/2; -a IA [c»s(vn/2)J [Re ц>-1; a>0; Re(v-p)>-2] 0,Д(/,-р-ц) (Re ц>-1; a>0; 5. , -hi (Ik) . (ae ,v) ;+i,2i+;+i| 2 2 a (Ren>-1; Rep>0; ReBAp+/v)>-6] 8. a- -;v)>-2;-2i; a.Re p>0]
222 9. A-е 10. A-eVx 11. п-e'Yx SPECIAL FUNCTIONS 2k /+1.24+/+1 I „ , ч 2 к A(/,-p-M,) Re p>0] V + 6 V + 6 v + б X f(v+6)/2,p+(v+6)/2; ц + 1 ,(v+6)/2-|i sin(v/2-|i)n cos(v/2-n)n a2/4 + r(v)B(p)M,+l)] I (cos(vn/2)J ; a,Rep>0; ReBp+v)>-6] 2v-3/2jfev-l I Bn) -x (ReBin-/v)>-2/-2ii a,Re p>0; THE GENERALIZED FRESNEL INTEGRALS 223 12. A-еУх 2v-3 / 2jfev- 1 / 2 l р + ц Bn) '/2Г(м,+р+1) XG, 2 A /Д+/+1 2*+/+l,/+l| 2 k [Re ц>-1; ReBi(i+W>-6/-2i; a>0; ReBip-b)>-2/] 3.9.3. S(axl/k,\), C(axl/k,\) and hyperbolic functions Notation: иЛр,г) - (-1)' Г( v + e + 1 > 2(v+l)e Ф = arg (p-ia), (p,s) = 4 v, cp+iac) + (-l)?(p-ia)vv(v, cp-iac)], X, = arg (p+ib) fx1) (cosh ixj (Re v>-E±l)/2; a>0; Rep>|Re6|]
224 (sinhix) 2. 1 >C(ax,v) [cosh bx) SPECIAL FUNCTIONS 3. (sinhbx) [cosh bx) YS(ax,v) (sinhbx] 4. хЦ \C(ax,v) [cosh bx) (sinh bx) 5. Q(c-xU >S(ax,v) [cosh bx) fsinhijc) 6. Q(c-xU YC(ax) [cosh bx) Uj (p-b,O) + u1 (p+b,Q) + vn 2л rCOS-J p -b (p) [Rev>-C+l)/2; aX); Rep>|Re*|] (Re m>-C±1)/2; a>0; Rep>|Re6|] u2(p-b,0) + u2(p+b,0) [Re ц, 2; a>0; Rep>|Re*|] I Г(У) Г ¦ Vlt + 2 ,21 fSln 2 p -b [pj e~Cp 2 ,2 p -b Pi sinhic) coshfcl fcoshicy [sinh be) [Rev>-E±l)/2; c>0] - и (p-6,0) ± U,(p+i,0) + os- p2-i2|p g^ cp Г Tsii p2-i2[ [coshicj ГсозЬбс"!] + W I C(ac,v) [sinhicjj [Rev>-C±l)/2; c>0] THE GENERAUZED FRESNEL INTEGRALS 225 7. [sirihbx\ [cosh i [Re ц>-C±1)/2; + 2 X 1; Rep>|Re6|] 8. [cosh [Re ц>-C±1)/2; ReBn+v)>-l+l; Rep>|Re6|] 3.9.4. S(ax ,v), C(ax ,v) and trigonometric functions Notation: ф = arctan -; u.(p,e), /=1,2,3,4: see 3.9.3 fsin bx) 1. -^ YS(ax,v) [cos toj ul(p-ib,\)] 2. < lC(ax,v) [cos i^J Г(У! P2 + *2[P [Re v>-E±l)/2; a>0; Rep>|Im*|] [Ul{p+ib,0) + u^p-ibfi P +b 2{p) 2 fsin АдЛ 3. «^ VS(ax,v) I cos ил) [Re v>-C+l)/2; а>0; Rep>|Im6|] [u Ap+lb,\) + uo(p-ib,\)] Г(ц+1)Г(у) [Re ц>-C±1)/2; a>0; Rep>|Im6|]
226 (sin to) 4. xH \C(ax,\) [cos bx) SPECIAL FUNCTIONS fsin&c] 5. Q(c-x)i >S(ax,\) [cos bx) (sin foe] 6. Q(c-xH YC(ax) [cos bx) fsinixl 7. хЦ \S(aVx,v) [cos bx) (sinbx] (sinbx] 8. ж'М \C(aVx~,v) [cos &t] Г(ц+1)Г(у) (p +b ) (ц+ ' [Re ц>-C±1)/2; aX); Rep>|ImA|] vn 2 ± u3ip-ib,l)] , Г(у))-| уя 2 2 1 ISU1 ~2 - с p (b cos be + p sin be] >S(ac,\) j +b p +b [p cos be - isinicj (Rev>-E±l)/2; OOJ r<v), p +i ip + и3(р-И»,0)] у я 2 - с p (b cos be + p sin icl k( in be) +Z» [pcosic - isinic tRev>-C±l)/2; e>0] i «4(p-i*,I)l Г(ц+1)Г(у) Xsin ^f [Re(t>-C±l)/2; \cos[(n+l)t|>]J' ; Rep>|Im6|] Г(м.+ 1 [Re | V, Rep>|ImA|] i THE INCOMPLETE GAMMA FUNCTIONS 227 3.10. THE INCOMPLETE GAMMA FUNCTIONS T(v,r) AND y(\,z) 3.10.1. T(\,ax±l/k), y(\,ax±l/k) and the power function Notation: б = y(.\,ax) 2. x1 T(\,ax) 3. Q(b-x)\ [y(\,ax) 4. Г(\,ах у (у,ах [Rev>-1; Rea,Rep>0] )г(у)Г(ц+1) i;--r + oj рц -1; Re o>0; Xy(\,ab+bp) +¦ [Rev>-1; г(у) Xz 2ll/2,(n+3)/2;ap2/4 Г|г/2+1,ц/2+у+1 221з/2,ц/2+2;а »)>-!; Reo>0; 1; Rep>0^"]
226 fsin&xl 4. хЧ \С(ах,\) Icos bx) SPECIAL FUNCTIONS 5. 6(c-x)J f-S(ox,y) [cos bx) (sinbx\ 6. в(с~хЦ \С(ах) Icos bx\ (sin bx] l^cos bxj S{a-/x,v) fsin to") 8. хЧ lC(a-/x~,v) [cos bx) [u Лр+ibfi) + u (p-rt,0)] + 2 2 Г(ц+1)Г(у) [Re ц>-C±1)/2; о>0; Rep>|Im*l] Г(у) ~2 m ¦sin- p~ + b~\p) e - с p (b cos be + p sin bc\ 2 21 I p + b [p cos be - b sin be] [Rev>-E±l)/2; e>0] [- и (р+№,0) + и (p-/*,0)] Г(у) Р2 + Ь2\Р УЯ 2 - с p (b cos ic + p sin be] k p +* [pcosic - bsiabc) [Rev>-C±l)/2; c>0] Г(ц+1)Г(у) 2,,2.(м+1)/2 | (p- + b-) -"¦ " " [cosKn+D^lJ . УЯ iin —2 (Re ji>-C±l)/2; ReBц+v)>-2+l; Rep>|Im*|] Xsin^f Г(ц+1)Г(у) [Re (i>-C±l)/2; ReBц+v)>-l+l; Rep>|Im*|] a ' THE INCOMPLETE GAMMA FUNCTIONS 227 3.10. THE INCOMPLETE GAMMA FUNCTIONS T(y,z) AND y(\,z) 3.10.1. T(\,ax±l/k)y y(v,ax±l/ ) and the power function Notation: б = ¦{ 101 I. y(\,ax)\ 2. xl T(v,ax)) y(v,ax)) 3. Q(b-x) T(v,ax) y(v,ax) 4. x1 Г(\,ах у (v,ax ) [Rev>-1; Rea,Rep>0) ^а"Г(м.+У+1) - vp \l + V H (I) , Г(у)Г(ц+1) [of P^+I |r(y (Rev>-1; *>0] /2) С(М.+1)/2,(М-+П/2+У 2 Г(ц/2+у+1)р -1 2 [3/2, Ц/2+2^-'pV»
228 5. v,ax ) y(.v,ax Y (\,a-/x) 7. x' y(v,a/x") 8. y(y,axllk) SPECIAL FUNCTIONS ^ГBу) [Rev>-l/2; Re a,Re p>0] т Г(У)а' 2WV': Г(у> oj [Re v>-2; Re a,Re p>0] x/3 v/2,n+v/2+I 2 -l l/2,v/2+l;ep 74 ±^.p-,-(v+3,..r|ti+_,|x t3/2,(v+3)/2;a2p '/4 Г(у)Г(ц+1) [*^»-*»e. >o;{R:s1;Rep>0}] ^v-1 /2/Ц + 1 /2р"Ц- (гя)'**2 /Re ц>-1; Rep>0\"| 9. Tiy,alx) THE INCOMPLETE GAMMA FUNCTIONS fo 229 10. A \ [y(v,a/x)) 11. x -ill T(v,a/x) v,alx) 12. x 13. y(y,a/x) T(v,ax Uk) y(y,ax -l/k. ) T(v) II P (a.Re p>0] v v - ц - 1 r(|i-v+l) X *+1 ,F (\i+l;\L+2,2+\i-v;ap) |Г(у)Г(ц+1) Reo>0; >-1; Rep>0 ¦}] [ReO>0; ; Rep>o }] ; Rep>o ^v - I / 2 ,[i+l / 2 -ц-1 Bя)(*+П'2-1 7 x }] [ Re P>0 >-1; Rep>0 Й
230 SPECIAL FUNCTIONS 3.10.2. Г([х]+\,а), v([x]+v,a) and various functions 1. b[x]y([x]+l,a) [Rep>In|a*|] 2- 3- 4. lx 1-е -P - y(\,a-abe p) lx] 1-е -p I я Jl-fte"' erf(<l a-abe p) 1-е -p Ei(aie -a) [Rep>ln|a4|] 3.10.3. T(v,ax+ ), v(v,ax ) and the exponential function Notation: б = 1. e y(v,e ax ) 2. X LL [Rev>-l/2; Re a, Re p>0] v ( 1 - 8 ) я i /т , ц + 1 / 2 -x n V(v,e k+kt>,kJ(a)k k+l,2k [kj * X1p. L-<W)/2+6(A-l)-l; RepX); /lar«°l<31 1 Re a>0 THE INCOMPLETE GAMMA FUNCTIONS 231 3. *"exp (?)rH) ; Re p>0; 4. ЛхрС+лх "к) X X -Ilk. x ) y(y,e ax ) /2 И x Xr [, -x 3.10.4. T(v,/(e л)), 7(v,/(tJ)) and the exponential function Notation: б = 1. i (v,ae~x) r(v,a)] fl-pfr(p+v,fl) г(р+у) pa f"/Re(p+v),Rep>o\1 [\Re(p+v)>0 /J 2. ¦( (v,ae IT V(v,a)J p U(v-p,a) Re O>0 a. Re f>O VI J J
232 3. A-е )Ч (v,ae ) IT SPECIAL FUNCTIONS 4. -ЫК 5. U-fW (у,аеЫк) 6. A-е V-l (у,а-ае'х) 7. (l-e~Vx [v,a(l It ft f1 (о. |Re(p+v)>o; ViP+v;_a Л v+1,р+ц+v+ll Re ц>- *v~1/2ru+i) л< к - 1 ) / 2 . ц+ 1 /+1./Ы+1 ReUP+/v)>0; /Rep>0; Re \Re ,!>-! Bя)(*)/2/ц+1 *+'+1^+l| la ^-!; /Ee ">0; Re THE INCOMPLETE GAMMA FUNCTIONS 233 8. (l-e"Vx -X xu*+/+i,;+i а [„ f Re pX> \1 Reu>0; \Rep>0-, Re,x>-l}J 9. A-е [v,e(e -D] +l+l,l+l [a) Г , , fRe |i>-l; Re u>o\l [Re(^+M>-*; \Rep>0 /J 10. A-еУх [v,fl(e -1)]~ fReu,Rep>o\l Re(*p+/v)>-<.; |Re ^ |J 11. exp(±ee x) X X T(y,ae'x) V(v,ae rev"'>(v)l 1f7l^ re(l-v) 2Л KRe(p+v)>0, Rep>0\l Re p>0 /J l-p,v v,0,-p
234 12. ехр(±а/)х (Г(\,аех) X SPECIAL FUNCTIONS 13. U-ex) x .ae x) 14. A-е ) ехр(±ае F(v,ae ) . ш- Ixlk V(v,ee \Ti.v,aelxlk) X- r6(l-v) v,p+l P.v.O [Re ц>-1; Re p,Re(p+v)>0; |argu|<n] •1[^л/Г(уI1-6Г(и+1 /Re p>0; Re | ' \Re ц>-1 15. (l-eVexp^Sx W^VjAVA j2k+lMl\[a -х -X THE INCOMPLETE GAMMA FUNCTIONS 235 16. A-е X) X 7(v,ae A-е ) ) 17. (l-e"X) X -r -//it e ) ] X v(v,ae A-е ) 18. A-е X) X Xexp[±a(/-1) ]X ni . x e (e U(v,ae (e -1) ) Bя) (*-l)B6+1)/2r6(,_л р8 A_v) l; Rep>o }] -X Jc,k+k&+l\ \k Xexp[±fl(l-e ) ]X XG, *+*:5+/| (k)k ,M \[a) , fRe fi>-i\l >W; \Re«>0|J
236 SPECIAL FUNCTIONS THE INCOMPLETE GAMMA FUNCTIONS 237 19. A-е"*) x Хехр[±а(е*-1) l/k] x Bл)чГ(р+ц+1) <Gk+l,2M Ml) <И*-Ш2б 3.10.5. r(v,ax ), v(v>fl* ) and hyperbolic functions Notation: u(p) = -^Hllt±^±il r [Vi|l+v+1.v+i;_|] , 2 v pц *¦ PJ v+ ' flv+ ' -|i-(v+3)/2rf v + 3^) „ fv+1 v+3 3 v+3 a2) 2(v + l)p * ['l' 2 j2/<2( 2 >(i 2 '2' 2 '4pJ щ Lel pr(v+lx/2+l) 2 2 2 z(p) = V V - [1 - fsinh b 1. ^ ^r(v, [cosh bx) ± 1 f a p+i[p+a+ [Re v>-C±l)/2; Rea>0; 2. J U(v,ax) [cosh AxJ 3. fsinhix [cosh Ax 4. x^ J-T(v,ax) [cosh bx) fsinh&tl 5. Q(c-x)\ \Г(\,ах) [cosh bx) fsinh 6. 6(c-xH [cosh Г(у: 2 Up-*) (p+a-6) (p+b)(p+a+b) [Rev>-C±l)/2; Re a>0; Rep>|Re6|] X [ [Re Re uX); Re p>|Re6|] -u(p-b) ±u(p+b) 3±l)/2; Re a>0; Rep>|Re6|] - с p + bс - ср-Ьс Г(у , ас) \е b-p P+b ¦]- _ (p+a p+b cp+ac+bc)] I I 2 ,2 [p)p -b [Re v>-C±l)/2; c>0] 7(v , ac) - сp + bс - с p-b с \e-cp+ 1 ft-P p+b p + b [Re v>-C±l)/2; c>0] v, cp+ac+bc)] J
238 (sinhta") 7. i \r(v,ax2) [cosh bx) SPECIAL FUNCTIONS ГBу) 8. fsinhfc [cosh bx fsinhM 9. хЧ УГ(у,ах ) [cosh bx) 10. 11. fsinhfcc [cosh bx fsinhftx coshftx Г(у) ¦>2-b' [Rev>-C±l)/4; ReoX); Rep>|Reft|] ГBу; + [Re v>-C±l)/4; Re a>0; Rep>|Re6|] w(p-b) [Re |i>-C±l)/2; Re(|i+2v)>-C±l)/2; Reu>0; Re/»|Re6|] - w(p-i) ± [Re(n+2v»-C±l)/2; Re a>0; Rep>|Re6|] Г(у) ?^1 [Re v>-3+l; Re a>0; Re p> | Re b | ] THE INCOMPLETE GAMMA FUNCTIONS 239 (sinhix") 12. хЧ U(\,a/x) [cosh bx) 13. fsinhftx) Ч Vr(v, [cosh 6xJ 14. [cosh 6x 15. (sinhftx) [cosh*x l v,f 16. Jsinhte] с а [cosh fsinh*x) 17. *" Ф [cosh bx) v Г( (Rev>-3T1; Re a>0; Rep>|Re6|] v(p-b) + v(p+b) + X [(p-b)'11'1 + (p- [Re |i>-C±l)/2; Re( Re a>0; Re p>|Re b\] -v(p-b) ±v(p+b) Г(ц+1)Г(у) 2 I-*)1] 2|i+v)>-3+l; 1 (Re |i>-C±l)/2; ReB|i+v)>-3+l; Re u>0; Rep>IRe6|] 1 v/2~lK B/a [Rea>0; Rep>|Re6|] v/2r, ,,v/2-l „ Г(У) 2 ,2 > -A [Re'oiO; Rep>|Re6|] - z(p-b) ±z(p+b) Г(ц+1)Г(у) [Reu>0; Rep>|Re6|]
240 18. A ¦ L [coshixj SPECIAL FUNCTIONS v,f 19. x ,(sinh bx [coshixj I. x> ж cosh ¦H) 21. [cosh A v, 22. _3/2 f jcosh6x z(p-b) + [Ren>-C±l)/2; Re e>0; Rep>|Re4|] [Re aX); Rep>|Rei|] VH ; Re u>0; Rep>|Rei|] ,-l I 2' (p + b)-1-'11 [Rea>0; Rep>|Rei|] (p-b)) ,-1/2 ?Bv-l,2/fl! [Rev>+l/2; Rea>0; Rep>|Re6|] THE INCOMPLETE GAMMA FUNCTIONS 3.10.6. r(v,ax±//*), y(v,ax±Uk) and trigonometric functions Notation: <p = arctan —, i|) = arctan 241 u(p), v(p), w(p), z(p): see 3.10.5 sin bx cos bx r(v,ax) 2. 1 \y(v,ax) [cos bx) 3. x^ ^r(v,flx) I cos bx) 4. xf in bx\ sin cos bx) Yy(\,ax) [{p+aJ+b2]v/2 X fpsinvi|) + boas vi()^1 [pcos уф - b sin vi|>J J [Re v>-C±l)/2; Re a>0; Rep>|lm/ Г(у)а" fp sin \ty + b cos vt|>1 X1 f [p cos v\]> - b sin vi))J [Rev>-C±l)/2; Re e>0; Rep>|lm6|] Mu(p+ii) + u(p-ib)] + r(v)n,x+l)(A*V(ll+1)/2X fsi [Re n,Re(|i+v)>-C±l)/2; Re o>0; Rep>|Im6|] --^ Uu(p+ib) ± u(pHb)] [Re(n+v)>-C±l)/2; Re a>0; Rep>|Im4|]
242 SPECIAL FUNCTIONS (sin bx) 5. Q(c-xH \T(.v,ax) cos bx) 6. Q(.c-x sin bx) cos bx) fsin bx] , 7. i к(у,ал- ) [cos ixj 8. (sin bx) I cos bx) "срГ(у, ас) P cos 6c + p sin 6c p +i [p cos be - b sin be p+i b -y(v,cp+ac+ibc) + -r (p+a-i 1 J Г(у) [Re v>-C±l>/2; OQ] p у (v ас) f * cos *c + p s'n ' p + * [p cos Ac - b sin i y(,\,cp+ac+ibc) -(p+a- p a_ilbb) y(.v,cp+ac-ibc)] [Rev>-C±l)/2; 00] rBv)|'' 8a [Re v>-C+l>/4; Re a>0; Rep>|Imii|] «a ¦exp p-ib^\ 8a (P- i b) 2) a J XD -2v p-ib [Rev>-C±l)/4; Rea>0; Rep>|Im(>|] THE INCOMPLETE GAMMA FUNCTIONS 243 9. (sin bx [cos bx [w(p+ib) + w(p-ib)] + [Re |i,Re(|i+2v)>-C±l)/2; Re a>0; Rep>|Im6|] 10. cos -\ \[w(p+ib) + w(p-ib)] UJ [Re(|i+2v)>-C±l)/2; Re aX)\ 11. (sin A l cos bx [Rev>-3+l; Rea>0; Rep>|Imii|] (sinixl 12. -^ U(\,a/x) cos A I Г(- Xexp [Rev>-3+l; Re a>0; Rep>|Imii|]
244 (sinbx) 13. xN \-T(v,a/x) [cos bx) SPECIAL FUNCTIONS 14. x»i )v(v,a/x") [cos bx) 15. cosix 16. sinox] , \ 17. хЛ Г v,f cosix *¦ *-* [Re ц>-C±1)/2; ReaX); Rep>|lm6|] [w(p+iW + w(p-zi)] [1J [Re ц>-C±1)/2; Re a>0; Rep>|Im6|] -{:} [(p+ib)v/2 lK BVa(p+ib)) + (p-й) '/^tfVaCp-i*))] [Rea>0; Rep>|Im6|] v/2- и .>v/2-l. Г(у) \р1р2+ь2 [Re a>0; Rep>|Imii|] (p+ib)) S[(\L+D<p]) [Re a>0; Rep>|Imii|] THE INCOMPLETE GAMMA FUNCTIONS 245 (sin bx 18. x^ Uv [cos bx) ^ > 19. xv T I cos ix 20. xv [cos bx 21. [cos ix J 22. _3/2jsin*x cos № [z(p+ib) + z(p-ib)] [Re |i>-C±l)/2; ReaX); Rep>|Imft|] xrBv,B/eTpT7TT): [ReaX); Rep>|Im6|] .2v (p-i*)v+ v + 1 / 2 1 /2 X 1 (p-ib) 111' >-l+l/2; Re u>0; Rep>|Im6|] X rBv-l,2v'a(p+ii)) 1 (p-ib) (-1/2 ; Rep>|Im ,2vtl 1,11, ...v-1/2 2 a[l I I (p+( b) X XTBv-l,2/aTp+T5T) +¦ 1 (P-ib) ,-1/2 [Rev>+l/2; Re u>0; Rep>|Imii|]
246 SPECIAL FUNCTIONS 3.10.7. Products of Tb,,ax±llk) and y(v,ax±llk) 1. x y(\i,bx)y(\,ax) цур Л + u.+ v + 1 >-l; Re a,Re ft.Re p>0] 2. x Г(\,-ах ) X r(l-v)Bя) 2k+1/2-2 -X 0,A(Jfc,v/2),A(Jfc,(v+l)/2),A(Jfc,v) 3.11. THE PARABOLIC-CYLINDER FUNCTION 3.11.1. D (e/x) and the power function 1. D (a/x) 2- аГ( C-v)/2) [ReDp+a2)>0] 2"+5/2fl Dp+fl2K/2 3 3-v a2-4p >2' 2 ' 2fl2 +4p [ReDp+fl2)>0] 3. D (-a/jc)-D (a/jc) Dp-flVv-')/2 Dp+fl2)v/2+1 [ReDp+a2)>0] THE PARABOLIC-CYLINDER FUNCTION 4. 5. 6. 8. x'3/4D (art) [Re |i>-l; ReDp+a2)>0] (a2-4p)" 22"-1/2n!flv+1 [Re v>2n-l; ReDp+a 4p+a' [Rev<l; ReDp+fl2)>0] /n I -I 4p + fl2+/Tfl 1 W [Re v<-l; ReDp+a v+1 -X 4p+a 4p-a X 1/4 I 8p [ReDp+fl2)>0] 247
248 9. x SPECIAL FUNCTIONS !(a2-4p)" 2"-1n!(fl2+4P)n+1/2 [ReDp+a 10. x~U2[D (- + D (a/x)] r<(l-v)/2)DP+fl2)(v+1)/2 [ReDp+a2)>0] 3.11.2. J3 (a) and various functions V— [X\ 3.11.3. D^(ax±llk) and the exponential function Notation: Л = 6 = THE PARABOUC-CYLINDER FUNCTION 249 2. -ц exp (ах) 3. x exp (ц+1)/2,ц/2+1;+ар2/2' l/2,(n±v)/2+E±l)/4 fn/2+l,((i+3)/2;+a"V/2 2 2[3/2,(H±v)/2+G±l)/4 J -v/2,(l-v)/2;+e"V/2 [. |аг8а|<B±Оя/4; -1; Re p>o -211-1 /- Г2ц+2 -i^r |Х ii+i [Re |i>-l; Rep>0; |arga|<3n/4] -D v-r . бХР. а T(-v/2) [2а' [Rep>0; |arga|<n/4] г-*- 4. м-1 [Rev<-1; Rep>0; |arg e|<3n
250 SPECIAL FUNCTIONS 5. Лхр(- V 6. 7. 8. -(v+3)/2 х 9- M^hfe n+C-v)/2 №ец.>-1; Rep>0; |arga|<n/4) [Re v< 1; Re p>0; | arg a | <л/4] v + 1 2p+aL-a [Re v<-l; Re p>0; | arg a | <я/4] v+1 [Re pi>-l; Rep>0; |arg a|<B±I)n/4] -v/2 Tv,3+l. 1 3 -o {2 JJ « : V 1 u 10. xv/2exp THE PARABOIJC-CYIJNDER FUNCTION 2A-2v)/4fll/2 ( 2v + 3 ) / 4 Sv+l/2.1/2(: P [RepX); |arga|<3n/4] 251 11. -f^) X 12. ^ехр[±-^ [Rep>0; |arga|<n/4] Al** XD (ax ) X - A(Jt,(l-6+v)/2) Re p>0;ReB*|i-M>-2*;'\1 3.11.4. JD (/(e *)) and the exponential function Notation: 6=-^ \; A: see 3.11.3. 0 l-p/2,(l+6±v)/2>) 0,l/2,-p/2 J [Rep>0; |argd|<B±l)n/4] 2. exp ±f-> (aex) 2.3 2 (l+6±v)/2,l+p/2i p/2,0,1/2 K|argo|<3n/4; |arga|<3n/4
252 3. (i-e SPECIAL FUNCTIONS 5. п-е 6. XD k+l,2k*l\ \2k [Re |i>-l; Rep>0) [,argu,<B±UW4;{R:-Rf^»->]} Гр A(/,-|i),A(il,(l+5±v)/2 [Re ji>-l; Re p>0] Al rpr. ,r6k,2k+l \Bk)k THE PARABOIJC-CYUNDER FUNCTION 253 3.11.5. D (атГх) and hyperbolic functions fsinhix 2- fsinh ix [cosh ix f 3. хЧ fsinh [cosh , fsinh bx [cosh X /> (a-fx) аГ(C-v)/2) x » fi 3.3-У.а/-4й-4р| + ^P' 2 ' 2a2 J [ReDp+a2)>4|Re*|] ,ч Г ,2 la , 2 ., . чп+з/: (а -4й+4р) (а2-4й-4р)" 1 / 2 ., . .n+3/2 (а +4й+4р) J [ReDp+a2)>4|Re*|] \a^-2x U13- -•*•' 2 ...3-v in 2 v a a * 2+4й-4р 2a2 -4й-4р| 2a2 | [Re (i>-C±l)/2; ReDp+a2)>4|Re *|] 4p+a2-4b (\ 4 4p+a +4b [Rev<2±l; ReDp+a2)>4|Reu|] 5. [coshfej (aVx) [Re v<±l; ReDp+a ) >41 Re * | ]
254 6. x "U X [cosh bx) xD2n(cr/x) SPECIAL FUNCTIONS n)! Г (a2 + 4Z>-4p)" 2"n! \(а2-4Ь+4р)п+1/2 T (a2-Ab-Ap)n (a2+4b+4p)n+U2 [ReDp+a2»4|Re*|] 3.11.6. D (ai/~x) and trigonometric functions (sin bx) 1. \ I [cos bx) D(<nTx) 2- sinix" cos sin bx\ cos их) ar{C-v)/2) .3-v.Q -4p-4 г b 2a' I, 3 3-v Q2- 1 2! 2 ; 2a [ReDp+a2)>4|Imft|] ,n+3/2 ~( 2 аГ\п+ 31141 (a2-4P-4;u)" T (а2-4р+4гй)" [ReDp+a2)>4|Imft|] L|x+C-v)/2 3 3-\.az-4p-4 i b 2a' 3 ,3-v a -4p + 4ib T> P—T~> 2 2 2 2a2 [Re ц>-C±1)/2; ReDp+a2)>4|Im *|] THE PARABOLIC-CYLINDER FUNCTION 255 Ь 4. [cos bx 5. cos 2 fc [cos te 3.11.7. Products of D (a/x) 1. D (ax)D(iax) tt 71 2. x~U2Dn(aifx)Dn(bVx~) ¦J4p+a2+4 г b (i 4p+a2-4 i b+Vla) i4p+a -4 i b [Rev<2+1; ReDp+a2)>4|lmft|] + (-I4p+a2-4ii+/2a)v' [Rev<±l; ReDp+a2»4|Im*|] V~RBn) ! Г (q2-4p-4iu)" ~n , , 2 . ..,.«+1/2 2 n! I(a +4p+4iй) (a2-4p+4ib)n 2 . . . . . л + 1 / 2 (a +4p-4io) [ReDp+a2)>4|Im*|] .-и , v^TT. г nlTa -n-i/2 [Re a>0] 2/iin! 2a X -16p" [ReDp+o2+*2»0; |arg a|,
256 3. SPECIAL FUNCTIONS n-lnr . 2n-l [n,Rep>0; |arg<3|<n/4] Д(*,0>.Д(*,1/4),Д<*,1/2),Д(*,3/4) [Re (i>-l; Re p>0; | arg a | <л/4] 3.12. THE BESSEL FUNCTION J (z) V 3.12.1. / (ax) and the power function Notation: к = 2~1/2| 1 P- 1. / (ax) 2. x*J (ax) [Rev>-1; Re p> |Ima 1 XP~ I 2 2 ip +a >-l; Rep>|Imc|] +v + 2 2 ' 3. x / (ax) Ba)vT(v+l/2) 1— , 2 2 . v + 1 / 2 [Re v>-l/2; Re p>|lm a|] THE BESSEL FUNCTION 257 4. xv+1/ (ax) + Vr(v+3/2) 2 2.V + 3/2 +a ) [Rev>-1; Rep>|Ima|] 5. л; У (ах) (-\)ndn [Rev>-n-l; Rep>|Imc|] 6. +a ) \р2+а2K/2 [Rev>-2; Rep>|lmo|] 7.1. [Re v>0; Rep>|Ima|] 8. 2v 1 v-1 a p+i p +a v-l 1 V+l [Rev>0; Rep>|Ima|] p+ip +a v+b 9. [Rep>|lm a\\ 10. xU2JQ(ax) яр [Rep>|lmoi] -[2E(it)-K(Jt)]
258 11. x3/2J0(ax) 12. x5/2J0(ax) 13. 14. x 1/2/,(ajc) 15. xUlJ1(ax) 16. x3l2Jx(ax) SPECIAL FUNCTIONS (l-2fc 2 . 5 2 I Ц^—[8(l-2A2)E(fc)-E-8it2)K(Jt)] яр [Re p>|Im a\] 1) [2B3-128fc2+128fc4)E(fc) - яр - C1-144fe2+128it4)K(Jt)] [Re p>|Imo|] -[(l-k2)K(k) - (l-2fc") - (l-2fc2)E(Jt)] [Re p>|Imo|] 2 Г 1 —2Л: 2 * 4 лр (i ->t2 > [Rep>|Ima|] I П-2/fc2K - (l-2Jt2)E(Jt)] [Re p>|Imn|] -[(l-fc2)(l-8Jt2)K(Jt) - [Rep>|Im a\] 17. x 3/2J2(ax) -(l-k2)B-k2)K(k)] [Re p>|Im a\ THE BESSEL FUNCTION 259 18. x~U2J2(ax) - 2(l-2Jt2)E(fc)] [Rep>|Imo|) 19. xU2J2(ax) it2 (l-it2)-Up3 -(l-Jt2)B-Jt2)K(Jt)] [Re p>|Im o|] 20. 4/? 2k I 2Jt2 ( 1-Jt2)-Jrtp5 -2(l-2it2)(l+4*2-4it4)E(Jt)] [Rep>|Ima|] 21. x5/2J2(ax) I 4k2 (\-k2)\np1 X(l-fc2)K(Jt)-2(l+7it2-135*4+256it6-128fc8)E(Jt)] [Rep>|Im a\] 22. -[(8-15ifc2+3ifc4)X 105it3-ln(l-it2K X(l-it2)K(Jt)-(8-19it2+9it4-6it6)E(fc)] [Re p> I Im a I) 23. д: U2J3(ax) P ( 1-k ) -A ~k2) (8-19it2+15*4)K(Jt)] [Re p>|Im a\]
260 24. xU2J3(ax) SPECIAL FUNCTIONS (I-*2K' [Rep>|lm a\] 25. ?[1-/„(«)] -In- JlL Г2..Г p+i p +a [Rep>|Im a|] 3.12.2. J(axz) and the power function 1. / (ax2) 2. XD ""Пук J [Rev>-l/2; a,Re p>0] .2 f^i V2 i/4l8a J i [o,Re p>0] I ¦4 i \ (ax ¦2) 5. 6. x3/2X THE BESSEL FUNCTION 2<ii-3)/2 r(M.+2v+l)/4i r(|x-2v+l)/4, а(^1)/2 r[C+2v-^)/4j2F4l/4, 1/2, n+2v+l)/4; -ap4/64i -,|W2-1 X 261 (n.+2v+l)/4; -a 3/4 a 2+ l r(n.+2v+2)/4] f(n.-2v+2)/4, ><r[_B+2v-|l)/4J2 3{l/2, 3/4, 5/4 (M.+2v+2)/4; -ap4/64 (Ц. + 3) /2 '(M.+2v+3)/4l f(M.-2v+3)/4, (|i.+2v+3)/4; ХГ \f\ A+2v-m.)/4J2 3[3/4, 5/4, 3/2 -a~2p4/64l -ц./2-i з f(M.+2v+4)/4] 1 .A 2—Г X Ъа»12+2 L<2v-^)/4j l; -a 2p4/64 z *{5/4, 3/2, 7/4 [o,Re p>0; [c,Re p>0] Aa [a,Re p>0] 3/2 P l"-B+l)/4 3. 1 6-1 2яа [a,Re p>0] ii if 3.12.3. JJax ) and the power function 1. / (aVx) ат/И 11 '(v-O/2[8p [Re v>-2; Re p>0; I arg a \ <n] 7(v-l)/2[8pJJ
262 2. JQ(a-/x~) 3. 4. J2(a-/x) 5. Л (a/x) 6. x^/2J (aVx~) 7. x J (avx) 8. хП3 „ H+v/2 r , /—, 9. x J (.aVx) 10. л: 1/2yavGc) SPECIAL FUNCTIONS [Rep>0; 4p [Rep>0; M-felWt?)- [Rep>0; [Re B(i+v)>-2; Re pX); [Rep>0; [Re v,Re p>0; | arg о | <я [Rev>-1; Re p>0; [Rev>-n-l; Re p>0; [Rep>0; 12. xJ0(afx) 13. 14. ±[ 15. i 16. n-l/2. THE BESSEL FUNCTION 263 17. x ll2J{(a-/x) 18. [Rep>0; |argal<n] [Rep>0; |arga|<n) *P}[[* 4p 1 , ,2-, t 2Л [Rep>0; 4pJ "^ 47 [Rep>0; |argo|<n] [Rep>0; [Rep>0; |arga|<ii] [Rep>0; 2p^ [Re p>0;
264 19. 20. 21. 22. ± 23. 24. 25. xJ2(a-/x) 26. x3/2J2(a-/x) SPECIAL FUNCTIONS [Rep>0; |argc|<n] [Rep>0; [Rep>0; [Rep>0; [Rep>0; p [Re p>0; 4 P. [Rep>0; exP -TT7 64p 7/2 exP "яТ 4p 2 4 5 [Rep>0; THE BESSEL FUNCTION 265 27. 6(й-х)Х [Rev>-1; 28. х v/2 ¦L4A- X/ 29. //B*L Bд) ('-1)/2 ^ [ReB/fc(i.+/v)>-2jfc; |argc|<n for /<2*, or a>0 for t>2k, or Re p> |Ima | for /-2t; Rep>0] or [l<2k; ReBA|i.+/v+2jfc),Re p>0; |arga|<ji] or [t>2k; a,Rep>0] or [l~2k; Rep>|Imo|] 3.12.4. /..(ax ) and the power function '• 'Ox 2. p [c.Re p>0] f) [(V-M.-D/2 2* + z L<3+M.+v)/2 2 2ч A + 2 16 J 2^+Э ,(i. t+v + 3 ц-у + 3. oF3 •>• x+v 2 [Re (i>-5/2; a,Re p>0] 1+v J _2n
266 з. ±j \a- 6. x»1/ M SPECIAL FUNCTIONS 2 J [a,Re p>0] [a,Re p>0] a P 1/3 r ~Z 1X1 -?Z [e + e e + e (l±l)/2 -e:. 3, z-3(a2p/4)'/3; <3.Rep>0] ii-v/2-1 [Re ц>-7/4; a,Rep>0] ,2 .(/-,,/2G/+2*.oN flJ {p\ 7 [Re ц.>-1 -311 Di); o,Re p>0] 3.12.5. /Да^ х +xz) and algebraic functions Notation: z+=2~!z(p <p2+aV/2exp<z_) [Rep>|Ima|; |argi|<n THE BESSEL FUNCTION 267 2. 3. (x2+xz)vl2 X X J 4. X XJ [a4x +xz\ v / 2- 1 5. X/ [a\x2+xz •/2 6. m +xz I X/ m +xz -e X Lit r(fc+v+l) a z 41777 k-0 [Re B,i+v) >-2; Re p> |1ш a |; | arg z | < (а/2)УГ г Г2 2 \p +a \ H/2 [Rev>-1; Rep>|Ima|; v + l XM,-l/2,v/2<Z-> [Re Bm.+v) >0; Re p> | Im a |; a: [Rev>0; Rep>|Ima|; [Rev>-1; Rep>|Ima|;
268 SPECIAL FUNCTIONS 7. \x2+xz v/2 Z I IZ \K v/2 [ai x +xz J XJ Ых +xz [Rev>-1; Rep>|Ima|; |argz|<ji) Ix2+xz az [1 - exp(z >] x(a\x2+xz) [Rep>|Ima|; |argz|<ji] 9. x+z'2 X - exp(z_) а\рг+а2 [Rep>|Ima|; |argz|<ji] 10. Ax +xz X 2 2, [Rep>|Imo|; -7-<p exp(z_) 3.12.6. J^\a\±b +x J and algebraic functions Notation: t»+=i[-Jp +a ±p) 1. 6(й-д:>Х + 2i UQ [b\ a2 - p2-ibp, ab) - i J0<.ab)] [b>0] 2. xm(b2-xY/2X XJn[cAb2-x2) X [exp^Ma -p I + + [*>o] -р2-гйр,ай) - i JQ(ab)] | THE BESSEL FUNCTION 269 з. X/ ЫЬх-х' 4. 6(л:-й>Х 5. B(x-b)xx XJQ[Jx2-b2) 6. ab "v/2+м-, v/2- v+1, v+1 \/2-\i,v/2 и)Х + [u+-2~'b [p±i p 2 - a 2 J; Hie v<2Re -1/2 1 1 "l/2 ( I—2 Л (p -кг ) exp[-Wp +a J [i>0; Rep>|Imo|] 0; Rep>|Imo|] a) , '2 expl~4 ip2+a21 [ReB(i+v)>-2; ft>0; Rep>|Imo|] 7. X/ 8. /-=-7 V , V + V2/na b v + 1 / 2 (P 2 2 Bv+l +a ) [Rev>-1; Rep>|Ima|; *>0] tv \ iv X/ [Rev>-1; Rep>|lmo|; *X>]
270 9. SPECIAL FUNCTIONS X/ 10. ,, , 2 ,24v/2-l 11. (X -Ъ )+ X 12. 13. (x2-*2)}'2* 14. X/ JJT2^1) 15. x/, (Rev>-1; Rep>|Ima|; *>0] ; Rep>llma|; bX>] , ,.-v -ftp (ao) e v(v> ° ) [A,Re v>0; Rep>|Ima|] [Re v>-l; Re p> | Im a |; fc>0] a[\+b\p +a J -47%v [Rep>|Ima|; *>0] [Rep>|Ima|; i^p- -^-exP(-^p2 + fl2^ p2+a2 [Rep>|Ima|; THE BESSEL FUNCTION 3.12.7. e blxJ (ax±l) and the power function 1/2 Notation: u+=BiI/2(-l p2+a2±p) , 271 t;+=BpI/2(b2+a2±i) 1/2 2/ (u )«¦ (u ) V - V + [Re*X); Rep>|Ima|] 2. -^i д: 3. [Reft>0; Rep>|Ima|] •(f) [Reft>|Ima|; Rep>0] 2 / (v)K ф ) V V + [Re6>|lma|; Rep>0] 3.12.8. / (/(e )) and the exponential function , r , -к (a/2)v T(v+1)(p+v) [Re(p+v)>0] 2. J (ae) fv-p i[ 2 ; [Re p>-3/2; Г (v^)/2 1 , (a/2)
272 3. <l-e~V/ (ее"*) 4. A-е 5. (l-etx/Vx 6. A-е"*)  (ее*) 7. (l-e X / (ее*) SPECIAL FUNCTIONS 1 f?iv J^3l 2 • p+v+1. v+,,p+|1+v+1 v+, р+ц+v+l р+ц,+у + 2 ' 2 ' 2 [Re м>-1; Re(p+v)>0] 1, (p+v)/2 . a2] '~J 2V + [Re |j.>—1; Re(p+v)>0] x 2 it 2k l* [Re |i>-l; Re (p+v) X)] av Г|Х+1, (p-v)/2 - v + 1 2 [v+. v+1,^+1; у-2ц-р 2 ; 2P+1 [a>0; Re ц>-1; Re p>-3/2] All.-V.-lp/12k)) t [a>0; Ren>-1; Re p>-3/2] THE BESSEL FUNCTION 8. (l-e~Vx X exp(±iae X)J (at x) 9. d(x-b)exp(iae~x) X X/ (at~x) 10. (l-e-x)v/2X 11. (l-e X/ Ы1-е 12. A-е"х)^Х х/Ые~*-1. 13. <l-e-V/2X f г 2v+1, p+n+v+1; ±2ia I [Re ц>-1; Re(p+v)>0] (¦vv -4(p + v) TJ F(v + 1) (p + v) 1 2v+l,p+v+l;±2i'ae~*| [*,Re(p+v)>0] [Re v>-l; Re p>0] r(v) p^' [Re v>-l; Re p>0] 273 , p+v; 2p [a>0; ReB(i+v)>-2; Re p>-3/4] 2(a/2) p + v / 2 *..,, Aa) r(p+v/2+l ) v/2-pv [a>0; Rev>-1; Rep>-3/4]
274 14. (l-e~Vx 15. (l-e'Vx 16. (l-e~Vx X/ 17. A-е x'" SPECIAL FUNCTIONS T(p) rk,l г р Ul.2k 2k 2k Bk) Re p>0; |arga|<ji] Г(р) r0,k+l\BkJk p 2k+ll\ 2 k J2k+l.l\- 2 k [Re n>-l-3//D<t); a.Re p>0] I P + |i (In) '"^(p+fi+l ) ДС/.1-Р), A№,l-v/2), 2/t 2* [aX); ReBjfc|i+/v)>-2it; Re p>- i Р + Ц 2k [Re | : a,ReB/tp+/v)>0] 3.12.9. / (a.x'" ) and hyperbolic functions Notation: u+=[(p±AJ+a2] 1/2, v±=a ' [р±й-н1 (p±i) THE BESSEL FUNCTION 275 [cosh i^J fsinhix) (sinh bx\ 3. xv\ \J j^cosh bx) v+1 -( Kv( [cosh bx) 5. x" 1 [cosh bx) (ах) 6. \\ \J..(ax) [coshfctj 7. . fsinh bx x 1 cosh bx (ax) 8. j; sinh bxJQ(ax) [Re v>-C±l)/2; Re p>|Im a| + |Re *|] [Re(M.+v)>-C±l)/2; Re p>|Im a| + |Re *|] •H . _ 2v+U [Re v>-C±l)/4; Rep>|Im a| + |Re*|] Ba) (p+b)u2+v+3] [Rev>-E±l)/4; Re p>|Im a| + |Re *|] i-I)" dn , -v_ -v, 1(u v +uv ) dp [Re v>-C±l)/2-n; Re p>|Im a| + |Re b\] [Re v>-(l±l)/2; Re p>|Im a| + |Re *|] v>(l+l)/2; Re p>|Im a| + |Re b\] [Rep>|Ima| + |Re*|]
276 9. J-y Sinh bxJ^ax) X 10. j sinh bxJQ(cn/~x) 11. SPECIAL FUNCTIONS a(v-2_v-+2) + ah [Re p>|Ira a| + |Re *|] [Rep>|Reft|] 4p2-4i [Rep>|Reft|] sinh a2b 4p2-4b2 ) 3.12.10. / (a(sinh^) ) and hyperbolic functions 2. inhx) [Rev>-1; Rea>0; Re p>-3/2] "I/2J Hv_ [Rea>0; Rep>-l/2] 3 1 / f g ] s i nhx v[s i nhxj л exp (ocothx) . sinhx x [Rea>0; Re(p+v)>-l] a (p+v+l)/2 v+l p/2,v/2 X/ а ) v s inhxI [Re [±W 4 fl 2 + * 2 J >0; ReBp+v)>-lJ | THE BESSEL FUNCTION 277 ±llk. 3.12.11. / (ax ) and trigonometric functions Notation: 2J , „4.2 2 ,2,2 .,2 2 Л =(p +a -b ) +4b p , tan 6=A P 26p cot 2т)=р2+а2-*2, w±-[(p±jiJ+a2]/2, (p±i b) 2+a2J , Vlb 1/2 (p+ib) cp=arg(p +a -b -2ibp), 2 b fl1 i|)=v arcsin—, 6= 2. sinix cos ox fsinixi 1 Г [cos ixj 11 Ч(вд'+«_Г) [Re v>-C±l)/2; Re p>|Im a| + |lm b\] [p2+(a+iJ] tp2+(a-iJ] I r-<2 -p 2 r-*' 3. sin bxJ^ax) 4. cos bx /j (ax) a 2 2 + - [Rep>|Im a| + ] [Rep>|Ima| +
278 5. sin bx cos bx] v ¦/ (ax) [sin ax\ 6. xH \jv(ax) Icos ax] (sin fcc) 7. xvi I/ (COS ft 8. sin bx (cos bx XJ (ax) [sin bx) (cos А SPECIAL FUNCTIONS tRe(|i.+v)>-C±l)/2; Re p>|Im a| 2~vav+6 i"|i+v+6+l 2v + 3 2v+l,- , 1 4 . —4 r6; 6+^, v+6+^, v+1;- 1-6; Rep>2|Ima|] , v - 1 4a' 1] SZ С cos[(v+l/2)<p]J [Rev>-C±l)/4; Rep>|Ima| [Re v>-E+l)/4; Re p>|Im o| + [Re v>-C±l)/2-n; Re p>|Im a| 10. -vfsin 6 cos 8 [Re v>-(l±l>/2; Re p>|Im a| THE BESSEL FUNCTION 279 11. 1 fsin bx x Icos bx XJv(ax) 4v(v- a . -1 -v _ -1 -v.I (v+l)(y+ +V- >J [Re v>(l+l)/2;Rep>|Ima| 12. л: sin bxJQ(ax) 3w w ipw +bw )-bw -pw_ (lV + +li'_ ) [Rep>|lma| + |lm b\] 13. ^-siniA;/0(aA:) b arcsm /7 [Rep>|Ima|H 14. д: sin bxJ^ax) 2 2 aw_Bw -w_) 2 2 . 3 (w++w_) [Rep>|Ima| + |Imft|] 15. sin -/? sin iq-i-A Л cos r\-p [Rep>|Ima| + 16. -*-у sin *л: /j (o-x) x lab a + *2sinF-i-Ti)-(p2-i-*2)sin 26| - arctan 2b [Rep>|Ima|-i Rs i s i n6 +6 CO s6 17. sin ax cos ax 2\J0(ax) 1 f 2-, |sin«p| cos cpl [ф-р /A6а)-л/4; a,Rep>0] ¦ + Y.
