/
Автор: Вуттон Д.
Теги: история история науки научно-технический прогресс издательство колибри история научной революции
ISBN: 978-5-389-15072-0
Год: 2018
Текст
Дэвид Вуттон Изобретение науки Текст предоставлен правообладателем http://www.litres.ru/pages/biblio_book/?art=34341570 «Изобретение науки: Новая история научной революции»: КоЛибри, Азбука-Аттикус; Москва; 2018 ISBN 978-5-389-15072-0 Аннотация Книга Дэвида Вуттона – история великой научной революции, результатом которой стало рождение науки в современном смысле этого слова. Новая наука – не просто передовые открытия или методы, это новое понимание того, что такое знание. В XVI веке изменился не только подход к ней – все старые научные термины приобрели иное значение. Теперь мы все говорим на языке науки, сложившемся в эпоху интеллектуальных и культурных реформ, хронологические рамки которой автор определяет очень точно. У новой цивилизации были свои мученики (Джордано Бруно и Галилей), свои герои (Кеплер и Бойль), пропагандисты (Вольтер и Дидро) и скромные ремесленники (Гильберт и Гук). Она дала начало новому рационализму, покончившему с алхимией, астрологией и верой в колдовство. Дэвид Вуттон меняет наше представление о том, как происходили эти знаковые преобразования. «Наука – программа исследований, экспериментальный метод, взаимосвязь чистой науки и новой техники, язык отменяемого знания – появилась в период с 1572 по 1704 г. Последствия этого видны до сих пор – и, по всей вероятности, не исчезнут никогда. Но мы не только используем технологические преимущества науки: современное научное мышление стало важной частью нашей культуры, и теперь нам уже трудно представить мир, в котором люди не говорили о фактах, гипотезах и теориях, в котором знание не было основано на свидетельствах и где у природы не было законов. Научная революция стала почти невидимой просто потому, что она оказалась удивительно успешной». (Дэвид Вуттон) Дэвид Вуттон Изобретение науки. Новая история научной революции
David Wootton The Invention of Science A New History of the Scientific Revolution © Realshead Ltd., 2015, © Гольдберг Ю., 2017, © Издание на русском языке, оформление. ООО «Издательская Группа «Азбука-Аттикус», 2018 КоЛибри® ***
Титульный лист книги Фрэнсиса Бэкона «Новый органон» (1620), на котором изображен корабль, проплывающий через Геркулесовы столбы (так в те времена назывался пролив между Гибралтаром и Северной Африкой, который соединяет Средиземное море с Атлантическим океаном) после путешествия в поисках новых земель Посвящается Элисон Hanc ego de caelo ducentem sidera vidi1. Тибулл. Элегии Эврика! Архимед (287–212 до н. э.) Петер Флетнер (1490–1546). Архимед в ванне. Гравюра по дереву из первого перевода на немецкий Витрувия, опубликованного Йоханнесом Петреусом в Нюрнберге в 1548 г. Справа на заднем плане корона царя Гиерона Введение Думаю, в наш век философия прибывает подобно приливу, хотя перипатетики еще надеются остановить приливное течение или (с помощью Ксеркса) обуздать море, дабы помешать подъему свободной философии. Думаю, я вижу, как весь старый мусор будет смыт, а гнилые постройки разрушены и унесены этим могучим потоком. В наши дни должны быть заложены основания гораздо 1 Видел, как с неба сводила она блестящие звезды. Перевод Н. Вулих.