280 18. -isin 19. — sin bxJ, (ai/x) 20. SPECIAL FUNCTIONS 21 /sin \cos [Rep>|Im*|] [Rep>|Im*|] X -г [* a,Re p>0; 1 / 2 Bя) X<Ljv\ II Bk) I X LI sin 4p2+4b2 ^,1/4), Д(?,3/4) [a,Re p>0; 4t Re u>-4ifc-/; 6-< „ 1° 3.12.12. / (at ) and trigonometric functions of e Notation: 1. v + 6 f(v+p+6)/2, Bv+26+l)/4,Bv+26+3)/4; -a , (v+p+6)/2+l [Re(p+v)>-6] THE BESSEL FUNCTION 281 2. (atx) 3. A-е"Ух X/ (ax ) 4. A-е X/ <«*"«*> -3f4| f(v+6-p)/2, J (p-v-6)T(v+1) Bv+26+l)/4,Bv+26+3)/4; -a2 6+1/2, v+1, v+1/2+6 [a>0; Rep>-l/2] Г(И+1) Д(/Д-р), Да, (v+6)/2), [Re |i>-l; Re(ifcp+/v)>-8/] дад/4), Д(*,3/4) A(t,(v+6)/2),A(Jfc,-v/2), [Re |i>-l; a>0; 3.12.13. JAf(x)) and the logarithmic function Notation: r="l p +a' y[ln(p+r)-21nr-ln2-C] [Rep>|Ima|]
282 SPECIAL FUNCTIONS THE BESSEL FUNCTION 283 2. x In x X 3. x In х JQ{crfx) 4. Inx jia 6. P [Re p>0] [Re p>0] M Ue^EU-br-bp) - e brEi(br-bp)] [Rep>|Ima|; fc>0] + e [Rep>|Ima|; |argz|<ji] 3.12.14. 1. (l-e"V/2x X/ [Rep>|Imc|; |argz|<n] and inverse trigonometric functions fp+v ^= Г 2p + 2v Lv+l.(P+M-+v+l)/2,(p-n4-v+l)/2 Xj-Fjp+v; v+1, [Re<p+v)>0] JTT7r\ IX i 3.12.15. / to)/ (.bx) and the power function Notation: i=sin ср=2/а^[р2+(а+«2]Ч/2, sin ¦ 2 ~l/2 ) 1 y=\ р2+(а+Ь) 2+ 1. / (ax)J (bx) V V .„ (P2+a2+b2) i[ lab J 2aft [Rev>-l/2; Re p>\Ыа\ 2. J (ax)Jv(ax) Мц+v Гц+v+l 1 f(|u.+v+l)/2, p-n-v-lrr M1" L 4 3[ (M.+v+l)/2,(n+v)/2+l,(n+v)/2+l;-4a2/p2 v+1 )>-l; Rep>2|Ima|] 3. /w(e*)/v+,(flX) [Re v>-l; Rep>2|Im a\ 4. » яа *-i [Rep>2|Ime|] 2a
284 SPECIAL FUNCTIONS THE BESSEL FUNCTION 285 5- 7. Jn_m(ax) x 8. 9. 10. 11. a 2n+l, [Rep>2|Ima|] Jn-l/2^ X ^ [Rep>2|Im 2n+l, [Rep>2|Ima|] к b\] pk 2n(ab' [<Kb\ [Rep>2|Ima|] nkVab [Rep>|Ima| 1B-к2)Ка)-2Е(к)] 12. 13. 14. 15. 16. J2(ax)J2(bx) 17. 18. 19. 3/2 [ ; Rep>|Ima| + |Imft|] [Rep>2|Ima|] 2p_ pk 2+b2 KOt)± й; Re p>|Im a| [Rep>2|lma|] 1 [Rep>|Ima| Зла Г [Rep>2|Im a| 1 -[A28-128-t2+15*4)B-*2)K(/fc) - I5nk Sal) [Rep>|Ima| + •Ц [F144- 12288Л2+8000*4- 1856*б+ + 105i8)K№)-32B-/k2) (96-96/k2+l 1* [Rep>|lma|
286 SPECIAL FUNCTIONS THE BESSEL FUNCTION 287 20. x J (ax)Jv(bx) 21. x J iax)Jviax) 2 ,2 a b 2' ~ 2 P P ; Re p> | Im a | +1 Im b\ ] a)* 2j 24. *2v+n/ X/ (bx) 4v+1 X v+l; 1- j v+ - -COt> p s in~<p ¦> [Re v>-(n+I)/4; Rep>!Im a| + |Im b\] 22. X/ (ax)J (bx) Ц V д,+у , , X+n+v+1 X+n+v+2 2 ' 2 ' l; Rep>2|Ima|] 2-»+ ( 3±1 ) / 2 XF Ui+v+1, i2- 2 2 ' [Re(n+v 22- 2 2 P ; Rep>|Ima| + |ImA|] , V + l l, v+l; 25. 27. 26. л"/ (ax)J фх) V V 4v+l v+l v+l; - 4a' [Re v>-l / 4; Re p>21 Im a | ] ¦ft. 2-k nVab dp [Re v>-(h+1)/2; Re p>|Im a| + |Im b\] 1-k' рк1(аЪ)~Ъ'1 n I T y 2rt-J 1-k2 [Rev>-l/2; Rep>|Ima| + 23. -n-1+1/2 x (v2-* v+ v+l; 2 2 2 у -р -a .2 2' ,2 2 ft ~y b -y [Re n>-C±l)/4; Re p>|Im a| + |Im b\] 28. хГ(ах) 29. 2v+l; - 4a' [Re v>-l; Rep>2|Ima|] 2v+l [Rev>-3/2; Rep>2|Ima|]
288 SPECIAL FUNCTIONS THE BESSEL FUNCTION 289 30. xU2J2(ax) , 2v 1/4 l-l -1/4 l-l [Re v>-3/4; Re p>21 Im a\ ] 36. x'U2J (ax)X XJ lax) -1/4 [Rep>2|Ima|] -1/4 1-Z 31. XU2J (OX) X 32. x1/2/ (ax) X 33. * V_v(ax)x X/ (ox) 34. x'U2J^ XJ (bx) 35. (ax) [T v 2) (p2+(a-b) 2) [Rev>-1; Rep>|lma| + |Im 22* + V XP v-1 1 1-Z •2 Г(у+3/4) -1/4 1/4 _i -1/4 -1 [Re v>-5/4; Rep>2|Im a|] 1/4 1-Г -1/4 1-Z I-/' -1/4 [Rep>2|Ima|] ; Re p>|Im a| + |Im b\] ГBу+1/2) -2v 1/2 2 P -1/4 [Re v>-l/4; Re p>2|Im a\ ] 37. х/2/0(ол-) X 38. 39. хГ0(ах) 40. 41. i 42. ^ [Rep>|lma| + |Imft|] 4лA-к2)(abK/2 [Rep>|Im a| E(/fc) I ¦E(/) лар [Re p>2|lm aj лар [Rep>2|lma|] fr, Rep>|Im [Rep>2|lma|]
290 43. x 1/2JQ(ax) X XJ{(bx) 44. 45. xJG{ax)Jx(ax) 46. x J0(ax)Jx(bx) 47. 48. ^ 49. I SPECIAL FUNCTIONS n3y(l-lc2b) [2E(*a)-K(/ta>] X X ,2, ,2 2 O-k2)a3l2b512 4аЬп-к 4na [Rep>2|Ima|] 32лA-*2) W'2!' [Rep>|Ima| + |Im b\] 4а ЗлГ [Rep>2|Ima|] 2л(ab) \±1 +2Ь) K(/fc) ± 3'2 [a<b; Rep>|lraa| + [Rep>2|Ima|] 1 > THE BESSEL FUNCTION 291 50. x~U2Jl(ax)X 51. xJx(ax)JY(bx) i 52. 53. 54. x U2JQ(ax) xJ/bx) 55. xJQ(ax)J2(bx) 3*fl*t U3T(l-t*)(l-*J) [Rep>|Imo| Pk 4лA-к2)(abK/2 [Rep>|lmo| 16Ж1-Л ) (ab) X (a2+( -k2B-k2)p2]K(k)\ [Re p>|lm a\i [B-/t2)E(/t)-2(l-/t2)K(/t)] l-k )X nap [Rep>2|lma|] :[8(l-2/t2)E(*a)-E-8/t2)K()fcQ)] X X Ш-к2) а-Зк2ьШкь)-2п-2к2ь)Е(к)] [Rep>|lm pk K ... ?fc 6 2 />; Rep>|Im a| + |lm b\] E(/fc)±
292 56. xJQ(ax)J2(ax) 57. ± 58. x~1/2/1(ojc)X xJ2(bx) 59. ^т x 60. x U2J2(ax) x xJ2(bx) 61. SPECIAL FUNCTIONS 2 3 а ля [Rep>2|Imo|] . , , , 2 , 3 4лA-I )a [Rep>2|Imo|] \ л :[(l-/fc2)(l-8/fc2)x X X [2(l-*2+*4 [Rep>|Imo| 15лГ [Rep>2|Imo|] -a-k2b)B-k2b)K(kb)] [(W2)D+3/2)K«)-D+/2-6/4)E(/)] - :[<l-*2)B+5*2- * - 8/t^)K(/ta)-2(l-2/t2)(l+4/t2-4/ta)E(/ta)] X ля р / [Rep>2|Imo|] 62. ± THE BESSEL FUNCTION —Ц[4(И2)(8+Лкй - 15лГ - C2-12/2-23/4)E(/)] -Ife [Rep>2|lmo|] 293 63. xll2J_x/A(ax) X р(р +4<г [Rep>2|Imo|] J 2 ~ 2 1p +Aa 64. a\2np(p +4a [Rep>2|Imo|] 3.12.16. J (ax±llk)Jv(bx±llk) and the power function 1. xU2J (ax2) X I л p X^-v-!/8, [a.RepX); Rev>-l/2] 2. Л2) i\lb 16a 3. [a,Re p>0] 1 a J 2 2 [Rev>-1; Rep>|Ima|] 4. J (aJx)J (b/x) 4p [Rev>-1; RepX)] ab
294 5. x J (aV~x)Jv(aV~x) SPECIAL FUNCTIONS 6. x J (a/x) x 7. x 1/2JQ(a-/x~) X 8. x~U2X X/ («e~""Vl) X X/ 9- К 10. H+l.v+l J X [ReB>.+n+v)>-2; Rep>0] Ар' XI [Re p>0] iri-/f*l «111 />; Re p>0] 1-v Г v+1/2 Щ v+l, v+l I 1/4,- [Rev>-l/2; Re a,Re p>0] [Re v,Re p>0] [Re p>0] THE BESSEL FUNCTION 295 11. 12. 13. 14. x3/2J0(a-/x) X 15. i/t 16. 17. 2 4 exP 7 [Re p>0] [Re p>0] 2p2 [Re p>0] [Re p>0] 1 - exp [Re p>0] 2pJ [Re p>0] 2p4""( [Re p>01
296 18. 19. X/ SPECIAL FUNCTIONS r X — p /,-?0, Д<*,0), Д (*, 1/2) ), A<Jfc,-<M.+v)/2), №е(т+/ц+А>+2*)Х); RepX) for l<2k; fl.Re p>0 for l>2k] X — [Re \>-l-llBk); a.Re p>0] 3.12.17. / (ae )^v(<*e ) and the exponential function 1. / (at X)Jv(at x) f(H+v+l)/2, [ ц+1, (M.+v)/2+l,(P+H+v)/2; -a' v+1, ti+v+1, (p+jx+v)/2+l I 2. J (aex)J (aex) 3. A-е Vx XJ 4. A-е THE BESSEL FUNCTION XJ (ae ) X XJ (ae ) 3 4 (H+v+l)/2,(n+v)/2+l; -a ц+v+l , v+1, ц+1 [o>0; Rep>-1] го±1) [Re X>-1; ReB*p+/(i+/v>>0] Г(Я.+ 1 0; Rep>-//B*)] 297
298 SPECIAL FUNCTIONS 3.13. THE NEUMANN FUNCTION Уv(z) 3.13.1. Y^(ax) and the power function 1/2 1 [ip2+a2 Notation: к - —^ /I (p2+a2I/4 1. У (ах) 2. 3. x*Y (ax) 4. 5. x1/2Y0(ax) 6. ; Rep>|Ima|] 12 2 nip +a [Rep>|Im a\] In P+i P +g 2Г(ц.+ у+1 [Re n>|Rev|-l; Rep>|Ima|] [Rep>|Im a| B/fc2-!K [Rep>|lmo|] 12 2 i p +a -lnJ p +a [Re p> | lm a | ] i i i - 1 i 7. 8. xS/2Y0(ax) 9. xUZY1(ax) 10. xYx(ax) 11. 12. 13. THE NEUMANN FUNCTION 299 p яр [Rep>|Ima|] p—[8(l-2/t2)E(/t)-E-8/t2)K(/t)] 1 1 B/fc2-!O Яр ¦p—[2B3-128/t2+128/t4)E(/t)- - C1-144/t2+l28/t4)K(/t)] [Re p>|Imo|] !Ц [Rep>|Ima|] [Re p>|Im<2|] 1> 77 - (l-16/fc2+16/fc4)E(/fc)] [Re p>|Ima|] J2 7 яр7A-*2) I яр - C-134/t2+384/t4-256/t6)E(/t)] [Re p>|Imo|] 1> - 2(l-2/t [Re p>|Im a\]
300 14. xS/2Y2(ax) SPECIAL FUNCTIONS I ~2 7~ i2k ~1} [B+15&2-144&4+128&6)X Ak2 (\-k2)\npn X (l-/fc2)K(/fc)-2(l+7/fc2-135/fc4+256/fc6- -128/t8)E(/t)] [Rep>|Imo|] Ilk 3.13.2. YJax: ) and the power function 1. У (a/x) 3. 4. лг^У (а/х) а/л [|Rev|<2; v9^,±l; Re p>0] [Re p>0] [Re p>0] (a/2) + v / 2 + 1 cos vn T(-v)r (a/2) яр' i-v / 2- -X [2Re n>|Re v|-2; Re p>0] 1 6 THE NEUMANN FUNCTION 301 5. Л (а/7) - cot vn exp - B/a) np ¦ T(v) X [Rev>-1; Rep>0] . x 1/2У Rep>0] 7. x'r (ox ) A(/t,-v/2), [Re ^>-l+/|Re 3.13.3. Yjax tlk) and the power function 1. У„- ; a,Re p>0] [a,Re p>0] 16 i+v+2 0 3l2' 2 2ч 16 1 2 1-v+ji' 1+v 2 2, r fv-u. v-ix+1 ,, a p 1 хоГз1 2 ' 2 - v+1; Г6 J [Re ^>-5/2; a, Re p>0]
302 4. 5. У SPECIAL FUNCTIONS 2 [a,Re p>0] [a,Re p>0] -fc=) З, г—3(а2р/4)'/3; a 6. x»Y (-* (!) 2ц+2 2 ч Р I v+1 [Ren>-7/4; a, Rep>0] 7. A(*,l-v/2), A(Jk,l+v/2), A(lt,C+v)/2)| A(i,C+v)/2) J ; a,Re p>0] 3.13.4. Y(f(x)) and algebraic functions Notation: z+=z [4 p + a ±p), -exp [Rep>|lma|; |argr|<n] m ху THE NEUMANN FUNCTION 303 (x+z)' XY [ai x +xz\ X +XZ 4. Q(x-b)X XYQ[Jx2-b 2 t2 5. (*± ХУ l^x2-*21 2e pill azs in(v/2-n)n 2 ; Rep>|Ima|; ptl 2 ncos <vn/2) л sin ^-tt У i V Re|v|<l; Rep>|Ima|; |arg2|<n] - exp^W p"+a" [*>0; Rep>|Ima|] 2i(-«+)] -Ц- sec-^^-n W. .. .Ли )W_ . .Ли ) ab I ±\Ll2,vl2 + +n/2,v/2 - ac r<l+v+n)/2] л Г L v+i Ли 2 - [|Re v|<l+Re (i; *>0; Rep>|Ima|
304 6. SPECIAL FUNCTIONS ХУ Шх2-Ь2} fofl; Rep>|Ima|] 3.13.5. e~ xYv(ax+l) and the power function 1/2П—2 2 I/2 Notation: t>+=B6) [4 p +a ±p) 2. 3. <-ь-> Й 1/2 [Rep>|Ima|; [Re p>|lm a\; Re i>0] [Re*>|Ima|; Re p>0] 2 У (w )K (w ) v - v + [Re b>\lma\; Re p>0] 3.13.6. YJf(e~x)) and the exponential function 1. У «ze 2 24[4 |v/2, -v/2, -(v+l)/2, -p/2 [Rep>]Rev|; |arga|<n] 2. У (ае ) 3. (l-e-V ХУ (ae 4. (l-e XY (at ) 5. (l-e ХУ THE NEUMANN FUNCTION lJOfl T°24 4 -(l+v)/2, l+p/2 p/2, v/2, -v/2, -(v+D/2 [Re p>-3/2; a>0] Г(Ц,+ 1) G2i./ /(l+l A(/fc,v/2), [Re p.>—1; Re p>/1 Re v | / BA) ] [a>0; Ren.>-1; Re p>-3//D*>] [Re p>0; Re 3.13.7. yv(ax) and hyperbolic functions Notation: и+=[(р±6) +a ] , p±-e (p±b) 2+a2\ fsinhix") 1. J Kv(ax> ^cosh bx) 305 esc vn и (у vcos vji - vv) + и (v vcos vn - v") I - - -++ +j |Rev|«3±l)/2; |Re *|
306 fsinhta) 2. \ \Y0(ax) (cosh bx) u 3. sinh bx Yx (ax) 4. хЦ lx (cosh bx) XY 5. x"J x (cosh bxj XY (ax) SPECIAL FUNCTIONS и л и - л [Re p>|Ima| + |Re*|] ¦*- и lav - *- U na - - ля [Rep>|Ima| + |Re*|] In V + ¦ csc vn cos vn-i I -T 1 + V+ 1 Ц.+ У 2 • 2 1; v+1;-- l-V+1 (p+*)v"|l-V1 (p-b) t-v+1 u-v [Re n>|Rev|-C±l)/2; Re p>|Im o| + |Re *|] (-1)" d'1 ., -v_ -u -1—~-^—cscvn \(u v +uv )cosvn- 1 dp'1 " - и v ± и v ] [|Re v|<C±1)/2+k; Re p>|Im a| + |Re b\\ Ш THE NEUMANN FUNCTION 307 6. jsinh bxYv(ax) I 7. ^ sinh *x У0(ах) CSC Vn [(!)_V - 1>+V)COS Vn ); Re p>|Im o| + ]Re *|] y^(ln »- In У+ [Rep>|Im a| + |Re*|] 3.13.8. У_ (ox") and trigonometric functions i 2 2~ I 2 2 Notation: rH p +(a+b) + i p +(a-b) , u±-[(p±ibJ+a2]'U2, [p±ib+l (p±ib) 2 + a2 sin bx cos bx -=-csc vn - u+v ± u_v_] f|Re v|<C±l)/2; y~v + « у v)cos vn - . Re p>|Im o| Tsin bx\ (cos bx) 2. -( VY0(ax) >(-u In у ± « In v ) - - - - 3. [Rep>|Ima| ip-b , ip+b , •^-^ и In у е « In у л<г + + л<г [Rep>|Imo|
308 4. x» fsin ax) 1 Г (cos &xj (ax) , (sinbx] 5. jenJ \Y (ax) (cos fccj v 6. — sin bx Yv(ax) 7. ^si SPECIAL FUNCTIONS ^ " я cos vn 2v+l v+6- V 6 - V a - V + 6+ 1 ¦¦я—v, 1-v; - , 6+-s Re ft>|Re v|-l-6; Rep>2|Ima|; MA)" d" cscvn Jcscvnr[("+" lj dp +u v v)cosvn- v i - « v ± [|Re /i; Re p>|Im a| CSC vn [(y+V+ W_V)COS vn - VV++ VV] = 1 . = — sin v arcsin —71 esc vn X XII1' ^'. 4fl I cosvn- 11 Re v I < 1; V5*O; Re p>|Im a| + |Im *|] -in [Rep>|Ira - arcsin :a 1 j 'I I f 3.13.9. У (ax±l/k), THE NEUMANN FUNCTION 309 8. si [o,Re p>0] ±11 k. ') and various functions Notation: к ¦¦ 1. :Г1/2Х X 2 . : i p +Aa , \(sin(a/x)) / \sin(a/x)j v'* 3. JQ(ax)Y0(ax) 4. 5. i/np [(sin(vn/2) fsin(vn/2>1 : \ [-kei2v (cos(vn/2)J [o,Re p>0] 4 ffcos(vn/2I г 2 2 •] *|jsin(vn/2)J Lerv( 2<2P) еТ"{ 0P J fsin(vn/2)l 1 ± 2-^ Vker (/2Tp)kei (/Top) (cos(vn/2)J v V J [a,Re p>0] [Rep>2|Ima|] 2/t np [Rep>2|Inio|] np [Rep>2|Ima|]
310 6. x3J0(ax)Y0(ax) 7. J\(ax)Y J_v{bx)Yv(ax) 8. JQ(ax)Y0{bx) J0{bx)Y0(ax) 9. xvJ (aSx)Y (a-fx) 10. 11. 2J0(bx)Y0(aSx~) 12. SPECIAL FUNCTIONS T яр [Rep>2|Im 1 sec \л P fp2+a2+*2) i{ lab J v-i/2| lab [|Rev|<l/2; Rep>|Ima|H К [Re p>|Im a| + |lra v - 1 [Rev>-l/2; Rep>0] [Re p>0] _2 , .2, -1/2 (Рг+Ъ2) exp - ? [Rep>|lra*|] Bя)"'р X ¦=• l+l [ReB*X+/|i.)>/|Re v\-2k; a,Re p>0] THE HANKEL FUNCTIONS 311 3.14. THE HANKEL FUNCTIONS ), H<2\z) .0), To calculate Laplace transforms of expressions containing Я"'(г) and B) V H (z), one can also use the formulas (-l)yj esc v* where /-1,2, and the Sections 3.12 and 3.13. 3.14.1. fij (ax~ ) and the power function 1. Нф(ах) 2. H{j\ax) 3. ¦ esc уя J 2 2 p+Ap +a [/-1,2; |Rev|<l, vtH); Rep>|lma|] p2 + a' [/-1,2; Rep>|Imo|] 2 ~ 2 (p2+a2) 2 i ( - 1 ) ' л{р2+а2) [/-1,2; Rep>|Imo|] - (l+(-l)y^rlnJ . 2; (-1)Ур ян [/-1,2; Rep>|lma|]
312 5. 6. 7. 8. SPECIAL FUNCTIONS -11-1/2 na ... , -|i-l/2,v/ [/-1,2; Re n>|Re v|/2-l; Re p>0] [/-1,2; Re ц>-1/2; Re p>0] na [/-1,2; Rev<l; Re p>0] + n K/2[8^ [/-1,2; |Rev|<l; Re p>0] [/-1,2; a,Rep>0] 3.14.2. Hv' [aix -b J and algebraic functions 1. H^ialx^) exp 1-6-1 p +a i i p +a [/-1,2; *>0; Rep>|Ima|] 2. , (/) 2 ГТ1 exp(-bip +a (_i/ 1L ln [/-1,2; fc>0; Rep>|Ima|] x THE MODIFIED BESSEL FUNCTION 3. \x2-b2x ехр1-Яр +a хн'НЛ^Т1} [/-1,2; ftX>; Rep>|lma|] 3.15. THE MODIFIED BESSEL FUNCTION Iv(z) 3.15.1. / (ax) and the power function Notation: *= 1. IJax) л1—(р+[?~а~*) 2. p -a [Rev>-1; Rep>|Rea|] v Гц+V + l] гП x i+v+1 a+v + 2. v)>-l; Rep>|Rea|] X 3. x I (ax) Ba) 4. xv+ll (ax) ,—, 2 2. v + 1 / 2 /n(p -a ) [Rev>-l/2; Rep>|Rea|] 2v+1r(v+3/2)qvp r- . 2 2 v + 3/ 2 Vn(p -a ) [Rev>-1; Rep>|Reo|] 313
314 5. x I (ax) 6. xl (ax) 7. x~U2I (ax) 8. ± '¦?' 10. 11. 12. SPECIAL FUNCTIONS P [Rev>-n-l; Rep>|Rea|] 2-a2) [Rev>-2; Rep>|Reo|] -I я a ^V-i/2 [aj [Re v>-l/2; Re/»|Re [Re vX); Rep>|Reo|] v(v2-l) [Re v>l; Re p>|Re e|] [Rep>|Rea|] — E(/fc) [Rep>|Rea|] [Re p>|Reo|] m THE MODIFIED BESSEL FUNCTION 315 13. x5/2lo(ax) 14. x Ъ121х(ах) 15. 16. 17. хЗП1х(ах) 18. 19. x~ini2(ax) 32(l-k2K\lna'! ~4(l-/t2)B-/t2)K(«] [Rep>|Rea|] -[B3-23/Ь2+8*4)ЕШ- [Rep>|Rea|] [Rep>|Rea|] 2(l-/t2)-l2na3 [Re p>|Rea|] -[B-k2)E(k)-2(l-k2)K(k)] -[2(l-k2-kA)E(k)- 8(l-/t2J-i2naS [Rep>|Rea|] [Rep>|Reo|] 3k3 [Rep>|Rea|]
316 20. x1/2l2(ax) 21. хЪП1г(ах) 22. x5/2l2{ax) 23. x'7/2I3(ax) 24. SPECIAL FUNCTIONS :[A6-16/t2+/t4)E(/t)- -8(l-/t2)B-/t2)K(/t)] [Rep>|Rea|] -[A6-16*2-/fc4)(l-/fc2)K(/fc)- -I 8(l-/t2) [Rep>|Rea|] -[4B-2/t2-/t4)B-/t2)x X(l-/t2)K(/t)-A6-32/t2+9/t4+7/t6-8/t8)E(/t)] [Rep>|Re<z|] 1A28-256*2+99/fc4+29/fc6+8/fc8)x XB-/t2)E(/t)- 2(l-/t2)A28-256/t2+ +123/t4+5A6+2/t8)K(/t)] [Rep>|Rea|] 16 ?[A28-128*2-/fc4)(l-/fc2)B-/fc2)K(/fc)- -2A28-256/t2+135/t4-7/t6-*8)E(/t)] [Rep>|Re a|] 26. THE MODIFIED BESSEL FUNCTION [A28-128/fc2+15/fc4) B-* 317 27. х1/21ъ(ах) 28. х3121ъ(ах) 29. xS/2I3(ax) 30. ^[1-/ 15/t -2A [Rep>|Rea|] -2A28-128/t2+23/t4)E(/t)] -i —— [A28-128/t2+3/t4) Q-k2)x 6/t3 A-к2)$2яа3 xE(/t)-2(l-/t2)A28-128/t2+27/t4)K(/t)] [Rep>|Rea|] [Re p>|Rea|] :[ A28-256/t2+99/t4+29/t6 + 8/t8)B-/t2)E(/t)-2(l-/t2)A28-256/t2-t + 123/t4+5/t6+2/t8)K(/t)] [Re p> |Rea|] -ln- 2p 2 2 -a [Rep>|Rea|] 3.15.2. IJax ) and the power function 25. -2(l-/t2)A28-128/fc2+27/t4)K(/t)] [Rep>|Reo|] 1. / (aVx) aVn , 3/2 [Re v>-2; Rep>0; |arga|<n]
318 2. 3. SPECIAL FUNCTIONS 5. x^I (afx) 6. x~~°l2I (a/1) 7. x"l2-lI (а/Л) 8. xv/2l n n+v/2. i—. 9. x I (a/x) 10. x~U2I (a/7) ы [Re p>0; [Re p>0; [Re p>0; |arge|<n] H+v/2+1 (п) [Re B(i+v)>-2; Re p>0; |arga|<n] [Re p>0; |arg а|<л] {lY -nvi f [Rev,Rep>0; |arga|<i] (a)v -v-i fa2! [Re v>-l; [Re v>-n-l; Re p>0; | arg a | <л] [Rev>-1; Rep>0; THE MODIFIED BESSEL FUNCTION 319 11. x~l/2I0(a/x~) 13. xIQ(aVJ) 14. 15. j 16. 17. x1/2l, (a/x) 18. 19. [Re p>0; [Rep>0; |arga|<n] [Rep>0; |arga|<n] /n 77T exP \in; 4p [Re p>0; |argo|<i] [Re p>0; [Rep>0; | arg а | <л] '(b) —yap | 2p [Re pX); |arga|<jt] а/л [Re p>0; | arg a | <л] [Re p>0;
320 20. x 3/2I2(a-/l) 21. ±- X 22. 23. ТА. xI2(aSx) 25. 26. X/ (а/х+7) 27. SPECIAL FUNCTIONS [Re p>0; |arga|<n] [Re p>0; |arga|<n] [Re p>0; |arga|<n] [Rep>0; |arga|<ji] 64p7/2 [Rep>0; [Re [i>-l; Re pX>; |arg a|,|arg 1|<л -vii /2 .ii+l /2 -u.-l I T L I О /. I A Bя)(/-1)/2 u/,2^[2/:J X (Я1 | Аг, ReB*n+/v+2/t),Rep>0; or [l-2k; Rep>|Rea|; THE MODIFIED BESSEL FUNCTION 3.15.3. / [aix +xz) and algebraic functions Notation: z+=2 z[р±<1 р -a ) (p2-a2)"I/2exp(z_) [Rep>|Rea|; |argz|< (x+z) X/ X +XZ\ 3. (x2+xz)*lX Ыx2+xz) v/ 2 (x+z) XI [c ¦/ 2 X/ lai x +xz \ l + XZ Xl[aix2 + xz) v+1 Х^./2-^/2B+> [ReB|i+v)>0; Rep>|Rea|; [-vv ii+ ( v + 1 ) / 2_ , ?1 ?_ Г(ц+У 2J /S(p2-a2)B^v + (-1) (v/2-ц) 2-, Rep>|Rea|; [Rev>-1; Rep>|Rea|; (a/2) z ^ p2-a2J [Re v>-l; Rep>|Rea|; epz/27 /2 [Re v>-l; Rep>|Rea|; 321
322 SPECIAL FUNCTIONS 7. I X + XZ x/, 8. Ax +xzX Xl,\a4x +xz J fjfexp^J - 1] [Re p> | Re a |; |argr|<ji] (P -a ) [Rep>|Rea|; |argz|<ji] 2 ,2 3.15.4. Iv{a*x -b j and algebraic functions Notation: v+=b[p±% p -a J 1. v V X/ alh-*' 2. G(x-b)x xy^-i' 3. Q(x-b)xx Xlo{aix2-b2) 4. (x2-bV+x Х1ч(а\х2-Ъ2) ХМ (м ) [u+-2"'* \i p 2 + a 2 ±pj ; -Re v<2Re . 2 2-1/2 f ,1 2 Г) (p-a ) exp^-Wp -a J [A>0; Rep>|Rea|] v+2; A>0] p(\+b\p2-a2) [A>0; Rep>|Re a\] exp [-W p -a J Bi)l"('t";2r(iifv/2+l ¦X a2b 2«l p -a [ReB(i+v)>-2; A>0; Rep>|Rea|] 3 t I i 1 THE MODIFIED BESSEL FUNCTION 323 5. (х2-Ь2IПХ X/ , . 2 ,2.-1/2 ^ 6. (X -b ) X X/ (a\ x Ъ1) 7. X/ 8. [а\х2- 2 .2 9. 10. (X2-62I/2X 11. 2 .21 XI [a\x2-b 12. x(x2~b2) I/2X rn У2Ь/л(аЬ) К [Re v>-l; *X>; Re p> | Re a | ] (frl^V) [Rev>-1; *>0; Rep>|Rea|] 224 Bv + 3)/4 (p -a ) [Re v>-l; *>0; Rep>|Reo|] (l+v+n)/2 ; АЮ; Rep>|Rea|] [a<lx2-&2J [Rev>-1; A>0; Rep>|Reo|] [b>Q; Rep>|Rea|] [A>0; Rep>|Rea|] ( J~~2 2] 1 -ftp [AX); Rep>|Rea|]
324 SPECIAL FUNCTIONS THE MODIFIED BESSEL FUNCTION 325 ±11 k, 3.15.5. exp(-bx~r)l (ax1"*) and the power function Notation: u+= 1- ^ 2. 3. 5. e""* /0(«2) 6. to2) 1/2 -ax e _ 1/2 7. x e X 2. I [Re p,Re(p-2a)>0] [Rep,Re(p-2a)>0] [Re *X); Rep>|Re a\] 2a[u~4Q(ujK1 (м+) [Re *>0; Rep>|Re a\] [Re a, [Re v>-l/4; Re a,Re p>0] [Re a,Re p>0] 8. Лхр(-од:'Д) X X/ tax"*) 9. 10-ie X п. 12. xmfalxlA^ 13. лцехр(-ал'Д) X x/ Bл) ( i+ / - 1 ) / 2 i+/,2A (91 v), Д(*,- Re e,Re p>0] I2*)* v4 [Re*>|Rea|; Re p>0] [Re *>|Rea|; Re p>0] + Г t-v+ll ,v-" v-p., 2v+l; 2ap\ [Re ц>-3/2; Re a.Re p>0] [Re a,Re p>0] U2 :2я) [Re |t>-l-//<2*). Re fl,Re p>0] i-V+2,
326 SPECIAL FUNCTIONS THE MODIFIED BESSEL FUNCTION 327 3.15.6. I (J(t *)) and the exponential function (ae~x) 2. X/ (ae'x) 3. X/ (at~x) 4. exp(-ae ) x X/v(ae~x) j.1 P+M-+V+1 p+n+v+2 a2l ' 2 2 ; 4~J Re >l R()>0] [Re p>-l; Re(p+v)>0] v Гц+l, (p+v)/2 2v+1 [Re p>-l; Re(p+v)X>] 2kl B*) ШЛ~1р/Bк)) [Re p.>-l; Re(p+v)>0] (a/2)v ,( (p + V ) Г( V+1 ) 2 2 (^ [Re(p+v)>0] ; -la 1 6. 6(x-i) X X exp(±ae x)I(ae~x) 7. (l-e Xexp(±oe X)I (at 8. A-е'Ух -lx/K Xexp(-ee )X X/ (« 9. A-е (f) - i ( p + (p+v)Г(V+1J 2 2v+l, p+v+1; ±2ae~*| [*,Re(p+v)>0] fv-t-j, Х X2^2 v+-j, v+p; [Re (i>-l; Re(p+v)>0] BЯ) x- [Re ц>-1; Re(jfcp+M>0] Ba)\\V-p'P+l/i Vk I p+v+1 Xexp(-aex)/v(Qex) p+v+1;- 2a)+ \j j(-n, p+7; p- v+1, v + l,p+M,-v+lJ [v+i, v-p-ц; 2v+l, 1+v-p; -2al [Re p>-l; Re a>0; Rep>-1/21 5. exp(-aexO (atx) (a/2) (p-v)T(v+l) X -j, V~P; 2v+l, v-p+l;-2a [Re a>0; Re p>-l/2] 10. A-е"х)цХ Хехр(-ае'хД)Х Ы.2А+/ B*)U2 j |Д(*,1/2), [Re ц>-1; ReaX); Re p>-l/Bk)) Ba)* X
328 11. (l-e-V/2x SPECIAL FUNCTIONS X/ Ы1-е' 12. Ц-tTYx X/ 13. (l-e хехр[-аA-е x)t/k]x X/ 14. (l-e~Vx Хехр[-аA-е""*Г'Я]Х X/ 15. (l-e X/ [Rev>-1; RepX» U [(ia) 2/fc -W2 Г(р) A{k,-\/2), АA,-^-р [Rei2kpL+h)>-2k; Re pX); |arga|<n] тПГрТ(р) Л,к+ Bл)к/г ьш, да, 1/2) А(к,-\)у Ш,-\1-р) ¦)>-*; Re pX)} Ba) Bп)к/г гш,ы\Aа)к [Re Bл)к/г+1-ХГ(р-щ+1) ; Re a.Re p>0] X Ba) , Mk,l/2) ReaK); Rep>-//Bt)] THE MODIFIED BESSEL FUNCTION 329 16. (l-e~Vx хехр[-а(е*-1)~'Д]Х X^j X/ [Re t Ml,l-P), Д(*,1/2) ; a,Re(/tp+/v)>0] x"l/2) 3.15.7. Iv(.ax"l/2) and hyperbolic functions Notation: u±=[{p±b)-al] ' , z+=(p±b)' fsinh 5x^1 1. i УI ..(ax) [cosh i fsinh ix"! 2. xH \x [cosh ixj X/ (ax) (slnhaxi 3. х»\ \x [cosh axj (p±b) 2-a2] , i+v + 1 [Re v>-C±l)/2; a| + |Re *|] [Re(n+v)>-C±l)/2; Re p>|Re a| + |Re b\] 4 3 ( > X/v(ax) fsinh bx) 4. xv| lx [cosh bx) XI (ax) 2v- 4 [" 2V V [Re 4-3 2v+] 1 4 ((i+v)>-l-6; "lflVrfv л i v>-C±l)/4; Rep>2|Re a\ Rep>|Rea| + 1 X _i_ »> \>-i- Tk I OTV, V г = Ki}] 2v+l. и+ > ¦|Re fr|] ,. 4a2 11 2 P
330 5. inhbxL (cosh bx) Xljax) Jsinhbx) 6. xn\ x [cosh AxJ X/ (ax) 7- L IcoshAxI 8. 1 (sinn Ax) x [cosh bx) XI (ax) 9. ^ sinh Ax/ (ax) Л U 10. -i^- sinh bxlx (ax) 11. —sinh AxX X/0(a/3c) 12. jc sinh Ax X SPECIAL FUNCTIONS Ba) -r(v+f) l(p-b)ulv+h (р+ЬУи™) [Rev>-E±l)/4; Rep>|Re a| + |Re b\] dp [Re v>-C±l)/2-n; Rep>|Re a| + |Re *|] tRev>-(l±[>/2; Rep>|Re a| + |Re *|] a . l-v- l-v -i-v_ - ; Re p>|Re o| + |Re *|] [Rep>|Rea| + |Re*|] a. -2 -2, [Rep>|Rea| + |Re*|] [Rep>|Rei|] 4p - [Rep>|ReA|] sinh a2b Ap2-Ab2 THE MODIFIED BESSEL FUNCTION 331 3.15.8. / (at ) and hyperbolic functions ) v + 6 2 (p+v+6)r(v+l X/.(ae |Re(p+v»-6; 7+у+б 2v+26+l 2 ' 4 3.15.9. / (ax ) and trigonometric functions Notation: г -Гр2-а2+А2+ «I (A2+(p+aJ) (А2+(р-аJ) Л. R4=(p2-a2-b2J+4b2p2, u±-[(p±ibJ-a2]~Ul, -if I T~l— v -a [p±rA-H (p±r A) —c 1/2 z =(p±ib) ± 1 ИГ] 2" 2 ,2,2 772 2 , . 2 2 ,241 1 IJ'- -a -A ) +4A p ±(p-a-A )J , + v+l i; i .1 1; v+1; a (P±ib) tan 6=-, 2*p cot 2r\=p2-a2-b2, ^=arg(p2-a2-b2-2ibp) 2. sin Ax cos i sin ( cos Ax ¦I0(ax) -v_ -v [Rev>-C±l)/2; Re p>|Ira a| + |Ira b\] (R2Tp2±a2±b2)l/2 VlR2 [b>0; Rep>|Rea|] 3. sin Ax /j (ax) [Rep>|Rea| +
332 4. cos bx /j (ax) sinta cos bx , fsin bx\ [cos bx) Xljax) sin bx 8. x"\ Vljax) I cos * SPECIAL FUNCTIONS [Rep>|Rea| + |Im [Re(n+v»-C±l)/2; Re p>|Re a| + |Im *|] 6. хЧ VI (ах) i И= — Г [cosbx) v |l 2v+l 2v+l + 4* V] fsin[(v+l/2)T|)]1 \ \ [cos[(v+1/2)t|)]J [Rev>-C±l)/4; Rep>|Rea| * Ba in[(v+3/2)i|j] W J [Rev>-E±l)/4; Re p>|Re a| + |lm ft|] [Ijdp [Re v>-C±l) /2-n; Re p> | Re a \ +1 Ira b | ] sin i 1 9. -H K.(«> COS ЙХ THE MODIFIED BESSEL FUNCTION 1 (sinbx\ x cos их) (ax) 14. j-1 \l [ax) x [cos bx) l 15. ~ sin &x/j (ax) W, V+D V) [Rev>-(l±l)/2; Re p>|Re a| + |Ira l-v_ l-v4 а , -l-v_ -l-v. 1 v+l)("+ +"- >J tRev>(l+l)/2; Re p>|Re a| + |Im b\\ 3 3 3w w_(pw +bw )~bw -pw 11. 12. 13. x sin ол лил; — sin bxIQ(ax) x sinbxI1(ax) 2 2 3 [Rep>|Rea| + |Im b\] arcsin — [Re p>|Reo| + |Ira b\] aw Bw - w ) tRep>|Rea| + |Im ft|] -Л cos [Rep>|Rea| + |Im b\] 2a*' -j"(p2+*2)sin26-. 333 2sinF+Ti)j- 2b- ¦ arctan Rs i nr|+<t P +* s i n8 p +* COS 6 [Rep>|Re a|+
334 16. j sin bx 10(a-/x) 17. — sin bx /, (<z/3c) SPECIAL FUNCTIONS [Rep>|Im*|] sin a2b {4р2+4Ь2)[4р2+4Ь2\ [Rep>|lm*|] Bл) X Mr ,ц+ 1 / 2 j. ,j. , G \2* //2 ц+1и2Ш,4* \\k] X p ^V ) (/,-ц.), Да,1/4), Д(Л,3/4) (*,(v+6)/2), A(/t,-v/2), o.Re p>0; s'n Ш1 B X o.Re p>Oi 4* Re ц>-4Ы; б . 3.15.10. / (ae+ ) and trigonometric functions of e±bc/k Notation: 1. /Sin(ee- \cos(ae X/ (ее *) v + 6 f(v+p+6)/2, 2V (p+v+6)T(v+l ) 3 4l(i+v+6)/2, Bv+26+l)/4,Bv+26+3)/4; -a [Re(p+v)>-6] , (v+p+6)/2+l 1 t X/ (ее X/ 4. THE MODIFIED BESSEL FUNCTION 335 v + 6 (v+6-p)/2, 2>(p-v-6)r(v+l) 3 4[l-(p-v-6)/2, Bv+26+l)/4,Bv+26+3)/4; -а2л 6+1/2, v+1, v+1/2+6 laX); Rep>-l/2] /Ip^+1 , ДСЛ.З/4) [Re ц>-1; ReB(tp+/v)>-6fl дад/4), Д(Л,3/4) [Re ц>-1; а>0; 3.15.11. I (f(x)) and the logarithmic function I 2 Notation: t=A p -a 1. \axIQ(ax) y[ln(p+O-21n<-ln2-C] tRep>|Rea|]
336 2. 3. x'll2\axIQ(a-/x) ±*> X 5. lnx/[a\x2 6. ln(x+z)X SPECIAL FUNCTIONS [Re р>0] [Re рХ>] • - e*rEi(-2*o] + + j K-[e"Ei(-to-fy) - t~°Ei(bt-bp)] [Rep>|Rea|; b>0] <*/2Гт~ [Rep>|Reo|; |arg2|<n] [Rep>|Reo|; |argz|<n] 3.15.12. I (at ) and inverse trigonometric functions 1. (l-e"V/2X X cos (narccos e ) x X/ (ae x) 2 V F [Re(p+v)>0] р+v i f. THE MODIFIED BESSEL FUNCTION 337 . 3.15.13. / (axr)Iv(.bxUk) and the power function Notation: A - —3-fl p2 + a2-b2 ¦/2 2. J0(ax)lQ(bx) 3. 4. J2(ax)I2(bx) 5. 6. i/ (ax)Iv(bx) 1/2 (a2+(p+bJ) (a2+(p-b) 2) -n i ( 2 v + 1 ) / 4 /2 2 ^(Hf 1/2 [Rev>-l/2; Re p>|Ira o| + |Re b\] [Rep>|Irao| A nV abk [Rep>|Irao| l-/t2) 3/4[(l-/t2)B-3/t2)K(ifc)- - 2(l-2/t2)Etf)] [Rep>|Imo| ^ - (l-/t2)(8-19/t2+15/t4)K(/t)] [Rep>|Irao| + |Re*|] /tfHtlr(f+l)l^! /t+v + 1 X2^i \~k' ~k~v; Ц.+1; j )>-l; Rep>|lmo| + |Re*|]
338 7. x Jv(ax)Iv(ax) 8. x l/2J (ax)x XI (bx) 9. xJn(ax)In+2(bx) 10. xJ0(ax)IQ(bx) 11. x /j (ax)Ix (bx) 12. xJ2(ax)I2(bx) SPECIAL FUNCTIONS (AD,U2v+l); [ - 4a4/p*\ (v+l)/2 j [ReU+2v»-l; Rep>|Rea| + |Iraa|] ц-1/2 Re p>|Ira a| + |Re *|] 1Ч f|^l- [16n(n+2)p2 [Re p>|Im a| +1Re b\\ [Rep>|Ima| [Re p>|Ira a| + 2p 7i(abK/ - (l-*2>B- [Re p> | Ira a | + [2(l-/t2+/t4)E(/t)- i i THE MODIFIED BESSEL FUNCTION 339 13. xJ3(ax)I3(bx) 14. 15. 16. xJ (a/x)X X/ 17. x Jn+2(ai/~x) X X/, 3.15.14. / (У(е 1. / (ae~Vv(ae X A -*2)K(/t)-(8-19/t2+9/t4-6/t6)E(/t)] [Rep>|Ima| + |Re*|] 1 2 ,2 p -* ¦exp - 2 4p -4b[ [Rev>-l/2; Rep>|Re*|] a2b a 2 . , 2 4p -4f» [Rev>-1; Re p>0] +l) ХП I /t+v+1 [ReBX+n+v)>-2; Re p>0] .23 4а р exp -3 + a2Dnp-*2)+a4]/(,ff4) [Re p>0] л) and the exponential function (a/2) 2v (p+2v)T v+2 p+2v 2 ' 4 [Re(p+2v)>0] ?+2v 2 ' v+1 •I;--
340 2. (l-e x/ SPECIAL FUNCTIONS (p+v)/2 11 + V Xl(ae~x) [Re ц>-1; Re(p+v»O) 3.15.15. У (axl/k)I (axllk) and the power function 1 H Г [Re pX)) 2. x^Y (a/x)I (aifx) + 12 3 а"Г(ц+2) aV/l< C+v)/2 1/2, l-v/2, l+v/2 1з/2, C- v)/2, ; -aV2/16 3. l(v+l) /2, v/2+1, v+1 [Re n,Re(n+v)>-l; Re p>0) U+l 8/f X/ x - /,-ц), AU,1/4), , A(/fc,v/2), ), A(/fc,-v/2)J [Re ц>-1; ReB*n+/v)>-2*; Re p>0 for /<4*; Rep>|Re a| + |Ira a\ for THE MODIFIED BESSEL FUNCTION 3.15.16. / (ax)I (bx) and the power function Notation: k=2fal[p2-(a-bJ]~1 2, '¦-(а+ЬJ+\р2-(а-ЬJ 2 _2 , 2 1. / (ax)I ( V V 3. I0(ax) 4. /0(ал)/1 (ал) 5. Ix(ax)Ix(bx) 6. 7. [Rev>-l/2; Re p>|Re a| + |Re*|] -K(/fc) пт/ab [Rep>|Rea| [Rep>2|Rea|] i_ pj 2a [Rep>2|Rea|] nkVab [Rep>|Rea| -[B-/fc2)K(/fc)-2E(*)] ла [Rep>2|Rea|] 2 2 , v+i, —, — p p [Re(X+n+v)>-l; Rep>|Re 341
342 8. x I (ax)Iv(ax) 9. 10. X/ (ax)Iv(bx) 11. SPECIAL FUNCTIONS L|x+l,v+lJ 4^3 [Re(X+n+v>>-l; Rep>2|Rea| av-b-< Г2ц+2г+C±1)/2' ~(i + v 2(i+2v+C±l)/2 . , 2 p [_|x+1 , v + 1 2 ' l 2 P P ; Re p>|Re a| + |Re b\] Г|Х+1±1/21 , v-n- ( 1 ±1 ) /2 v+1 ц' ' v' ' X(y2+b2) -H-l+1/2 V+ 4Ц f *2+72 b +y [Re (i>-C±l)/4; Re p>|Rea| + |Re b\] +l/2,2v+l/2 [Rev>-l/4; Rep>2|Rea|] f 12. THE MODIFIED BESSEL FUNCTION r<2v+l/2)L-v ПР2-4а2]Т ,2v 1/2 [ -1/4^ p JJ 343 13. 14. xI2(ax) 15. x~U2I (ax) X X/ (bx) 16. x1/2/ (ax) X X/ v 17. xI/2/ (ax) X 2- p tRev>-l/4; Rep>2|Rea| -VJli -v H p -4a [Rev>-3/4; Rep>2|Reo|] Ba) 2 v ¦ лр 2v+l; 4- "T 4a' [Re v>-l; Rep>2|Rea|] 2 v +a 2; Re p>|Re a| + |Re b\] IT v.v+1/2 hab -. -2v-1 I 2 2 •< у +a [Rev>-1; Rep>|Re - л i ( v + 1 / 2 ) ; 2 ] 27 p (p -4a ) ¦Hp- ,-v |^_p. 1/4 2 ^ ¦< p -4a „-v-iNp2-4a2 [Rev>-5/4; Rep>2|Rea|]
344 18. x Xl2I_J,ax) X X/ (ax) xU2I_v(ax)X Xljax) 20. xl'iax) 21. x2l2o(ax) 22. x3l2o(ax) 23. xY0(ax) SPECIAL FUNCTIONS B lp -4a P -1/4 [Re p>2|Re a\] Jp(p2-4a2)( 1/4 - H< 2,2 [Re p>2|Re a|] я(р2-4а2) [Re p>2|Re a\] Жр2-4а2) 2 [Rep>2|Re all 22 л(р2-4а2) 4 p2 p [Re p>2|Re я(р2-4а2L _ 192a P4 p6 ^-'-f^f-^n] [Re p>2|Rea|] THE MODIFIED BESSEL FUNCTION 345 24. ± la na'\ p [Rep>2|Rea|] 25. xl()(ax)l1(ax) [Rep>2|Rea|] 26. 4a я(р2-4а2; [Rep>2|Rea|] 27. x I0(ax)Ix(ax) 4ap / 2 2,3 я(p -4a ) -2 1+ 14a [Rep>2|Rea|] 28. [Re p>2|Rea|] 29. ^ бяа [Rep>2|Rea|] [HI- 1 - 4a' P \ 2 30. я(p -4a ) [Rep>2|Re a\\ A? _ 2- 4a' 31. np(p -4a ) [Re p>2|Rea|]
346 SPECIAL FUNCTIONS THE MODIFIED BESSEL FUNCTION 347 32. x3l2(ax) 33. xl/2l_l/4(ax) x 34. xU2I_3/4(ax) X Aa я(р2-4а2K - 3 + 32a4 P P [Rep>2|Rea|] p (p2-4a2) [Rep>2|Rea|] \p2-Aa' a\ 2np{p2-Aa2) [Rep>2|Rea|] v X + v + 1 " a,. * n.—1 Г-1 a2 a2 1 n p p [л л "i Rep>?|ReaJ; v-^v^; Rea+v»-l t• i *»i J 3. ^ 5. xIQ(aSx~) 6. [Re v,Re p>0] -exp [16p2n(/t+2) - 2 2 4 - (Apn-b )a +a [Re p>0] 2P^ [Re pM>] [Re p>01 3.15.17. 7 (ax )Iv(bx ) and the power function 2. x I (a/3c)/v(a/3c) [Rev>-1; Re p>0] i+v V'3l 2 ' ~2~ 2> J >-2; Re p>0] 7. x~1/2/0(e/3o X X /! 8. 9. x3/2/0(a/3c) x [Re p>0] 2pz [Re p>0] 2рЛ [Re p>0] tJ)"']
348 10. ^ 11. 12. 13. 14. 15. /2v(e/3c)/ SPECIAL FUNCTIONS -1 [Re p>0] [Re p>0] [Re pX>] Гд+у/2+l) . v X + vI 2 + 1 Л 7^ -l r(Vjt+l) 2 2 a a l,...,v +1; -A...,-?-1 n -4p' '4p v 1 = > v ; ReBX+v)>-2; Re p>Oj i-1 J Ji1 Я.+ 1/2 - л M |i + -v ) / 2 e Bя) ¦Й1 ; ReB*X+/(i+/v+2/l:),Re p>0] a2ft Гр^Р" I4p2-4ft2j%Dp2-4ft2 [Rev>-l/2; Rep>|Re A|] i \ 1 * 1 : -1 " THE MacDONALD FUNCTION 3.15.18. / (f(ex))/ (ae*) and the exponential function 349 •яТ A(ifc,l/2), X+l) Л+1,2к I (a) t X + 1 U2k+lAk+n [к) XI [Re X>-1; a>0; Re p>-l/Bk>] 3.16. THE MacDONALD FUNCTION 3.16.1. К (ах) and the power function 1. К (ах) a2-p2 in varccos-^ - esc vn sin v arccos 0; Re(p+o)>0] 2. KQ(ax) ¦lnJ J 3. хцХу(ал:) I 2 2 Ap -a [Re(p+a>>0] a v Vn p -a arccos(pI a) 2 2 -p l-V+1 2'+V* + 4 ^+3/2 J21[ 2 1. , a'\_l2aL Л1 ' 2 . ч V + v+ 1 p j (p+a)^ [|X-V+1 , J4.+V+1 [Ren>|Rev|-l; Re(p+o)>0]
348 10. j 11. xl\(aSx) 12. x2l\(ai/x~) SPECIAL FUNCTIONS -1 [Re p>0] [Re pX>] [Re pX)] Г 2 (\ + V v Я.+ P /2+1 v / 2 + ) 1 a и Г JJ 2 1 Г a a (v t к k+1\ [v = EVi' ReB;t+v)>'2; RepXlJ THE MacDONALD FUNCTION 3.15.18. / (f(tx))lvdatx) and the exponential function (l-e~Vx rq+i) /—r- , X + 1 Д<*,0), -1; a>0; Rep>-//B4)] 3.16. THE MacDONALD FUNCTION JMz) 3.16.1. К (ах) and the power function 1. К (ax) * 2 2 > a 349 —— esc vji sin v arccos -M  2 v ! a -p :ev1<l, утЭД; Re(p+a)X)] ,. X. . II'Bk). 14, x I (ax )X X/ (ax ) 15. I2v(aVx)Iv(bx) - я i ( ц + ¦» ) / 2 , ,, e „*, 2*+ //2_X.+ 1 аЫ,4*' X r Bя) -.р A(/,-X), , Д(/Ь, 1/2) A(ife,(M-v)/2), A(ife,(v-n)/2)J [l<2k; ReBA>.+/|i+/v+2A),Rep>0] ¦i expl Гр J/ [Rev>-l/2; Rep>|Reft|] | 3. 1 ,„ p+i p -a arccos (p I a) in jj -— 1 2 2 «I a -p [Re(p+a)>0] j|i+ 1 -Ц- V+ 1 t-v+2 , 3 2 ' ц+3/2 J 2 1 l-V+1 Ba) ХГ [Re p J (p+a) ц-v+l ,jt+v+l H+1/2 v|-l; Re(p+a)X)) y. + v + 1 {=§)
350 SPECIAL FUNCTIONS THE MacDONALD FUNCTION 4. x U2K0(ax) I p+a p+a 2a l(Xp<a] 8. x5/2K0(ax) 4(p - - B3p: [0<a<p] p+a - (p+a)A5p +8ap+9a [0<p<a] 5. xU2K0(ax) л (.p+a) 2 2 p -a p+a p+a)\' [0<a<p] [0<р<а] 9. xll2Kl(ax) Vtl (p+a) a(p -a : [0<a<p] [0<p<a] 6. xKQ(ax) 1. x3/2K0(ax) P2-a2 -In- p2_fl2 2 2 \p -a [Re(p+a)>0] уя(p+a) 2(p2-a2) [0<a<p] [0<p<a] 10. 11. хЪ12К1(ах) а(Р2-а2)"(Р2-а2K/2 [Re(p+a)>0] lnJ 2 2 p -a 2a(p -i [0<a<p] 2(p2-a2JS2a~ [0<p<a]
352 12. х5/\(ах) 13. х6 К2(ах) SPECIAL FUNCTIONS Уя(Р+а) ГрCр'+29а2)Е[р^ 4а(р2-с2K \р+а\ [0<а<р] j— , Г(р+о) (Зр2+24ар+5а2) X 4(оZ-p2K/2oL ХК [0<р<а] 2а2(р2-< [0<а<р] 2а(р2-а2JтГП. Г(р+а)Eа2+3ар-4р2)х 1(Хр<а] t/k 3.16.2. К (ах ) and the power function 1. К f2k^^^[b)[^4b)- -К if [|Rev|<2, v?^o,±l; Rep>0] [Re p>0] 1 -' 1 5. x~U2K laVx) 3. x*K (a/x) THE MacDONALD FUNCTION -fi-l/2' 4. 6. x*K (axUm) [2Re|i>|Rev|-2; Re p>0] T(v+1 Bp)v^ [Re v>-l; Re p>0] l; Rep>0] X I — A(k,v/2), h(k,-y/2) [Re |i>-l+/|Rev|/Bi); Re a,Re p>0] 3.16.3. К (ax ) and the power function + kei(/2lfp) [кег} (Vlap) [Re a,Re p>0] 353
354 2. х»к \а- з. ^л:„р 4 5. Л И SPECIAL FUNCTIONS L_ г J_ 2 ' 16 2 16 1-v, [Re a,Re p>0] 1-v- 2 v+H. a2p2) 2 ' 16 J 2 KQ(V2iap)K0(V-2iap) [Re a,Re p>0] [Re a,Re p>0] [ ¦i-ylX ¦v - v / 2 - ц- 1 [Re c,Re p>0] THE MacDONALD FUNCTION 2 ] 2я /I [Re a,Re p>0] 1/3 -з/2 a/3" [Re a,Re p>0] г I 2 ¦* 1 Hv) 8. -r«,.,-? 9. [Re a,Re p>0] 2Bя) -К [Re a,Re p>0] *+ ( Z-3 ) 3.16.4. iC (ai*2+*zj and algebraic functions f I—2 2] Notation: z+= z [p±4 p - a J l\p-a 355 A(/fc,l+v/2) [Re(p+a)>0;
356 SPECIAL FUNCTIONS (x+z) l/2-n,v [2Re ц> | Re v |; Re(p+a)>0; v/ 2 3. (x+z) XK f v/2 2 (az) л р -a [Rev>-1; Re(p+a)>0; |argz|<*] 4. / 2 *V2 D^ XK 2 COS (vn/2) v/2 l; Re(p+a)>0; 3.16.5. K^[aix *-Ъ *) and algebraic functions Notation: u+= b [p±i p - a J 1. Q(x-b)X 2 2 p -a exp(Wp2-a2JEi(-u+) -exp[-Hp -a jEi(-u) [*,Re(p+a)>0] THE MacDONALD FUNCTION 357 2. [2Re(i>|Rev|; *,Re(p+a)>0] +v/2 . ±v г , X r(±v,u_) - u+ e: [+Rev>-1; *,Re(p+a)>0] u^exp [-от p - a :±v,u+>] r(±v 4. (х2-Л X li *,Re(p+a)>0] 3.16.6. exp(±6x )K^(ax ) and the power function Notation: u+= VT>(Vp+a±Vp-a), 1. о (ax) 1 + H+v, H+3/2 |Bа)ц + [Re fi>|Re v|-l; Re a.Re p>0] 2. l/2-6,it+l/2 -ц-1 б Л I* P COS VJl XK (ax1/k) .2)(*-l)F+l/2)+(/-l)/2 x<u?'(pf]'(a [Re n>-l+/|Re v|/i; Re a,Re p>0] TX
358 3. ? 4. i^ 5-b/x „ , . . e KQ(ax) 6. Lt-b/xK U) x v{x) 7. 1 а/х„ (а e К[ 9. 10. x-3'V/x SPECIAL FUNCTIONS (Re *,Re(p+a)>0] (Re *.Re(p+a)>0] [Re a,Re p>0] [Re a,Re p>0] [Re a,Re p>0] a [Yl (VSap) [Re a,Re p>0] 2a[t>_1K()(t>+)K1(t>_) + [Re(a+*),Rep>0] 2 К (v )K (V ) v - v + [Re(a+W,Rep>0] il . '..:f ¦¦s '•$ THE MacDONALX» FUNCTION 11. xXtxp(±ax~'/k) X X* («Г"*) A(/fc,l/2) 3.16.7. ЛС (/(e~x>) and the exponential function Notation: 6=< 1. К (ае~х) 2. К 3. (l-e 1 r2i a l-p/2 v/2,-v/2,-p/2 [Rep>|Re v|; 1 Jl fl' 4"°13 T [Rea>0] l+P/2 p/2, v/2,-v/2 .2*,/ I 2* B/fc) 2/t 359 A(/fc,v/2),A(?,-v/2),A(Z,-p-|A) (Re |i>-l; 2*Rep>/|Re v|
360 4. XK 5. ехр(±ае~х)Х (ае~х) 6. ехр(±ае )К (ае ) 7. X ехр(±ае'1х/к)х ХК (аеШ) 8. X exp(±ae XK (atM' SPECIAL FUNCTIONS 2 я" 1 a [Re fx>—1; [Rep>|Re l-p.1/2 v,-v,-p P,v,-v J KRep>-l/2; |arga|<n\l Rea>0 |J -1; tRep>/|Re v| ) X Ba) A(/fc,l/2), i; Z^ lRe a>0 THE MacDONALD FUNCTION 361 9. 10. A-е u. a-e УК 12. <l-e -v Ilk Xexp(±a(l-e ) )X \ apsi l; v+l, l+p; |- [Rev<l; Rep>0] rp 2k - 1 k(k,-vl2), Д(/,-ц-р [Re |i>-l+/|Re v|/BJt); Re p>0] Д(/,-М fc,v/2), 2 л го,2Ы 2к+1Л 2k 2k да.-ix-p) [Re a,Re p>0] яГ ( p ) " p -к: Re Да,-ц),Д<*,1/2)
362 13. <l-e~Vx Хехр(±аA-е"х)'/М)х XK(aU-t~x) Uk) SPECIAL FUNCTIONS 14. A-е Yx XK 15. A-е Yx XK(a(ex-l) "k)x 16. (l-e~Vx Хехр(±а(ех-1)/Д)х XKja(ex-l)l/k) L П > <2я) r6k,2k+l I (к 2k+t,k+l\ A(/fc,l+v)] ( k-l ) F + 1/2) AU,-H),A(/fc,l"-v), A(/fc,l/2),A(i,-n-p) К2*Кец>-/-2*\ Rea>0 у Rep>0; + ^ , 1 -p),A(U-v/2),A(/U+W2) 2k [2*Re ц>/| Re v | -2*; Re a>0] B*) [Re a,Re p>0] A(i,H+l),A(/fc,v/2),A(/fc,-v/2) Я J A(M-P), A(/fc,l/2) Re n>-l+/|Re v| /A, - Re a>0 I THE MacDONALD FUNCTION ЗЬЗ 17. (l-e~Vx xexp(±a(e -1) 2) гк+1,ьы\[2а\к XOk+l,2k+l N /fcj ДОМ/2) A(/fc,v), A(fc,-v) да,1-р), 1-1/12к)\ |arga|< ¦}] 3.16.8. К (ах ) and hyperbolic functions Notation: u±= \(p±b) -a ] f±=alp± (p±*J-a2j , l. fsinhix") [cosh ftxj 4 esc vre "_(^-f_v) + "+(^~"+? ЭД+Л 1 ^-4; Re(p+a»|Re*|l 2. sinh cosh K0(ax) ¦=— In V + Tf^- In V [Re(p+a)>|Re b\] [Re(p+a)>|ReA|] 4. x sinh coshftx v -v. _ .v -v. -У ) +U(V.-V: ) 4sinvn . ra l -v - - dp [|Re v|<C±l)/2+n; Re(p+a)>|Re ft|]
364 5. — sinh bx Kv(ax) 6. j^si SPECIAL FUNCTIONS -j— CSC VJl (t> + V - V - V ) l, v?sO; Re(p+a)>|Re A|] 4lnt> -|ln« 4 +4 [Re(p+a)>|ReA|] 2. 4. 3.16.9. Kv(f(x)) and hyperbolic functions 2 1. К (a sinh х) 4— f|Re J J 0; Re a>0] f [Ур/2 (f) hJPl2 (f) - 7p/2 (f) fcyp/2 (f) ] fRe aX)] дрр/2{2) дадрр/г{2 2 [Re a>0] (f) fe7P/2(f j -7p/2(f) |^Ур/2 ( [Re a>0; Rep>|Rev|-l] 5. 1 THE MacDONALD FUNCTION ( A-a) /2 s i nhx' e -1 >[s i nhxj [Re a,Re b>0; Re p> | Re v | -1 ] 365 6- —Г Xexp[(a+6)cothx] X vk [2jL x v[s i nhx 1 2-fab p+v+1 2 ,B*) p/2,v/24 [Rea,ReA>0; Rep>|Rev|-l] 3.16.10. К (ах) and trigonometric functions Notation: u±= ((p±ib) -a ) , v±= -i[p±t*+'J (p±ib) 2-a2\ [sinbx\ 1. U [cos oxj |Rev|<C±l)/2, j^'*1!; Re(p+a)>|ImA| fsin bx\ 2. \KQ(ax) [cos bx) (U In У + U In V ) ll' 1 [Re(p+a)>|lm*|] 3. sin 6* К ((ax) i— г p , b+ i v i —=—^ u In f s—^ u In у 2a + + 2a [Re(p+a)>|lm A|]
366 4. xn\ x (cos bxj XKJax) 5. — sinbxK (ax) SPECIAL FUNCTIONS — 1 n 11 I . n л \ a -v. _ , v -v. [|Re v|«3±1)/2+h; Re(p+a»|Im . v -v v -v. CSC Vrt (У_+ »_ - V+- V+ ) O; Re(p+a)>|Im A|] 6. jsi 3.16.11. / (ax )K (bx ) and the power function |1 V r Notation: fc = J , .2 2 м 1 + b у \-\1-fl 7 1/2 1/2 Y=" (p2+a2-b2) 2+ 4a2*2 XKQ(bx) 2. X-U2J2(ax) x [Re(p+A)>|Im a\] (l-l2) a\] 3. x U2Jl(ax)x 4. x U2J2(ax) x 5. x~ll2J2(ax) x XK2(bx) 6. 7. THE MacDONALX» FUNCTION 367 3klin(l-k2)(I-/2) -{B-к2)Е(к)- [Re(p+A)>|Ima| [Re(p+ft)>|Ima|] 2/y (I-/2) X[(l-/2)B+5/2-8/4)K(/)-2(l-2Z2)X X(l+4/2-4/4)E(/)] [Re(p+ft)>|Ima|] 4"[2J 4r[ 4pJo[2p [Re pX)] 2- -Л K^l x «Й1 [Re |i>-l; A(/fc,0),A(/fc,l/2),A(/fc,v/2),A(/fc,-v/2) )>-2il:; Re a,Re p>0]
368 SPECIAL FUNCTIONS 3.16.12. Y (ax!/k)K (bxl/k) and the power function I. 2k X* (axlfDk)) Д(*,0), , A«,v/2), ), A(/t,(l-v)/2)J [Re n>/|Re v| /B*)-l; a.Re p>0] 3.16.13. / (ах11к)К^Ъх11к) and the power function Notation: к ¦¦ i-2a p+la 1. I0(ax)K0(bx) \p2-(a-bJ [Rep>|Re(a-*)|] К JP2-(а+Ъ Р2~(а-Ь 3. [lv(ax)+Iv(ax)] x XK (ax) 4. хЪ1ч(ах)К^(ах) [Re a,Re pX)] ^ sec vn P la [|Rev|<l/2; Re a,Re p>0] na -2v-l 4cos%i v~l"-{ la' [Re v>-l/4; Re a,Re p>0] P2-2a2 5. х'1/21^(ах) X XK (bx) THE MacDONALD FUNCTION /Zcosun 369 6. x U2I (ax) X 7. 8. x lo(ax)KQ(bx) 9. I0(a-/x')K0(b-/x') 10. xv/ (a/x) x V COS(Ц+v)Я ; Re Re(p-a+6»0] [2arH 4 a 2 - p 2 ; Re v>-l/4; Re a,Re p>0] pDa2-p2) [Re a,Re pX)] (p-2a) r[Da2-3p2)E(/fc) + [Re a.Re pX)] [Rep>0] > - l 2 ( 3v + 1 ) /2 [Rev>-l/2; 'Re p>0]
370 11. x\(axUm)X XKjax1'™) SPECIAL FUNCTIONS k+ I I 2- 1 2b </,-м, да,О). x -г Д<*,1/2) [ReB*X+V)>/|Re v| -2i; Re a,Re p>0] 3.16.14. К (axUk)Kv(bxl/k) and the power function 1. x~U2K (ax) X (bx) cos(u.+v) ncos(ц-v)я f,-v) ; |Re ji| + 2/2ХBя)*+' k+ I/2-2 X -i- [2ARe X>/1 Re ^ | +/1 Re v | -2*; Re a,Re p>0] 3.17. THE STRUVE FUNCTIONS Hy(z) AND Lv(z) ax* ) and the power function 3.17.1. HJax^S, Notation: A = + , A =arcsin^ - p 1. L (ax) 3. 5. 6. H3(ax) THE STRUVE FUNCTIONS v + l Г v+2 ] npv + 2r|v+3/2p fRev>-2;ReP>/|Iina|ll n+ 1 / 2 2Л, я«1 р'±а' p ±a 21 2± a , 2p2±a2 2 [j±4p2± 2a2| T2pDp2±3az) 371 3 1' i
372 7. Н (ах) V L (ax) 8. х~ И^ах) L (ах) 9. x1 L (ах) 10. х"Н (ах) 11. Л to) 12. х*+1Н (ах) SPECIAL FUNCTIONS >-2; ReP v + 1 . 2 , 2 - 1 i (p ±a ) Jllmalji MRe a\)l v + 1 Ba)v+1 np [Rev>-1; Rep>|Ima|] -v- 1 / 2 -Bv+l)/4 v+l/2 (a [Rev>-1; Rep>|Rea|] [Rev>-3/2; Rep>|Ima|] > 2' THE STRUVE FUNCTIONS 373 13. x^'L (ax) тПа* со s ее уя „v+3/2 [a\ + 1/2. 2_ 2. ( 2v + 3 ) / 4 ^-v-3/2 [pj [Re v>-3/ 2; Re p> | Re a | ] 14. J1 {\(ax)\ яр(р2±а2) 15. x L0(ax) я(р2±а2J ~р2 J_ 2 a\p ±a' |Ima|"ll 16. 3{H0(ax) LQ(ax) Rep: Jllmalji MRe a\'l я(р2±а2KГ P2 P' a\~p~4a~- 17. m::::;}] 18. ЛЪг(ах)
374 19. x L3(ax) 20. H L (e/Jc) 21. v/2(Hv 22. x~v/2H 23. 24. SPECIAL FUNCTIONS l\ a2 4p2 T 7 , 4p2±a2 5р2 3a2 + 9 3a3 x X2F2 A, n+(v+3)/2; +a2p 3/2, v+3/2 [ReB)H-v)>-3; Re p>0] * CU «&{-*-) [Rev>-3/2; Re pX)] (a/2) v + 1 p3/2T(v+3/2: [Re p>0] avT(v+l/2) [Re p>0] D/4 -X Д(Л-Ю, (A,v/2), A(A,v/2)J ReB*^+/v)>-2it-/; Re p>0 for /<2jfc. /Rep>|lma| for l-2k; a.RepX) for VRep>|Re a] for /-2* 25. THE STRUVE FUNCTIONS Bn) xii 375 .2* aj X [ReB*|i-/v)>-2*-;; Re ji>-1 -3//D*); a,Re p>0] 3.17.2. H.(/(e A)), L,(/(e~*)) and the exponential function Notation: A_(p) = + *2F3 *' 2. H (aeA) 3. A-е Yx xH 4. (l-e XH Ы1-е V + 1 2'0"'napsecf _ A (_ ) [a>0; Rep>-3/2; Re(v-p)<l] -v)/2) aj №ец>-1; a>0; ReB<fcp-/v)>-/; Re lv+1/2, p+1/2 p+v,p-v (a) [Re pX>]
376 5. SPECIAL FUNCTIONS н X-(LvHl-e- 6. (l-e 7. <l-e-V XH(a(l-e-V"Bl)) 8. (l-e [Re v>-3/2; Re p>0] Г(Р)е-л;(у+1)/( GM+/ О<Ы3< fc) 2* [ReBin+/v)>-/-2t; Re pX)] [P U3k+l,k+l\[ a) /-2ifc; Re p.>-l-3l/Dk)\ a,Re p>0] Bя) ДУ.1-Р), A(*,(v+l)/2) B/t) A(/t,-v/2),A(/t,v/2) [Re ^>-l-3//Di) a>0; ReBkp+lv)>-[] I 9. A-е XH THE STRUVE FUNCTIONS I p + h Bji) ' 4. 1 [ReB*(i+/v)>-/-2)t; a>0; Rep>-3//D*>] 3.17.3. HJax1/k), LJaxl/k) and hyperbolic functions Notation: A±(p) - 2*2 ; f, v+f; ± t, |t+(v+3)/2; ±e2p"V4' 3/2, v+3/2 u±=«l (p±6) 2, v+=-J (p±6J-a2, 1. l ^cosh oxj sinh cosh bx sinh i 3. cosh bx [Rep>|hna| + |Re *|] [Re p>|Ima| + |Reft|] 377
378 4. 5. sinh bx cosh bx sinh bx cosh bx (sinh bx\ 6. \ YLAax) [cosh bx) l 7. [cosh bx\ xHv(ax) (sinh bx\ 8. xH \x [cosh bxj XL (ax) 9. sinh bx cosh bx SPECIAL FUNCTIONS n(p2-b2) [Rep>|Rea| + |Re *|] ±J0 r2(p+bJ+a\ + Зя\p2+b2\ na2 2 2 1 -a _ [Re p>|Rea| fsinhixi с \v+i, ru+v+21 X f i-гГ UA(p-b) [coshixj {*) VH LV+3''2J " >-2; Re p>|Im a| + |Re *|] +l я (p 2 - [A (p-b) v+3/2j + 2; Rep>|Rea[ + |Re*|] C6p2+a2i+63 1p3+a2p+362p _ p+b [Re p>|Ime| + |Re *|] THE STRUVE FUNCTIONS 379 Tsinh bx\ 10. x-^ \Loiax) I cosh bxj 11. x' 2fsinh bx\ [cosh 6xJ H0(ax) 12. [cosh 6xJ L0(ax) -l sinh bx 13. x '-j \X [cosh 6xj X Hj (ax) (sinhix 14. x \ \X [cosh Axj X L, (ax) 15. x -l sinh bx cosh bx xH2(ax) 2a [Rep>|Rea| + |Re*|] 5 аи - [Re p>|Imo| a 4 - 5 аи _ at) [Rep>|Ree| + |Re*|] MVt + —(" w +и w ) п\\) ла - - + + [Rep>|Im a| + |Re*|] 4iJ [Rep>|Rea| + |Re*|] Ц-[(р-А)и_и'_+ (p+b)u+w+] па [Rep>|Imo) + |Re*|]
380 16. x , fsinh bx [cosh bx fsinh bx] 17. хЦ lx [cosh bx) XH <a/x) fsinh bx) 18. хЦ lx [cosh bx) XL («Vx) „fsinhix") 19. xv/2\ lx [cosh 6xJ XH (a/x) ,-fsinh 6x) 20. xv/2j lx [cosh bx) XL <a/x) ,, fsinh bx] 21. x"v/2j lx [cosh bx) XL (a/x) SPECIAL FUNCTIONS 2a 2 ЛЬ _z_+ (p+b)v+z+] па [Rep>|Ree) + |Re*|] 1 . fn+(v+3)/2] ¦fk [ v+3/2 J " IReBji+v)>-3; Rep>|Re*|] >-b) +BJp+b)) Щ i€'± [ReBn+v)>-3; H+(v+3>/2' v+3/2 2V + [Rev>-3/2; Rep>|Re/>|] [Re v>-3/2; Rep>|Re*|] , v- 1 - (p-6)v~ exp 4p-46 [Rep>|Re*|] 1 -i I1- 1Г THE STRUVE FUNCTIONS 3.17.4. Hjax ), L (ox1'*) and trigonometric functions 381 Notation: u^ i r 2± (p2 + aY-b 2 ), * /2" .2 2 ,2,2 . 2,2,1/4 r=[(p+a-b)+4pb] I 2 "T i (u p+ap+bu ) +(bu +ab-u p) Л = 1П i ~2 ,2 " ' p +b В = arg[u+p+ap+bu_+ i(bu++ ab - up)], v =-t ± /2 , R=Up2-a2-b2J+4p2b2} C = ln- I 2~ 2 •» (v +p-ab + bv ) + ( bv + + ap-v p) 2 ,2 p +0 D - arg[u p - ab + bv + i(bv++ ap-v_p)], A.(P), B.(P): see 3.17.3 1. sin cos bx H0(ax) [Rep>|Ima| Bu fl 2. I L0(ax) (cos bx) Dv - Cv Cv +Dv i з. sin bx cos 6x na(u2+u2 -X Apu_+Bpu+-Abu++Bbu_ \Apu+- Bpu_+Abu_+Bbu+ [Re p>|Im Q
382 fsinhixl 4. i У Пах) [cosh Ъх) ' fsin bx] 5. xH X [cos 6xJ XH (ax) 6. fsin 6x1 [cos 6xJ XL (ax) 7. x _, (sin bx\ 8. -i sin bx cos bx x X L, (ax) 9. x» sin 6x [cos bx XH 10. sin bx [cos bx X L (av'jc) SPECIAL FUNCTIONS -X (v bCv+-bDv_-Cpv-Dpv+ [Dpv-Cpv -bCv-bDv [Rep>|Rea| f ^ v+3/2j[l -2; Rep>|Ima| >[A_(p-t ; Re p>|Re a| + |Im Jsin6x| l/0\+2_К-Ли-1 Icos&cj *W ™[Au++BuJ Аи + Bu + [Re p>|Ima| + |Im*|] MDv + Cv Cv_-Dv, [Rep>|Rea|H v+3/2 Ml [Re B^+v) >-3; Re p> | Im * | ] M-+(v+3)/2l (i v+3/2 Ml Rep>|Im*|] ^Г THE STRUVE FUNCTIONS 383 v/2 sin foe 11. x A \X Icos 6x1 12. v/2 sin bx [cos bx XL (aVx) X 21. x -v/2 sinix cos bx XL 2 xerfi Xerfi [Rev>-3/2; Rep>|lm*|) 4р+4г'б X Xerf f—^ v2vp+T Xerf [Re v>-3/2; Rep>|lm*|] . v - l avT(v+l/2) [Rep>|Im*|] 3.17.5. H (ax) and the Bessel function / (ax) [Re p>2|Ima|] 2. x[Jv(ax)H'v(ax)- -/'(ax)H (ax)] [Rev>-1; Rep>2|Ime|] X