более величественной философии, которая никогда не сможет быть опровергнута: это будет эмпирическое и чувственное обследование Феноменов природы, выводящее причины вещей из таких Первоисточников природы, которые, как мы наблюдаем, производимы искусством и безошибочным доказательством механических Орудий: несомненно, этот, и никакой другой, и есть путь построения истинной и вечной философии. Генри Пауэр. Экспериментальная философия (1664) Современная наука зародилась в период с 1572 г., когда Тихо Браге увидел на небе вспышку сверхновой звезды, по 1704 г., когда Ньютон опубликовал свой труд «Оптика», в котором продемонстрировал, что белый цвет состоит из гаммы цветов, образующих радугу, и что его можно расщепить на составляющие с помощью призмы, а цвет является свойством света, на не объекта 23. До 1572 г. также существовали системы знаний, которые мы называем «науками», но только одна из них отдаленно напоминала современную науку – в том отношении, что она оперировала сложными теориями, опиравшимися на большой массив фактов. Это была астрономия, и именно она после 1572 г. превратилась в первую настоящую науку. Что позволяет нам утверждать, что после 1572 г. астрономия стала наукой? У нее имелась программа исследований, сообщество специалистов, и в свете новых фактов она была готова поставить под сомнение давно укоренившиеся взгляды (небеса неизменны, движение в небе может быть только круговым, небо состоит из прозрачных сфер). За астрономией последовали другие новые науки. Для обоснования данного утверждения необходимо рассмотреть не только то, что произошло в период с 1572 по 1704 г., но также понять, каким мир был до 1572 г. и каким стал после 1704 г.; кроме того, невозможно обойтись без рассмотрения некоторых методологических дискуссий. Основу книги составляют главы с 6 по 12, которые рассказывают именно об этом промежутке времени, с 1572 по 1704 г.; главы 3, 4 и 5 посвящены преимущественно миру до 1572 г., а главы 13 и 14 – миру отчасти до, а отчасти после 1704 г. В главах 2, 15, 16 и 17 рассматриваются вопросы историографии, методологии и философии. Две главы введения закладывают основы для всего остального материала. В первой главе кратко изложена суть книги. Во второй объясняется, откуда взялось представление о «научной революции», почему некоторые специалисты считают, что такого явления не существует, и почему это так важно для исторического анализа. 1. Современное мышление Бэкон, конечно, обладал более современным мышлением, чем Шекспир: у Бэкона было чувство истории; он чувствовал, что его эпоха, XVII в., была началом эры науки, и он хотел, чтобы на смену поклонению текстам Аристотеля пришло непосредственное изучение природы. 2 Харрисон в Reassessing the Butterfield Thesis (2006) 7 утверждает, что понятие «научной революции» нечетко, поскольку невозможно сказать, когда она началась и когда закончилась. Я с ним не согласен: само понятие может быть четким даже при неопределенных датах (например, «промышленная революция»), а в отношении научной революции даты указать достаточно легко. 3 Харрисон в Reassessing the Butterfield Thesis (2006), 7 утверждает, что понятие «научной революции» нечетко, поскольку невозможно сказать, когда она началась и когда закончилась. Я с ним не согласен: само понятие может быть четким даже при неопределенных датах (например, «промышленная революция»), а в отношении научной революции даты указать достаточно легко.
Хорхе Луис Борхес. Загадка Шекспира (1964)4 §1 Мир, в котором мы живем, гораздо моложе, чем вы думаете. Около двух миллионов лет назад на Земле5 жили «люди», умевшие изготавливать орудия труда. Наш вид, Homo sapiens , появился 200 000 лет назад, а керамика только около 25 000 лет назад. Но самым главным изменением в истории человечества до появления науки стала неолитическая революция, которая произошла сравнительно недавно, от 12 000 до 7000 лет назад 6. Именно тогда были одомашнены животные, появилось сельское хозяйство, а каменные орудия стали вытесняться металлическими. От тех времен, когда люди впервые перестали быть охотниками и собирателями, нас отделяют приблизительно 600 поколений. Первое парусное судно появилось около 7000 лет назад, примерно в то же время, что и письменность. Те, кто согласен с дарвиновской теорией эволюции, не приемлют библейскую хронологию, в соответствии с которой мир был сотворен 6000 лет назад, однако так называемое историческое человечество (люди, оставившие после себя письменные свидетельства), в отличие от археологического человечества (люди, оставившие после себя только артефакты), существует именно этот отрезок времени, приблизительно 300 поколений. Прибавьте 300 раз приставку «пра» перед словом «дедушка» или «бабушка» – это слово займет всего полстраницы. Такова истинная продолжительность истории человечества. Предыдущие два миллиона лет – это доисторический период. Гертруда Стайн (1874–1946) сказала о городе Окленде в Калифорнии, что «здесь нет ничего, про что можно было бы сказать, что это именно здесь», – то есть это новое место без истории7. Она предпочитала Париж. Насчет Окленда Стайн ошибалась: люди жили на этом месте уже около 20 000 лет. С другой стороны, она была права: жизнь тут была такой легкой, что у людей не возникло необходимости в сельском хозяйстве, не говоря уже о письменности. Одомашненные растения, лошади, металлические орудия (в том числе ружья) появились только с приходом испанцев, после 1535 г. (Калифорния является исключением – в других регионах Америки кукуруза была одомашнена около 10 000 лет назад, приблизительно в то же время, что и многие другие растения в других регионах мира, а письменность возникла около 3000 лет назад). Таким образом, мы живем в новом мире – в одних местах он старше, чем в других, но по сравнению с двумя миллионами лет, на протяжении которых люди изготавливали орудия, эта разница несущественна. После неолитической революции скорость изменений замедлилась. В течение следующих 6500 лет появились важные изобретения, например водяная и ветряная мельница, но до недавнего времени (400 лет назад) технология развивалась медленно, а иногда даже наблюдался регресс. Римляне изумлялись рассказам о том, что мог делать Архимед (287–212 до н. э.), а итальянские архитекторы XV в. изучали разрушенные древнеримские здания, убежденные, что исследуют более развитую цивилизацию. Никто не представлял, что наступит день, когда историю человечества будут 4 Borges. The Total Library (2001). 465. 5 Я использую термин «Земля» в современном, коперниковском понимании – вращающийся шар из земли и воды, одна из многих планет; до Коперника «Землей» называли мир, в котором мы живем, состоящий из элемента земля и расположенный в центре Вселенной. 6 Barker. The Agricultural Revolution in Prehistory (2006). 7 Stein. Everybody’s Autobiography (1937). 289.