384 SPECIAL FUNCTIONS 3.17.6. Yv(ax±l/k) - Hv(ax±Uk) and the power function i2n) lk+i /- _ 2/t *(*)' , A<*,v/2),A<*,-v/2) [Re )i>/|Re v|/B*)-l; Re pX); 2. ^[У (ах-1П2к)) - -1П2к)) X й [ReB*(i-/v)>-lfc-/; Rep>0; 3.17.7. Y (f(t *)) -H (fit *)) and the exponential function 1. У (ае Х)-Н (ее *) с о s v я „32 a ^— о,. I -л— 2и 2 44 2. У (ae*)-H (aex) [Rep>|Rev|] cos уя ,-41) a ^ "т А ~л l-p/2, (v+-l)/2 (v+D/2, v/2,-v/2,-p/2 (v+l)/2, l+p/2 p/2, (v+l)/2, v/2,-v/2 THE STRUVE FUNCTIONS 385 3. A-e-Yx X [У 4. (l-e X [У I 5. (l-e'Vx 6. A-е 2* Bk) A(/t,{v+D/2), A(/t,v/2) {Re (i>-l; 2ARe p> X A(M-p), A(A,(l-v >-1; ReBip-/v)>4 4Г.(р)с BиJ 1 <2*J* osvn r.U.k+1 \Jk^ k[P ьш,ъш\а x A(/,-fi), A(^,(v+D/2) h(k, (v+D/2), AU,v,/2) |-2i; Жер>0] 4Г(р) cosvn ^,3 2i ,p U3t X A(jU-v/2), (; Rep>-1;
386 7. (l-e'Vx SPECIAL FUNCTIONS 41 p + tlcosvn Bл) 2к+1 -x 2k 2k Ы; 2ARep>Z|Re v|; |arga|<n] 8. (l-e~Vx X[Y ,гк+1,зы(BкJк >и3к+1,ы\{ а) ; |arga|<n] 3.17.8. Lv(ax±l/k) and the modified Bessel function / (ax±llk) 1. [Re p>2|Re 2. [Re v>-l; Rep>2|Rea|] -1 ' 4. THE STRUVE FUNCTIONS /2 387 5. -L (ax )] X Re<2jtn±Zv)>-2it; Re aX), (Re p>0 1 \^е<2*A+А>)>-2Ы; Re p>OJ J ¦X U%'l\[ а) [р] [Re<2jfcn-A>>>-2M; Re a,Re p>0) 3.17.9. /^(/(e ))-Lv(/(e" )) and the exponential function 1. /. ( - L (aex) V Ч (v+l)/2, l+p/2 p/2,(v+D/2,± ^,+ y 3. [Re p>0; |arga|<n] - L [Rev<l; Rep>0]
388 2. (l-e'Vx X - L (ae 3. A-е'Ух 4. (l-e SPECIAL FUNCTIONS 2Г(ц+1) Bл) /й " (cos-vn а*х X- Bк) A(*,+v/2), AO,-p-n)J Г /ReBJtp+/v)>0 \1 [Re ц '•iRetZip-Zv)^; ReBip+Zv»-//J Bя)' 2k AU.l-p), A(A Att,(l-v)/2), A(A,l+v/2), A(/6,l±v/2) [Re (t>-l; ReaX); ReB*p-M>-fl 2Г(р) COS a x , A(*,±v/2), A(it,+v/2>, A(J,-p- P ° s 5. A-e-Vx THE STRUVE FUNCTIONS 2Г(р) 389 -е *) """')- -L 6. (l-e'Vx -L (a(e -1) )] 7. (l-e~Vx ) - -L (a(e -1) )] Bл) г 1 cos vn , (l-v>/2), [Re a,Re p>0; i + ' A0fc,(v+l)/2) , \neBk\i.-h)>-2k-l; Re o>0, /ReB*p+M>0 \1 \ReB*p-/v)>0; ReBjtp+/v)>-ZjJ Bn) 2lp + * Н) cosvn * , A(Jk,l+v/2),Aa,l±v/2) Rea>0; [¦ fReBit(i+(v)>-2* Y| \ReBjfe|i-/v)>-2A:; ReB*|i+W>-2A:-ZjJ
390 SPECIAL FUNCTIONS 3.18. THE ANGER FUNCTION J <z) AND THE WEBER FUNCTION E (z) v v 3.18.1. J (ax±1/k), EJax±l/k) and the power function Notation: 6= fJ tec) ¦ X IE (ax11™) 2 ±j /,-м.), ла,о), да, д<*,0), да,1/2>, /2) , Да,1-(б+у)/2) [Re |i>-l; a,Re p>0] /2 X -г [Re | ; a,Re p>0] Bя) ( / -1 ) / 2 1 f X J [Re |1>-1-Д1+1)/B*); a, THE ANGER AND WEBER FUNCTIONS 391 3.18.2. JJax), Ejax) and hyperbolic functions Notation: v <p,e) =— sm?vii(l-cos vre) EX 2vrcp ^ fl, 1,Ш;Л2 | 3 2[l+v/2, l-v/2 fl, 1, 3/2; -a2//-2] 3 2[C+v)/2, C-v)/2 J sinev:rt (i-c 3 2 l+v/2, l-v/2 r(l-cos vk)'"?x xA+cosvji) ? FA 3 [C -a2/p2' C+v)/2, C-v)/2 fsinh&x) 1. [Rep>|Ima| 2. [cosh ifjcj [Rep>|lma| (sinhtoi X coshixj . (ал) tJ(p-i,l) +v2(p+b,l) [Re |i>-C±l)/2; Re p>|Ira a| + |Re 6|] Isi^ rx cosh bx) .. I (ax) v2ip-b,0) + v2(p+b,0) [Re |i>-C±l)/2; Re p>|Ira <z| + |Re
392 SPECIAL FUNCTIONS 3.18.3. J (ax), E (ax) and trigonometric functions Notation: see 3.18.2 (sinbx) [cos ox) (ax) U [Re p>|Ima| (sinbx) 2. i Lev(«) [cos 6xJ [Re p>|Ira <zH + V. (p-i 3. (sinbx) [cos bx) ¦J (ax) [v2(p+ib,l) + u7(p-ib,D] [Rep>|Ima| 2 ; Re [Rep>|Ima| + |Ira b\; Re |i>- 3.19. THE KELVIN FUNCTIONS ber^z), beiv(z), kerv(z), keiv(z) 3.19.1. btrv(ax1/k), btiv(ax'/k) and the power function Notation: *=f 1. ber (ax) bei (ax) 1/2 p>Re a+|Im a\] THE KELVIN FUNCTIONS berv(ax) bei (ax) 4. ber bei (a> berv(a/3c) bei (a/3F) 5. л: v/2 ,fberv(a/3c) Ibei (a/3c) 6. 1 bei (a-/x) 7. -bei(av^c) 8. 1-ber (a/3c) Г/2 u±=JrJ±p2; r-(Q4+P4)l/4; 3 v я 1 p <p=—;—1-— arccos —r+v arctan ; 4 2 2 и + p Re v>-l; /YRe p>Re a+1 Im a | [Re p>0] [Re v>-2; Re p>0] [Rev>-1; Rep>0] [Re v>-l; Re p>0] [Re pX)] C + ln^-dKb [Re pX)] 393
394 9. SPECIAL FUNCTIONS bei 2Bn) (/-i)/г-к x Ш' A(*,I/2),A(*,A±1)/4)J *; ReD*(i+vft>-4Jt; Re p>0] ю. bei' x -г Ц<4к; Re (i>-l-«2±l)/D*); Re pX)] 3.19.2. ber (ae"rjc), bei (ae rx) and the exponential function 1. A-е-Ух bei Bn) *Г(ц+1) ^U x 2/ 1 м- +1 D*)"' ШЛ-р) [Re ji>-l; Rep>-rtl+l)/D/t)] THE KELVIN FUNCTIONS 3.19.3. berjax1/k), beiJaxi/k) and hyperbolic functions 395 Notation: <p(*) = 4 ( ap+b }, ^ 1. [cosh bxj f sinh 6 [cosh bx) fsinhix;') 3. \ YbtT(ai/l) [cosh bx) 4. ] \ЪеНатГх~) [cosh bx) —-[u (-b) + и (b)] [/TRe p>Re a+|lra a|+/2"|Re ujb)] COSCp(-Z>) -Сф() 2(p-b) + 2(p+b) [Rep>|Re*|] s intp (~b ) _ s i пф ( b) 2(p-b) + 2(p+b) [Rep>|Re*|]
396 (sinh bx\ 5. < i-ber (afx) [ j v cosh tej fsinhbx) 6. ¦{ Ibei (aifx) [cosh focj v 7. SPECIAL FUNCTIONS i>j (p-i) + yt (p+b) [Rev>-3+l; Rep>|Re*|] v2(p-b) + v2(p+b) [Re v>-3ll; Re p> | Re 61 ] av cos[ф(~b)+Зул/41 - [cosh Xber 8. coshZwcl Xbei 1 (sinhix) [cosh bx J 10. -t- [coshtej X tl- ¦X 2v+, (p-b) V + 1 - cos [Re v>-C±l)/2; _a s i n fcp (-l>)+3yn/41 I V+ 1 , v+ 1 У s i n ГФ [Rev>-C±l)/2; if» ¦ln- [Rep>|Re<>|] THE KELVIN FUNCTIONS 3.19.4. berv(aj:1 ), bzijax ) and trigonometric functions Notation: see 3.19.3 p>Rea+|Im [u (ib)+U (.-ib)] 397 1. < Yber(ax) [cos bx) fsin bx) 2. -I Ibei(ax) [cos bx) (sinbx) 3. 4 J-ber(aZx) [cos bx) (sinbx] 4. -^ Vbeita/x) [cos tej 5. fsinte [cos ix [cp? bx) 1 /8[lJ [/2"Re p>Re a+|Im a\+VJ\lm b\] C0S p+b p+b [Re p>0] cos bc -\ Vcosh- Ifj P [Re p>0] [Rev>-3+l; Rep>||m*H 1 ib) +v2(p-ib)} [Rev>-3+l; Rep>|Ira*|]
398 SPECIAL FUNCTIONS 7. v/2(sinbx\ [cos bx) Xber (a/x) X v/2| 8. x < Yx [cos bxJ Xbei (e/x) , fsinix") 9. ^J VoeUaVx) [cos 6xJ 10- i x fsinbx) i cos foe V I T cos [Re v>-C±l)/2; Rep>|Im*|] av Ml s: 2v+1|l j sin\<p(-ib)+3vn/4] [Re v>-C+1)/2; Rep>|Im*|] [Rep>|Im*|] CI jarg (p-ib) Cj [1п(ф1р2 + 62/а2) [Re p>|Im 3.19.5. Products of ber (axUk), bei (axUk), btr'(axUk), bei'(axUk) 1. ber2(ox;)+bei2(ax) п(р4-4а4)'/4 [Rep>/2"(Rea+|Ima|)] 1/2- 2. x11 [ber (ax) + + bei (a/x) V 4. 5. berv(a/3c)X X bei (атГх) V 6. THE KELVIN FUNCTIONS 399 2v 4 3[ (v + D/2, (H+2v+2)/4, (n+2v+3)/4, v/2+1, v+1; i>)>-1; Re p>/Y(Re a+|lm 4a4/p4 [Rev>-1; Rep>0] 2v H+v+1 22v/tv+1 Lv+1. 4 2 <H+v)/2+l; a /A6p ) v/2+1, v+1 [Re(|i+v),Rep>-l] (H+V + D/4, (v+D/2, [Rev>-1; Rep>0] X X xfber (a.x)ber'(ax) + + bei (ax)bei'(ex)] 2v- 1 Г u+2v 1 a Г J 22vp* + 2v [v, v+lj4 (H+2v+3)/4, (n+2v)/4, (v+D/2, v+1; [(H+2v+2)/4 г 3[ v/2, (M.+2v+l)/4] .4,4 4a /p J [Re(|i+2v)>0; Re p>/Y(Re a+|lm a\)]
400 7. SPECIAL FUNCTIONS л X [ber (ax) bei'(ax) - - beiv(ax)ber'tax)] X [ber (a/x)ber/(a/x) + bei X[ber V v ... -beiv (a/x) ber^ (ai/~x) ] 10. x1/?X li. x/2x X [berv (a-fx) bei' ( +bei (a/r)ber'(a/3c)] f(n+2v+2)/4, 2v+l + 2v + 2 [v+1,a>+2J4 3( v/2+1, (H+2v+3)/4, (n+2v+5)/4, (n+2v)/4+l (v+3)/2, v+1; [Re(|i+2v)>-2; Re p>/T(Re a+|Im a])] 4a4/p4 2v-l 2v+2 U+v+1/2 [_v, v+1 C, Bn+2v+3)/4 ] 2 3( v/2, (v+n/2, v+1; aV2/16J -l/2; Re p>0] 2v + 1 [m.+v+3/2] n+v+3/2 Г [v+1, X -F 3 2p p- ¦ ¦-¦ - [v+l,v+2j fBM.+2v+3)/4, Bn+2v+5)/4 [v/2+l,(v+3)/2, ¦v)>-3/2; Rep>0] 42p 2 X [berv(a/3c)bei'(aVT)- [Re v>-2; Rep>0] -bei (a/x)ber'(a/3c)] [Re v,Re p>0] THE KELVIN FUNCTIONS 401 12. [ber'(a/B] + 3.19.6. kerv(, fker (ax)) 1. I kei (ax) 2. ker (ax) V kei (ax) 3. ker (ax) v keiv(ax) [Re v,Re p>0] kei (axllk) and the power function 1/2 4p 2±1 E±l)a3±13 [Rep>0; |arga|<a/4] 5±2 _?__ 4 ' "a4 „ ,2 2,v/2 -«u -p) +«_) OTS sin <p 2 Г .4 4,1/4 ± p ; г - (a +p ) ; [I— 1 p2 3v л. <p = — arccos —x t v arctan |Rev|<l; Re p>0; |arga|<n/4] u ±p ,2|i-5/2 ,-.4.41 a 3/2 u+l ,5 4 1/4, 1/2, 3/4, 1, (H+v+D/4, (n+v+3)/4, (n+2v+2±l)/4 (H-v+D/4, (|A-v+3)/4, (n+2v+2±l)/4 [Re ji>|Rev|-l; Re p>0; |arga|<n/4]
402 kei 5. ker, kei тГх[kei (a-fx)) 7. kei SPECIAL FUNCTIONS (ker (в/хЛ , 4. I [ - -?- sinx| cosy) - a P /4; Re pX)] :Gr, 1/2,1, Bm-+2v+3±1)/4 Bh+v+2)/4,1+Bm.+v)/4, Bn-v+2)/4, l+Bn-v)/4, Bn+2v+3±l)/4 [Re |i>|Re v|/2-l; Re p>0] 3/ 2 sin cos COS [<р-т —t: |Rev|<l; Re p>0 8p 4 J A(*,0), X \ — A(Jk,(l±l)/4)J [Re |i>/|Re v|/D*)-l; Re p>0; 3.19.7. ker (ae~rx), kei (йе ГА) and the exponential function Notation: fker(ae"x) 1. lkei(ae x) ^16^15 [Re p>OJ 256 l-p/4 0, 1/2, <l-6>/2, 6/2, -p/4 THE KELVIN FUNCTIONS 403 fker(ee ) [keHae*) 3. kerv(ae x) kei 4. kerv(ae ) kei (ее*) 5. A-e-Vx ]ker, -he/Dk). Xi (ее ) [kei 6. A-е-Ух kei . 1 r40 256 l+p/4 p/4, 0, 1/2, A-6)/2, 6/2 [|arga|<n/4] 1 0 2o (v+6)/2, Rep>|Re \ 4-1 Г50 fc 16iC26 i4 256 -p/4 f И 256 l-p/4, F+v)/2 v/4, (v+2) F+v)/2, p/4, v/4, B-v)/4, (v+6)/2j [|arga|<n/4] .. 1 X 4 ц+1) гз*./ t - 1 ц+ 1 Z,4it+ A(*,0) , Atf.l /4,-v/4, l+p/4 (v+2)/4, {.-« /2), a a, B-v)/4 -v/4, A-6)/2) [Re ц>-1; 4*Rep>Z|Re 4k t- 1 ,|i+ 1 4*+U /,1-p), A(*,l/2) [Re |i>-l;
404 SPECIAL FUNCTIONS 3.19.8. kerv(ax ), kei^iax ) and hyperbolic functions Notation: Uj(p,e) 8«lp4+a4 4 Г 2^'^ +a -a J [cosxj (sinhbx) 1. [cosh bx) fsinhte") 2. -^ Ucei(ax) [cosh 6^J fsinhtel 3. 1 ^ker(a/3c) [cosh taj [Rep>|Re*|; |arga|<n/4] 4. -^ [cosh ttj (p-6,0) T Uj ( [Rep>iRe*|; |arga|<n/4] u2(p-b,l) +u2(p+b,l) [Rep>|Re*|] u2(p-b,0) + u2(p+b,0) [Rep>|Re*|] 3.19.9. ker (ax ), keiv(ax ) and trigonometric functions Notation: see 3.19.8 fsin bx) 1. cos bx |; |arga|<n/4] THE AIRY FUNCTIONS fsin bx\ 2. -I Vkei(ax) [cos bx) 3. fsin bx\ -I ^ [cos bx) [Rep>|Im*|; |arga|<n/4] 4. [cos [u (p+ib,0)+u (p-i 3.19.10. The Kelvin functions and the logarithmic function 1. In bei f Ikei (a/3c)J sinxj ' I cos % /4; Rep>0] 405 3.20. THE AIRY FUNCTIONS Ai(z) AND Bi(z) For calculating Laplace transforms of expressions containing the Airy functions one can use the relations and the formulas of the Sections 3.15 and 3.16.
406 SPECIAL FUNCTIONS 3.20.1. Ai(axl/k), 3Haxl/k) and the power function 1. Ai(ax) 2. x^M(ax) 2. x За exp - ,1/6 За°\ 2ла' 3 За' 31/64дй3 [|arga|<n/3] ( 4 |i- 3 ) /6 2ла' Ц.+ 1 f(|x+l)/3, (ц+2)/3 ) -D,1+1 ) /6 , 2/3; -p3/Ca3) 3/Ca3) , < 4,1 + 5 ) / 6 2 X 2 2 ц./3+l , (ц+4)/3 4/3, 5/3; -p3/Ca3) 3/Ca3) 2' 11 3 * 2й'  5/3 3|х+5 Зц+8 2. 4аГ к? 1 6 ' 6 ' 3' „ : ¦и X [Re |i>-l; ReCp±2a 4. //C*). c ) THE AIRY FUNCTIONS .l/3,|i+l/2 31/6Bя)*+(/-1)/ -,7k,l 9k' 407 x X r A(*,0), A(*,1/3)J [Ren>-1; RepX) for l<2k, or |arga|<n/3 for or ReCp+2a3/2)X) for /-2*] 5. x^Biiax ) k11 aV ,1/6 X Г [Re ,i>-l; Rep>0 for Z<2*, or ReCp-2a3/2)>0 for l-2k] , |i... -//C*). 6. x M(ax ) 4p) [Re p>0; A(*,2/3) 3.20.2. AUaxl/k), BUax'/k) and the exponential function Notation: s = - L2 3/2 Mlv ±за x x 777ГП-1ГПСЫ,2к Op 49' t,0), да,2/3) [Re^>-1; RepX); |arga|<n/3] -C—ll^l X
408 2. лгехр (±§л-"*); SPECIAL FUNCTIONS Bл) 3. xBi(a*2//<3*>) 4. ^exp(-|a3/VW)x L+1 2*+/-4Ua3/2J X ш' /2 3 / 2ч Хт Д«,-ц),Д(*,5/6),Д(*,1/3) >-I; Rep>0; 1 /3 ;(i+ 1 / 2 fc,2*+/ 4а 3/2 X -r |Д(/,-ц),да,1),Д(*,1/з),да,2/з)] (л,i/6), да,2/з> J [Re ц>-1 -// F*); Re p>0; | arg a | <л/31 3.20.3. Ai(/(e x)), Bi(/(e *)) and the exponential function Notation: б = Ai(ae ¦ - l / 6 [|arga|<я/31 1+P/3 p/3, 0, 1/3 2. <l-e"Vx XAi(ae ) 3. (l-e xAi(ae 4. A-е-Ух xBHae ) 5.ap(±|( xAKae x) THE AIRY FUNCTIONS fc1/3r(n+l) [Re (i>-l; Rep>0] [Re ц>-1 2t^4yt [Re м>-1 ;¦ ,-2/3 t 3 a , _ рГB/3) 222[6' 3' -1/3 p+l 3 Д ; (p+1) Г ( 2 / 3 ) 2r [Re pX)] 409 , +4 3/21 5 2р+5, 4 3/21 'З'З" ;±3^ J
410 SPECIAL FUNCTIONS THE AIRY FUNCTIONS 411 6. exp ±-5- 1/3 X ,3,6 4 a 3/ 2 5/6, l+2p/3 2p/Z, 0, 2/3 xAi(ae ) Rep>-l/4; |arg а|<л/3\] |arg а|<я/3 j"J 7 7. .-*> 3/2l e ) J "' 3V XBi(ae" рГ( 2/3) 3; 1' 3 1+4 3/2) 1;± 3е j" 8. exp (-f(aeV'2); 9. 10. A-е 2p+2 5 2p+5 4 3/2' ' 3 '3' 3 '-3° (Re p>0] ,1/3 ,7/6 r- 3 vji [Rep>-l/4; c,.|4a 3/2 5/6, 1/3, l+2p/3 2p/3, 0, 2/3, 1/3 Ш+1 1 XDa3/2)A [Re ц>-1; Re p>0;] ,5/6) .„ .*E + I/2),l/6,(i + l *+/,*+/ B я) 6 t 1 Da3/2) 11. . , t / 2 ,1 / 6 . (i+ 1 2*+/,ЗЫ Bn) 6 / Д (М-р), Д(*, 5/6) ,Д<*, 1/3) ,о, Д(*,2/3), -21/ Ck) [Re (i>-l; Re p>0] 1 / 3 12. (l-e~Vx Bл) ?" 3Г(ц.+ 1) Л.2k*I 4/2^1/6^A+1 t+/,2*+ 2 3/2W)v g-a e JX 21/(Зк). ) , . 3 I 2 . Dа ) |Re ц>-1; ; |arga|<Ji/3] 3.20.4. Products of the Airy functions and the power function Notation: б = , 1 / 6 , (i+ 1 / 2 Ai . //C*). (ax ) Bi k+&k,k-6k+l[[4af\ [I]' да,2/3), да,i/3)J [Re (i>-l; Re p>0; |arga|<ji/3] X
412 SPECIAL FUNCTIONS /2 Bi 9*' 4a' ,1>, AU, 1/3), Л<*.2/3I |arga|<ji/3, /Rep>0 \RepX);Re 3.20.5. Products of the Airy functions and the exponential function f 4 THE INTEGRAL BBSSEL FUNCTIONS 413 4. A-eY'x ... йс/(ЗИ. w xAi(ae )X Bi /6 Г<и+1> 121/3n1/2-e<2*)V+1 4a' A(U-p), A<ifc)l),A(ifc,l/3)>A(ifc,2/^>J rg <1(<л/3 Лйе p>-Z/F*);|arga|<ji/3 -v -I J J Notation: б = 1. Ai(ae *) X (Ai(ae lBi(ae 2. Ai(ae)x X 3. A-rVx Bi 4a' 12'' /3 „2+6,2-6 , 3/2-j,4 О Л [Re p>0] 12 ' /3 „з+5,1-б|4а l-p/3, 5/6 0,2/3,1/3,-p/3 3/2-8 2,4 9 5/6, 1+2/3 p/3,0,2/3,1/3 K|arg а|<я/ Rep>-l/2; <п/Ъ }J Д(*,5/6) Д(А,2/3), [Re Ц>-1; Re p>0] 4а' 3.21. THE INTEGRAL BESSEL FUNCTIONS Jijz), YUz), Ki (z) V V 3.21.1. Ji (ax±Uk), Yi (ax±l/k), Ki (ax±ltk), and the power function Notation: v v/2-11-1 fu.-v/2+ll ?-2 Г 2 v v+1 J ,v/2;±aV1/4>l j v/2; ±а2р/4 v/2-n,v+l,v/2+l ±а2р/4 I Л0(ах) [a,Re p>0]
4H 3. Л (ах) 4. (YUax) [Ki (ax) 5. x^Ji (ax) 6- * U (ах) SPECIAL FUNCTIONS vpl [Rev>-1, v?sO: a,Re p>0] I 2 2 p +a > Tcscvn| ! \\\P+ip2±a2V fc0SVl vp U/2 X 2±a21 HU [iRevKl, v^O; ReP>0, [Re p.,Re(p.+v)>-l; a,Re p>0] [cos vn n/2 rcscvji /2 vl-l; ReP>0, . THE INTEGRAL BESSEL FUNCTIONS 415 8. x*Ji (ax) ГУ[ (а/х) 9. x"J v 10. ЛГ4 (ax 1 11. [Re ц>-1; ReB[i+v)>-2; Re p>0; ± esc vn r(u+i)[2cot(V3t/2)| 2vpM'+ [ncsc(vn/2)J /2-1; Re p>0. 1 / 2 /Ц + .2-5 m (i+l 2 ЛBл) р ,2* fR. \Re АС1.-Ц), 1 0, >-l; Rep>0, >-2t; a>0 )-l; Rea>0 2k> 2 k) X f Д(Л-ц), A(ifc,-(v+l)/2), 1 0, , A(A,-v/2), [Re ц>-1; a.Rep>0] 7. [Rep>0; |arga|<Ji] 12. -^1 [Re |i>-9/4; a,Re p>0]
416 п. Yi^ahrx)\ AYi 14. Кг 15. SPECIAL FUNCTIONS [cos vn f 1 ± csc vji I -i U-(V) - J Л/2 I 3 A-v) | ± 2урц+1 2cot (vji/2/J , Bcot(n+v/2)n r Ti jk:sc(vji/2)J[ и. (v) [ ^Re e>0 j J , ц + I' / 2 2 2 - 6 ¦ .* v к ( in) 2k_) a) I 1 / 2 „0.2W+1 x - 0, AU,C+v)/2) [Re ц>-1-5// D*); a,Re p>0] 3.21.2. fiv(axm'2), Yiv(axm'2), Ki^ax'nl2) and hyperbolic functions Notation: и =lnP±b+Up±bJ ± a THE INTEGRAL BESSEL FUNCTIONS I u- _ "+ [ЛО<ад:) 2(р-6)+2(р+6) )-, Rep>lReft|] 417 [sinhbx] 2. \ \Yi(ax) 3. fsinh 6x1 1 Г (^cosh 6xJ 4. -j Ы(ах) (cosh tej 5. fsinh bx\ ^cosh bx) fsinh bx] 6. \ \Ktv(ax) ^cosh bx) ^cosh bx) 2n[p-b p+b [a>0; Rep>|Reft|] [Rea>0; Rep>|Reft|] [Rev>-1, v?4); a>0; Rep>|Re*l] cot _^жт[1Г* btV \(p-b +cos vn w|(p-6,-v)+w^(p+6,v)+cos vn vf 1, v?4); a>0; Rep>|Reft|] 2v(p 2-b2)[p) w~(p-6,-v) + w~(p+b,\) + w |Rev|<l, v?4); Re a>0; Rep>|Reft|] Eif a2 )T 1 EiL p-A) [ 4p-46j + 4(p+6)bl( [Rep>|Reft|;
418 SPECIAL FUNCTIONS J/K 3.21.3. Лч(йХ ), Yi^iax), Kiv(ax) and trigonometric functions Notation: A= In4 (u ++p) + (u _ - 6) 2, ф=aгg[p+u++iu_-ib], (p 2+a 2 - b 2 ), r = I (p2+a2-b2J+4b2p2} p-ib C(v) p-ib+i (p-i b) -t p- i b 1. sin bx\ cos bx\ ¦Jia(ax) Г U-lnaH [ 2. (sin bx\ J L v; [cos bx\ Yio(ax) [aX>; Re p>|lm \ n (p +b ) - ln2o) sin bx cos bx KiQ(ax) imB Re?l 8(p2+62)lp [a>0; Rep>|Imi|] 4. [cos [(p+u >2+(u_-&J]~v/2 , 2 ,2, v(p +b ) (b cos(vip) -p sin(vq>)] XflN ^ [p cos(v(p)+6 sin(vq>)J [Rev>-1; v^O; fl>0; Rep>|lm*|] THE LEGENDRE POLYNOMIALS 419 5. cos \b\ v v(p v(p \jp cos(\q)+b sin(vф)J [(p+«+J+(u_-6J]W2 v '. ' 2 TIT ^X a vslnvn(p +b ) ); Rep>|Imft|] fsin bx\ 6. (cos bx) fIm[C(v)+C(-v)]] (Re[C(v)+C(-v)]J ; Re a>0; (sinbx) 1. \ (cos bx) [Rep>|lm6|; |argo|<ji] 3.22. THE LEGENDRE POLYNOMIALS P (z) n 3.22.1. Я (ах±т 2) and the power function 1. -!-P {ax) n \Vn(a/2) n T-n-m(p)T-n-in( n+i/2 ьЫ1г\ [oj tn/2] ( P [Re pX>)
420 2. e x-r SPECIAL FUNCTIONS <1лар n+l/2 [aj 3. -± 6. 7. в(х-а2)хпПР И ¦У (Re p>0) (-1)"Г(и+1/2) a2nL-2n-\/2 [Re pX)] P [Re pX)] -и, п+е+1/2, Д(/я,ц.+ 1Л , /~ Ш 2 -Л! е+1/2; тар J [е-0 ог 1; Re ц>-1; Re p>0] n! 2+1 Xm+2F1 -и/2, ( 1/2-и; [Re |1>-1-тл/2; Re p>0] m - 2 - m тар -a 2p [Re pX)l 3.22.2. P(f(x)) and algebraic functions 1. ft! (-a/2)" L-2n-l »i + 1 n [Re p>0] 2. P a-ax) П THE LEGENDRE POLYNOMIALS •J 2ap [Re p>0] 421 3. e Hr- P a-ax) n 4. 6. ^A+flX™) 7. «• 9. \-ax i+ax Шг-р1а t C n+1/2 [Re pX)] (и! 2n +1 n \4a\ n \ s -и, n+1, Д(т,ц+1) + 1 nt+2* 11 , m - m / ~ ^ 1; - m ap /2 [Re ц>-1; RepX)J L/Z;« г9я>» Г(ц-аи/2+1) "Й1 Ufl' ц-тп/2+i x P -n, -ft, Д(т,ц.-отп+1) [Re |i»nu-l; Re p>01 p [Re p>0] -mmap-m [Re ц>-1; RepH»l
422 10. P^Vl+ax) 11. 12. /P, N l+ax 13. l+ax 14. a+ax)"/2X XP. l+ax' 15. ХЛ l + ax" 16. 17. тПс )" ГГТГ 2n|^a + x 2n+l SPECIAL FUNCTIONS n\ (-fl)'' -«-l/2fj pn + l " I' [Re p>0] n! (-a)" -Н-3/2Ы pn + l » l°J [Re p>0] Г<Е+1) F ц + 1 m+2 1 [Re |i>-l; Re pX)] -л, л+1/2, Д(от,ц+1) -mmap-m r+ 1 m+2 1 ._ m -m -m ap XP2n+ j [-1 l + ax"' J [Re м-э—l; Re p>0] и/2+1 'ii[4a [Re p>0] p. + 1 m+2 1 , [Re (i>-l; Re pX)I Г(п+1/2) „+1/2 m -m -m ap ) [Re p>0] 1Г7ъ p [Re p>0] THE LEGENDRE POLYNOMIALS 423 18. (a+x)n/2X XP 2a+x 2i a2+ax n/2 n+1 n a p [Re p>0] —1/2 n ^ 3.22.3. P (fit x)) and the exponential function tt n ( A - (~1} 2((p+e)/2)n+1 [e-0 or 1; Re p>-e] 2((е-р)/2)„+1 [e-0 or 1; RepXt] 3. P Bе"*-1) П (-1) [Re p>0] 4. Я Bе-1) П (-D"+1— [Re p>n] P}n+1 °a+l J lJ i-l; Re p>0] ; Rep>n] 2(n [Re pX)]
424 SPECIAL FUNCTIONS 8. In 1-е [*] [JC] 7- 2(n!) [Re p>0] 3.22.4. ^[Х](У) and various functions ([x]!) 1-е -p p\ l-2ayt'p+a2t~2p [oe"'<min|j±J у - 1 In2-ln(l+aye"p+Jl-2aye"p+fl2ep ) [ae"p<mln|y±<l у - 1 ± i; v; [y±-y±A У - 1; Rep>ln|ay+|] l 2 - 1 ; Rep>ln|av 1-е THE CHEBYSHEV POLYNOMIALS 425 1-е 3.22.5. P (cosh ax) and -P (cos ax) n n l. /ycoshf) г^ар-п) [Re p>n/ 2n+l p [/cos ax 2п+еЦсо8п ах 2t-l n 2.,-,, ,.2 2 p rr p ±Bft+e-l) a 2 2 e I 1 2 T7 (pZ±fl ) *-l p ± U-0 or 1; Rep>Bn+e)-|R"°|- 3.22.6. Products of Pnif(x)) and the power function 1,1; [Re (i>-l; Re p>0) 3.23. THE CHEBYSHEV POLYNOMIALS T (z) AND U (z) 3.23.1. T (.ах±тП) and algebraic functions 1. T._ 4 [Re p>0] [a.Re p>0]
426 -, -1/2, 2 2.-1/2 3. x (a -x ) X XT ^ *¦ 6. — 7\, 7. «¦ 9. л>Г (ах') SPECIAL FUNCTIONS (?) 3/2 Bn+l)/4 2jJ [a,Re p>0] [Re p>0] P [Re pX)I )" -2п( \ [- р г 1[l/2;mmaVm [Re pX)] Xm+2F1 -л, n-t-1, Д(т,ц+т/2+1) 3/2; [Re |i>-m/2-l; Re pX)] |i - m n / 2 + 1 f-n/2, A-я) 1-я; [Re ц>-мш/2-1; Re p>0] THE CHEBYSHEV POLYNOMIALS 427 10. X .(f) [fl,Re pH)] 3.23.2. Tn(f(x)) and algebraic functions 1. — T 2.x4/2f|-x| X 3. Г A+ал: ) 4. 5. 1/2 W-l) n ! (-а) "/л .~2nBp~\ n -n+l/2 n { a) 2 [Re pX)] яе-р/0/ [Re p>0] [fl,Re p>0] Пм-l) F [-"• "' A(m^+1>] pli*l m+2 l^1/2. _m'»ap-m/2j [Ren>-1; RepX)] i-1 я ц - m n + 1 -я, 1/2-rt, Д(от,ц-тл+1) 4 m+2' 1 | , - - m - 1 - m l-2n; -2m a p ; Re|i>mn-1; Re p>0] [Re p>0]
428 8. (l+ax- nU-axn. 9. 1 VxJT+axT 10. 11. -X \ + ax 12. rf-L и I n VV1 + , ХГ..1 - I '\+ax> 13. SPECIAL FUNCTIONS Г(ц+1) f~n' 1/2~n' Д(т.Ц+1>] ц+ I »i+2 1 , .- m -hi | P { 1/2; m ap j Re |i>-l; Re pX)] n!/n(-g)" -2h-1 Ы n + 1 / 2 n lei p v у (Re pX)] [Re ji>—I; RepX)] |х+1 ) ц + 1 wi+2 11 , ,~ in —m p [ 1/2; -m ap [Re ц>-1; Rep>0] 2 [Re p>0) <n+ 1 ) /2 Г-л/2,A-л)/2,Д(ш,ц+1) [Re ц>-1; Re p>0] 3.23.3. ^n(/(e )) and the exponential function ,/,_ _r „ Гр,(р-п+1)/21 1. Cl-e 2" [ (p+i+D/2 J [Re p>0] THE CHEBYSHEV POLYNOMIALS 429 2. <l-e te-0 or 1; Rep>0] 3. (l-e [e-0 or 1; Rep>«] 4. (l-e (l/2-p) [Re p>0] 3.23.4. Un(ax ) and algebraic functions , . 2 2.1/2. [a,Re p>0] 2. (л:2+а2)" -1/2. fix) (n-1 )л i I 2 2 [Re p>0] -5n(ap) 3. n + 3 / 2 [Re p>0] ^ a ' n ! Vna " T-2n-i [RepX)] 5. 1/2; и a p ; Re pX)]
430 SPECIAL FUNCTIONS [-л, л+2, 3/2; [Re ц>-т/'2-1; Re p>0] [ 3/2; map 7. Bа)"Г(ц,-тл/2+1) ц-тв/2+l X -л/2, A-л)/2, Д(т,ц-тп/2+1) Xm+2F1 -л; [Re ц>тп/2-1; Re pX)) in -2 -m map 3.23.5. Un<f(x)) and algebraic functions I. -/xU (l+ax) ft 2. xUa+axl) 3. 5. V3c U2n(VT+~ax) (Л+1) ! (-а) "/л -2и-2С^? н + 1 л + 3 / 2 я I a 2'1Т 1 р [Re p>0) 2л+2 [Re p>0) [Re ц>-1; Re p>0) (-1)а(п+1)Упп г— [Re рХ>] л ! ( 2л+1 ) -/п(-а) " г-2п-1 lp n+3/2 [Re p>0) THE LAGUERRE POLYNOMIALS 431 (n+ [Re pX)] n + 3/2 --г2й 7. 8. [Re ц>-1; Re p>0] m -m a 9. /xd+ax)" 10. хцA+вх У X ц + 1 т+2' 11 . .„ т р [ 3/2; т ар [Re д>-1; Re pX)) гг^п/ 2 „n + l 2 [Re pX» < n + 3) / 2 "In— l+ax -л/2, A- Xm+2F1 [Re и>-1; Rep>0) -m 3.23.6. ?/_(/(e *)) and the exponential function (-1) п (л+1 n |р+Л+3/2 (Re pX)) 3.24. THE LAGUERKE POLYNOMIALS 3.24.1. Lvn(ax ) and the power function (-л) Notation: See also the Section 3.30 for v=n.
432 1. L (ax) n 3. х\(ах) 4. xn+U\(ax) 5. —l-L (ax) Vx~ * 6. Ln(ax) 7. 8. xvLvn(ax) SPECIAL FUNCTIONS [Re p>0) Г(и+1/2) pn+l/2 [Re p>0) P [Re p>0) Г(п+3/2) л+ 1 , P Vp-, [Re p>0] P [Re p>0) [Re p>0] (n+I/2) n ^ilJ'-f 2p-g 2 a u+n+I я [Re ц>-1; Rep>0] TCv+n+l) [Rev>-1; Rep>0] THE LAGUERRE POLYNOMIALS r(v/2) 433 10. 11. 12. н-2 T v, ч Ln(ax) 13. (v + я+l ) /2 /2+i I p+a -C n-i 2kp-ap p+a p-a X -ap [Re v,Re p>0] (v/2+l) (v+i ^1 [Rev>-1; Rep>0) Г(у/2+1) (p-a) "/2Lv/2+i | 2p-a (v+n)/2+1 I я 2p-a c p-a n-i [Re v>-2; Re p>0] ~ap 24pz-ap »Г(-у-п-1)а"/2 (-1) -v-n/2-i X P X С [Rev<-n-l; -n| a+ ,нГ(-у-гс)а"/2 ' - v - n I 2 P -v-n| a+p | n L * (.2/apJ Г(-у-п)(у+1)п (p_g)» p+a p-a [Re v<-n; Re p>0]
434 14. x v+n-l/2-.v 15. x Ln(ax) 16. x L (ax) x Ln (ax) 18. Ln (ax) •/x 19. 20. x2vL\ax2) SPECIAL FUNCTIONS (In)!(v+1) T(\+n+\/2) n\ Bv + lJnp fRev>-n-l/2; Re p>0] v + n + 1 / 2 In T(v+n+3/2) 1- s. n!Bv + lJn+i^ + n+1^^ xc:+1/2 2n+l [Re v>-n-3/2; Re p>0) (v + 1) _TBv + l) .,_, „ 2a 2 v + n + 1 v [Rev>-(n+l)/2; Re p>0) [Re pX)! .2л ;l / 2 , 2 на n! Bn)!ГГ1/2-п)р("+1)/2 [Re p>0) (-a)" -«,-v-n;-p'i/DaI -|x/2-n,(] [Re |»>-1; RepX)] x/2 (v+1) TBv+1)Da)" n , 2 v + 2 n + 1 P xZ-v-,-l/2 [Rev>-l/2; Re p>0] 21. THE LAGUERRE POLYNOMIALS (v+l)nr<2v+l)Da) 2v+2n+2 xLn { 4a) [Re v>-l; Re pX>) 435 22. x*Lvn(ax'n) 23. 24. + 1 1 n ! [Re ц.>-1; Re p>0] (v+l)nr(n.+ l 3 3[l/2,v/2+l,(v+l)/2 (v+2)nir(n.+3/2)a X,F 3 3|3/2,v/2+l,(v+3)/2 [Re (i>-l; RepX)] ' /4 [Re |x>-I; r,Rep>0] 3.24.2. Lvn(ax~r) and the power function Г(ц+1)(v+1) nip [Re ц>и-1; Re p>0) ¦xF2(-n\-\i,\+\;-ap)
436 з. Л;2- i 2nT -n- 4. x L -n-m(a) [xj 5. r-2n-i(a) Jn [xj 6. n [ xj 1. n[mj SPECIAL FUNCTIONS [Re p>0] [Re p>0] [Re p>0] (-l)nn3/2an+l/2 nJ2 [/2n-./2( [Re p>0) (-l)V/2a"tl/2 7n+l/2 [Re p>0) 1 ш+1 [-n,-v-n,A (m-mn+1) ^ m -l -m -m a p j [Re (i>«in-l; Re p>0] n -n;a(-p/m)""l THE LAGUERRE POLYNOMIALS 3.24.3. Lvjax ) and the exponential function 437 1. ni: [Re ц>-1; Rea>0] . - n - ( v + 1 ) / 2 г а n\ И). ¦r(v+n+l)X [Rev>-1; Rea>0] (v+1) n ! p ( l/2,(v+l)/2,v/2+l;a2/<4p) a (v + 2) nip1 [Ц.+3/2, (v+n)/2+1, (v+n+3)/2") 3 3C/2,v/2+l,(v+3)/2;a2/Dp)J [Re (i>-l; Rep>0]
438 4. *цехр(-олГ ) х X ? 5. :(f) 6. л:" 7. хцехр(-ах ) x SPECIAL FUNCTIONS x -г [Re (i>-l; Re pX) for /<i; Re <zX) for t>k; Re(p+o)X) for l-k) (v + 1) (v+n+l;ap \ _ (\x.+v+n+2; ap [Re a,Re p>0] [Re a.Re p>0) Bn)U + [Re a,Re p>0) 3.24.4. L (ад: ) and hyperbolic functions Notation: u(z) = „^-FjC-f, Д(т,ц+1); v+1; z), v(z) = j^^jC-i; v+1, A(m,-\x.);z) (coshfctj " Pn 1[J_ 2[p-bPn T 1 la ^ „(у.-л-п)Г 2а [Rep>|Re6|] aJ X THE LAGUERRE POLYNOMIALS 439 4 h ^cosh bx) ¦Ln(ax) fsinhfe v 4. [cosh *^:J , (sinhbx) \ *b\ ^cosh bx) .-Ц-В-1 „( x » { (-ц-в-l.ti-v-B) f. _2p+2»1] x » I u JJ [Re (i>-C±l>/2; Re p>|Re b\] (p-a-b) _ (p-a+ft)" 1 (p+b) J [Rev>-C±l)/2; Rep>|Re6|] (v+l)nr< 2Г v/ 2+-1 ) DJ ; X Up-b) хсГ'2-" ,-v/2-n xc [Re v>-2+l; Rep>|Re (-1)"г<-Гп)а"/2 ,—v-n p+a — b v v+n/2 . xc" " [2/а(р+6); [Re v<(l±l)/2-n; Rep>|Re6|)
440 SPECIAL FUNCTIONS х) Bл)!  rx (cosh bxj X L 7. [cosh bxj X L (cosh их] 2rt 2n [Re v>-n-l+l/2; Rep>|ReZ>|] Bn+l)!(v+1) r(v+n+3/2> n!2r2v+l) 2»+ 1 - V - П - 1 fp-a-l rv+l/2 [Re v>-n-2+1/2; Re p> | Re ft |) -rBv+l) (p-, (v+1) xcwl [Re v>-C±l+2n)/4; Re p THE LAGUERRE POLYNOMIALS пТ2 [Re M>mn-C±l)/2; Re p>|Re 6|] 3.24.S. Ll(ax±m) and trigonometric functions Notation: see 3.24.4 (cos 6xJ 2- *4 fc K<«> [cos o^J 21JLP+'*"" __J (v,-v-ii)f. 2a + p-ibrn [L p-ii [Rep>|Iffl*|l 441 (-(i-n-i.n-v-idf. 2p+2 f XP, [Re ц>-C±1)/2; Re p>|lm 9. * fsinh bx) [coshfej [Re ц>-C±1)/2; Rep>|Re6|] 3. [cos oxj , 2 ,2.-(v+ (p +0 ) [<p-8rg(p-i6), Rep>|Im6|) Re v>-C±l)/2;
442 _ ( /|7 1 . \L (cos bx) SPECIAL FUNCTIONS (v+l)nr((v + l , fsin bx) -I lL (ax) (cos &xj с , «»{" {Hz.; , „fsin bx) 7. xv+n+l?2) L_,»( (cos bx) 2fv/2+l) [Rev>-2«; Re p> | Im 61 ] p+a+i b 2Va(p+ib) «I p+a-ib (p-ib)v+n/2X xc" [Rev<(l±l)/2-n; Rep>|Imi|) n!2C2v+l) [Rev>-H-l+l/2; Rep>|Imi|) 2 и + l 1 ' p-a+ib -v-я -l __rv+l/2fr— C2n+1 (J1- +1/2 [Re v>-n-2+l/2; Rep>|Im6|) g. «f>iafcV (cos taj THE LAGUERRE POLYNOMIALS (v+1) 443 9. sin cos k<ax'«) 10. (cos bx [Rev>-C±l+2n>/4; Rep>|Iffl*|] X [Re < p+ i b ) ; Rep>|Iffl*0 + OH*)1' [Re м.>»ш-C±1)/2; Rep>|Iffli|] 3.24.6. lZ(ax) and the Bessel functions {2b)v/2T( (p-a+b) — , . ¦ \ / -i л ^(p+*)"t(vtl)/2.(p-i)'<vtl)/2 „(v,-n-(v+l)/2) Г 2й6 x « ( (p-e)(p-a+6! [Re v>-l; Re(p-6)>0]
444 3. SPECIAL FUNCTIONS Aap-Ap' [Rev>-1; RepX); |arg*|<n] { 4pa-2p [Rev>-l/2; Rep>0] 5. xvLvm(ax)Lvn(bx) THE LAGUERRE POLYNOMIALS Г(у+т+1) (p-a) "(p-ft)'". 445 m+ n + v + 1 XP- Г(у+т+1)(afr) m+n+v+i ml p (m-iu-m-n-v-l)f, (p-a) (P~l lab r(v+w+l)(p-b)m~n(p-a-b)n m + v + 1 x/,<v.m-«)J. [Rev>-1; Rep>0) ml p p - (a+b) p+2ab\ p(p-a-b) J 3.24.7. Products of l/(ax+m ) and the power function Ln(ax)Ln(bx) 2. Ln(-ax)Ln(ax) 3. Lm(ax)Ln(ax) (p-a-l P [Re p>0) p ~ p+2ab) I «+I "[ p(p-a-b) p n( [Re p>0) m i n (m,n) i-a) у ш + n + 1 Zi A-0 [Re p>0] 6. 7. 8. n ft (v+1) [A2-4abMl-li)~2, B-p+(a+b)h(l-hf{; Re ц>-Г, RepX)) ГBу+1)Г(у+п+1) , 2 v + 1 п ! p (-D X l-: Гр) S- [Re v>-l/2; Re pX)) p + 2ab) J p(p-a-b) J V+n+1 ) n(v,O)f1 2a 7771" » 1 D2 л ! p [Re v>-l; Re pX)] 4. Jl « -1; Rep>0) 9. x^I. (-ax m/2. rv m/2. X '"+Л[у , (v+1) /2, v/2+1 ;aVV'"/4 [Re (i>-I; Re р-Ю)
446 SPECIAL FUNCTIONS in у^тvf- a ) тv\ a 10' * Ln[ m/2JLn{ mi (-l)"a2n Г(ц-яш+1) (л!J р" (-п,п+\/2,-п-\/2,-п-(у+\) 12, \-2n-\\ A(m, \i-mn+l) . in —tn . 2 Am p la [Re |1>шя-1; Re p>0] 3.24.8. Lv. (y) and various functions 2. [yx>] b»0; Rep>In|a|) 1-е"'" -1 f ay 1 «Pi—%\ [Rtv,yX>; Rep>In|a|) i _»~P r -P\v/2 P (.ay Гр) exp(ae~p) x 5. U) [Re v>-I; [Re v>-I; yX); Re p>In | a|) A/2) [ ДГ) [Re v>-1; j»0; Re p>In | a | ] THE LAGUERRE POLYNOMIALS 447 7. a{ 8. •¦ 10. [л:] ! 11. XL* (y) T n-2[x] L 14. 15. [Rep>ln|aU p-y) exp(ae ) exp(ac [Rep>ln|a|) [Rep>ln|<z|) l-aye' 2-1 -ae -P p(\-ae r) [Re p>In|a|] 1-е ~ P - p -ep/a) °{ \-ae v/2 ¦ " P p(l-ae p) ayz fj+z 1. [2^gyze~p) Xexp —z / L -— [Rev>-1; Rep>ln|a|)
448 SPECIAL FUNCTIONS 3.25. THE HERMITE POLYNOMIALS H (z) 3.25.1. Hn(ax ) and the power function [П/2] Notation: V u2(p) [и/2]„n (-1) 1+1 } /21я!Г(е/2 + |я+1) сц-п/2+1 (а_ ) 1 Ц+1 И [n/2] Г(,х-е+1)Х *lF3 a2p2/4 uAp) = ^1 fe+I] ^ ''¦'[n/ е=и-2 [и/2] 2. 5. 6. 7. 8. THE HERMITE POLYNOMIALS г-[л/2]-1(_, -[п/2] n+ 1 [Re p>0] [Re ц>2 [n/2] -n-1; Re pX>] (-1) [Re pX)] 4а 2n !а(а2-р) П ! p n + 3 / 2 [Re pX)] u2(p) [Re (i> [n/2] -n/2-1; Re pX)] 2(я-1)!т |в_ ри/2 "W- [Re p>0] Р {Re pX)] Р [Re pX)] !(a2-p) я! p [Re p>0] B+ 1 / 2 449
450 10. x U2[H (Ъ-атГх) + П + НпФ+атГх)] 11. х»Н (ахтП) П SPECIAL FUNCTIONS 12. "¦ -'"'Ы „ [Re pX)] (-1) [я/2)я! Bд) ЕГ(яге/2+ц+1) [е-п-2[п/2]; Re р>т[п/2]-тп/2-1; Rep>0) [Re ц>2г[я/2]-гя-1; r,Rep>0] [Re р.ж-1; Re p>0] [8е ц>и/2-1; Re pX)] [Re ц>т-1; r,Re p>0] 3.25.2. H (ax ) and the exponential function f(|i+l)/2,M./2+l;e p /4 , (|х-«)/2+1 -(-1) [11/2] 2 и- 1 ,^+2 [n/2] xr ib+e+i F\ I 2 J 2 2[3/2,(ti- -2 2,.- ;а р /4 THE HERMITE POLYNOMIALS 451 MP) - (-D 2 (n/2! 2 X [n/2] f«-[л/2]+ 1/2;-a 2 2 , хг т- 2р2 / Г(л+|1)/2+1;-1 J[l/2,(M.+3)/2,^/2+lJ [я/21 Г(м.+«+3)/2;-а2р2/4") 3l3/2,((i+3)/2,M./2+2j е=л-2[л/2] 1. [Ren>2[n/2]-n-l; |ar|a|<n/4] 2. рЦ ^ Мп/2] , (л+е+3)/4, 3F3 (х+е/4+1 «V/4 1 ' [п/21 Г(л+е+3)/4, (л+е+5)/4, X.F \ 3 3[5/4,3/2,е+3/4 aV/^ [e-n-2[n/2]; Re (i>[n/2]/2-n/4; Re p>0]
452 SPECIAL FUNCTIONS 5. *«.ы 6. x-(n+1)/V2/jc« M  7. Лхр(-аУМ) X ( 2 л ) X — *ы ил\ [Re|i>-1; Re p>0 for l<k; |arga|<n/4 for t>k; Re(p+o2)X) for 1-k] [Re p>0; |arga|<n/4] ХГ U-|+l \ 2 )l [n/2] (n-[n/2]+l/2;a2p \ [t-n-2[nl2\; Rep>0; Гц+(«+3)/2;а [Rep>0; 2пк(п Bя)< хШ' [Re p>0; + 1 ) / 2 • и. к*1) 12- Д«,-ц), |arga|<n/4] + 1 / V )/2) 2 + 1 1/2),/ 0,2*+/ 2к+1,к Uk,l) THE HERMITE POLYNOMIALS 3.25.3. H (ax*12) and hyperbolic functions Notation: see 3.25.1 fsinhix) 1. J \Bn(ex) [cosh bx) 453 2. х (siahbx'] (cosh bx) cosh ftx fsinh bx\ [cosh ox) X [n/2] [n/2] [Rep>|Re*|] [Rep>|Re *|; Re ц>2[п/2]-п-C±1)/2] + (p+b) L [Rep>|Re*|] 2 1 -я-гГ (р+й) П 'я I „ 2 J ^ 4а > J л!2 Я + 3 / 2 n+3/ 2 [Re 11>[п/2]-я/2-C±1)/2; Re p>|Re *| 1
454 6. l\ \H ( (coshtaj " ~(sinhbx\ k( (cosh bx) (sinhbx) 2\ \ [cosh bx) 10. ^-si SPECIAL FUNCTIONS 11. — coshb/xH^ (a-fx) U [Rep>|Re*|] Bn)!/^|(a2+b-p)" _ [Rep>|Re*|] n+ 1 p Хй2„+1 [Re p>0] P [Re pX)] i ab l\p2-a2p 2,n й ) е -I 22 2i p -a p THE HERMITE POLYNOMIALS 455 (sinhta) r \ [coshtaj v ^ [Re ц>п-C±1)/2; Rep>|Reft|] 13. fsinhijci r [cosh^J "* [Re ц>п/2-C±1)/2; Rep>|Reft|] 3.25.4. H (ax ), the exponential and hyperbolic functions ft Notation: see 3.25.2 2 2 sinn ox i 1. x^e"^ x \ \Hn<-ax) 1 [wilp~b) ? "i ^ ] (coshixl v ; [Re I (cosh bx) j[v2(p-b) + v2(p+b)] [Rep>|Reft|; |arga|<n/4] з. IRep>|Re*|; |arga|<n/4] 3.25.5. H (ax+m ) and trigonometric functions Notation: see 3.25.1 (sin&xl 1. \Hn(ax) l^cos bx) 4a'
456 SPECIAL FUNCTIONS 2. хЧ [ fsin bx] и lax) n [cosbxj fsin bx\ H . K+i (cos bxj fsin&x) 4. ] \H Лат/1) \cosbx) 2n+1 Uinbx] 5. xH \H Лат/1) I cos bx „„ , fsin bx) 6. xn/2-l\ \H (cos bx) ' 7. [cos^J " [u^p+ib) + ul(p-lb)] [Re ц>2[/г/2]-н-C±1>/2; Rep>|Im*|] (-l)"B«+l)!BgJ Г .,._, .... X 4g' 4a' (a2-p) 2 , .2, n/ 2 sin cp cos cp [<f>-narg<a - ; Re p>|Im b\] Ы Hu2(p+ib) + u2(p-ib)] [Re n>[n/2]-n/2-C±l)/2; Rep>|Im *|] + [Rep>|Im*|] T(p-ib)-in+1)/2Pn [Rep>|lmi|] 'p-i, THE HERMITE POLYNOMIALS 457 8. fsinftj: cos bx 9. -1/2JS [cos Я2п(д^) 10. -i 11. —^ •— Vx 111 12. (cos *xj ^ > ¦ЯМ [Rep>|ImA|l (In) \тШ\ (a2-p) sin i (cos cpj [<p-narg(a2-p+i«-(n+l/2)arg(p-f«; Rep>|ImA|] P ХЯ2«+1 [Re p>0] 2-lp2-g2p In iWp-p2 [Re p>0] [и (p+lft) +u.(p-fW] [Re ц>п-C±1)/2; Rep>|Im*|] [Re
458 SPECIAL FUNCTIONS 3.25.6. Hn(ax " ), the exponential and trigonometric functions Notation: see 3.25.2 2 2fsin6x1 (cos bxj 2. 4A V[vl(p+ib)+vl(p-ib)] [Re n>2[;i/2i-n-C±l)/2; |arg a|<n/4] (cos |; |arga|<ji/4] xi k — (cos bxj ^/xJ Г I Г I I 2 2 Xexp\-ail (i p +b +p) v. ^ (cos [x-2 '(n-l)arg(p-ift)+2l/2a(-J p 2 + ft 2-p)'/2 ; |arga|<n/4] 3.25.7. Products of Н^(атГх) and the power function 2 re! (re+1) ! 3/2 -X [Re p>0] kl ! (re-/:) [ p 2. [m/2] ! [re/2] !p^ + e + 1 M fM.+e+l; [т+я is even; е-н-2[я/2]; Re ц>2[п/2]-п-1; Re p>0] 3. х/2Я. 4. 7. THE HERMITE POLYNOMIALS 459 P(p-a2-f>2) (p-a2)(p-*2) [т+н is even; e-n-2[n/2); Re p>0] ! Bге) !/л(р-а 2 , n (m+re)!p m+n*1/2 (p-a2)(p-*2> [Re pX)] (m+rt+1)! xc; ,-m-n-l 2n+l + и + 3 /2 a 6 -X i(p.-a2) (p-i2) [Re p>0] ah 4 p [Re pX)] [Re pX)]
460 SPECIAL FUNCTIONS [ min (m,n) l X (p-a2) (m+*)/2(p-c2)(п+*)/2[Ц X lp P-a2] ( H\d IP p-c\ [Re pX)] 3.25.8. H.,+n(y) and various functions 2- 3- 2 [x] (Ux]+\) B [*]+!) ! Я2[лг]+1{у) 6. Ъ(п+\-х)\ \а[х]Н,,(у) .-p ,'P xfl. "exp {Ц*— | x [Rep>ln|2a|] 1-е -p f ^ sinh f [erf (У+ае-р/2) - -erf(J.-ae"')/2)] THE GEGENBAUER POLYNOMIALS 461 3.25.9. Products of Ax) and various functions L 1-е -p P Xexp (Re p>ln 12a (l-4aV2p)-1/2X J4ayze~p-4a2(у2+г2) e2p-4a2 2. aWX 3.26. THE GEGENBAUER POLYNOMIALS Cv(z) 3.26.1. C^(ax±m/2) and the power function Condition: n ! p ^ + (-л, л+v, Д(яг,|. I 1 л m 2 -m \ 111; map J [Re ц>-1; Re p>0] (-1) X ( ц+m/2 + 1 -n, л+v+l, Д(яг,|1+яг/2+1I o/z; map j 1-1; Rep>0] 3. ^ n + 1 / 2 2n n 7-2rt-v [Re pX)]
460 SPECIAL FUNCTIONS [ /x min (m,n) 2 у *-0 *! X P-a2] r p-c2 [Re pX)] 3.25.8. # . .+n(y) and various functions [X] .2 [X] B[x] 2 [Xl 2[xJ expBaye p-a2e'2p)Hn(y-ae~p) e +4a X [Rep>ln|2a|] e exp(-aVp)coshBaye"p/2) nh f erf(y-aep/2)] THE GEGENBAUER POLYNOMIALS 461 3.25.9. Products of and various functions Xexp |4ayze~/'-4a2 (y 2- \ * [Rep>ln|2a|] 2 p . 2 e -4a 2. aWX a V2p+1) п 3.26. THE GEGENBAUER POLYNOMIALS 3.26.1. C^(ax±m/2) and the power function Condition: l. ft \ p (~n, re+v, I i/i m 2 -m \ 1/2; map ) ; Rep>0] 2. , ц + т/2+l X n I p -n, и+v+l, Д(т,ц+т/2+1) m 2 -m map [Re ц>-т/2-1; Rep>0] 3. -J- /x" (-1) n/ji: 2n n+ 1 / 2 r-2n-vf ?_" 1 [Re p>Ol
462 4. - -n-v_v , -m/2. 5. x C2n(ax ) 7. 8. SPECIAL FUNCTIONS 2 n+ 1 n + 3 / 2 [Re p>0] BаJпГA-у) Г-л/2, 1/2-rc, A(m,l-2«-v) m+2 '[ l-2n-v; mma~2p~m [Rev<l-2«; Re pX)] - 2 ti - v x Bл+1 ) !p' Г-л, -1/2-л, A(m,-2rt-v) [Re v<-2n; Re p>0] Bn) !/""¦' [Re v<l-2«; Re pX)] 01 -2 -» map [Re v<-2n; Re /»0] 3.26.2. Cn(f(x)) and algebraic functions Condition: nip [Re ц>-1; Re p>0] 1+2 -n, «+2v, 2. THE GEGENBAUER POLYNOMIALS Bv)nr(v+l/2) r^n 463 XC^(l-ax) 4. 5. 6. am-xm) _ v-1/2, nw 7. л (a-x) X 8. [Rev>-l/2; Re pX)] [Rev>-1/2J v ' ц-mn+l -n, 1/2-v-n, Д (m, Ц-Я1П+1) l-2v-2n; 2mma p [Re |i>nin-l; Re pX)J [Rev<l/2-n; Re p>01 l Ц + 1 It ! p [Re ц>-1; Re p>0] "« «+/l -и, l/2-«-v, Д(и, v+1/2; ma p Bу)дГ(у+1/2) »+v+1/2 Ln ( [Re ц>-1/2; Re pX)] Bv) Г-п, п+v, - F hi+2 1 , , ~ /и -m I v+1/2; m ap [Re ц>-1; Re pX)]
464 9. l-ax 10. v-l /2 11. 12. xc. 2n 13. X u-ax"Y+U2X XC. 2n+l l-ax' 14. xc. 2n SPECIAL FUNCTIONS BуJд+1Г(ц+1) X F \ ( v+1/2; m ap J [Re ц>-1; Rep>0] и!BvJnr(v+l/2)an B«)!pn+v+1/2 ' [Rev>-l/2; Re p>0] 2и+ ' 1 1_ L~2n-v-l ( 2) n+l)[ n+v+l/2 n [ aJ Bл+1 ) !p [Rev>-l/2; Rep>0] BvJ(|I Bn)!pv+1/2 X Г-л, 1/2-л, А(и, v+1/2) "i+2 H v+1/2; [Rev>-l/2; Re p>0] m -m m ap IP v + 1/2 -л, -1/2-Л, A(m,v+1/2I m -m m ap J v+1/2; [Re v>-l/2; Re p>0] BvJnr(v+l/2)an B«)!22V + v+1/: [Rev>-l/2; Re p>0] THE GEGENBAUER POLYNOMIALS 15. x A-< 16. ,v [ x + a 17. 18. 19. U+al nIi x - и -v- 1 /2 fx+a n+ 1 / 2 BvJn+1T(v+l/2)a B«+l)!22n+1pn+v+1 [Rev>-l/2; (v) ;[r(v- )a "/2 j rmn/ 2+ 1 П ! p [-«, v, , m -1 -m l-v-л; map [Re ц>»ш/2-1; Re p>0] (-1) n/2 1-v a p [Rev<l-n; Re p>0] { ap) Bл) ! p [Re v<l-2/i; Re p>0] [Re v<-2tt; Re p>0] 3.26.3. Cv(/(e *)) and the exponential function Condition: XCl (e~*) [Rev>-l/2; Rep>0] 465
466 2. <1-е 4. d-e 5. (l-e 6. (l-e xc;[<l-2eA) 7. A-е 8. <l-e ^ I SPECIAL FUNCTIONS . я 2 2n 4 *' <2л+1 XBJv+2n+|, i±- [Rev>-l/2; Rep>-1] <2v) 2 n v+1/2, p/2-. In, 2; Rep>n] 4-5-r 2Bn+l )! [Rev>-l/2; Repwtj Bv [Rev>-l/2; v+p/2 pv+1/2, p 1 4 n \_p+v+n+ 1/2J [v+1/2, p-n p+v+1/2 [Rev>-l/2; Rep>0] [a,Rev>-l/2; Re p>0] „ <v-p+l/2) fl-2v, p (-1)" , . , , y-. "Г n! (v+ 1 /2 ) ^ и [P-2v-n+l [Re v<l/2-n; Re p>0] [Re pXi) THE GEGENBAUER POLYNOMIALS 1-е 11. A-е" xc; 12. A-е" XC 2-е' 2-J 1-е ^coshf) [Re p>OJ <2v-p) j -B<1—\ [Rev<l-n; Rep>0] <p+v-n/2) n] l [Rev>0; Rep>«/2] 3.26.4. C.Ay) and various functions Condition: 1. aWCv[x]iy) [Rep>ln|a|] 1-е -p v, v; ц; aye [y+-y±i у -l; Rep>ln|ay+|] 3. <2v) lx) •H - p 467 l/2-v X 1-е -р Bv) [x]
468 SPECIAL FUNCTIONS 5. fx] ! Bц) 2 - 2 р . 2 , . 2, ч о_е (у -1)> z_zl 1 (z-aye~pJ (z-ayt~pJ) X/.fv,v;2v; [Rep>ln|a|J cos, 2at~ рcos(у-z)+a2t~2p Д X 8 Bv) 2 -2рчл/2 xc ,y| 1-aye - p 3.26.5. Products of C*(f(x)) It Bv) Г(ц+ 1) (-n, v, 1/2, ц F n+3 1 , ,- - m -m [ v+1/2, 2v; m ap v;*0; Re ц>-1; Re p>0] 3.27. THE JACOBI POLYNOMIALS />(|i'v)(z) л (-n) .(ц+v+n+l) . ПТТТТ-П L 3.27.1. Pn ' (/(x)) and algebraic functions Notation: к, (г) ¦ •Г(Х+г/+1) - THE JACOBI POLYNOMIALS 469 ( Я,- 1 ) / 2 + ц 1/2, (ц+v+n+l 2-v; a2p2/2 -v-n, a+3)/2+fi+n) -fi-n, -fi-v-n; ц+л+1, -^-ц-n-l X/2+1, X/2-v+l; a2p2/2 3/2, Я,/2+ц+п+2, A./2-v-n+l -n-v, ц+n+l; ap/2 -X-v, ц+1 (ц+1)„Г(-|1-1)р| |1+1 T-n-v, (i+v+1; ap/2 1, -ц-v-n; ap/2 (ц+v+n+l) e Ba)"p"+ [a,Re p>0] 2. (X-C (ц+v+n+l -ap n!Ba) p [-n, -ц-n; -X-n, -p-v-2 [Re X.>-1; a,Rep>0]
470 з. SPECIAL FUNCTIONS (-1) дГ(ц.+п+1)е~ар l-h-v [Re ц>-1; a,Rep>0] пар) 4. в(х-а)(х+а) X 5. U-a 7. [a,Re p>0] Г(A+у+2п+1 ) e ap [Re ц>-1; a,Rep>0) [Re^-l; Rep>0] (-1 ) п!Г(ц.+ п+1 ц + 2 п + 1 - {4) [Ren>-1; Rep>0] (ц+1) Г(Х+1) f-n, Ц+V+n+l, Д(Я1Д+1I 1 р X + 1 т+2 1 . т -mlr,\ { ц*1 ; -w ар II) п IP (ц+v+n+l ) nF(A,+wn+l ) a ,~ n V +mn +1 -X -n, -ц-п; (-l)"l-lmmap-m/2 ~ 2' т+1 - (_ -n-v-2n; [Re >.>-!; Re p>0] THE JACOBI POLYNOMIALS 471 9. к,(г) 1; Rep>0] 10. <-2|[•, Rep>0) 11. [Re ц<-2п; Re p>0] n ! р , , m-l -m m /~ -n, ц+v+n+l; (-1) m ap /2 (-1) " (ц+v+n+l n : 2 p X ...л^11 _ т - 1 -т -п, -ц-п, -'»^l^_v_2n; _2mma-1p [Re Xxnn-1; Re p>0] 13. n-l; r,Rep>0] 14. (-1) : ц+n+i> ni 1, l-v; l-v-n, n+n+2j [Re i 15. u2(a) [Re ц>-1; a,]
472 16. x НУ 17. 18. X }(|i,v>fa ,1 n [x l) 19. 20. 21. x1 .(a 1/kV b~x J. SPECIAL FUNCTIONS ) -ap/2.vfa ц + n + 1 e n [Re ц>-1; a,Rep>0) [Re (i>—1; a,Re pX)) n ! (*) Х.+Ц+1 fX-n+1, >.+|x+v+n+2; -ap/2 X2F\ [Х+ц+2, X+n+v+2 [Re^>«-1; Re ц>-1; a>0] u3(a) [Re Я.Х1-1; Rep>0; |arga|<n] ; Re(|i+v)<-n-l; Rep>0; XG. I - 1 ) / 2 - , X. + 1 n! p 2kll 2k+l,2k к I a p THE JACOBI POLYNOMIALS 473 22. 23. 24. (x-a) X x n n [x-a) 25. 26. 27. x n [Re >.>-1; Re p>0; I arg a | <л) /2 v - J. - . Bл) I ( /-3) /2 /-,&*¦• ¦G,/.. n!T(-v-n) 2k+l.2k x- / [Re \>nllk-1; Re p>0; | arg a | <я] (ц+1) Г(Х+1) _ f-n, ц+v+n+l; ар -ар , Х+ 1 п ! р [Re *>н-1; a,Rep>0] e"ap«3Ba) [ReX>»-l; a,Rep>0] 2 2 -X, ц+1 -H-l; a.Re p>0) (X+M. + V + 2) n! [Х-л+l, X+n+v+n+2; -ap Х+ц+2, X+n+v+2 [Re X>/i-l; Re ц>-1; аХН x/2
474 X X n 29. 30. 31. [a+x Ilk ,<H,v) а + дг ,(ц,у)|а2-л:2 а2 + *2 ,v) SPECIAL FUNCTIONS 3.27.2. 1. H+v+2«+ltX+l/2 -ц-v-n-l it a P Д(*,0), [Re J>-1; Rep>0; |arga|<Ji] П I [Re >.>-!; Rep>0; |arga|<n] (-1) n ! + 2 /i + 1 -X 2 2 [-n, -\i-n; -а'р /4 . A-М/2-я, -X/2-n, v+1 [Re Х>-1; Re a,Re p>0] 11 [Ren>-1; Re p>0; |arga|<n] and various functions [Rep>ln|av|; Ml-2oe 'to e *J -X THE JACOBI POLYNOMIALS ((H 4/i (ц+v+l) f , 5. 7. [x] (*) [x] (^v X ^ [x] -v-2n, 1; [Rep>in|ay|] ae -pl + 3 "p (l+ae p) -р.-ц-v-l 2ae' ae-p+lJ [Rep>ln|ay|] -X (y-: / ( v-D, ae -(jh-d) 1-е -p ~p , с; ae -p (y+l) [Rep^la^U 2ер+3а-ау 2ер+а+ау 1-е -p - p
476 SPECIAL FUNCTIONS 1-е' -exp(fle"pIF] ц+v+l; ц+1; >-P THE BERNOULLI AND EULER POLYNOMIALS 477 3.28.2. En(ax ), 1. and various functions n+1 (ft) -a ' X [X] 1-е -v X- ±r»Trt±r+|i+l i+D/2-1; Rep>0) 11. (-Ц-v) -X 2. g [x] sech(ae"p) [Rep>ln|2a/n|] (-v; -ц-v; 3.28. THE BERNOULLI Biz), EULEE ? (z) AND NEUMANN О (z) И n Ц POLYNOMIALS 3.28.1. -Bn(ax ), ^ гл, (y) and various functions 1. lx) lx] 4. в(п+1-д p -|; Re p>0] ae -ехр(ауе~р)[ехр(ае~р) - 1] ' IRep>ln|a/Bn)|] Wv — exp(aye p)[exp(ae"p)+ 1] ' 3.28.3. О (ax ) and the power function кг . .¦ / , Notation: u(r) 1. x»On(axm/2) ! ги+г-ц-i II i / (IT/ — J* ¦ 1 A^p, 111. 1 T Ai 7Г+Т~Р ti0 *!(l-n)t 2 r "'2 n-2[n/2) + l \i.+m [ n/ 2 ) -m< n+ I ) / 2+ 1 a P f- [n/2], 1 ,n- [n /2]; (-1) m+l4m-mpm/a2 X F 3 т[д(т,т(п+1)/2-я[п/2]-ц) [Re (i>m(/i+l)/2-l; Re p>0] U(r) [Re 11 Re p>0]
478 3. x*0 (ax ) n SPECIAL FUNCTIONS п-2[я/2)г an-2[n/2)+lu-m[n/2)+m(n+l)/2+lX X m+3Fm I (-Щ/2), П-Щ/2], 1, A(m,\x.-m[n/2]+m(n+l)/2)'\ , m -2 -m \ -Am a p J [Re|i>m[n/2)-JUi(n+l)/2-l; Re p>0) u(-r) [Re |i>2r[;t/2)-rrt-r-l; Re p>0) 3.29. THE BATEMAN FUNCTION к (z) 3.29.1. к (ах) and the power function 1. к (ах) 2. Л (ах) 2 , [Re(p+a)>01 Оа) Ц ' v/2+1 ,m.-v/2+2J X2Fl 2 ' ->-l; Re(p+a)>0] - n-3/2, , v 3. X k2n(aX) 22n-3/2n!(P+fl) [Re(p+a)>0; n-1,2,...] п 2л-1 Ы р+а I THE BATEMAN FUNCTION 479 If к 3.29.2. Л (а* ) and the exponential function Notation: 6 = \ I, s = (k-1) fyt-б! (-1) n-l n-3/2 2<6n+l)/4 Bn-l)/4 >(f^)^-(; ХехР|Т fi/,J " -C+2n)/4,(l-2n)/4 [Re a,Re p>0) [Rep>0; h-1,2,...J 3. (axllk) v Г X [ ^| 6r2,t,6i+Z f Ba) k J ЬЫ,2к \[ k) X Г /Re p; |arg а|<Зя/2 Re a>0 or /J . -l/k. (ax ) ( 1+v ) /2 ,Ц+ 1 / 2 -ц-1 Bn)s+(/-1)/2r(l+v/2) X Г x [ l^lJN'x A(jfc,+v/2)
480 SPECIAL FUNCTIONS ±lx/k 3.29.3. к (ae ) and the exponential function exp(±ae~x)k (ae~x) 2. exp(±aex)k (aex) 3. A-е Yexp(±ae Шк) x Хк )X , . lx/k Хк (ае ) r( 1 f sin(vn/2))8.. l+v/2){ л J x l-p,l±v/2l 0,1,-p [Re p>0) r(l+v/2)[ л l±v/2,l+p sin(vn/2n X< 2,3 P,O,1 i; | arg a | <Зя/2\ ,(l+v)/2 / . , ,« Л I sin(vn/2) X Ш,1-р)Л(к,1±\/2) [Re ц>-1; Re p>0] A+v)/2 Bя) )/2 Г sin(yn/2)lS.. Reu>-1 a>0 THE BATEMAN FUNCTION 481 3-29.4. к (ах) and hyperbolic functions Notation: u^z) = ^j f ц + 1, ц + 2; ц - ^ + 2; zj fsinh bx\ 1. J \kv(ax) I cosh fe I fsinh bx A ,Л I cosh ox [Re(p+a»|Re*|] [Ц+1, U.+2 I v/2+l,n-v/2+2j (a + b-p) 2a + и Ц a-b-p la 1; Re(p+a»|Re*|] 3.29.5. к (ах) and trigonometric functions Notation: see 3.29.4 1. U (ax) \cos bx) sin(vn/2; vB-v)ла (a-p + i b)] A 2a JJ [Re(p+a»|lm6|] 2. \kv(ax) 1 v/2+l,|x-v/2+2j X >-1; Re(p+a)>|lm*|]
482 SPECIAL FUNCTIONS 3.29.6. Products of к (ax) and the power function n П' г-1 Л.х^(ах1П2к))Х Хк (, m(p+a+b) 4fl2(-p)m+" p ( U-m-n-V m + « m [Re(p+2a)>0; ni.n-1,2,...] 2"(-Dm i'-'~mn;2 2; [m= 2m, a= 2a; re-1,2,...; Reii>-n-l; Rep>0] 1/2sin(vn/2) A0fc,l+v/2),A(/t,l-v/2) [Re ц>-1; Rep>0; a is arbitrary for 2/Ы or ReaX), THE LAGUERRE FUNCTION 483 V Bл) k+ I / 2 ц+ 1 3.29.7. Products of к (ае~ ) 2. [Re p>0; Re a>0 or Re a-0, a^O for Re ц>-1-5//(8Й] sin(vn/2) 3/ 2 л v 3,5 [Re p>0] 0,1/2,1, l,-p/2 J sin(vn/2) 3/ 2 л v X p/2,0,1/2,1,1 j [Re p>0] 3.30. THE LAGUEREE FUNCTION L (z) 3.30.1. L (ax) and the power function 1. L (ax) (p-a) [Rep,Re(p-a)>0]
484 2. x*L (ax) SPECIAL FUNCTIONS (p-a) * ' [Re ц>-1; Re p,Re(p-a)>0) ±l/k, 3.30.2. L (ax ) and the exponential function 1. 2. x»exp(-axl/k)L (ax'/k) 3 3[ 1,3/2,3/2; ap~XU) [Rep>0; Ren>-1] k**l'2I*** ' /2 XGk1l [Re (i>-l; Re p>OJ 3.30.3. L (ax) and hyperbolic functions f si nh bx\ 2. xN \Lv(ax) ^c (p-f>-a) " - (p + b-a) v v+ 1 [Rep,Re(p-a)>|Re*|] [Ren>-1; Rep,Re(p-a)>|Re6|] THE COMPLETE ELLIPTIC INTEGRALS 485 3.30.4. L (ax) and trigonometric functions fsin tai 1. U («) [cos bx) 2. fsin bx\ [cos bx) Lv(ax) Ф = -arctan—-—H(v+l)arctan — [Rep,Re(p-a»|Imft|] \ VlA(p+ib)+A(p-ib)) (A(p): see 3.30.3.2; Re p,Re<p-a»|Im b\; Re ц>-1 3.31. THE COMPLETE ELLIPTIC INTEGRALS D(z), E(z) AND K(z) 3.31.1. Notation: 6 ; K(ax±l/k) and the power function 2. E(iav^) 3. K(ia/3c) [Re p>0] 2p3'2 [Re p>0] 7a2> [Re p>0] I Ц+1 /2 2* [Re ц.>-1; Re p>0)
486 5. г Е(гах ) 6. D 7. . -//B*). шх ) 8. (а-х SPECIAL FUNCTIONS fcBn) 2k.. (/-3)/2+* ц+1 p* [Re ц>-1; Rep>0] -2* X? [Re v>-\-llBk)\ Rep>0] +l,k+l [ -2* X|t. , |A(*,l/2),A(*,-l/2),0 [Re tL>-l+l/Bk); Rep>0] jx+3/2, ц+6+3/2 ; ap) 2 2[|x+3/2,n+6+3/2j [Re ц>-1; а>0] THE COMPLETE ELLIPTIC INTEGRALS 487 E(^^)\ яГ(№+1/1).^ Р fl/2,l/2+6;ap 1 / 2 f|x+l, r-- f ¦ae. . г 21 U+3/2 [Re ц>-1; a,Re p>0] 3.31.2. D(/(x)), E(/-(x)), K(/-(x)) and algebraic functions я/41гИ'"+6+1 2 [|x+3/2, Ц+6+3/2 f|x+l,H+6+l ;-ap") X/J 2 2[|x+3/2,|x+6+3/2J [Re ц.>—1; a>0] \K(i/\-xla)J 1 6-1 TT^[K[/TT^JJ a11"' Lt^+3/2 xr lx+3/2, |i+3/2 j4 Cl/2,l/2+6;p/a ,l/2-|i ц + 1 / 2 ни;: [Re ц>-1; Re p>0] 3. ^K 1 ПГ ap/2 (ap) 2-1 pe Ko{ 2J [Re p>0] 4. (x-aI 'x+a n e - 2 a p X< 23 H+l,1/2,1/2 ; a,RepX>]
488 SPECIAL FUNCTIONS THE COMPLETE ELLIPTIC INTEGRALS 489 5. VxTx-a «¦ 7. -К 2 2 II 2 2 Iх +а Ч х +а 8. в(х-»)кЬ!^! 9. 10. B{a-x)xtLX Се 11. ; RepX)] 1 „2 fa [a,Re p>0] [Re p>0] Ьр+а 2 К Re pX)] ) „ (bp-ap) J*o[ 2 J 4Bя)('-3)/2Р'1+1 [Re n->—1; a>0] /2 Д(*,1/2),Д(*,1/2-6) [a.Re p>0] J2k+l,2k [Re ц.>—1; a>0] /2 12. [Re ; Rep>0] 3.31.3. D(f(e'x)), E(f{ex)), K(f(e'x)) and the exponential function fl] Notation: 6 = 1. D(aex) l/2,3/2,p/2;a ; Rep>0] 2. E(ae x) YL(ae~x) ; Rep>0] 3.31.4. D(f(x)), E(f(x)), К(/Чх)) and hyperbolic functions (siiihbx\ 1. i \D(iafx) (cosh bx) -b 1/2,-1/21 2 i-exp(^) [Rep>|Re*|]
490 f 2. i HE(ia/3c) [cosbbxj SPECIAL FUNCTIONS fsinhfct) 3. J WC(ie/x) [cosh &c] 4. x+a ycoshbx ?L? eXD P 1 (p+*K/ [Rep>|Re6|] 2|" 1/2,1/2(^2 0,0 P-b + [Rep>|Rei|] _ 1 vp+b [Rep>|Rei|] :ехр^ [a>0; Rep>|Rei|] ap+ab THE COMPLETE ELLIPTIC INTEGRALS 3.31.5. D(f(x)), E(f(x)), K<f(x)) and trigonometric functions fll Notation: 6 : 491 р+6/2,р+6/2-е+1 p+(S+l)/2,p+(S+3)/2-e Tsin ^ 1. i lD(iaSx) [cos AJ 2. s in bx cos bx a2 1] ;exp p+t xexp na] 1 xw Xexp [1 1/2,1/2 p-ib ib) + ib) _ 1 (P-ib) p-ib 3/2- 1/2,1/2 [Rep>|lm i|] sinh XK T6[Jo{ 2 J+yol 2 J -^(ap+ab) ^„2 [Rep>|Rei|] ap+ab is fsin bx] I 3. \ \K(iainc) \ [cos bx) p-ib w.