рассматривать как историю прогресса, но всего три столетия спустя, в середине XVIII в., прогресс стал неизбежностью и его начали искать во всей предыдущей истории 8. За эти триста лет произошло нечто необычное. Что же позволило науке XVII и XVIII вв. развиваться так, как не могли развиваться предшествующие системы знания? Что такого есть у нас, чем не обладали римляне и их восторженные последователи эпохи Возрождения? 9 Когда Уильям Шекспир (1564–1616) сочинял «Юлия Цезаря» (1599), он совершил маленькую ошибку, упомянув о бое часов – в Древнем Риме еще не изобрели механических часов 10. В «Кориолане» (1608) говорится о направлениях компаса – но у римлян не было морского компаса11. Ошибки Шекспира отражают тот факт, что он и его современники, читая произведения римских авторов, постоянно сталкивались с напоминаниями, что римляне были язычниками, а не христианами, но не видели никаких свидетельств о технологическом разрыве между временами Древнего Рима и эпохой Возрождения. Римляне не знали печатного станка, но у них было много книг, а также рабов, которые их копировали. Они не знали пороха, но имели артиллерию – баллисты. Механических часов у них не было, но они определяли время по солнечным и водяным часам. У римлян не было крупных парусных судов, движимых ветром, но и во времена Шекспира военные действия на Средиземном море велись с помощью галер (весельных судов). И разумеется, во многих практических вопросах римляне значительно опережали англичан времен правления Елизаветы – лучшие дороги, центральное отопление, ванны. Совершенно очевидно, что Шекспир представлял Древний Рим как современный ему Лондон, только с ярким солнцем и тогами 12. У него и его современников не было никаких причин верить в прогресс. «Шекспир, – писал Хорхе Луис Борхес (1899–1986), – во всех своих произведениях относится к персонажам, будь они датчанами, как Гамлет, шотландцами, как Макбет, греками, римлянами или итальянцами, как к своим современникам. Шекспир чувствовал разницу между людьми, но не разницу между историческими эпохами. Для него не существовало истории» 13. У Борхеса современный взгляд на историю; Шекспир много знал об истории, но (в отличие от его современника Фрэнсиса Бэкона, который понимал, к чему может привести научная революция) не осознавал необратимости исторических перемен. Может показаться, что порох, печатный станок и открытие Америки в 1492 г. должны были заставить эпоху Возрождения воспринимать прошлое как то, что утрачено и больше не вернется, но образованные люди очень медленно осознавали необратимые последствия 8 Работа Тюрго «Философские размышления о прогрессе человеческого разума» (A Philosophical Review of the Successive Advances of the Human Mind) была написана в 1750 г., но опубликована только в XIX в. (Turgot . Turgot on Progress, 1973); Кондорсе. Эскиз исторической картины прогресса человеческого разума (Outlines of an Historical View of the Progress of the Human Mind, 1795) – оригинальное французское издание того же года; Бьюри . Идея прогресса (The Idea of Progress, 1920). 9 Дарин Леу в своей интригующей книге «Что знали римляне?» задает вопрос: «Есть ли различия между древней и современной наукой? Конечно, есть. Но фундаментальны ли они? Произошли ли изменения внезапно? Можно ли указать некий радикально новый образ действий, который появился в определенный момент истории и результатом которого стало то, что мы называем современной наукой? Думаю, нет» (Lehoux. What Did the Romans Know? 2012, 15). Таким образом, Леу высказывает противоположную точку зрения. 10 II. 1. 813–815. 11 II. 3. 1440. 12 MacGregor. Shakespeare’s Restless World (2012). Ch. 18: London becomes Rome. 13 Borges. The Total Library (2001). 472 (The Enigma of Shakespeare, 1964).