492 4. SPECIAL FUNCTIONS x+a I cos bx Yp-ib [Rep>|Im*|] cos XK 1JL°1 2 [aX); Rep>|Im*|] '(^T1^)] 6. sin bx [Rep>|Im*|] 3.32. THE LEGENDRE FUNCTIONS OF THE FIRST KIND P^(z) Laplace transforms of expressions involving P^(z) can be obtained as special cases of Laplace transforms of expressions involving the Gauss hypergeometric function (Section 3.37) and generalized hypergeometric functions (Section 3.38) by using the relations: ц/2 1 2Ц x+l [x-l ц/2 "T~; and similar ones (see [82], Addendum II, 18). Therefore in what follows only some simplest formulae are given. THE LEGENDRE FUNCTIONS OF THE FIRST KIND 493 3.32.1. P*(f(.x)) and algebraic functions 2. 3. 5. -ц/2 231 a Х+ц./2+l, -v, v+1 КеBЯ.-ц)>-2; RepX); |arga|<n] 1; Rep>0; 1 . fa) Sin VJl 1-я- л [2) -ц/2 231 " Л.-И-/2+1, v+1, -v [ЕеBЯ.-ц)>-2; Re p>0; г v+ l [v-|x+l f 2v; Ы l 1 [^ a) ; 2p/a [v+2, 1-V [Rep>0; |arga|<n] 1; Rep>0]
494 6. 7. ^ 9. a2-* + 1 SPECIAL FUNCTIONS , ц / 2 + v -viM--v; 2p/a\ j _ц/ 2-v-1 v-Я v+l, n+v+1; 2p/u| . X2F2 2v+2, v-X+l [X+l, Я,+|х+1; Ipla k+v+2, X-v+l [Re A>-1; Re p>0; I arg a | <к] [Re pX)] n~"-v4-l/2l^fl [Re p>0] ¦I 2(a2-^) apj [2z+-p(a± i 2 * - a ); Re p>0] THE LEGENDRE FUNCTIONS OF THE FIRST KIND 495 2| 2v+1-J J 11. -ц/2 /Hp 2v+ 1 2[l/2-v, -2v -ц/2-v-l 2v+l I 2 /— Jl u/2 + v ; -a p /2") f 2") X.FA + 1 2[v+3/2, 2v+2 J Vn{a/2) ^ H+l/2; -аХр2П v+3/2, 1/2-v -ц/2- 1 ГA-Ц) 2F3 2v [Rep>0; I arg а | <к] Я.+ 2v + 3/2, v+2, 1-v -1 2 ,_ -v, ц-v; -a p /2 -2v, (l-X)/2-v, -k/2-v 2-v-l 2V-A.+ 1 fv+1, n+v+1; -a 'p2/2 2 3[2v+2, v-X/2+1, v+C-X)/2 .-(Х.+Ц+П/2 -isinvJl(f) ХГ 1-Х,)/2-й-
496 SPECIAL FUNCTIONS 12. Рч(ах +2Ьх+\) x+a v I (x+a) 14. 15. 16. .-ц/2 fa+l)/2, a+D/2+ц; -a'p2/2 [1/2, a+l)/2-v, a+3)/2+v хг V2+1, v-X/2, -X/2-v-ll V2+i, z *|3/2, X/2-v+l, X/2+V+2 [ReX>-l; Re pX); [2az -р(Ь± i Ь г - a 2 ); Re p>0] [Re p>0] [Re pX)] 2,а-1/4рBA-5)/4еар/2и/ [Re ц<1; Re p>0] -ti -1/4 B|i-3)/4 ap/2H 2u P e H [Re ц<1; Rep>0] THE LEGENDRE FUNCTIONS OF THE FIRST KIND 497 17. x+a a [Re ц<1; Rep>0] 18. __ Ja*b)pl2 D " Ц+V :l; a,4,Rep>0] (x+a) (x+i) 3.32.2. P^(f(t~x)) and the exponential function 1. Pv(e'x) 2"р/НГ [Re p>0] , (p+v)/2+lJ ,2ц-1 P/2 , <p-n)/2+l [Re (i<2; a,Re pX)] 3. L(p-|x-v+l)/2,(p-|x+v)/2+l [Ren<l; Rep>0] 4. (l-e p+m xr [(p-v+m+l)/2,(p+v+m)/2+lJ [ш-1,2,3,...; RepX)]
498 5. A- 6. (l-e 7. 8. P Be *-l) 9. P (ae *- 10. -ц/2 (ее -e+1) SPECIAL FUNCTIONS p/2 1/2, p/2+1; a2 (H-v+D/2, (|x- 3/2, (p+3)/2; a ; Rep>0] [<p+v+l)/2,(p-v)/2' Р-И-+1 ; Re(p-v)>0; Re(p+v)>-l] р-|х/2, р+ц/2 "I [p-|x/2-v,p-|x/2+v+lj l; 2Rep>|Re|i|] , p-vj [Re p>0] [<K2; Rep>0] а лр/2 Гр+ix-v.p+ix+v+l] _ >-1; Rea>0; Re(p+fi-v)>0; THE LEGENDRE FUNCTIONS OF THE FIRST KIND 499 11. (l-e 12. A- is. ц- 14. A-е x) 1/2X W-eJl-e"*)] [Re |i<l; <K2; Rep>0] p+|x/2, p-|x/2 2, p-v/2J [2Rep>|Ren|] (l-|x+v)/2,-(|x+v)/2,p+3/2 X/. 2 p+3/2; ; Rep>0] X/, U+l/2; ; Rep>0] 3.32.3. 1. A-е X and various functions Гр+6 ХГ IX L(p+6-|x-v+l)/2, (p+6-|x+v)/2+lJ
500 2. <1-е-2хГц/2: 3. (l-e Xexp(*V2x)x Xerfc(&f SPECIAL FUNCTIONS f(p+l)/2, p/2+S ( б+1/2, (p+6-|x+v)/2+lJ I Re ц<1; Rep>-4; IX (p-|x-v)/2+l, (p-|x+v+3)/2j 1/2, (p+1)/2, p/2+1; -b2 3/2, (p-|x-v)/2+l, (p-(i+v+3)/2 [RejKl; Rep>-1] X3F3 , (p+V)/2+l] X3F3 1/2, (p-v+D/2, (p+v)/2+l;-*2' 3/2, (p-|x)/2+l, (p-|x+3)/2 ; Re(p±v)>-C±l)/2] , (p-|x+v)/2+l p+1 X3F3 , (p-|x+v+3)/2j 1, (p+1)/2, p/2+1; t2 3/2, (p-|x-v)/2+l, (p-|x+v+3)/2 ; RepX); |argi| THE LEGENDRE FUNCTIONS OF THE FIRST KIND 501 5. (l-e ,p + 2Х-Ц XJx(be XT \p+X 6. A-е [Re YHbx+X r[p Гр/2, (р+1)/2 (p-|x+v)/2+lj4 5[x+l, A,+ l, [Re |i<l; Re(p+x+A.)>0] 3.32.4. P|J(coshx), the exponential and hyperbolic functions 2. sinh'^P^coshx) , Г1/2-Ц, (p-v)/2, —l— Г 2-/K L(P+v)/2-|x+l, (p-v+D/2-ц 2; ReBp-v)X); ReBp+v)>-l] ri/2-|X,(p+|X-v)/2, YJL [(p-ix-v+D/2, (p-|x+v)/2+l 2; Re(p+(i-v)X>; Re(p+|x+v)>-l] 3. sinh'"flxP|1(coshx) f3/2-|X,(p+|X-v-l)/2, (p+|X+v)/2] [Re(i<3/2; l; Re(p+(i+v»0]
502 SPECIAL FUNCTIONS 3.32.5. '>rJci+n0') and various functions 1. aWl*_,._<y> 1-е'" B/t-l) !! (l-yV/2 [Rep>ln|a|] 2 «_ (-1) lx] 3. 3.32.6. Products of 1 exp<uye'p> a> .B) 1Л1) [Re pX)] 3.33. THE LEGENDRE FUNCTIONS OF THE SECOND KIND Q*(z Laplace transforms of expressions involving Q^(z) can be obtained as special cases of Laplace transforms of expressions involving the Gauss hypergeometric function (Section 3.37), generalized hypergeometric functions (Section 3.38) and the Legendre function of the first kind Рц(г), by using the relations 2V+1 [v+3/2 ¦ Щ z2-1 and similar ones (see [82], Addendum II, 18). THE LEGENDRE FUNCTIONS OF THE SECOND KIND 503 3.33.1. Q*(f(x)) and algebraic functions 5. 6. x+a fx+a 2V J x J J.±|i/ 2 + 1 1±H. 1 ¦P Х±ц/2+1, v+1, -v [2Re Я> | Re |i | -2; Re p>0] (- l>"n!J j D_n_{ (^HTp)D_n_l i-VTZp) [Re a,Re p>0] -v-l/2,0 A [Rev>-1; Rep>0] [Re p>0] / 2 [Rev>-3/2; Rep>0] i |ii + a p / 2 [Rev>-3/2; Rep>0] 3.33.2. Bц(/(е~х» and the exponential function 1. Q>ex) e-pil'r(-p)/(a2-l)-p/2Q [ I arg (a-1) | <л; Re (p+v) >-1 ]
504 2. a-e SPECIAL FUNCTIONS 1-е 2I |_2p+v+l [Rev>-3/2; Rep>|Ren|/2] 3. (l-e 24 1-е' P+l/2, p+v+1 [Rev>-3/2; Rep>|Ren|] 3.33.3. Q*(f(x)) and various functions 1. (x2+a2)±Bv+1T1)/4x /я [(v-|x)/2+lJ +u x + a [Re pX)] 2. (l-e , p+\i/2, p-f р+ц./2+v+l, р-ц./2+v+l [Re v>-l; Rep>|Re | 3.34. THE LOMMEL FUNCTIONS s (z) AND S (z) |i,vv n,vv ' 3.34.1. s (ax ), S v(ax+ ) and the power function Notation: fl, J , (U|x+3)/2;-a2/p2 2 ¦ 2 THE LOMMEL FUNCTIONS 505 J-v2]pX+(|1 + 3)/22 2l(|x-v+3)/2,(|x+v+3)/2 v a p Мз= 1. x s (ax) |1V 2. 4. 5. xXS (a/x) |1V 6. L [_(v- ; a,Re p>0] 26-1 [Re *> | Rev | -1; Rett+ц) >-2; Re p>0; | arg a | <л] Vap [Re ц>-7/4; a,Re pX)] [ReBU|i)>-3; a,Rep>0] U2+ U2(v) + U2(-V) [2Re Я.> | Rev | -2; Re BЯ.+Ц) >-3; Re pX); | arg a | <n] lX+U2u. Bя) xfi /г A(*,-v/2)J ReBM.+/|i>-2/fc-/; Re p>0; (aX> ; |arga|<ji
506 7. x SPECIAL FUNCTIONS 2ц-1^+1/2й Bя)(/-1)/2рХ- k-26kJBk]k l.k \[ a] X ReBk\-l\i>-2k-l; Re p>0; aX); Re X>-l-3//D*I 3.34.2. «^(a* ), S (ax ) and hyperbolic functions Notation; fl. , a+M.+3)/2;-a2/p2 2 [(n-v+3)/2,(n+v+3)/2 2 ' 2 "• I 1 -1 v " 2 |i +v • N U ( [cosh Ъх) ^ (p-b) + Wj (p+b) ; a>0; Rep>|Re6|] THE LOMMEL FUNCTIONS 507 fsinhixl и-j (p-Z>) + wl (p+b) + w} (p-b,v) v) + и-j (p+b,\) + Wj [Re X>|Re v|-C±l)/2: Rep>|Rei>|; 3. VZi [cosh bx) ¦s ,,Лах ц.1/4 -rH x 4. 4. 5. fsinh bx\ [cosh 4 , fsinh bx] [aahbxj " [a>0; Rep>|Re6|; Re >V2(p-Z>) + )V2(p+Z>) ; аХ); Rep>|Re6|] )V2(p-Z>) + )V2(p+Z>) + W2(p-b,\) + w^(p-b,-\) + w2(p+b,\) + w [2Re *.>|Rev|-3+l; Re/»|Re/)|; |arga|<n] 3.34.3. s (axllk), S (ax/k) and trigonometric functions Notation: see 3.34.2 [a>0; Re p>| lm 6|; fsin *x1 2. xN W (ax) (cos bx) ^ [w (p+ib) + Wj (p-ib) + wx (p+ib,\) x (p-ib,\) [Re !i>|Re v|-C±l)/2; |; |arga|<n]
508 SPECIAL FUNCTIONS THE KUMMER CONFLUENT HYPERGEOMETRIC FUNCTION 509 fsin foe) 3. тГх\ \s ,,Aax) [cos bxj *AU X ((p+ibJ} _ Т (p-ib) ; aX); Rep>|Im6|] , (sin foe) [cos fcej ц' 4. x , fxi 5. xN Is [cos fa/ ^v [Re BU|i) >-4+l; a>0; Re p> 11ш b | ] w2(p-ib) >{w2(p+ib) +w2y + w2(p+ib,-^) + w2(p-ib,\) '¦ + w2(p-ib,-\)} [2Re A.>|Re v|-3+l; Rep>|Im 4|; 3.35. THE KUMMER CONFLUENT HYPERGEOMETRIC FUNCTION 3.35.1. lFx(a;b;ux±llk) and the power function Notation: , \b,a-(V !(l/2,(^+3)/2-a;u~1p2/4 Гц/2+1 ,ц/2-*+2 2а-ц-1 а,а-А+1 ;ш р /4 23/2-a-fc-erBA + e_1) ,^x ,2, U2W (»-a + 2e-3)/4 6 - a + 1 / 2CXPI 8<0 *-2a-e/2,Bi-2a+e-l)/4l 4@ 3 3 рц+1 3 3[1/2,*/2,(*+1)/2;ш2р"/4 1 /2- Г-ц-1. ; шр"| (.M.+2,i+M.+lJ -шр2/4^ ш|!/2+1 Г-м./2-1,а+ц/2+1,*' -шр /4 ¦Г X *+/,^[(flJ [pj a/T -ц,,р+я;-ш J2 2U+i.p+*
510 SPECIAL FUNCTIONS THE KUMMER CONFLUENT HYPERGEOMETRIC FUNCTION 511 1. /, (a;b;wx) a,b+\i+l 2 U+2, *+ц+1 ?л(*'*г) [Re p,Re(p-Q)>0] 7. 8. л />-2а-Ц-<р-ш [Rea>-l/2; Re pJRe(p-Q)>0] 2ш Г /2+l Q \ [Re p,Re(p-u)X)] 2. 3. x ..F. 4. Г(ц+Г [Re ц>-1; Rep,Re(p-u)>0] [Re ft.Re p,Re(p-o)>0] (p-a) 2p~(fl I -X | 9. хц,^, (a;b;tox+z) »• 10. x^^^afr 12. 13. >-1: Re p,Re(p-Q)>0] [Re ц>-1; Re oj!e p>0] [e-0 or 1; Reu,Rep>0; Re b>(\-t)/2] [Re ft.Re p,Re(p-o)>0] УЯШ [Re u.Re p>0; [Re ц>-1; Re p>0] 5. r\-b (р+ш) ba 'UQJ 14. [Re ц>-1; Rep>0 for l<k; Re p,Re u>0 for t>k; Rep,Re(p+u)>0 for l-k] 6. x F (a;b;tax) [Re(a-W>-1; Re p,Re(p-o)>0] 2*Г(а-1/2)Г(») ( * - 1 ) / 2 a-b I 1 b- ,1-» rnq ft-2a^i р-ш [Rea>l/2; Re p,Re(p-<j)>0] ^>h~^ us(a,p) [Re p,Re uX); Re<n+a) >-l ] [Re p,Re u>0;
512 SPECIAL FUNCTIONS THE KUMMER CONFLUENT HYPERGEOMETRIC FUNCTION 513 17. [Re(<t(n7a)>-i; Re p.Re o»O] 9. [Re o-,Re o>,Re p>0] 3.35-2. {F{(a;b;f(x)), the power and exponential functions Notation: see 3.35.1 3.35.3. F (a±m[x];b±m[x];o>) and various functions e F (a;b;(ox ) Uj (b-a,p) [Re )i>-l; Re p.Re g»0] u> Jx] Ф2 Ф2(а,а;Ь;а>,ае . 26-2+e -ых „ . , 2, 2. x e jF (а;Ь;шх ) [г-0 or 1; Rep,Reu>0; Reft>(l-e)/2] 1-е - p - ехр«те ' ~ 2A-2 -QX2 „ ,„, 3 , 24 3. x e F.(.2b—j;b;u>x ) 4. 5. 8. //* ) x Ilk ) ГB»-1)р' [Rep,Reo»O; Refol/2] u3(b-a,p) [Ren>-1; Rep>0] [Re |i>-l; Re p>0 for kk; Re p,Re u>0 for l>k; Re pJRe(p+o>)>0 for l-k] [Re p,Re o»O; [Rep,Reu>0; Re(|i+2*-2e)>-l] -it; Re p,Re o»O] 3. [x]! 4. J. 5. a[x]x [x]UbJ[x] XlFl(a+[x];b+2[x];u» [^0,-1,-2,...] [(^0,-1,-2,...; Rep>ln|<r|] e p^ e [6^0,-1,-2,...; Rep>ln|<r|] 1-е -P <X>2(a,a;b;w,z) [wz—ae P, ич-z-o; b^O,- 1-е' [wz—<re~p, ич-z-o; 49^0,-1,-2,...]
514 SPECIAL FUNCTIONS THE KUMMER CONFLUENT HYPERGEOMETRIC FUNCTION 515 7. UJ[x]ff [x] 1-е -p X F (a+2 [x] ;Zh-2 [x] ;ш) [h>z~ae~p, w+z-v>\ fsinh crxl 7. хЧ \X [cosh crxj a,p-cr) + u6(a,p+cr)] »е(ц+2а)>-C±1)/2; ReuX); Rep>|Re<r|] 3.35.4. ^(ajAjux '" ) and hyperbolic functions Notation: see 3.35.1 fsinh crxi [cosh crx [¦ .F Ла;Ь;юх) 2. i [coshcrxj1 ' fsinh ox) 3. хЧ }¦ FAa;b;ax+z) [coshcrxj1 fsinh crx^ 4. хц^ [F (a;b;~u>x cosh crx 5. 6. x1 sinh ax coshcrx sinh ax cosh crx 1 ' [Re |i>-C±I)/2; Rep,Re(p-Q)>|Reo-|] [a-b + (p+ff) " ( ; Re p,Re(p-4))>|Re tr|] [Re |i>-C±l)/2; Re p,Re(p-u)>|Re <r|l j[u{ (a,p-O) + u, (a,p+ff)] [Re ц>-C±1)/2: Re u>0; Rep>|Re<r|] 1, u (a,p-a) + иАа,р+а)] 3 3 ; Rep>|Retr|] [Re<M.+a)>-C±l)/2; Re oX); Rep>|Re<r| 3.35.5. .F (a;b;o>x+m 2) and trigonometric functions Notation: see 3.35.1 1. *' sin crx cos crx 2. x' b-l sin crx cos crx 3. x»- sin crx cos crx 4. sin crx cos crx Г(И+1)Ч 1 1 ll||(P+^)' 1 X/, \a,V (р-гсг) ц+1 [Re ц>-C±1)/2; Re p,Re(p-u)>|Im a\] COS q> I ф-а arctan r-+f ft—a)arctan —; -(l±l)/2; Re p,Re(p-o)>|Im a\\ хф, («.^+1;*;г.^7т^) + (p-'ff)1 x ; Re p,Re(p-o)>|lra <r| Uj (a,p+ia) + Uj (а,р-гсг)] [Re ц>-C±1)/2; Re o>0; Rep>|Im<r|]
516 SPECIAL FUNCTIONS 5. sin ax cos ax [Re ji>-C±1)/2; Re p>|Ira a\ 6. x" I sin ax] I cos ax 4е*-*) us(a,p-ia)] 2; Re o>0; Rep>|Im<r|] 7. x1 sin ax cos err 1J [Re(ji+2a)>-C+l)/2; Re uX); Rep>|Im<r| 3.35.6. ;F ^а;Ь;и>х) and various functions 1. * 3. xML* \ax)lFl(a;b;<ax) (р+сг2-Ш)а .3 ff (D в;75— г p(p+a -ш) [Re p,Re(p-o)>0; |arg <г|<л/4] (all) exP Т7Г [Re ft,Re p,Re(p-<j)>0] Г(Ь)(р-О)" b-a+n , . b P (p-ff) „(Ы,а-6-и) f. law [Re ft.Re p,Re(p-Q)>0] (p-ff) (p-(D) THE TRICOMI CONFLUENT HYPERGEOMETRIC FUNCTION 517 3.35.7. Products of 2. , (a ;*';«>/ 3. xb'\Fl(a;b;-u>x)X [Re ji>-1; Re pJRe(p-<r) Jie(p-<j) ,Re(p-tr-o)>0] [Re A,Re p,Re(p-<r),Re(p-o),Re(p-<r-o)>0] ft 2 [Re A,Re p,Re(p-Q),Re(p+o)>0] [Re ц>-1; Rep>0, I 2 Re o. 3.36. THE TRICOMI CONFLUENT HYPERGEOMETRIC FUNCTION V(a,b;z) 4-I/Jr 3.36.1. ЧЧа.^шх ) and the power function Notation: - < U.+ 1 ) / 2
516 SPECIAL FUNCTIONS 5. 6. 7. *' sin ax cos ax sin ax cos ffx sin cos о* 1*1 [u (a,p+jcr) + и (a,p-ia)] [Re ц>-C±1)/2; Rep>|hn<r|] [uAa,p+ia) + uAa,p-ia)] [Re(M.+a)>-C±l)/2; Re a»0; Rep>|Irau|] [u (a,p+ia) + uAa,p-ia)] [Re(|z+2a)>-C±0/2; Re u>0; Rep>|Ira<r| 3.35.6. F (a;b;u>x) and various functions 1. x 2. X ^FAa;b\iax) 3. x*^ (ax) 1F1 (a;b;u>x) ffM3/4 (P+ff2)g-1/2 ff ш [Re p.Re(p-u) >0; | arg <r | <я/4] (ff/2) ft - 1 ft - a , .a P (р-ш) exp hu7 X [Re A,Re p,Re(p-u)>0] ГF) (p-ff) *-a + n , „ b p (P-ff) „(ft-l,a-ft-n) {. 2ff(D [Re ft.Re p,Re(p-<i))>0] (p-ff)(p 1 -u)J THE TRICOMI CONFLUENT HYPERGEOMETRIC FUNCTION 517 3.35.7. Products of 2. x i-l 3. [Re ц>-1; RepJRe(p-<r),Re(p-Q),Re(p-<r-<j)>0] [Re i,Re p,Re(p-cr),Re(p-u),Re(p-<r-o)>0] p v p [Re 6,Re p,Re(p-u),Re(p+u)>0] 4. x* *l Vp~ p J [Re ц>-1; Re pX), max. SReu. 3.36. THE TRICOMI CONFLUENT HYPERGEOMETRIC FUNCTION W(a,b;z) 3.36.1. W(a,b;ax~ ) and the power function Notation: „ ,^ Г(ц-2д+1) „ "l^" а ц-2в+ 2^2 со p - (ц+1 ) / 2
518 SPECIAL FUNCTIONS ХГ [a,a-b+l ЛЦ \i/2-a+2 [fl-»+l a-b+l;-tap [Reft<2; Re pX>] 2. i+a~b+2 х 3. xb/2'W(a,b;(ox) [Re jt>-l; Re(,i-6)>-2; Re p>0] -ft/2 s i n(bn/2)[ p J [0<Re ft<2; Re p>0] 4. [Rea>l/2; Re(a-i)>-l/2; Re p>0] 5. THE TRICOMI CONFLUENT HYPERGEOMETRIC FUNCTION 519 22*~Ь+1/2Г(а+1/2)Г(а-Ь+3/2) 7. 8. 10. ГЬ-3/2 [Rea>-l/2; Re(a-*)>-3/2; Re p>0] [Re ц>-1; Re(\x-2b)>-3; Re pX); |argu|<3n/2] ,а-6+1/2.ц+1/2 1; Re(/t^/*)>-it-/; Re p>0; |arg u|<3n/2] ; Re p>0; |arg ы|<Зп/2] (l-W/2 a-(»+l)/2 [Rep>0; |argu|<3n/2] [RepX); |argu|<3n/2]
520 11. SPECIAL FUNCTIONS [Re*>l/2; Re pX); |arg u|<3n/2] п. ( 1 -b) I 2 I Ы 2 rj- /up) ~ b-V [Rep>0; |argu|<3ji/2] 13. Uk) a - 6 + 1 / 2 ; |i + 1 / 2 xc;;. [Re(/t)i+ui)>Ht; Rep>0; |arg u|<3n/2] 3.36.2. W{a,b,f(x)) and the exponential function Notation: /2 », (P) -12, Г(|х+1)/2,(|х+3)/2-*;ш"'р'/4 X/J хГ Г|х/2+1,м./2-*+2' 1х,/2+а-Ь+2 Г i{3/2,]i/2+a-b+2 -i 7 ,ц/2-А+2;ш р /4 THE TRICOMI CONFLUENT HYPERGEOMETRIC FUNCTION 521 U-*+i I1 2U,-ix (\i+b-a+l; up 1 -O — \1l-O-t, + A) P V I 1. x^e X Ilk. )X 3. 4. 5. *— 1, M-*-A"| [\-a; tap [Re |i>-l; ; Re u,Re p>0] 1 / 2 - a l )i + 1 / 2 B»)"*""-',"*1 A(/t,0), [Re ц>-1; [Re u,Re p>0] -/; Re u,Re p>0] - <lft)/2 2ш р [Re u,Re p>0] [Re u,Re p>0] ( 1 -b) I 2 [Re u,Re p>0] vft/2-l
522 7. хцехр(-шх ) х -11 it ) SPECIAL FUNCTIONS 1 / 2-е , |i+ 1 / 2 8. «г* 'Jt [Re o,Re p>0] D-1)/2 [Re <r,Re u,Re p>0] 3.36.3. VCfl.ij/Ce )) and the exponential function 1. ЧЧя.^ше *) b,p+l p-b+l a J \2-Ъ,р-Ъ+1 [Rep>0; Re(p-4)>-l] 2. ±r a-o+1 2^2 a,-p;w\ 1-4 + -^4—rX ЬЛ-р p+*-l 1-*] ХГ1 P [a,a-i+l [Re(p+a)>0; |arg u|<3n/2] THE TRICOMI CONFLUENT HYPERGEOMETRIC FUNCTION 523 3. A-e-Vx Гц+1,1-*,Р 1 \a,p; Г LfJ 1+ w Г (p-ft+1 ,a-b+l;io 2-b,p+]i-b+2 [Re |i>-l; Rep>0; Re(p-*)>-l] 4. A-еУх 5. A-е"Ух а-Ы- 1 / 2 Bя) [Re ц>-1; Re p>0; Re(ip-to)>-/) Jfc«-»*'/2 t,2i+/ [Re ц>-1; Re(pi+/a)>0] 6. ехр(-ше ) X I p -I -й [Rep>0; I I" p-i+2 )>-i] .p;-w] •i J ,2-b l -ft i ш p-i+i
524 7. exp(-we) X 8. A-е'Ух X exp(-<i>e~*) x 9. A-е Yx X ехр(-ше~ ) x ,b;ue lx/k) 10. <l-e~Vx X ехр(-шех/к) x SPECIAL FUNCTIONS 1-* xr Ь-а,-р;-ш) ш1-* 2F2|,. , _ г p+b-i Ь-1] A-р-Ь,1-а;-ы [l-a-b-p [Re u>0] [ (p,b-a;-w a-b+l,p+fx.+ l\2 2[b,p+fi.+ l ; -Ш [Re (i,Re(p-W>-l; Re pX)) f +/.2A+/ [Reji>-1; Re pX); Re(/fcp-to)>-/] 0,2А+/ [ [Re ц>-1; Re u>0] THE TRICOMI CONFLUENT HYPERGEOMETRIC FUNCTION 525 11. <l-e~Vx + со Г Iд,р+ц—6+2 [а-6+1 ,ц-6+2;ш1 2-6,p-6+(i+2 J [Ren>-1; Re()i-*)>-2; Re p>0] 12. <1-е Xy?(a,b-Ml-e~x)l/k) a-b+1 / 2 Bji) 3 ( к- 1 ) /2 , р a,a-b+l] Gk+l,2k+l\[l [Rep>0; Re ц>-Г, Re (Ац-й) >-*-/] 13. A-eYx X ехр(ше"дг) X еГ a-b+\ , b-a,\L+l;-ut + О)' еТ | X \а,р+\\.-Ь+2 [ ; -ш -Ь)>-2; Re p>0) 14. <l-e~Vx Хехр(-шA-е Х4г(а,»,мA-е G2 +/,2Ы [Aj [Re ц>-1; Re (кц-lb) >-*-/; Re p>0)
526 SPECIAL FUNCTIONS THE TRICOMI CONFLUENT HYPERGEOMETRIC FUNCTION 527 15. A-е'Ух 16. A-eVx Хехр(-шA-е"дс)"//*)Х 1 12 + a-b a,a-b+l] Re pX); |argu|<3n/2] *1/2-gr(P) [Re u,Re рЩ 19. <l-e 20. A-eVx <- [Re p>0; Re(p-W,ReBc-*)>-l; |arg ы|<Зл/2] 1 / 2 Bя) ( 3*-5) /2+ / XGk+l2 ff k+l,2k+l\{j i; Re(kp-lb)>-l: |arg ы|<Зя/2] 17. (l-e~Vx 18. A-е Vx xexp(-to(e - J'< Bя)C.-5)!2+/Х x 1 Г[р+ц,+ 1 ,а , a-b+1 [Re ц>-1; Re(kii-W)>-k-l\ Re(Ap+4z)>0; |arg ы|<Зя/2] <2я) XG. (к-3)/2+I xGat+/,wMwJ [Re ц>-1; Re(A(i-»)>-*-/; Re uX)l [Reu,Rep>0; Re(p-6)>-l] 21. xexp j—I X Х^[а,6;-^- *¦ e -: 3.36.4. Т^б, шх±т) and hyperbolic functions Notation: see 3.36.1 [sinh ax] 1. fx [cosh ax] 2-b a-b+2 [Re frcE±l)/2; Rep>|Recr|]
528 SPECIAL FUNCTIONS 2. х»\ УХ fsinh ах [cosh ах X W(a,b;a>x) Ц.+Я- [Re )i>-C± -E±l)/2; Rep>|Recr|] fsinh ax) з. *"] x [cosh ax) [Re ц>-C±1)/2; Rep>|Recr|; |arg ы|<Зя/2] fsinh ax) 4. x11] lx [cosh ax) [Re(n+fl)X3±l Ml; Re p>|Re o-| ; |arg ы|<Зя/2] 3.36.5. W(a,b;wx '"), the exponential and hyperbolic functions Notation: see 3.36.2 1. fsinh ax) [cosh ax) ?(а,Ь;шх2) 1, [Re ц>-C±1)/2; Re u>0; Re p>|Re a\] 2. fsinh ax\ (cosh a: lv^p-a) +v2(p+a)] [Re u>0; Re p > |Re cr|] THE TRICOMI CONFLUENT HYPERGEOMETRIC FUNCTION 529 3. (l-W/2r, . to [(p-cr) , Bvtop-D)a)+ fsinh ax) [cosh ax) [Re u>0; Rep>|Reo-|] x±m 3.36.6. W(a,b;ax±m) and trigonometric functions Notation: see 3.36.1 [sin 1. X [cos ax) 2. sin ax cos fsin ax) 3. *N \x cos ax I sin ax) cos (tj;I +ld J p-ld2 p- i a-d p-ia [Re*<E±l)/2; Rep>|Ima|] ^И" ц,+ 1 , fl-b+2 [Re (i>- Rep>|Ira a\] [Re n>-C±l)/2; Re( -26)>-G±l)/2; Rep>|Ira a\; |arg ы|<Зя/2] Tl 1 Ки №е(ц+а)>-C±1)/2; Rep>|Imcr| |arg ы|<Зя/2]
530 SPECIAL FUNCTIONS 3.36.7. 4?(a,b;wx ) the exponential and trigonometric functions Notation: see 3.36.1 i. Л* x (sinax| s ax) [Re ц>-C±1)/2; Re(|i-2*)>-G±l)/2; Re6X); Re p>|Im cr|) 2. (s i n ax| X X cos ax) vAp+ia) л-vAp-ia)] [Re uX); Rep>|Im cr|] 3.36.8. Products lFx(a;b;axllkL(a,b\-tisxlk) and the power function Notation: ttfi) -a, 1 ' 2 1. THE TRICOMI CONFLUENT HYPERGEOMETRIC FUNCTION 531 A<0) [Re ц>-1; ReBn-*)>-3; Rep>0] 2. / / BA). 3.36.9. Products 1. )X 2. jF,^;*,—шеж)Х Bk) 1/2-6.Ц+1/2 Bn)k+l/2-lP»+l~ia [Re (i>-l Re pX) for k2)t; Re p,Re u>0 for l>2k; Re p,Re(p+u)X) for l-2k] Vn 3,2 4s 4 [Re p>0; Re(p-W>-1) 4'2 [Re o,Re p>0)
532 SPECIAL FUNCTIONS 3.36.10. Products of 4r(a,6;o»cM), the power and exponential functions l. U(8): see 3.36.8; Re ц>-1; ReB|i-*)>-3; Re(|i-*)>-2; Re p.Re o>0] -/; Re(kp.-lb)>-2k-i, Re p,Re w>0) ±x. 3.36.11. Products of Чг(а,6;шехд:) and the exponential function 1. ехр(-ше~х) х -fl,»;we )X 2. exp(-toex)X -а,*;ше )X 4,1 L 0,A-6) /2,1-6/2, \-b,-pl2 J [Rep,Re(p-W>-l; Re(p-2*)>-2] p/2,0, (l-6)/2, 1-6/2,1-6 [Re u>0] THE GAUSS HYPERGEOMETRIC FUNCTION 533 3.37. THE GAUSS HYPERGEOMETRIC FUNCTION Jx(a,b\c\z) To reduce functions to a form occuring in this section, one can use the relations .c-a-b ) Condition: a,6^-1,-2,... 3.37.1. 2Fj(a,6;c;-u)x~ ) and the power function 1. [ X/J 2 2 —M-—1»*—M-—1 2 2 + ш p 1 \b,c-a a,a-c+l; a-b+1 ,a-fi [a,c-b 6, b-c+1 ;p/d 6-a+l,6-ц [Re ц>-1; Re p>0; 2. Xе-1 X Г(с) с , (а+б-П/2 (l-a-W/2,(a-6)/2 [Re c,Re p>0; I arg о | <я] й
534 SPECIAL FUNCTIONS THE GAUSS HYPERGEOMETRIC FUNCTION 535 3. x 2-Fj (-п,а;с;-ых) 4. xC ' 2Fx(a,\-a;c;-u>x) 5. Xе-1 x *, Ja,6;i;-o)x2] 7. Г(ц+1) M-+ 1 [Re ц>-1; RepX)) 1 /2-е [Re c,Re pX); | arg i Г(с) tO c-l/2 [Re c,Re p>0; to pi [Re p>0; | arg a + 6 -2 e + ft ) / 2 [Rep>0; |argu|<n) ,a + b-c, ц+1/2 Г", X Rep>0; |argo|<n) 9. 3.37.2. -//*, ,a + b-c. ц+1/2 ¦ , , 1. ,. — Г C A(k,\-b A(A,l-c)J [Re(*|i+4z),Re«|i+to)>-/fc; Re p>0; |argu|<n) and algebraic functions ,c-l,ц + 1/2 xr: ,2k+l{ k(l да,0), [Re n>-l;Re(c-a-ft+/fcn//»-*//; Re p>0; |arg 6|<я) 2. Д(*,0). Д(А,с-а) ,Д(А,с-6) Д(А,с-а-6) [a,Re c,Re p>0)
536 SPECIAL FUNCTIONS THE GAUSS HYPERGEOMETRIC FUNCTION 537 з. х»(ы-хЦк)с; x Uk) ,с-а) ,A(k,c~b) A(k,c-a-b) [Re ц>-1; u,Re c>0; .С-1.Ц+1/2 [a,b,c-a>C-b\ > ,2k+l,2k\ k(p\l 2*.2W W [fj ХГ XG. Д(*,О) ,Mk,c-a-b) [Re(/fcц+^a) , Re p>0; |arg 8|<я] 7. (x+2) х(x+w+z; c-1 8. x(x+w+z) с - 1 9. a b ' (X+w) (x+z) X 2FX \a,b;c; X(X+W+Z) } (x+w)(x+z)I (wz ) 1/2-a я хКа-1/2[Т;}ка-иг [Rep>0; |argw|,|argz|<n) „с-1 /2 [Re c,Re p>0; | arg tc |, | arg z | <я) Г(с) с - а - b Р xV(b,a+b-c+l;pz) [Re c,Re pX); | arg tc |, | arg z |<я] 5. хЧх11к-ш)с-1 х i^1—77т) ,Re c,Re p>0] 2A,/ 1_Ш [u,Re с>0; a + b-\ I 2 10. (x+w)"(x+z) л: (x+w+z ) (дг+w) (x+z , 2-W*+l/2) vp v ' X D_ 2 o (VTpw)Dlb(VTpz~) [Re(a+*)>-l/2; |arg tc|,|arg г|<я) 3.37.3. and the exponential function -p,p+a,p+b,c \a,b,p+c [Re(p+a),Re(p+W>0; |:
538 SPECIAL FUNCTIONS 2. (l-e~Vx a + Ь - с к - 1 a,b А(к,\-а) ,А(к,1-Ь Д(/,р) ,Д(*,0), A(k,\-c) J №ец>-1; Reikp+la),Re(kp+lb)>0; |argu|<ji] 3. (l-e'Vx X2F1(a,b;c;l-a>elx/k) Bп) - 2 [Re ц>-1; ; |argu|<ji] 4. A-е-Ух U + b-Cj)L+p r 2я)*+/-2 [«А | А(/,р) , :,1-а) ,А(к,1-Ь) [Re ц>-1; |агеш|<л] 5. Q(d-x)(l-ex~d)c'lx c-b,l,c-a\c+l;\-t ,1-e ) [d.Re сХ>] THE GAUSS HYPERGEOMETRIC FUNCTION 539 Ух "i- ¦Г(ц+1)Г(с)х xGU+l,U+t e [d,Re c,Re(tp+/a),Re(/fcp+»)>O] 7. Pd e P X(l-e+?X [v: see 3.37.3.6; _ , t . Ix/k. X2Fl(a,b;c;l-e ) 8. X F ,c-b, [Re p>-l;d,Rec>0] 9. 1 - с —|-Г(ц,+ 1)Г(с)Х X[l-eWY'x 2k+t,2kJ Id Hx-d)/k. e ) [Re ц>-1; d.Re c>0)
540 SPECIAL FUNCTIONS THE GAUSS HYPERGEOMETRIC FUNCTION 541 10. (l-e"Vx 11. (l-e~Vx X2Fl(a,b;c;-u>(ex-l)-"k) 12. (l-e~Vx Bя) 2A+/-3 дои-*) A(k,c-a-b) №ец>-1; Re(c-a-b+kn/[)>-k/l; Re ikp+la) ,Re (/fcp+to) >0; | arg u | < л) Bя)*+/-2 „~k+l,2k+l [ к ЬAЛ~Р [Re (in+to) ,Re ikp+lb) >-k; Re p>0; | arg w | <л] Bл) 2 * + / -3 13. /^а.б^-ше Л) 14. (l-e~Vx 15. 16. A-е"дс)е(а+е"дс)ХХ 17. (l-e Х(а+е"х)ХХ a,b,p;-a> [Rep>0; |arg(l+u)|<n] (а,Ь,р;-ы [Re ц>-1; Re pX); |arg(l+o)|<n] (с-р) „ Гб-с+1 , 1 р [Rep>0; Re(*-c)>n-l] [Rec,Rep>0; |arg(l-u)|,|arg(l+o- I Л а /2(р,-К p+c-a-b;p+c-a,p+c-b; ) [Re c,Re p,Re(p+c-a-W>0; _„2А+/,2* к ХG2Ы.2Ы Г [Re (Ац+/а) .Re (кц+lb) >-к; Re p.Reic-a-Ь+кр/ft>0] 18. <l-e~Vx ка+Ь-с <2я)*~ „„2к,2к+1 \,к Д(А,О) , [Re ц>-1; Re p>0; |arg(l+u)|<n]
542 SPECIAL FUNCTIONS 19. A-е Ух X 2F^a,b;c\toe" -ш) [ С./М-Ц.+1 [Re ц>-1; RepX); |arg(l+o) |<n] 20. A-е X . [Re />,Re cX); | arg A 21. (l-eT'x l-e x) Гс,р,/ж , p+c-a-bl ,p+c-b\ [Re c,Re />,Re(p+c-o-6)X)] 22. A-е e lx/k) H1 Bя) H1 2 * - 2 l Ц + 1 ¦,ц,+ 1 "I i,b , c-a,c-b\ „2k.2k+l I k ХС2*+/,2*+/'Ш А(к,1-Ь) [Re ц>-1; Re рЛе(.с-а-Ь+кр/[)ХУ, | arg и | < л) - х . с - 1 а-е 1 \с , р, р+с-а-Ь — Г\ с-а,р+с-Ь X3F2 'p+c-a,p+c-b [cr>l; Re c,Re p,Re(p+c-o-W>0] THE GAUSS HYPERGEOMETRIC FUNCTION 543 24. (l-eV'x KV,Rec,Rep,Re(p+c-a-W>0 largo-Кя/' " J 25. (l-e"Vx Bя) 2 * - 2 ; Rep>0; 26. xF.{p-a+l,c-b,l,a;c+l;l-e ,l-e~ ) [d,Re c>0]
544 SPECIAL FUNCTIONS THE GAUSS HYPERGEOMETRIC FUNCTION 545 27. (ЬеУх X/1(a,b;c;-a>a-e~X)t/k) a + b - с Bл) к- : Д (*,-!*>, Д(*,0), /Ik,2к*1 к *С2к+1,2Ы М [Re (i>-l; Re pX);|arg(l+u) |<л 31. Q(d-x)a-s'x)ILX Hd-x)/k е ) Д(М-р>, 28. x) X [c ,p, p+c-a-6 X p+c-a,p+c-6j fp,p+c-a-b; -d X3F2 32. 6(d-x)(l-e Ух X (l-e'V1 X X F, (p-a+Ц+1 ,c-6, Ц+1 ,a;c+Ц+1; [Re c,Re p,Re(p+c-a-i)>0] [Re (i>-l; Rep>0] 29. Q(x-d)(l~e Ух 1 -c 'е Д(*,0) , 33. A-еУх a,b,p,fi+l; a/4\ [Re ц>-1; Rep>0] 34. A-е~Ух a + b - с Bл) Г\ к - 1 j p [a. г\рЛ\х [d.Re c,Re p,Re(c-a-b+kp/[)>0] 30. A-е pd e f : see 3.37.3.31; d,Re c,Re p,Re(c-a Rep>O;|argu|<ji]
546 SPECIAL FUNCTIONS 35. (l-efVx X jF, (a,b;c; l-Q)(l-e ) ) Bл) * - 2 l p L \a,b,c-a,c-b\ Д(*,ц,+1),Д(*,0) ; Re pX); 3.38. THE GENERALIZED HYPERGEOMETRIC FUNCTION 3.38.1. mFn«am);(bn);u>x±l/lc) and the power function Notation: ¦ а,,ап,...,а : (b ) т п m n - tfl.-У ь.+ n-m+1 2 ' Д(*,1-(ат» = Д(*,1-а1),...,Д(*,1-а„>. Гц+1, (ат); -ш/р [ш+п^О; а 4^0,-1,-2,...; /-I,2,...,m; any of the following three groups of conditions holds: 1) m-n>0; Re (i>-l; Re uX); Re p>0; 2) m-n>0; Re (i>-l; Re pX); n/2<|arg <л|<Зл/2 and for *-M, the conditions 1O,2°: see 3.38.1.28 3) m^n-1; Re ц>-1; Re p>0; о is arbitrary] 2- THE GENERALIZED HYPERGEOMETRIC FUNCTION 547 р-"-Г %x~ai а X Xn*lFn+l\ _ . . , , а.-ц,,« p/<A x г ^п+Г п+1 [а,?ЭД,-1,-2,...; /-1.2,...,ш; Re|i>-1; Re p>0; | arg u | <я] x 3. (bj;-ax) [Re (i>-l; Rep>0; u is arbitrary] 4. Q) p [Re c,Re p>0] c-1 X P [Re c,Re p>0] cosBVu)/p) I
548 SPECIAL FUNCTIONS THE GENERALIZED HYPERGEOMETRIC FUNCTION 549 c-l 7. x jF2(-n;c,<f;-M*) 8. xc'lxF2(a;c,2a;ax) (a,b;®x 0- X 2Fl\ 2 2[2a+l/2(c j .., -л 12. xc~\ c-l -п,а; ах U(a+l-n)/2 -n,b;<ax c.d -n,n+\ ;asx \,d (d-l)T(c)a> p е fY [Re c,Re p>0] Ы)прс [Re c,Re p>0] » \.P) [Re c,Re p>0] Tic) с 2 ',(•**!] [Re c,Re p,Re(p-o»0] ?2o а-с Г2а+1/2,с 2 p p Лв |_ 2a [Re c,Re p,Re(p-o)>0] дГ(с)В(д,a-n) [Re c,Re p>0] nlT(c) r(d-Ub-d , с n [Re c,Re p>0] Г(С) , _ 2ы) [Re c,Re p>0] 14. -n,n+(l±l)/2;o)x 1+1/2, с p [cos 2nq> (cp-arcsln/unrp"; Re c.Re p>0] (Ъх+\)П,...ЛЬп+\)П ^^Д'Й,*] шГ(ц+3/2) P -l л2т+1 2п+1 ; 4m"nM2/p'| [m+n^O; a ^0,-1,-2,..., /-1,2 m; Reji>-1; Re p>0; u Is arbitrary] '•"'°n „2,2/1+3 @ 1 2и+3,2и+2 р ¦aV">an+l 0,1/2, (l-ft,) ь^/г.-.л-^/г Г " \\-2,Ла~Ь)+а -1; й ?ЭД,-1,-2 [ l-i I I »+| / /-1,2 п+1; Re (i>-l; Re p>0; |argu|<n
550 SPECIAL FUNCTIONS +2 " *,. ; a 5*0,-1,-2 /-1,2 m; any of the following two groups of conditions holds: 1) ffl-n-1; Reji>-1; u,Re pX); 2) пкл-l; Re (i>-l; Re pX); о is arbitrary] 2!L_r[*If ••" O; Re ц>-1; Re p>0; 19. 20. 1 4l3/2,c,c+l/2,J 21. ^'^(^-.b2] 22. B [Re 2d A i-^d-l »(¦>) P c,Re p>0] •it Г (d ) Г + 1/2шB [Re c,Re p>0] Г( X/ [Re с)Г(с/2 (C-I) /2 [ 2j c,Re p>0] 2 c-d+ 1 Bc) d- 1 ) /4 !m1 + l/2)cx P Jd-.^p d-2c-I/2 f 2«] [o,Re c,Re P>0] THE GENERALIZED HYPERGEOMETRIC FUNCTION 551 23. 2c-l а*Ь-2с„ 5 [Re c,Re p>0; I arg ы | <л «¦ c.c+1/2 \a,b,z-a, e-l/2,c, e-6;-(ox c+1/2 [Re c,Re p>0] лГ< 8p 2 c-: -1) A-6)-1 Jb-t/2)m ?-1 x ¦<~1> [e-1 or 2; Re c,Re pX); |argu|<n] 26. x3c-' X l; ,c+l/2,c+2/3J rCC)(oa~c(p2- 27ш)-° [o>,Re c,Re p>0] -tox ) xrl» *¦] Д(*,0), x — П-1 .*.
552 SPECIAL FUNCTIONS THE GENERALIZED HYPERGEOMETRIC FUNCTION 553 ; a ?*0,-l,-2,...,/-l,2,...,m; any of the following nine groups of conditions holds: 1) m-n+l; Re (i>-l; RepX); |argu|<n; 2) m-n>0; lot, Ren>-1; Rep>0; o is arbitrary; 3) m-nX); Re(i>-1; Re uX); RepX); 4) т-п>0; k-l; Ren>-1; RepX); n/2<|arg ы|<Зя/2; 1°,2° (for m-n); 5) m-n-1; Re ji>-1; u,Re pX); 6) m-n-l; 2k-l; Ren>-1; Rep>0; 0< | arg u | <2я; 1°,2° (for m-n-l); 7) m-n-l; 2Ы; Ren>-1; RepX); о is arbitrary; 8) m<n-l; *(n-m+l)>/; Re ц>-1; Re pX); о is arbitrary; 9) m<n-l; *(n-m+l)-/; Re (i>—1; RepX); |argu|<2n; 1°,2°; 1°: If /-*(n-m+l>, then |arg(l-z (ирт'"~')*>|<л, where о z -(n-m+1) " e and for Re(fi+v)<-l/2 the following value should hold (p"'"MV)*-z . о о 2 : Any of the following three conditions holds: XX); С Я-0, Я ;*0, Re(a+v)<l/2; A.-J.-O, Re((i+v)<-l/2; С S where a гвы ' "-'n) " Л — /?| + 1 П - ttl + 1 |p|cos(argp), +|p|Sin(arg p), if arg p arg ы ^0; If argp-O, arg u^O, then X -X X , If arg р?ЭД, arg оЧ), then X -X+J.~, 1 S S If arg p-arg u-0, then Я. -Я. X , where X~- lim X , X~- lim , J.+±- lim lim argw-*+0 argp-?±O 28. XT *, ,...,*„, 1 + n+a, a, , ..., X XmFn+\ ; <ap [2+\L;l+\L+b a 7^0,-1,-2,...; /-1,2 m; any of the following four groups of conditions holds: 1) m-n+l; Re((i+a)>-l, /-1,2 n+1; Rep>0; |argu|<n; 2) m-n; Re((i+a)>-l, /-1,2 n; Re u.Re pX); 3) m-n; Re((i+a)>-l, /-1,2 n; Re Li+ 2j(ft -a ) >-2; Re p>0; |argu|-n/2; ( "~1 ) 1 4) m-n-l; Re((i+fl)>-l, /-1,2 n-1; 2Re 2(i+.2 (ft-a )+ft >-5; u,Re pX)\ I \ /-» / / "J J 29. X F \-k,(a );(ft);-— I [Re ц>*-1; RepX); о is arbitrary] m л I m-1 n xj 30. (YJK)/+< ХГ ,m-n-l X \-b ,!-(«„)) , Д(*,0), ; й ^0,-1,-2,...; /-1,2,...,m; any of the following four groups I to,)>-*, /-l,2,...,n+l; Re p>0; |argu|<n; of conditions holds: 1) m-n+l; 2) m-n; to )>-k, /-l,2,...,n; Re u.Re p>0; 3) m-n; Re(*(i+to )>-*, /-1,2 n; | arg u|-n/2; 4) m-n-l; Re(ifc|i+/a)>Hfc, /-l,2,...,n-l; Re 2b+/2 (*-a)+/ft >-2*-//2; u.RepX) [ ^ /-1 / / «J J p; Zi^ft -a) >-*-t Rep>0;
554 SPECIAL FUNCTIONS 3.38.2. F ((a );(b );/(e )) and the exponential function IK tt ttl tt Notation: : 3.38.1 р. (а~>; ~<А 1 F [Re pX); |arg(l+u)|<ji for m-n+1] 2. (l-e"Vx <«и>, р; м [Re м>-1; Re pX); |arg(l-u)|<n for m-n+1] 3- «-« -2 хг t- Д«,-р-ц) [a?4),-l,-2 /-1,2,...,т: Re (i>-l; Re p>0; |arg(l+u)|<jt for m-n+1] 4. F ((a );(* ); 1 Г"- а1'"-ат; "м P"l+i n+1 1-„* A ц й ?ЗД,-1,-2,...; /-1.2 m; Re(p+fl)>-l, /-1,2 m; any of the following four groups of conditions holds: 1) m-n+1: |arg<j|<n; 2) m-n; Re u>0; n 3) m-n; Rep+2 (A-fl)>-l; |argu|-]t/2; /-1 / / 4) m-n-1; g>X); Re 2p+ 2 Ф-а)+Ь |>-1/2 THE GENERAUZED HYPERGEOMETRIC FUNCTION 555 5. A-е BЛ)и-1)(т-"+1)/2/1 ХГ ai '• Д(*,1-(а \а 7*0.-1,-2,...; /-l,2,....m; , /-1,2 т; \а 70.,2,; /l,2,...; R(p) any of the following four groups of conditions holds: 1) m-n+1; Re (i>-l; |argu|<n; 2) m-n; Re (i>-l; Re o»O: [n t ifcp+zY (*-й) >-/; |аг8ы|-л/2; M ' <i [n-1 -I-] 2кр+1 У (Ь-а)+1Ь >-'/2 , m-n-1 ,k (*я);-шA-е fn+l. (ат); to [Re ц>-1; Re p>0; |arg(I-w)[<n for m-n+I] „ (t-l)(m-n+l)/2 M ••••« XCJ.. , ,.... L.Afc to) [Re (i>-l; Re p>0; |arg(l+u)|<]t for m-n+1]
556 SPECIAL FUNCTIONS THE GENERALIZED HYPERGEOMETRIC FUNCTION 557 Bл) ХГ '*"' ' <m~ n+ ' й ?4),-l,-2,...; /-l,2,...,m; Re(*|i+fo >>-*, /-1,2 m; any of the following four groups of conditions holds: 1) m-n+1; RepX); |argu|<n; 2) m-n; Re pX); Re uX); 3) m-n; RepX); ReLfc|i+/.2 (ft -a ) >-*-/; |arg о|-it/2; г n-1 , -, 4) m-n-1; u.RepX); Re2(fcu.+/.Z,(ft-u )+й> \>-l/2-2k\ L l I ' "J J Bл) (к-1){т-п+I)/2+1-1 '¦ •l,km+l I .,m-n-1 U s*0,-l,-2,...; /-1,2 m; p+(i?t-l,-2,-3,...; Reikp+la )X), /-1,2 m; Reji>-1; any of the following four groups of conditions holds: 1) m-n+1; |argu|<n; 2) m-n; Re uX); 3) m-n; Re *p+/.2 (ft -a ) >-Z; | arg u | -л/2; 4) m-n-1; uX); Re 2*л+/2 (*-й)+й >-//2 L '"' / / "J J 10. <l-e Bл) ХГ (*-!)(m-n+l)/2+/-l ,a. , . . . ,a X [ ,m-n-1 .Jfc ,1-р), Д(*,1-(вт» й 5*0,-1,-2,...; /-1,2 hi; р+A5*-1,-2,-3 Re(*|i+fo >>-*, /-1,2 т; Re pX); any of the following four groups of conditions holds: 1) m-n+1; |arg (*|<л; 2) m-n; Re uX); 3) m-n; ReU|i+/.2 (ft-a) \>-k-l; |argu|-n/2; 4) m-n-1; ыХ); Re 2*ц+/ Sfft-а)+й> |>-2Ы/2 11. (l-e"Vx A-p+Y) л ! (%), p, p-y; ~m+2 n+2 [Re n>-l; Re p>0] 3.38.3. F ((a )±[x]:(b )±Ы;ш) and various functions Ttl И ftl H Notation: (am) + [x]= flj + [x] ,a2+ [x] ,...,«,„ 1— exp(cre~") x u) , p-v-n [Re pX)]
558 SPECIAL FUNCTIONS 2. X] [x] ! [x] ! (flm-i>;<V=w> 1-е" -A-ere") ux e -a- [Rep>ln|(r|] [msjn+l; Rep>In|<r|; |arg(l-u) |<л for m-n+1] *-[*];(*„.,);») nlx] f(a ) + [*] 5-TxTTr\ lx [m<H+l; Rep>ln|a|; |arg(l-u) |<л for m-n+1] l; Rep>ln|a/u|; for m-n+1] 6. Ш+1-Х) к lx) 3.39. THE MacROBERT ^-FUNCTION E(u;arv;b :z) The Laplace transforms of the ^-functions can be obtained from the Section 3.38 using the relation THE MEIJER G-FUNCTION 559 Eiu;a-v;b-.z) Р ' [u<v, |z|>0] or lu-v+l; |z|>l] - > Г where the prime ' means that the term ak~ak is dropped, or from the Section 3.40 using the relation i, (V 3.40. THE MEUER G-FUNCTION Gmn\z 3.40.1. G-function.and the power function Notation: *.= j *.- J с = m + n - ¦ u+v , u.~mn Ilk 1. jTG ax (Тя) I, I A) / , *(u-v) I \a-b ?il,2 /-1,2 n, j-\ , /-1,2 m; any of the following ten groups of conditions holds: 1) c-O; u-v; uX); Re pX); Re Я.<1; 2) c>0; u>w; Re pX); 2Re[i(:(u-v)( 3) cX); u<v; RepX); |argu|-at; ku+l'kv'
560 SPECIAL FUNCTIONS ,2; ; 1,2; 4) k(v-u»l; RepX); о Is arbitrary; 5) c>0; mX); n-O; k(v-u)<l\ | arg g> | <cn; p is arbitrary; 6) cX); Re pX); |argu|<cn; 7) c<0; m+n>u; k(v-u)-i, Re p>0; |arg ы|<(т+п-и+1)я; 8) cX); и-»-I; k-l; RepX); cn<|arg o>|<(c+l)n; 1°,2°; 9) cX); wcp-l; *(!/-и)-Л RepX); «t<|arg о|<(т+л-ц+1 10) cX); mX); n-O; k(v-u)-l\ n/2<|argp|<3n/2; |argu|<cn; 1°,2° 1°. If 2*с*Й, then |arg(l-zop"'o>*)|<ji, where z-l-r-j exp -|у+Ас|яЛ and for Re(\+(i)<-l/2 the following value can hold: pu -z 2 . Any of the following three groups of conditions holds; Я X); e J. -0, X * where X-Rep--Hu| sin-r-(|arg ы|-сл), — |со| sgntarg u)cos-^(|arg и|-сл); here sgn 0-11 1, .*/' 3.40.2. (/-function and the exponential function Notation: see 3.40.1 , „mn -x 1. С? ше uv' (V (bv), -p la-b ^1,2,..., i'-l,2 n, /-1,2 m; Re(p+ft )X), /-1,2 m; ' / / any of the following five groups of conditions holds: 1) c>0; |argu|<cn; 2) c-O; u-v; Re Я.<1; ыХ); 3) cX); u>w; 2Re[(u-w)p-\] >-3; |argu|-cn; 4) с 50; u<o; | arg o> | -от; 5) c<0; m+n^u; u is arbiirary] 2. C?m0|e"J: mm 'р+ь, [т, ReH (a-i)X); Re(p+ft) Re(p+i )X) /"' / / i m J THE MEIJER G-FUNCTION 561 3. G0-* Г nX); L ; Re(p-a 1 )>-l 4. (l-e -lxl к (а..) X- (w- [a-i 5^1,2,..., /-1,2 n, /-l,2,...,m; Re(kp+lb )X), /-l,2,... any of the following six groups of conditions holds: 1) cX); Re (i>-l; |argu|<cn; 2) c4>; и-w; Re (i>-l; Re X<1; oX), o^l; 3) c-O; u-v; Re(>.-(i)<r, u-1; 4) c^O; u>v; Re (i>-l; 2Relkfa-v)p-lk]>-3l; |argo|-en; 5) c>0; n<v; Reu>-1; |argu|^cn; 6) c<0; /n+n>u; Re (i>-l; о is arbitrary] cm,kn+l X 5. (l- e'Yx к.КГ(р) (In) [ • / any of 1) cX) 2) сЧ> 3) c4> 4) 5) 6) c<0 1,2 г-1,2,...,п, /-1,2 m; к i v- и) , /-1,2 m; the following six groups of conditions holds: RepX); |argu|<cn; и-к RepX); ReX<l; oX), u^l; и-w; Re(p-X)X); u-1; >w; RepX); 2Re[t(u-w)(i-/>.]>-3Z-2jKu-ti); |argo>|-cu; <о; Re p>0; |argu|^cn; +Hztu; RepX); u is arbitrary] k Д(*,(а
562 SPECIAL FUNCTIONS THE MEIJER G-FUNCTION 563 6. A-е"Ух kxl**p Г(u+p+1) Bл) с ( к-I ) + / -1 Uku+l,ku+l\a X -//* 1 к(v-u) д«,и+о, [е-*.5*1,2,.... /-1,2 л, /-1,2 m; р+и.;*-1,-2,-3,...; Re(*p+to)X), /-1,2 m; Re(A(x-to)>-Ar-/, f-l,2,...,n; any of the following four groups of conditions holds: 1) cX); |arg ю|<сл; 2) c-O; u-v, u>0; ReX<l; 3) cX); u>v; |argu|-cn; 2Re[Hu-v)p-lk] >-3l; 4) 00; u<v; |argu|-cn: 2Re[k(.u-v)fi.+lX]<3U2k(,v-u)] 3.40.3. G-function with [x] in parameters 1-е -A-cre-Vx ; Re p>ln | a |; | arg о | <сл] 2. XG ш I» XGmn l-cre"p ; Re p>ln | a |; | arg 3. -n>l; Rep>'n|(r|; ; Rep>ln|<r|; |arg i 3.40.4. Products of G-functions Notation: see 3.40.1; C= У (c.-d.) 1. (f° X Bя) „km, kn+ Is G, с ( *- 1 ) ku+ls,kv+l s -Ix/k (о-и) 1а-й?Я,2 /-1,2 л, /-1,2 т; Шкр+Ы+1Ь)>0, ?—1,2 1, /-1,2,...,»i; any of the following six groups of conditions holds: 1) c>0; Re q>0; |argu|<cn; 2) сЧ); u-w; Re qX); Re \<l; o>0, o?M; 3) сЧ); u-ir, Re(Q-X)>0; u-l; 4) cX); u>ir, ReQ>0; |argu|-cn; / 5) cX>; u<v; Re e>0; |argo|-CT; 6) c<0; m+n >u; Re e>0; u is arbitrary] 2. G- e* Bл) с ( *- ,kn+lt (v-u) Д«,(с,)-р>,Д(*,(ви>> Д(*,(*„)) ,b(l,(dt)-p) [a-b 5^1,2 /-l,2,...,n, /-1,2 m; Re(,kp-kc+lb )>-k, /-1,2 f, ' / ' / /-1,2 m; any of the following six groups of conditions holds:
564 SPECIAL FUNCTIONS THE THETA-FUNCTIONS 565 1) c>0; Re e>0; |argo>|<cjt; 2) c-O; u-v; Re e>0; ReX<l; uX), qt^I; 3) c-0; u-v; Re<e-A.)X>; u-I; 4) cSsO; u>v; Ree>0; |argu|-cn; Re[k(u-v)(p-c)-lX]>-3l/2-k(u-u), 1-1,2 ft 5) cX); u<v. Re e>0; |argu|-cn; 6) ciO; m+n^u; Re e>0; о is arbitrary] 6. 64(v,e"x) 7. 62(ля,е х) ncoshB/pv) Sps i nh (/р"я) '^n/2; Re p>0] i — tanh(/p"n) [Re p>0] 3.41. THE THETA-FUNCTIONS 6 <z,?), 6 (z,?) 3.41.1. %.{ai/x,q), B.(v,e~x) 1. 2. /3c J|e.@)?e- [Re a,Re ?,Re(?e * /p)>0] x-0 8. в3(пя,е x) 9. 64(пя,е"х) 3.41.2. e.(v,ax) [RepX)] — CSCh(SpTt) V~p [Re p>0] 1 coshBvVp/c) Гар coshVp/ a RepX)] 3. 6,(v,e ns i nhB/pv) /pcosh (i/~pn) W2; Rep>0] 2. 62(v,ax) 1 cosh Г(l-2v)Vp/a] ~ap coshVp/ a O^v^l; Rep>0) 4. 62(v,e x) 5. e,(v,e"x) ns inh \2fp(n-2v) 1 /p^cosh n; Rep>0] ncosh[/р(я-2у) iTps i nh (Spn) n; RepX)! 3. 63(v,ax) 4. 64(v,ax) 1 sinhf (l-2v)i/JTa] ~ap s i nhVp / a 0«v^l; Rep>0] s i nhVp / a ; Rep>0]
566 SPECIAL FUNCTIONS THE FUNCTIONS v(z), v(z,q), цЧгД), X(z,q) 567 3.42. THE FUNCTIONS v(z), v(z,q), ц.(гД), цЧгД.р.), X(z,q 3.42.1. v(axm ),v(e ax), the power and exponential functions 1. \(ax) 2. xv (ax) [Re p>a>0] -*-l Г " Л Rep>flX); (s+l) -2ii 2. X v(OJC,Q) 3. 4. — -*-l [n -i (s+e+1) -I c/; Ree>-1; Rep>a>0 [Ree>-1; a,Rep>0] [Ree>-1; fl.Re p>0) 3. — e -1 5. v(e ) 6. vd-e"") v(ax) [a,Re p>0) 0 [a,Re pX)) [fl.Re p>0) [a,Re p>0] 3.42.2. v(axm ,q), v(e~ax,Q) and the power function v(ax,Q) -1 [Re q>-1; Rep>fl>0) 5. 6. 3.42.3. 1. \i(ax,X) 2. x%.(ax,X) 3. — [Ree>-1; fl,Re(p+e)>0] [ReQ>-l; fl.Re pX)) and the power function Г(Х+1) I, p a -x-i [ReX>-l; Rep>flX)] [П (J+1) -.2 *t$*; Re 1; Rep>a>0 лА^1 I tfv I U [Re X>-1; fl.Re p>0]
568 SPECIAL FUNCTIONS 3.42.4. ц(а/х,X,q), цA-е ""Я.о) and the power function 2 1. — \i.(aSx,m,2n) Vx 2. цA-е *">!,( 2m J^i [a,Re p>0] [Re e>-l; a,Re pX)) 3.42.5. X(ax~ ,q) and the power function 1. V3FX f, te.a,Re p>0] 2. -^M!. [e,a,Re pX)] 3.43. THE CONFLUENT HYPERGEOMETRIC FUNCTIONS OF TWO VARIABLES 3.43.1. The confluent hypergeometric functions and the power function (a,b; c; i, 2. д:цФ (Ь,Ъ'\ с; t,x,w) 3. хцФ ф,Ь'; с; &, ГО [Re ц>-1; Re p,Re(p-o)X)) Г(| [Re ц>-1; Re p,Re(p-y>0) Г(ц+1; tRen>-l; Re p,Re(p-?),Re(p-u)>0) THE HYPERGEOMETRIC FUNCTIONS OF TWO VARIABLES 569 ,Ъ'\ с; tx,a>x) 5. ^Ojtft; c; t,,a>x) 6. x Ф.ф; с; ^>:,с з 7. л^Ф^*; с; ^д:, 8. xc~l<b3(b; c; t,x,a>x) 9. х*Ф3Ф; c;t,,v>xl) 10. xIL4rl(a,b;c,c;t,,v>x) 11. «^(e; c,c'; U, 12. Л2(а; с,с'; Г( [Re |i>-l; Re p,Re(p-u)>0] [Re ц>-1; Re p,Re(p-5)>0) 1; Re p p [Re c, [Re ц>1 /2; Re р>21 Re/п | J Г(| [Re ц>-1; Re p.Re(p-u) >0) 1; Rep,Re(p-5)>0] [Rec>-1; Re p,Re(p-J)>0)
570 SPECIAL FUNCTIONS 13. x'V.ta; c,c; Zx,a>x) 14. x^E^(a,a ,b; с; %, 15. л:^Е2(а,й; с; ?, 16. х*Е (а,Ь;с-Л, Г(| ; Rep,Re(p~G»X)] [Re ц>-г, Rep,Re(p-o)>0] Г(ц+1) , р №ец>1/2; Re p>2|Re-/ZT| J APPENDIX. ELEMENTS OF THE THEORY OF THE LAPLACE TRANSFORMATION 1. THE LAPLACE TRANSFORM AND ITS BASIC PROPERTIES Let fix) denote a function of the real variable x, 0 < x<+°°, Lebesgue integrable over any interval iO,A). Let p = a+n be a complex number. The expression F(p) -I- A) is called a Laplace integral, whilst the function F(p) is the Laplace transform of f(x) . The basic properties of the Laplace integral are as follows. 1°. If integral A) is convergent at a point pQ, it is convergent at all points p for which Re(p-pQ)>0. Three cases are possible for the Laplace integral: A) The integral is divergent everywhere. B) The integral is convergent everywhere. C) There exists a number ac such that the integral is convergent for Rep>ac, and divergent for Rep<exc. The straight line Re p= ac on the complex plane is called the axis of convergence, whilst the number <xc is the abscissa of convergence of integral A). 2°. If integral A) is absolutely convergent at the point p = сго+гто, it is absolutely and uniformly convergent in the half-plane Rep^cr . Definitions similar to the above can be given of the axis of absolute convergence Re p=ea and the abscissa of absolute convergence <jfl. Obviously, afl>CTc and it is easy to adduce examples when ctq>ctc. 3°. If integral A) is convergent at the point p - cr + гх and if Q>0 and к > 1 are given constants, the integral is uniformly convergent in the domain Д given by the inequalities
570 SPECIAL FUNCTIONS 13. х^Ла; с,с'; 1х, 14. л^Е 15. дс11' (в,6;с;?,(вдс) 16. дс^Е (e,i;c; ?,шдс) [Re Г(ц-1 [Re |i>—I; Re p,Re(p-o)>0] [Re ц>-1; Rep,Re(p-o)>0] Г(ц+1 ) F f, 2 ^ . 4йЛ Rep>2|Re/o'|] APPENDIX. ELEMENTS OF THE THEORY OF THE LAPLACE TRANSFORMATION 1. THE LAPLACE TRANSFORM AND ITS BASIC PROPERTIES Let fix) denote a function of the real variable x, 0 < x<+°°, Lebesgue integrable over any interval @,A). Let p = ст+ix be a complex number. The expression F(p) - J( e "/(*)</* = L[/<*)] A) is called a Laplace integral, whilst the function F(p) is the Laplace transform of /(*) . The basic properties of the Laplace integral are as follows. 1°. If integral A) is convergent at a point pQ, it is convergent at all points p for which Re(p-p0)>0. Three cases are possible for the Laplace integral: A) The integral is divergent everywhere. B) The integral is convergent everywhere. C) There exists a number oc such that the integral is convergent for Re p>a , and divergent for Re p<a . The straight line Re p- a on the complex plane is called the axis of convergence, whilst the number a^ is the abscissa of convergence of integral A). 2°. If integral A) is absolutely convergent at the point p0 = сго+гто, it is absolutely and uniformly convergent in the half-plane Rep>aQ. Definitions similar to the above can be given of the axis of absolute convergence Rep=afl and the abscissa of absolute convergence <rfl. Obviously, aa>ac and it is easy to adduce examples when aa>ec- 3. If integral A) is convergent at the point pQ= aQ+ix. and if Q>0 and к > 1 are given constants, the integral is uniformly convergent in the domain Д given by the inequalities
572 ELEMENTS OF THE THEORY THE PROPERTIES OF THE LAPLACE TRANSFORMS 573 B) 4°. If ec<°°, integral A) represents an analytic function of the variable p at all points of the half-plane Rep>a? and dp' C) 5°. Let F^p), F2(p) be the Laplace transforms of functions f1(x), f2(x). If both Laplace integrals are convergent at the point p. and 1o2o D) where the constant 1>Q and n=0,l,2,..., then f{(x)=f2(x) almost everywhere. It follows from this property that the Laplace transform F(p) uniquely defines the function fix) apart from a set of zero measure. 6°. If integral A) is convergent at the point ро=сто+гто, exo>O, then lime'V ff(u)du.= 0, E) i.e. j j as 7°. If: (a) f(x) is bounded from below, i.e. there exists a positive number С such that f(x)> -C for all x^O, (b) one of the limits e со imi \f(x)dx, or 1 im a ff(x)e~axdx = lim oF(o), »0 ' <r-»°° ", ff-»°° 0 0 exists, then the other limit also exists, and F) lim- \f(x)dx= limcf(ij). G) E-»0 J (Г->оо 8 . If: (a) f(x) is bounded from below, (b) one of the limits E 00 lim±-\f(x)dx, or lima \f(x)t~axdx (8) exists, then the other exists, and lim- \f(x)dx= limcxF(cx). (9) The last two properties of the Laplace integral follow from the general theory of Tauberian theorems [103,104]. The necessary and sufficient condition for convergence of integral A) is that, for some ctq>0 and *¦*», i.e. lime~V {f(u)du = 0. A0) A1) As already mentioned, the Laplace transform uniquely defines f(x) (apart from a set of a zero measure). Let us now turn to the question of finding f(x) if F(p) is known. Theorem 1 (Inversion theorem). If integral A) has an abscissa of convergence A2) a <°°, where we have i • 11 Q-> <Ле limit y+ftj _ 1 Г P,r ™2«f J F(' y-fu 0. i) p dp ¦ 0 for x<0, f/(u)du fc 0 Hence, for almost all x, A3) y-100 where the Integral is understood in the sense of the principal value. Note. It follows from property 6° that /~(p) p A4)
574 ELEMENTS OF THE THEORY THE PROPERTIES OF THE LAPLACE TRANSFORMS 575 where fx(x) = \f(u)du, a>ac, o>0 and p=o+ii. A constant Q exists such о that |/j(*)|<QeV (ст>стс) for all x. Hence F(p) o-o, A5) Thus, if F(p) - \f(x)e'pxdx, a>oe and f{(x) = \f(u)du, A6) о о the Laplace transform of fx(x) will be F(p)/p, the Laplace integral being absolutely convergent for o>oc. Consequently, if then and F(i I P y+/oo A8) A9) y-JOO It follows from inequality A5) that the integral in A9) is absolutely and uniformly convergent in any segment а^л^й when n=3. Obviously, the greater the value of n the better is the convergence of this integral. Evaluation of the integral in A3) and A9) is performed in the majority of cases by means of a suitable deformation of the path of integration. Theorem 2. // integral A) is absolutely convergent, then lim F(o+h)=0 T-»± oo and the convergence is uniform for all о (CT>CTj>crfl). Theorem 3. // integral A) is absolutely convergent, H(z) is an analytic function in the neighbourhood of every point z=F(p) and Я@)=0, the function O(p) - H[F(p)] is expressible in the half-plane Rep>crfl by an absolutely convergent Laplace integral. Importance is attached to the criteria which decide whether a given function (analytic in the half-plane Rep>-y) is a Laplace transform. In a number of cases, Theorem 3 enables us to answer this question. For instance, oo \t~pxdx=\lp is absolutely convergent forRep>0. By using Theorem 3, we о can conclude that A/Vp+l)- 1 is also expressible in the half-plane Rep>0 by an absolutely convergent Laplace integral. Hence the function l(\/V p+l) - l]e P + l ~l js similarly expressible, and so on. These arguments imply, in particular Theorem 4. An analytic function, regular in the neighbourhood of an infinitely remote point and equal to zero at it, is expressible by an absolutely convergent Laplace integral. We shall state several theorems of a similar kind. Theorem 5. Let F(p), analytic in the half-plane Rep>y, satisfy the conditions: — = 0, o>y, B0) and the convergence in the half-plane o~^-aQ>y is uniform. 2°. For all x, -«кдк+оо, the limit CT+/(i> lir » Г FA B1) exists. 3°. The function Ф(х) is absolutely continuous and the integral: G(p) = |ф'(х)е pxdx B2) exists. Then F(p)=G(p), so that F(p) is a Laplace transform. Theorem 6. // F(p) is analytic in the half-plane Rep>y, is bounded in every half-plane Rep>a(>y, and if, for o>y, the integral {\F(o+ii)\rdT< B3) exists, then F(p) is expressible in the half-plane Re p>y by a Laplace integral.
576 ELEMENTS OF THE THEORY THE PROPERTIES OF THE LAPLACE TRANSFORMS 577 Theorem 7. // F(p), analytic in the half-plane Rep>y, satisfies the condition sup f | F(a+h) | rdx < °°, B4) 0>y where Kr<2, F(p) is expressible by a Laplace integral in this half-plane. Theorem 8. The condition OO sup {\F(o+n)\2d-c<°° B5) cr>Y r -oo is necessary and sufficient for a function F(p), analytic in the half-plane Rep>y, to be the Laplace transform of the function f(x), for which B6) Theorem 9. Let: 1°. F(p) be a regular function in any finite part of the plane of the complex variable p, excluding the set of points p , p , p,,..., Pn,— (\p{ I < \p21 < \p3\ <•••*? \pn\ <•-> (the poles of /"(p)) wAere Re Pn^<Tc for all n. 2 . The limit: y+i'u + joo B7) y-JU 7-/0 exists for y>ct , v>0. 3°. There exists a sequence of simple contours С , supported on the straight line Rep=y at the points y+i"p , V~'Pn- (These contours lie in the half-plane Rep<y, and do not pass through the poles p ). Each contour Cn encloses the origin and the first n poles p , p2, p,,..., p . 4 . For all xX), B8) Then the integral is equal to the sum of the convergent series + joo B9) -1, where rn(x) is the residue of p~ F(p)e at the point p=pn (n-1,2,...) and rAx) is the residue at zero. Remark. If p~lF(p) satisfies the conditions of Lemmas of Jordan [20,23], we naturally choose as С arcs of circles with centres at the origin. If there exist a number Q>0 and sequences of positive numbers Pn and б >0 such that П lim Pn = °°. Hm6n= 0, F(a±i$ ) П C0) <r±f and |т|<ри, C1) we can take for Cn rectangular contours of the type: Rep = V[ (~P,,^Imp^Pn); Imp = -р"и (у ^ Rep^rf); Rep = v, (-Pn^Imp^P ); Imp = p ( Theorem 10 (Titohmarsh). // the convolution of functions a(x) and b(x), continuous for 0^д:<+°°, is identically zero, at least one of these functions is identically zero. This result was proved by Titchmarsh in 1924. Several proofs of this theorem were later proposed. Theorem 11 (Convolution theorem). // the integrals xdx and F2( F{(p) 0 \f2(x)t~pxdx C2) are absolutely convergent for Rep>CTQ, F{p) = F (p)F (p) is the Laplace (p)F ( transform of and the integral C3)
578 ELEMENTS OF THE THEORY THE PROPERTIES OF THE LAPLACE TRANSFORMS 579 F(p) = J7(*)e pxdx C4) is absolutely convergent for Rep>CTfl. This theorem may also be stated as follows: Theorem 11'. If~f(p)lp,~g{p)lp and 7(PO(P>/p are the Laplace integrals of fix), g(x) and h(x) respectively, then x C5) holds almost everywhere. A remark must also be made about the above theorem. Let and We now obtain: where j(p) = 1 t~pxfx(x)dx, e'"xf2(x)dx, Р,+Д Fx(p)F2(p)= I e pxf(x)dx, min(|3 ;x-a ) /(«) = J C6) C7) C8) C9) max (a ; x-B ) I 2 The proof of C8) and C9) follows from the hypotesis of the absolute integrability of C6) and C7). Theorem 12. Let f(x) and g(x) be two given functions with growth indices and s2, i.e. , \g(x)\<Me2 . Then the Laplace transform of the product f(x)g(x) is o+ioo j^y J" F(z)G(p-z)dz, D0) D1) where a>sx and Rep>s2+a, oo cx> F(p) = je~pxf(x)dx, G(p) = ^e~pxg(x)dx. D2) 0 0 The following generalized multiplication theorem, proved in 1935 by A.M.Efros, is of great importance. oo Theorem 13. Let P(p) - Гe~pxf(x)dx and let the analytic functions G(p) and q(p) be such that G(p)e-|9(p> = \t-pxg(x,\)dx. Then OO OO F[q(p)]G(p) = D3) D4) 0 0 In particular, on putting q(p)=p, Гt~pxg(x,\)dx = e~"^G(p), i.e. g(x,%)- =g(x-%), we have (when %>x, g(x-%)=0): oo oo D5) 0 0 0 0 We shall give a number of simple propositions that are the basis of the operational method. We shall in future always use the notation F(p) = Je pXf(x)dx = L[f(x)], f(p) =p|e v f(x)dx = C[f(x)]. 0 1 . Property of linearity. Let л fix) = У с/ (x), where c. are arbitrary (complex) constants. Then Y ? ckFk(p)=F(p) D6) D7) D8) D9)
580 ELEMENTS OF THE THEORY We have formally, from D9): F(p,X+dX)-F(p,X) d dX -Ж I r2 I r2 r2 L\ f(x,X)dX\ = L[f(x,X»dK~ F(p,X)dX. J •* J 1-Х J X X i i I Similar properties hold for the Laplace-Carson transform D7). 2 . The property of similitude. We have, for any constant a: E0) E1) E2> Щ pJ p E3) 0 0 3. Laplace transformation of derivatives. We easily obtain, with the aid of integration by parts: oo oo С [/ (f) ] = p\f Щ tpxdx= apJ7(l)e-a/'lrfl= 7(ap). 0 L U(n) (x)] = p"F(p) -p""V(O) -p"/' @) -Л3/" @) -... С [/(л) (х)] = p" 7(P)-p"/@) -p""V'@) -p"~2/" @)-... E4) E5) where n is a positive integer. The dual of property 3° is 4°. Differentiation of Laplace transforms. We have, for a positive integer n: LEl = (-1)" \xnf(x)t-pxdx= (-l)"L[x7(x)], </"/<Р)-(-1)"с[х7(х)- fi E6) E7) n: THE PROPERTIES OF THE LAPLACE TRANSFORMS 581 5°. Laplace transformation of integrals. We have, for a positive integer E8) oo о 6°. Integration of Laplace transforms. If ГF(q)dq is convergent, it is the Laplace transform of f(x)/x, i.e. we have У (x) Obviously, we have for any positive integer n: oo oo oo \dq\dqv..\ P Q Q We shall mention several other formulae of a similar type. integrating the expression ±f\±\e-pxdx with respect to a from 0 to 1, we get formally 1 oo 1 r! о oo On putting ap=g, x=a\, we have Similarly, Hence E9) F0) On F1) F2) F3) F4) F5)
582 ELEMENTS OF THE THEORY THE PROPERTIES OF THE LAPLACE TRANSFORMS 583 7°. Given any positive |, assuming that f(x-%)=0 for x<l, we easily obtain: i.e. e~pV(p). F6) F7) 8 . We have for any complex q: oo oo F(p-q) = ^f(x)fT{p~4)xdx= J [f(x)e9x]e'pxdx= L\f(x)eqx} F8) О о OO 7(P-<7)=(P-?)J J и(х)е"х] e'pxdx - Г 1 U(x)f?xWpxdx = С /We'1- ?J/(E)ertrfE . F9) 0 L о J We must mention here two important theorems that enable a very large number of practical problems to be solved. Theorem 14 (First expansion theorem). // the function F(p) is regular at an infinitely remote point and has in its neighbourhood the Laurent expansion ? ck F^ = 1.-1' then Here is an entire function. f(X) = У oo с k-\ (k-l) ! к к-] x G0) G1) G2) Theorem 15. (Second expansion theorem). Let the function F(p) satisfy the following conditions: 1 . F(p) is meromorphic and regular in a half-plane Rep>sQ. 2°. There exists a system of concentric circles: cn. |p|=*n, VV- V00' on which F(p) tend to zero uniformly with respect to argp. 3 . Given any a>s , the integral a+i oo G3) Г F(p)dp G4) is absolutely convergent. Then F(p) = L i ?.res F(p)epx) , G5) *¦ p к ' where the sum of the residues is taken with respect to all the singular points p, of F(p) in order of dec Corollary. The rational function points pk of F(p) in order of decreasing modulus. m m-1 Ft ^ M<P> a'nP +a»-'P +---+aiP+a P N(P) A „'!^A n"^ ^ is the Laplace transform of the function , m<n, G6) G7) where p, are the poles of F(p), whilst n, (fc=0,l,...,s) are their multiplicities, and the sum is taken over all the poles. In particular, if all the poles of F(p) are simple, using the formula for calculating the residues at simple poles we find n M (p , ) fix)' У eV. k-\ N' (pk) If the polynomials M(p) and N(p) have real coefficients, then G8) where the first sum is over all real roots of N(p), and the second over all the complex roots with positive imaginary parts.
584 ELEMENTS OF THE THEORY Notice that each term of G7) corresponding to a complex root pk =ak+iik is expressible in the form M(Pk) N'(Pk) e * (cos \kx + i sin ¦ G9) 2. THE APPLICATION OF THE LAPLACE TRANSFORMATION TO THE SOLUTION OF DIFFERENTIAL AND INTEGRAL EQUATIONS 1. Suppose we have a differential equation of the form anuM(x)+ a^^'^(x)+...+ a{u (x)+ aQu(x)= f(x), (80) where u(x) is the required function of the independent variable д:, f(x) is the prescribed "disturbing" function, and a. (i - 0,1,2,...,n) are constant coefficients. We multiply the equation by e~px and integrate with respect to x from zero to infinity; this gives us A(p)UQ» -B(p)=F(p), where A(p) = B(p) ,p+V -+ bi p+ V and (81) On solving (81) for U(p), we get the formula: We introduce the notation THE APPLICATIONS OF THE LAPLACE TRANSFORMATION 585 Now, U(p) =F(p)R(p) The quantities R(p) and S(p) are rational fractions, which can be split by familiar methods into elementary fractions. We obtain with the aid of the convolution theorem X u(x) = U(%)r(x-l)dl + s(x). (82) о We have obtained the general solution of equation (80), containing n arbitrary constants, the values of which are determined by the initial values of the required function u(x) and its n-\ derivatives. The actual form of the solution will depend on what soft of roots the characteristic equation A(p)=Q (83) has. 1 . When all the roots of (83) are real and distinct, we have A(p) =an(p-pl)(p-p2)...(p-pn). Thus R(p) Г2 Гп •+...H — P-P, P-Px P~P2 P~Pл where the constant coefficients r and s. are given by Therefore, A'(p.) A'(p.) B(p)=u(Q) У а.р'+и'Ф) У а. р. +. ...+ и @) l+uvl-u@)a 2j l-n-l
586 ELEMENTS OF THE THEORY THE APPUCATIONS OF THE LAPLACE TRANSFORMATION 587 It M. r(x) = У reV, six) = У s.eV. k-\ k-\ On substituting (84) in (82), we get нСх>- 2 . When all the roots of (83) are zero, we have so that R(p) =- Now, 2 — a t n p n p n- 1 , . 1 д: r(x) = ^7— („-!)!• six) n-i „. n p b. n- 1 О д: ! ¦1">""t" en (n-2) ! In this case, equation (82) takes the form tt> пп 3 . When all the roots of (83) are real and equal, we have A(p)=an(p-Pl)", and now, R(p) S(p) =- B(p) n ' n-1 "- 1 P-l (84) (85) where ck are linear homogeneous functions of the initial data, determined by the familiar methods of splitting rational into elementary fractions. We find that Formula (82) can be written as 2. We now consider a system of linear differential equations with constant coefficients a^ and with auxiliary terms /;(x) which are given functions of time: du 1И1+ ai2°2+-+ el,,B«+ Л 2°2+-+ a2«V f2(x)> du (87) We multiply each equation of the system by e px and integrate with respect to x from zero to infinity. We now have: (au-P)Vl(P)+al2U2(p)+...+alnUn(p)=-[Fl(p)+ul@)],) (88) On solving this system, we get U. = к А(р) (89) where Д(р) la22-p) an\ an2 is the principal determinant of system (88),
588 ELEMENTS OF THE THEORY THE APPLICATIONS OF THE LAPLACE TRANSFORMATION 589 Ьк—JL™ '«**<">-, J+k and (an-p) ai2 ... axk_{ a{k+{ a2l (e22-p)... а2Д_, а2М а. ai-l ,2-ai-i.k-iai-l,M-ai-l .n ,2'" ,n an\ %г - an,k-i is the minor of the principal determinant, obtained by striking out the zth row and &th column. Formula (89) can therefore be written as follows: (90) l l where are rational fractions in p, the degree of the numerator &ЛР) being not j less than unity less than the degree of the denominator Д(р), equal to n. ' To expand Djk(p) into elementary fractions, we need to know the roots of the equation Д(р)=0. After finding the functions VAp) from (90) and subsequently finding uk(x), we have n . n uk(x) = ? jf.(t)dtk(x-l)dl + ? и.Ш.к(х). (91) 3. For a certain class of differential equations, the solution can be written in the form of Laplace integrals, where the independent variable appears under the integral sign as a parameter. We introduce the equation (a +b x)un\x)+(a .+b .x)uin l П tl il~ I H~ 1 ...+ (an+bnx)u(x)=0. (92) Let u(x) = \tpxv(p)dp, no assumptions being made as yet regarding the interval of integration. Now, и (x) = e p v(p)dp, x uk)(x) = §xepxpkv(p)dp - [e"*pk J On substituting these expressions in (92), we obtain t atPk»W ~ I bk^-[pkv(P)]]dp + У Ыер -0 k-0 P > k-0 (93) This equation is satisfied if the expression in the curly brackets of (93) vanishes, which yields a differential equation of the first order for the function v(p). The second term must also be zero; this condition can be satisfied by making a suitable choice for the interval of integration. Let xu"(x)+(a+b+x)u (x)+au(x) = 0. The Laplace transform u(x)= \epxv(p)dp gives the equation for v(p): v'(p) (p2+p)- v(p) [p(a+b-2)+a-l] =0. It follows from this that У(р) = (р+1)*~У''. We have from the second condition: =0, (94) where a and p are the beginning and the end of the interval of integration. We shall assume for definiteness that a>0, b>0. In this case (94) is satisfied if a = -l, p = 0. Consequently, the first integral of equation (92) has the form 0 u{(x) = J e^ (p+1) p dp. -l On putting p = 0 and a = -°°, we obtain the second integral (at least for 0 u2(x) = J - V In many cases it is a question of choosing the path of integration in the complex plane. Let us take the equation xu"(x)+ 2nu'(x)+ xu(x) =0.