этих великих изобретений и открытий. Только оглядываясь назад, они начали формулировать наступление новой эпохи; именно научная революция стала причиной главного постулата эпохи Просвещения – прогресс уже невозможно остановить. В середине XVIII в. шекспировское восприятие времени сменилось современным. На этом мы и остановимся, но не потому, что революция закончилась, а потому, что к этому времени стало ясно: начался неудержимый процесс трансформации. Триумф ньютоновской философии ознаменовал окончание первого этапа научной революции. §2 Чтобы понять масштаб революции, возьмем типичного образованного европейца образца 1600 г. – у нас это англичанин, но разница с жителем любой другой европейской страны будет невелика, поскольку в 1600 г. интеллектуальная культура была у них общей. Этот человек верит в колдовство и, возможно, читал «Демонологию» (Daemonologie, 1597) шотландского короля Якова VI, будущего короля Англии Якова I, в которой нарисована яркая и пугающая картина угрозы, исходящей от агентов дьявола 14. Он верит, что ведьмы способны вызвать бури, которые топят корабли в море, – Яков сам едва не погиб во время такой бури. Типичный образованный англичанин верит в оборотней, хотя в Англии они не водятся, – он знает, что их видели в Бельгии (авторитетом в этой области считали великого французского философа XVI в. Жана Бодена). Он не сомневается, что Цирцея действительно превратила спутников Одиссея в свиней. Он убежден, что мыши самопроизвольно зарождаются в скирдах соломы. Он верит в современных магов: он слышал о Джоне Ди и, возможно, об Агриппе Неттесгеймском (1486–1535), черный пес которого по кличке Месье считался дьяволом в обличье животного. Если он живет в Лондоне, то может знать людей, обращавшихся за советом к лекарю и астрологу Саймону Форману, который с помощью магии помогает вернуть украденные вещи 15. Он видел рог единорога, но не самого единорога. Образованный англичанин той эпохи верит, что мертвое тело будет кровоточить в присутствии убийцы. Он верит в существование лезвийной мази – если смазать ею клинок, которым нанесена рана, эта рана заживет. Он верит, что форма, цвет и текстура растения определяют его лекарственные свойства, потому что Бог создал природу таким образом, чтобы ее могли истолковывать люди. Он верит, что можно превратить недрагоценный металл в золото, хотя сомневается в существовании человека, знающего, как это сделать. Он верит, что природа не терпит пустоты. Он верит, что радуга – это знамение Господа, а кометы предвещают беду. Он верит в существование вещих снов – нужно только правильно их истолковать. Разумеется, он верит, что Солнце и звезды делают один оборот вокруг Земли за двадцать четыре часа, – он слышал о Копернике, но не считает, что гелиоцентрическую модель космоса следует понимать буквально. Он верит в астрологию, но не знает точного времени своего появления на свет и поэтому думает, что даже самый искусный астролог не сможет сообщить ему ничего такого, чего нельзя найти в книгах. Он верит, что Аристотель (IV в. до н. э.) – величайший философ всех времен и народов, 14 Поскольку типичный образованный европеец того времени был мужчиной, я использовал мужской род, когда писал о начале современного периода, – в отличие от современной интеллектуальной жизни. Женщины не допускались в научные общества того времени, но среди них были выдающиеся ученые, особенно астрономы (Schiebinger. The Mind Has No Sex? 1989. 79–101) и алхимики (Ray. Daughters of Alchemy, 2015). Астрономические таблицы Urania propitia (1650) Марии Куниц считаются «самой первой научной работой, выполненной на высочайшем техническом уровне своего времени» (Swerdlow. Urania propitia, 2012. 81); предисловие написано ее мужем, который подтверждает, что это действительно работа женщины, каким бы неправдоподобным это ни казалось. См. также: гл. 2, 6, 13 и 17. 15 Kassell. Medicine and Magic in Elizabethan England (2005).