590 ELEMENTS OF THE THEORY THE APPLICATIONS OF THE LAPLACE TRANSFORMATION 591 We find, as before, that The condition v(p) gives us a= -i, |3= +z. Thus On putting p=i%, we get рх, 2 ,чл- (P +1) +1) dp. -i U, (X) = I -1 After separating real and imaginary parts, we find l l -l -l The second integral contains an odd function, so that it is zero. Consequently, — 1 The second integral is obtained if we put a=-°° and E=+i or -i (x>0). On integrating from -°° to 0, then from 0 to i, we obtain u2(x) The imaginary part is therefore equal to -^ «j (x); consequently, the real part must also be a solution, i.e. u2(x) 4. A method similar to the above can also be used in the solution of partial differential equations, encountered in various branches of mathematical physics. Suppose we have the equation d2u a(x,y,z) ^ + b(x,y,z) -Л + c(x,y,z)u = f(x,y,z,t) dl1 at (95) r\ r\ 2 7 2 7 ? where V и = д и/дх + д и/ду + д uldz is the Laplace operator, (x,y,z) is a point of some domain, and t, which usually denotes time, is positive. The boundary condition has the form a(x,y,z)u + P(x,y,z) |f = if(x,y,z,t), (96) where ди/дп denotes the normal derivative. In addition, initial conditions are also given inside the domain, e.g., lim u(x,y,z,t) lim jju(x,y,z,t) =u](x,y,z). (97) (98) We multiply the initial equation (95) by e p and integrate with respect to t from zero to infinity. We asssume that the integrals oo oo [fTptu(x,y,z,t)dt, [e~ptjju(x,y,z,t)dt, etc 0 exist. In addition, о о Given these assumptions about the properties of the unknown function u(x,y,z,t), we obtain from (95), (97), (98) the equation V2U(p)+[a(x,y,z)p2 + b(x,y,z)p + c(x,y,z)]U(p) = (99) = a(x,y,z) \puQ(x,y,z)-ux(x,y,z)]+b(x,y,z)uQ(x,y,z)+F(x,y,z,p). Boundary condition (96) transforms to the following: a(x,y,z)U(p) + p(x,y,z) 311Я(„Р) = Ф(х,у,г,р). A00)
592 ELEMENTS OF THE THEORY After finding U(p) from equations (99), A00), the problem reduces to finding u(x,y,z,t) from the equation U(x,y,z,p) = Г e~"'u(x,y,z,t)dt. If U(x,y,z,p) can be found from a table of formulae already compiled, the required solution may be evaluated directly. Otherwise, the solution can be found with the aid of the inversion theorem y+/oo uU,y,z,0 = 2^j J tUU(x,y,z,%)d%. y-ioo This last integral is often evaluated with the aid of a transformation to the corresponding closed contour and application of the residue theorem. It should be noted that a number of definite assumptions are made about the properties of the function u(x,y,z,t), when forming the auxiliary equation and its boundary conditions, and when obtaining the function u(x,y,z,t) from U(x,y,z,p) with the aid of the inversion theorem. All similar assumptions about the possibility of interchanging the operation of Laplace transformation, on the one hand, and the operations of differentiation and passage to the limit, on the other, assumptions that the solution must have a definite form, can be expanded as a series, etc., are in many cases not restrictive from the physical point of view. On the other hand, the method of solution indicated can be applied formally, if the result obtained satisfies the equation, as also the initial and boundary conditions. We shall quote the solution of some actual problems. 1 . We take the one-dimensional heat conduction equation ди _д_ и dt=ffx2 A01) and suppose that a boundary value problem is posed for the segment 0<x</, with the boundary conditions and the homogeneous initial condition "U=°- A02) A03) THE APPLICATIONS OF THE LAPLACE TRANSFORMATION 593 transform: oo U(x,p)=\e~ptu(x,t)dt. (Ю4) 0 On applying the Laplace transformation to both sides of A01) and assuming that we can differentiate with respect to x under the integral sign in A04), we get dx -pU(x,p). On also applying the Laplace transformation to the equations A02), we have where We find: A05) where °k(P) = I6""' Vk 0 U (x,p) = Ф1 (p) Q ((X,p) + Ф2 (p) Q2 (X,p), sinhl-fp sinhl-fp The functions Q,U,p) and Q2(x,p) are the Laplace transforms of the functions « respectively, where 2ninv-n2n2t ) I2-- oo i • is a theta-function. On determining u(x,t) from A05) with the aid of the '-[ convolution theorem, we find that Instead of u(x,t), we introduce as the required function its Laplace Let us now take the non-homogeneous equation
594 ELEMENTS OF THE THEORY THE APPLICATIONS OF THE LAPLACE TRANSFORMATION 595 - with homogeneous initial and homogeneous boundary conditions: A06) A07) Let F(x,p) =|e ptf(x,t)dt. On applying the Laplace transformations to A06) and A07), we obtain d2U pU-F(x,p), A08) A09) dx U@,p)=*U(l,p) =0. It is easily verified that Green's function for the equation A08) with boundary conditions A09) has the form sinh(/-E)/psinhx/p inhlSp s inh(/-x)/p~sinhl/p for for i i nh//p and the solution of equation A08), satisfying conditions A09), can be written as A10) The function Г(х,|;р) is the Laplace transform of Hence it follows from A10) that / t u(x,t) =\d%{ 0 0 (Ш) 2 . Suppose we want to find a function satisfying equation A01) and the conditions u(x,0) =0 (x>0), u@,0 =/(<). A12) As before, after applying the Laplace transformation to the original equation A01) and taking into account conditions A12), we obtain d2U(x p) dx2 We write U(x,p) in the form Since U(x,p) is bounded as x->°°, we get U(x,p) =pF(p) We find from this, with the aid of the convolution theorem, . 2 u(x,t 7= I 2/7 It may easily be seen that u(x,0) =0, u@,t) =/ ^— Ге rf Ге J 3 . Let us also consider the following problem for the heat conduction equation A01). Let 0<x<°°, u(x,0) =uQ, u'@,O =hu@,t) (ft=const). A13) On applying the Laplace transformation, the original equation A01) and condition A13) reduce to the form d2U dU hU. x-0 As above, from the fact that the solution U(x,p) is bounded as x->°o, we find that
596 ELEMENTS OF THE THEORY THE APPLICATIONS OF THE LAPLACE TRANSFORMATION 597 x-0 Hence U(x,p)=y-\l- Since 12/7- where the integration is taken from x to °°, we find on using the relationship -A(t-jc)- - ¦лет that oo !T * 5. Let us now discuss an equation which is widely encountered in various fields of science, namely the Volterra integral equation of the second kind with difference kernel: f(x) A14) We shall assume that all the functions appearing in the equation have Laplace transforms: ], F(p)=L[f(x)], K(p)=L[k(x)]. We obtain with the aid of convolution: <t>(p)=F(p)+K(p)O(p). Hence -J <u(p)epxdp. All the iterated kernels for equation A14) depend on the difference x-%, so that the resolvent similarly depends on x, \. The Volterra equation of the first kind x fix) = jk(x-tL>(l)dl 0 can be solved similarly. Furthermore, the present method is applicable to a system of Volterra integral equations, of the form x cp.(x) = /.(x) + ? J kA(x-l)vk(%)dl (i-l,2,...,n). *"' 0 On applying the Laplace transformation to both sides, we get Ф.(р) = F.(p) ? (i=l,2 n). We can find Ф.(р) by solving this system of first degree equations, and the solution of the original system takes the form We shall give some examples. 1 . Abel's equation. The first integral equation in the history of mathematics (i.e. the first equation in which the unknown function cp(x) appeared under the integral sign) was obtained by Abel in 1826, when solving the so-called tautochrone problem Let Ф(р) =L[cp(x)], F(p) =L[f(x)]. On applying the usual Laplace transformation method, A15) now reduces to and
598 ELEMENTS OF THE THEORY SOME COMMENTS AND REFERENCES 599 Hence pl~aF(p) /@) pf(p)-/@) ГA-а)ра We now easily find that 1 @) , f/'(l)dt ГA-а)Г(а)| vi-a J _ i-o 0 l * e ' On recalling that r(l-a)r(a)=n/sin an, we have •' (l)dt 2 . Let us take the integral equation with logarithmic kernel: Jq>(g)ln (*-?)</? =/<*), A16) where фф is the unknown function. Let O(p)=L[<p(x)]t F(p)=L[f(x)]. We make use of the equation ¦dk\ = 1 p Aпр+аГ A17) Bearing in mind the relationship С is Eiler's constant, we obtain Hence ф(„) = _ PF(P) = _ p2F(p)-f @) _ f (Q) yy> lnp+C p(lnp+C) p(lnp+C On taking A17) into account, we find that 3 . Finally, we consider the equation A18) On applying the Laplace transformation to both sides, we get Ф(р), We have, in accordance with the last formula, sin x = о Notice that what has been said in this section may be generalized at once to an integro-differential equation of the form x фl= f(x) ao<pin)(х)+ауп~1\х)+...+апц>(х) J and to a system of such equations. 3. SOME COMMENTS AND REFERENCES The integral F(p) = Je pxf(x)dx A19) appeared for the first time in Euler's investigation A737). The regular use of the transformation of the form A19) began after the publication of Laplace's book [54]. At the present time the Laplace transformation A19) is the most usable integral transformation. An extensive list of integral transforms and tables of their factorizations in terms of Laplace transforms will be given in the handbook "Integrals and Series. Vol.5. Inverse Laplace transforms". A complete account or elements of the theory of Laplace transformation can be found in numerous books on Laplace transformation, on operational calculus or on integral transformations. Among them we mention the monographs [104, 75, 24, 100, 63, 94, 11, 25, 48, 96,46,66,10,67,98,19,
600 ELEMENTS OF THE THEORY 90, 50, 52, 102, 58,12]. Here and later on we arrange references in accordance with dates of publication. Rather complete surveys of publications are contained in [18, 90, 20, 13, 12] (see also [5, 43] ). Various forms of inversion formulas for Laplace transform and conditions of their applicability were obtained in [77,49,8,78,9, 24, 100, 79, 17, 95, 87, 48, 86, 88, 76, 10, 1, 34, 102, 2]. Numerous applications of the Laplace transformation are described in books [24, 45, 101, 64, 41, 26, 90, 20, 51, 89, 30, 22, 23, 16, 2, 92] and others. Information on multidimensional Laplace transformations can be found in [97, 18, 20, 74, 14] (for corresponding references see [14]). Tables of Laplace transforms are contained in handbooks [31, 64, 17, 37, 96, 65, 71, 19, 84, 21, 29, 70, 73, 74, 12] and in tables of integrals where such formulas are often given in a different form [ 7, 44, 56, 69, 72, 73, 40, 42, 3, 80-82]. The most complete tables are those in [80-82] and the present handbook. They are constructed on the basis of a general method of calculating the integrals with elementary and special functions of hypergeometric type [57, 58, 82, 83]. These functions are special cases of the Meijer G-function. The theory of this function can be found in [62, 36,61,57,58]. The most complete tables of special cases of the G-function are given in [82]. The most complete bibliography on evaluation of integrals and various integral transforms is given in [83]. BIBLIOGRAPHY 1. N. I. Akhiezer, Lectures in the Theory of Approximation, Nauka, Moscow, 1965. 2. N. I. Akhiezer, Lectures on the Integral Transforms, Vishcha Shkola, Kharkov, 1984. 3. A. Apelblat, Table of Definite and Infinite Integrals, Elsevier, Amsterdam, 1983. 4. G. Ascoli, Transformazione de Laplace, Gheroni, Torino, 1951. 5. H. Bateman, Report on the history and present state of the theory of integral equations, in: Report of the British Association, A910), 354-424. 6. L. Berg, Introduction to the Operational Calculus, North Holland, Amsterdam, 1967. 7. D. Bierens de Haan, Nouvelles tables d'integrales definies, Hafner, New York, 1957. 8. R. P. Boas, Jr., and D. V. Widder, The iterated Stieltjes transform, Trans. Amer. Math. Soc. 45A939), no. 1, 1-72. 9. R. P. Boas, Jr., and D. V. Widder, An inversion formula for the Laplace integral, Math. Duke J., 6A940), 1-26. 10. S. Bochner, Lectures on Fourier integrals, Princeton Univ. Press, Princeton, N. J., 1959. 11. S. Bochner and К. С Chandrasekharan, Fourier transforms, Princeton Univ. Press, Princeton, N. J., 1949. 12. Yu. A. Brychkov and A. P. Prudnikov, Integral transforms of generalized functions, Gordon and Breach, New York, 1989. 13. Yu. A. Brychkov, A. P. Prudnikov and V. S. Shishov, Operational calculus, ItogiNauki i Tekhniki. Mat. Anal., VINITI AN SSSR 16A979), 99-148. 14. Yu. A. Brychkov, H.-J. Glaeske, A. P. Prudnikov and Vu Kim Tuan, Multidimensional Integral Transforms, Gordon and Breach, New York, 1991.
600 ELEMENTS OF THE THEORY 90,50,52,102,58,12]. Here and later on we arrange references in accordance with dates of publication. Rather complete surveys of publications are contained in [18, 90, 20, 13, 12] (see also [5, 43]). Various forms of inversion formulas for Laplace transform and conditions of their applicability were obtained in [ 77,49, 8, 78,9, 24, 100, 79, 17, 95, 87, 48, 86, 88, 76, 10, 1, 34, 102, 2]. Numerous applications of the Laplace transformation are described in books [24, 45, 101, 64, 41, 26, 90, 20, 51, 89, 30, 22, 23, 16, 2, 92] and others. Information on multidimensional Laplace transformations can be found in [97, 18, 20, 74, 14] (for corresponding references see [14]). Tables of Laplace transforms are contained in handbooks [31, 64, 17, 37, 96, 65, 71, 19, 84, 21, 29, 70, 73, 74, 12] and in tables of integrals where such formulas are often given in a different form [ 7, 44, 56, 69, 72, 73, 40, 42, 3, 80-82 ]. The most complete tables are those in [80-82] and the present handbook. They are constructed on the basis of a general method of calculating the integrals with elementary and special functions of hypergeometric type [57, 58, 82, 83]. These functions are special cases of the Meijer (/-function. The theory of this function can be found in [62, 36,61,57,58]. The most complete tables of special cases of the G-function are given in [82]. The most complete bibliography on evaluation of integrals and various integral transforms is given in [83]. BIBLIOGRAPHY 1. N. I. Akhiezer, Lectures in the Theory of Approximation, Nauka, Moscow, 1965. 2. N. I. Akhiezer, Lectures on the Integral Transforms, Vishcha Shkola, Kharkov, 1984. 3. A. Apelblat, Table of Definite and Infinite Integrals, Elsevier, Amsterdam, 1983. 4. G. Ascoli, Transformazione de Laplace, Gheroni, Torino, 1951. 5. H. Bateman, Report on the history and present state of the theory of integral equations, in: Report of the British Association, A910), 354-424. 6. L. Berg, Introduction to the Operational Calculus, North Holland, Amsterdam, 1967. 7. D. Bierens de Haan, Nouvelles tables d'integrales definies, Hafner, New York, 1957. 8. R. P. Boas, Jr., and D. V. Widder, The iterated Stieltjes transform, Trans. Amer. Math. Soc. 45A939), no. I, 1-72. 9. R. P. Boas, Jr., and D. V. Widder, An inversion formula for the Laplace integral, Math. Duke J., 6A940), 1-26. 10. S. Bochner, Lectures on Fourier integrals, Princeton Univ. Press, Princeton, N. J., 1959. 11. S. Bochner and К. С Chandrasekharan, Fourier transforms, Princeton Univ. Press, Princeton, N. J., 1949. 12. Yu. A. Brychkov and A. P. Prudnikov, Integral transforms of generalized functions, Gordon and Breach, New York, 1989. 13. Yu. A. Brychkov, A. P. Prudnikov and V. S. Shishov, Operational calculus, Itogi Nauki i Tekhniki. Mat. Anal., VINITI AN SSSR 16A979), 99-148. 14. Yu. A. Brychkov, H.-J. Glaeske, A. P. Prudnikov and Vu Kim Tuan, Multidimensional Integral Transforms, Gordon and Breach, New York, 1991.
602 BIBLIOGRAPHY BIBLIOGRAPHY 603 15. J. Cossar and A. Erdelyi, Dictionary of Laplace transforms, Admiralty Computing Service, London, 1944-1946. 16. B. Davies, Integral Transforms and Their Applications, Springer-Verlag, Berlin, 1978. 17. V. A. Ditkin and P. I. Kuznetsov, Handbook of Operational Calculus, Gostehizdat, Moscow, Leningrad, 1951. 18. V. A. Ditkin and A. P. Prudnikov, Operational Calculus, Itogi Nauki i Tekhniki. Mat. Anal. 1964, VINITI AN SSSR, 1966, 7-75. 19. V. A. Ditkin and A. P. Prudnikov, Integral Transforms and Operational Calculus, Pergamon Press, Oxford, 1966. 20. V. A. Ditkin and A. P. Prudnikov, Integral Transforms, Itogi Nauki i Tekhniki. Mat. Anal. 1966, VINITI AN SSSR, 1967, 7-82. 21. V. A. Ditkin, A. P. Prudnikov, Formulaire pour Ie calcul operationnel, Masson, Paris, 1967. 22. V. A. Ditkin and A. P. Prudnikov, Integral Transforms and Operational Calculus, Nauka, Moscow, 1974. 23. V. A. Ditkin and A. P. Prudnikov, Operational Calculus, Vysshaya Shkola, Moscow, 1975. 24. G. Doetsch, Theorie und Anwendung der Laplace-Transformation, Springer-Verlag, Berlin, 1937 Bnd ed. in New York A944)). 25. G. Doetsch, Handbuch der Laplace-Transformation, Birkhauser-Verlag, Basel, Stuttgart, Bd.l, 1950, Bd.2, Abt. 1, 1955, Bd. 3, Abt. 2, 1956. 26. G. Doetsch, Einfuhrung in Theorie und Anwendung der Laplace- Transformation. Ein Lehrbuch fur Studieren de der Mathematik, Physik und Ingenieurwissenschaft, Birkhauser-Verlag, Basel, 1958. 27. G. Doetsch, Introduction a I'utilisation pratique de la transformation de Laplace, Gauthier-Villars, Paris, 1959. 28. G. Doetsch, Anleitung zum praktischen Gebrauch der Laplace- Transformation und der Z-Transformation, Dritte Aufl., Oldenbourg, Munchen, 1967. 29. G. Doetsch, Guide to the Applications of the Laplace and Z-Transforms, 2nd ed., Van Nostrand-Reinhold, London, 1971. 30. G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation, Springer-Verlag, Berlin, 1974. 31. G. Doetsch, H. Kniess, und D. Voelker, Tabellen zur Laplace- Transformation, Springer-Verlag, Berlin, 1947. 32. F. Dymek and J. F. Dymek, О pewnych transformatach Laplace'a i pewnych nieskonczonych szeregach potegowych, Mat. Stos. Rosz. PTMO) 26A985), 49-78. 33. F. Dymek and J. F. Dymek, On selected Laplace transforms, Zesz. nauk AGH. Opusc. math., A987), no. 3, 9-28. 34. M. M. Dzhrbashian, Integral Transforms and Representation of Functions in the Complex Domain, Nauka, Moscow, 1966. 35. A. M. Efros and A. M. Danilevskii, Operational Calculus and Contour Integrals, GNTIU, Kharkov, 1937. 36. A. Erdelyi (ed.), Higher Transcendental Functions, Vols. 1-3, [Bateman Manuscript Project], McGraw-Hill, New York, 1953-1955. 37. A. Erdelyi (ed.), Tables of Integral transforms, Vols. 1-2, [Bateman Manuscript Project], McGraw-Hill, New York, 1954. 38. A. Erdelyi, Operational Calculus and Generalized Functions, Holt, Rinehart and Winston, New York, 1962. 39. H. Exton, Multiple Hypergeometric Functions and Applications, Ellis Horwood, Chichester, 1976. 40. H. Exton, Handbook of Hypergeometric Integrals: Theory, Applications, Tables, Computer Programs, Ellis Horwood, Chichester, 1978. 41. P. Funk, H. Sagan and F. Selig, Die Laplace-Transformation und ihre Anwendung, F. Deuticke, Wien, 1953. 42. I. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York, 1980. 43. J. L. Griffith, On some aspects of integral transforms, /. and Proc. Roy. Soc, N.S., Wales 93A959), no. 1-2, 1-9. 44. W. Grobner und N. Hofreiter, Integraltafel, Teil II, Bestimmte Integrale, Springer-Verlag, Wien, Innsbruck, 1958. 45. P. Herreng, Les applications du calcul operationnel, Courcier, Paris, 1944. 46. E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc, Providence, 1957. 47. I. I. Hirschman, Jr., A new representation and inversion theory for the Laplace integral, Duke Math. J. 15A948), no. 2, 473-494. 48. I. I. Hirschman, Jr. and D. V. Widder, The Convolution Transform, Princeton Univ. Press, Princeton, N. J., 1955. 49. P. Humbert, Le calcul symbolique, Hermann, Paris, 1934. I
604 BIBLIOGRAPHY 50. К. S. Kolbig, Laplace transform, Lectures given in the Acad. Training Programme of CERN 1968-1969, gen., 1969, 1-160. 51. G. A. Korn and Т. М. Korn, Mathematical Handbook for Scientists and Engineers. Definitions, theorems and formulas for reference and review, McGraw-Hill, New York, 1968. 52. G. Krabbe, Operational Calculus, Springer-Verlag, Berlin, 1970. 53. E. Labin, Calcul operationnel, Masson et Cie, Paris, 1949. 54. P. S. Laplace, Theorie analytique des probabilites, Courtier, Paris, 1812. 55. C. F. Iindman, Examen des nouvelles tables d'integrales definies de M. Bierens de Haan, Hafner, New York, 1944. 56. Y. L. Luke, The Special Functions and Their Approximations, Vol. 1, Academic Press, New York, 1969. 57. 0. I. Marichev, A method for calculating integrals of hypergeometic functions, Dokl. Akad. Navuk BSSR 25A981), no. 7, 590-593. 58. O. I. Marichev, Handbook of Integral Transforms of Higher Transcendental Functions. Theory and Algoritmic Tables, Ellis Horwood, Chichester, 1982. 59. O. I. Marichev, Asymptotic behavior of functions of hypergeometric type, Vestsi Akad. Navuk BSSR. Ser. Fis.-mat. navuk A983), no. 4, 18-25. 60. A. M. Mathai and R. K. Saxena, Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Lect. Notes Math., Vol. 348, Springer-Verlag, Berlin, 1973. 61. A. M. Mathai and R. K. Saxena, The Я-function with Applications in Statistics and other Disciplines, Halsted Press Book, New York, 1978. 62. N. W. McLachlan, Complex Variable and Operational Calculus with Technical Applications, Macmillan, New York, 1946. 63. N. W. McLachlan, Modern Operational Calculus with Applications in Technical Mathematics, Macmillan, London, 1948. 64. N. W. McLachlan and P. Humbert, Formulaire pour Ie calcul Symbolique, 2nd ed., Gauthier-Villars, Paris, 1950. 65. N. W. McLachlan, P. Humbert and L. Poli, Supplement au Ie calcul symbolique, Mem. sci. math., Gauthier-Villars, Paris, 1959. 66. J. Mikusinski, Operational Calculus, Pergamon Press, London, 1957. 67. F. D. Murnaghan, The Laplace Transform, Spartan Books, Washington, 1962. 68. F. Oberhettinger, Tabellen zur Fourier Transformation, Springer-Verlag, Berlin, 1957. BIBLIOGRAPHY 605 69. F. Oberhettinger, Tables of Bessel Transforms, Springer-Verlag, New York, 1972. 70. F. Oberhettinger and L. Badii, Tables of Laplace Transforms, Springer- Verlag, Berlin, 1973. 71. F. Oberhettinger and T. P. Higgins, Tables of Lebedev, Mehler and generalized Mehler transforms, Math. Note no. 246, Boeing Sci. Res. Lab., Seattle, Washington, 1961, 1-48. 72. Sh. Okui, Complete elliptic integrals resulting from infinite integrals of Bessel functions, I, Res. Nat. Bur. Stand. B78U974), no. 3, 113-135. 73. Sh. Okui, Complete elliptic integrals resulting from infinite integrals of Bessel functions, II, Res. Nat. Bur. Stand. В79Ц975), no. 3-4, 137-170. 74. Sh. Okui, Tables of one- and two-dimensional inverse Laplace transforms of complete elliptic integrals, Res. Nat. Bur. Stand. B8K1977), no. 1-2, 5-39. 75. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc., New York, 1934. 76. R. S. Pinkham, An inversion of the Laplace and Stieltjes transforms utilizing difference operators, Trans. Amer. Math. Soc. 83A956), no. 1, 1-18. 77. M. Plancherel, Integraldarstellungen willkurlicher Funktionen, Math. Ann. 67A909), 519-534. 78. H. Pollard, Real inversion formulas for Laplace integrals, Duke Math. J. 7A940), 445-452. 79. H. Pollard, Integral transforms, Duke Math. J. 13A946), 307-330. 80. A. P. Pmdnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series. Vol. 1: Elementary Functions, Gordon and Breach, New York, 1986. 81. A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series. Vol. 2: Special Functions, Gordon and Breach, New York, 1986. 82. A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series. Vol. 3: More Special Functions, Gordon and Breach, New York, 1990. 83. A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Calculation of integrals and Mellin transformation, Itogi Nauki i Tekhniki. Mat. Anal., VINITI AN SSSR 27A989), 3-146. 84. G. E. Roberts and H. Kaufman, Table of Laplace Transforms, McAinsh, Toronto, 1966. 85. P. G. Rooney, A generalisation of the complex inversion formula for Laplace transformation, Proc. Amer. Math. Soc. 5A954), no. 3, 385-391. 86. P. G. Rooney, On an inversion formula for the Laplace transformation, Canad. J. Math. 7A955), no. 1, 101-115.
606 BIBLIOGRAPHY 87. F. Runs, Eine Umkehrformel zur Laplace-Transformation, Wiss. Z. Univ. Rostock. Math.-naturwiss. Reihe 4A954-1955), no. 1, 23-26. 88. E. J. Scott, Transform calculus with an introduction to complex variables, Harper and Brothers, New York, 1955. 89. I. Z. Shtokalo, Operational Calculus: Generalization and Applications, Naukova Dumka, Kiev, 1972. 90. M. G. Smith, Laplace Transform Theory, D. Van Nostrand, London, 1966. 91. I. N. Sneddon, Fourier Transforms, McGraw-Hill, New York, 1951. 92. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood, Chichester, 19S5. 93. W. T. Thompson, Laplace Transformation, Prentice-Hall, New York, 1950. 94. E. C. Titchmarsh, An Introduction to the Theory of Fourier Integrals, 2nd. ed., Oxford Univ. Press, 1948. 95. L. Toscano, Sul complemento della funzione gamma incomplete nel calcolo simbolico, Boll. Unione mat. ital. 10A955), no. 4, 484-488. 96. B. Van der Pol and H. Bremmer, Operational Calculus Based on the Two-sided Laplace Transform, Cambridge Univ. Press, Cambridge, 1955. 97. D. Voelker und G. Doetsch, Die Zweidimensonale Laplace-Transformation, Birkhauser-Verlag, Basel, 1950. 98. K. W. Wagner, Operatorenrechnung und Laplacesche Transfonnationen nebst Anwendungen in Physik und Technik, 3. verb. Auft. Bearb. Thoma Alfred, Leipzig, 1962. 99. D. V. Widder, The inversion of the Laplace integral and the related moment problem, Trans. Amer. Math. Soc. 36A934), no. 1, 107-201. 100. D. V. Widder, The Laplace Transform, Princeton Univ. Press, Princeton, N. J., 1946. 101. D. V. Widder, A symbolic form of an inversion formula for a Laplace transform, Amer. Math. Monthly 55A948), no. 8, 489-491. 102. D. V. Widder, An Introduction to Transform Theory, Academic Press, New York, 1971. 103. N. Wiener, The operational calculus, Math. Ann. 95A926), 557-584. 104. N. Wiener, The Fourier integral and certain of its applications, Cambridge University Press, 1933. LIST OF NOTATIONS OF FUNCTIONS AND CONSTANTS z I is the function arccos z, arcsin z, arccot z, arctan z are the inverse trigonometric functions, arccosh z, arcsinh z, arccoth z, arctanh z are the hyperbolic functions, argz is the argument of the complex number z (z= I z I e'arg z) В are the Bernoulli numbers. n В (z) are the Bernoulli polinomials. beiv(z), berv(z), bei(z)=beio(z), ber(z)=berQ(z), (berv(z)+ibeiv(z) = =/ (e *' z)) are the Kelvin functions. Bi(z)=j|r/_1/3f|z3/2]+/l/3f-2fz3/2]l is the Airy function. C=-i|)(l)=0.5772156649... is the Euler-Masceroni constant. OO C(x)= —— Г Г1 2castdt is the Fresnel cosine integral. V2n Q oo C(x, v)= i"~ cos t dt [Rev<l] is the generalized Fresnel cosine integral. x к {2%) n ( 1 1-z^l Cn(z)= j—2Fl -n, n+2X; K+-~; ~ are the Gegenbauer polynomials. x chi(x)=C+ln x+\ t (casbt-l)dt is the hyperbolic cosine integral. 0 oo ci(x)=- t cos t dt is the cosine integral. i z - i z cos z=cosh(z'0=- is the trigonometric function.
606 BIBLIOGRAPHY 87. F. Runs, Eine Umkehrformel zur Laplace-Transformation, Wiss. Z. Univ. Rostock. Math.-natunviss. Reihe 4A954-1955), no. 1, 23-26. 88. E. J. Scott, Transform calculus with an introduction to complex variables, Harper and Brothers, New York, 1955. 89. I. Z. Shtokalo, Operational Calculus: Generalization and Applications, Naukova Dumka, Kiev, 1972. 90. M. G. Smith, Laplace Transform Theory, D. Van Nostrand, London, 1966. 91. I. N. Sneddon, Fourier Transforms, McGraw-Hill, New York, 1951. 92. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood, Chichester, 19S5. 93. W. T. Thompson, Laplace Transformation, Prentice-Hall, New York, 1950. 94. E. С Titchmarsh, An Introduction to the Theory of Fourier Integrals, 2nd. ed., Oxford Univ. Press, 1948. 95. L. Toscano, Sul complemento della funzione gamma incompieta nel calcolo simbolico, Boll Unione mat. Hal. 10A955), no. 4, 484-488. 96. B. Van der Pol and H. Bremmer, Operational Calculus Based on the Two-sided Laplace Transform, Cambridge Univ. Press, Cambridge, 1955. 97. D. Voelkerund G. Doetsch, Die Zweidimensonale Laplace-Transformation, Birkhauser-Verlag, Basel, 1950. 98. K. W. Wagner, Operatorenrechnung und Laplacesche Transformationen nebst Anwendungen in Physik und Technik, 3. verb. Auft. Bearb. Thoma Alfred, Leipzig, 1962. 99. D. V. Widder, The inversion of the Laplace integral and the related moment problem, Trans. Amer. Math. Soc. 36A934), no. 1, 107-201. 100. D. V. Widder, The Laplace Transform, Princeton Univ. Press, Princeton, N. J., 1946. 101. D. V. Widder, A symbolic form of an inversion formula for a Laplace transform, Amer. Math. Monthly 55A948), no. 8, 489-491. 102. D. V. Widder, An Introduction to Transform Theory, Academic Press, New York, 1971. 103. N. Wiener, The operational calculus, Math. Ann. 95A926), 557-584. 104. N. Wiener, The Fourier integral and certain of its applications, Cambridge University Press, 1933. LIST OF NOTATIONS OF FUNCTIONS AND CONSTANTS ^"aiJf *1/зг12 j is the ^^ function arccos z, arcsin z, arccot z, arctan z are the inverse trigonometric functions, arccosh z, arcsinh z, arccoth z, arctanh z are the hyperbolic functions, argz is the argument of the complex number z (z= | z | e arg z) В are the Bernoulli numbers. n В (z) are the Bernoulli polinomials. beiv(z), berv(z), bei(z)=beiQ(z), ber(z)=berQ(z), (berv(z)+zbeiv(z) = =/v(e3m/4z)) are the Kelvin functions. В1B)=Я|/-1/зA z3/2)+/i/3(fz3/2)] is the Afcy hncxion- C=-ifi(l)=0.5772I56649... is the Euler-Masceroni constant. oo C(x)=—— С cos t dt is the Fresnel cosine integral. oo C(x, v)= Г tv'lcostdt [Rev<i] is the generalized Fresnel cosine integral. X Ckn(z)= p^- F \-n, n+2X; X+ A; —i^-\ are the Gegenbauer polynomials. X chi(x)=C+Inx+\ t (cosh t-I) dt is the hyperbolic cosine integral, о oo ci(x)=- t cos i dt is the cosine integral. i г - i г cos z=cosh(z'O=- is the trigonometric function.
608 LIST OF NOTATIONS z - z cosh z= e te is the hyperbolic function. cot z= c . s—=z coth (zz) is the trigonometric function. S 1 П Z . z - z coth z= c?s. z = —z—-—- is the hyperbolic function, esc z= —: is the trigonometric function. я/2 . 2 Г s in idi- is the complete elliptic integral. J I 7 T" 0 4 l-k sin t Z>v(z)=2v/Vz/V[-y,-i;-|] is the parabolic-cylinder function. я/2 Г I 2" 2" Щк)= М1-Л sin t dt is the complete elliptic integral of the second kind. A = Nl-i sin t dt is the elliptic integral of the second kind. E are the Euler numbers. re E (z) are the Euler polynomials. л Ev(z)=— sin(v*-zsin t) dt is the Weber function. 0 x Ei(x)= fle dt is the exponential integral. is the MacRobert ?-function. e=2.7I828I828459... ez=expz is the exponential function. LIST OF NOTATIONS 609 2 Г -t1 - e dt i 1 2 Г -t erf(x)=—- e dt is the error function. ^1 сНс(х)»1-егКх)я— e dt is the complementary error function. 2 Г t* erfi(x)= — e dt is the error function of an imaginary argument. оЛ l-*2sin: is the elliptic integral of the first kind. fc-0 1v-]J' [ReoReiX); |arg(l-z) |<я] is the Gauss hypergeometric function. °°(fl ) (fl ) . . . ( U ) jfe = ^ (h* )—Th—) ( bP )—T^~ ^s ^e generalized hypergeometric function. (a)kz FAa;b;z)= У . < .—т-у is the Kummer confluent hypergeometric 1 t - 0 * " ' к K ¦ function. n'zi z«>= (Л1 I n 1 n 1 n 1 re is the Lauricella function.
610 LIST OF NOTATIONS F'cm(a,b;Cl,..., ce; z,, ...,*„)- I 1 в 1 1 n is the Lauricella function. F.(...;z, 5) [/-1,2,3,4] are the Appell functions. Fj(a, b, b'\ c;z, i (c) 'Л! П ~ (a) .(*>,(*') , *,' F.(a, b, b'\ c, c'; z, О- У — ; ^yf, [ИМ6КП 2 *,T-0 (с) (с ) , • LIST OF NOTATIONS 2 dn - 2 H (z)=(-l)"ez e z are the Hermite polynomials. " dz" 611 modified Bessel function of the first kind (Bessel function of an imaginary argument). Im z is the imaginary part of the complex number z=x+iy (Im z=y). i ( \ v ( ^\ ¦^v(z)=7T^—ГТ T 0^1 V+I'~f] is the BesseI function of the first kind. Jv(z)=— cos(v*-z sin 0 df is the Anger function, о OO /z'v(jc)= Г r'/v(O d* is the integral Bessel function of the first kind. X oo F3ia,a,b,b';c;z,Q- У (a) (a') .(*),(*') , к *^^ LfT7 л + fT7 V 4 TYT<i] t с) (с ) у _LJJ—- = 0.9159655942... is the Catalan constant. я/2 dt К 0 ^ l-/t2sin2< nt/_v(z)-/v(z)] 'dt is the complete elliptic integral of the first kind. (z) 2sinvi lv^"J' лв^ is the MacDonald function (modified Bessel function of the third kind). а , ..., as , Л is the MeiJer ^-function. f,v+j;-^) is the Struve function. A)()J (z)+iY (z)H^\ the third kind (Hankel functions of the first and second kinds). HA)(z)=J (z)+iY (z),H^\z)=J4(z)-iY4(z) are the Bessel functions of I r (v / 2+ 1 ) is the Bateman function. keiv(z), kerv(z), kei(z)=kei (z), ker(z)=ker (z) (kerv(z)+tkeiv(z)=e"VJl'V2^v(eJl'/4z)) are the Kelvin functions. OO Kiv(x)= \ t~lKvU) dt is the integral Bessel function of the third kind.
612 LIST OF NOTATIONS Lv(z)=e"(v+1):i;/2Hv(eIl'/2z) is the modified Struve function. Ln(z)=L°n(z) are the Laguerre polynomials. - \ 1 , П Ln(z)=- f (zn+ e'z) are the generalized Laguerre polynomials. ' dz г ГГ' dt r(v)J e«_z [Rev>0; |arg(l-z)|<n] is the polylogarithm of order v. x li(z)=Ei(ln z), li(x)= -s—j is the logarithmic integral. 0 lnz=In |z|+zargz is the natural logarithm [z-|r|e""e**'2JU), Ы),±1,±2,...] Mx (z)=zfl+1/Vz/21i:'1((i-x+i;2(i+l;z) is the Whittaker confluent hypergeometric function. °-w-U [n/2] 71 V G1-*- ! "I 2Л-П-1 are the Neumann polynomials. P (z)= ; (z -1)" are the Legendre polynomials. n n\ dzn Pv(z)=P^(z)=2F1(-v, l+v;l;- function of the first kind. [|argd+z)|<n] is the Legendre z + l z-1 ц/2 Ц/2 [|arg(z±l)|<n] T» is the associated Legendre function of the first kind. LIST OF NOTATIONS 613 (-1)" 2"n! are Ше Jacobi polynomials. Q (z)=Q (z) is the Legendre function of the second kind. Паг8(х±1)|.|аг8г|<л] is the associated Legendre function of the second kind. Re z is the real part of the complex number z=x+iy (Re z=x). x S(x)=-^— \finsintdt is the Fresnel sine integral. S(x, v)= \tv~ sin tdt [Rev<l] is the generalized Fresnel sine integral. x [n/ 2] . , _ . r \2k-n S (z)= У Kn~7.. ' 4 , 5.(z)=l are the Schlafli polynomials. " к -о k • \ L i + 2Ц 'г Lommel function. Ц. vV ' ((i-V+1 ) (U.+ V+1 ) 1 2[1' Lommel function. . z2) ' 4 J 1S the
614 LIST OF NOTATIONS sec x= is the trigonometric function. со s z sech z= L— is the hyperbolic function. X shi(x)= f sinh t dt= -i SHix) is the hyperbolic sine integral. i(x)= f sin t dt is the sine integral, о oo i(x)=Si(jc)-^=- fr'suWd* is the sine integral. t z _ - i z sin z= -i sinh(iz)=- =4 is the trigonometric function. z_ - z sinh z= ——2^ is the hyperbolic function. Г 1, x>0, sgn x= \ 0, x=0, [-1, x<0 rn(z)=cos(n arccos z)= [(z-nl z -l)"+(z—\z -1)"] are the Chebyshev polynomials of the first kind. tan z= ff?4= -itanh(iz) is the tangent function. tanh z= С О S h s ' n z — cosnz U (z) e + e sin[U+I)arccosz] is the hyperbolic tangent function. ^ Cheb hev poIynomials of I 1-г ¦ the second kind. L-x+i, 2|x+l; z| is the Whittaker confluent г. ) hypergeometric function. UST OF NOTATIONS 615 cosvn/ (z)-/ (z) Y(z) = У (г)=НтУ (z) [n-0, ±1, ±2,...] is the Neumann function n v (Bessel function of the second kind). yn(z)~2^Q\~n' rt+^'' ~ ¦§ are ^e Bessel polynomials. oo y/v(x)= Г r'yv@ dt is the integral Bessel function of the second kind. B(a, «s the beta function. o F(z)= Hz~ e~'d< [Rez>o] is the gamma function, о oo F(v, x)= <v e dt is the complementary incomplete gamma function, x x •y(v, x)= r(v)-F(v, x)= \t"~ e~'dt is the incomplete gamma function. - Л0, nt ^ n, . m = n is the Kronecker symbol.
616 LIST OF NOTATIONS IJST OF NOTATIONS 617 ?(z)= У — [Rez>i] is the Riemann zeta function. k-i kz 1 t,(z,v) = У —=¦ [Rez>l; v^O, -1, -2, ...] is the k-0(v+k) generalized Riemann zeta function. e.(z, q) are the elliptic theta functions. (-1) q cos 2kz J 1(r+l) r Ji 'd< OjU, <?)=2 2 *+1/2) sinB*+l)z OO 2 QAz, q)=2 У ^( +I 2) cosB^+l)z *-0 к) о A-vs in' S (a, a, b; c; w, z)= У 6.(z, ^)=9 (z, i e = Ц-Г *-0 (д:+<:+1/2) Q S <e,6;c;w,z)- У -т-г ^jyT Пи-1<Н «. * ФB, S, l>)= [|z|<l;v?iO, -1, -2, ...] oo ^a'Jt+/^O''Jtw* I ^ (+1) exp - u+ii Ф2F, 6 ; с; w, : ! / I a, c; z)=r[[^_J ^(a; c; z)+r[c1]21-c1F1(l+a-C; 2-е; z) is the Tricomi confluent hypergeometnc function.
61S LIST OF NOTATIONS k+Ikwz' Tjte, b; c; e; w, z)=J.o (c)j(c1),*!/ ^(a; с; с'; w, z)= Y —r 2 *,T-o *¦ k+ I w z '= i jjy is the psi function. LIST OF MATHEMATICAL SYMBOLS (a )=ej> a2, ... , a is the special vector. {a-bp)=al-bva2-b2,...,ap-bp (a ia/-araraf , ... , a.^-a., a^-a, a-a, (a)k=a(a+l) ... (a+i-1) [*-i, 2, 2,...], n!=l-2-3... (n-l)n, 0!=l!=l Bn)!!=2-4-6... Qn-2Jn=2nn\ is the Pochhammer symbol. ... Bи+1) . ( Bk) !!, ak+W, «- n) _ n (n-l ) . . . (n-k+l ) k\~ k\ ~ k\ (n-i) ! n I (-1) Fi are the binomial coefficients. Re a, Re *>c means Re a>c and Re *>c. [x]=n [ii<x</ki, «-0, ±1, ±2,...] is the integral part of x. z=a:-i'ji [z=x+iy] xX), x<0 k-m Uaktx)-\im П ajfctz) 1 [n<m] л ,1 ak=am+am+l+"+an *"w =0 °° ;i Y a (z)=lim Y e,(z)