и считает Плиния (I в. до н. э.), Галена и Птолемея (оба жили во II в. н. э.) наивысшими авторитетами в естественной истории, медицине и астрономии. Он знает, что миссионерам из ордена иезуитов приписывают чудеса, но подозревает, что все это обман. У него дома есть десятка два книг. Но через несколько лет перемены уже витали в воздухе. В 1611 г. Джон Донн, обращаясь к открытиям, которые за минувший год сделал Галилей с помощью своего телескопа, заявил: «Все новые философы – в сомненье». Термин «новая философия» придумал Уильям Гильберт, опубликовавший в 1600 г. первый за 600 лет фундаментальный труд по экспериментальной науке16. Для Донна «новая философия» была новой наукой Гильберта и Галилея17. В его стихах сведены вместе многие ключевые элементы, составлявшие новую науку: поиск новых миров на небесах, стирание аристотелевской грани между небом и землей, атомизм Лукреция: Все новые философы – в сомненье: Эфир отвергли – нет воспламененья, Исчезло Солнце, и Земля пропала, А как найти их – знания не стало. Все признают, что мир наш – на исходе, Коль ищут меж планет, в небесном своде – Познаний новых… Но едва свершится Открытье, – все на атомы крошится. Все – из частиц, а целого – не стало, Лукавство меж людьми возобладало, Распались связи, преданы забвенью Отец и Сын, Власть и Повиновенье. И каждый думает: «Я – Феникс-птица», – От всех других желая отвратиться 18. Далее Донн упоминает о путешествиях с целью открытия новых земель и последовавшем за ними расцвете торговли, о компасе, сделавшем возможными эти экспедиции, а также о неотделимом от компаса магнетизме, который был предметом экспериментов Гильберта. Откуда Донн знал о новой философии? Откуда он знал, что она включает атомизм Лукреция? 19 Галилей не упоминал атомизм в своих трудах, однако его знакомые утверждали, что в частных беседах он выражал согласие с этой теорией; Гильберт обсуждал 16 Первый после «Книги оптики» Ибн аль-Хайсама (1011–1021). Подробнее о Гильберте см. ниже, гл. 3, 4, 7 и 8. 17 Donne. The Epithalamions, Anniversaries and Epicedes (1978). 18 Перевод Д. Щедровицкого. 19 Лукреций (ок. 99 – ок. 55 до н. э.) утверждал, что мир создан не по плану, а является результатом случайного взаимодействия неизменных и неделимых атомов, а существующая Вселенная в конечном итоге будет разрушена, и на смену ей придет другая – одна из многих в бесконечной последовательности случайно возникающих вселенных. Поэма Лукреция «О природе вещей» была утеряна в Средние века; ее заново открыли в 1417 г. и впервые опубликовали в 1473 г., а полный перевод на английский язык появился только в 1682 г. Лукреций был последователем Эпикура (341–270 до н. э.). Мы используем термин «эпикуреец» для обозначения любителя чувственных удовольствий, но в эпоху Возрождения эпикурейцами называли материалистов и атеистов, вследствие своих взглядов неспособных признать никакие добродетели, кроме физического наслаждения.
атомизм лишь для того, чтобы отвергнуть его. Откуда Донн знал, что новые философы ищут новые миры, причем не только на планетах, но на других объектах небесного свода? Скорее всего, Донн встречался с Галилеем в Венеции или Падуе в 1605 или 1606 г.20 В Венеции он останавливался у английского посла сэра Генри Уоттона, который пытался добиться освобождения шотландца, друга Галилея, арестованного за любовную связь с монахиней (такое преступление обычно каралось смертной казнью). Возможно, Донн встречался и беседовал с Галилеем или с его знающими английский учениками; и почти наверняка он виделся с Паоло Сарпи 21, близким другом Галилея. В Англии он мог встречаться с Томасом Хэрриотом, великим математиком, которого привлекала теория атомизма 22, а также с Гильбертом 23. Кроме «Звездного вестника» (Sidereus nuncius, 1610) Галилея (или вместо), он мог читать «Разговор с звездным вестником» (1610) Кеплера, где содержалось большое количество радикальных идей о других мирах, обсуждения которых избегал Галилей. Возможен и другой ответ. Донну принадлежал экземпляр трактата Николаса Хилла «Эпикурейская философия» (Epicurean Philosophy, 1601) 24. Предыдущим владельцем этой книги – в настоящее время она хранится в Среднем Темпле, одном из судебных иннов в Лондоне, – был Бен Джонсон, друг Шекспира. Первоначально книгу купил кто-то из членов Крайстс-колледжа в Кембридже – на ее переплете присутствует эмблема колледжа 25. Первый владелец собирался тщательно изучить трактат и, возможно, написать опровержение или комментарии, поскольку в книгу были вставлены пустые листы, предназначенные для заметок. Эти листы так и остались пустыми. Была ли книга подарена Джонсону, или он взял ее почитать и не вернул? Неизвестно. Но нам точно известно, что Хилла никто не принимал всерьез. Про его книгу говорили, что «в ней много громких слов и мало смысла». Она считалась «курьезной [то есть эксцентричной] и туманной»26. Первые ссылки на нее (например, сатирическое стихотворение Джонсона) имеют отношение к пусканию ветров, а не к философии 27. Приблизительно в 1610 г. Донн сочинил шутливый каталог библиотеки придворного, содержащий нелепые вымышленные произведения, например труд Джироламо Кардано «О ничтожестве ветров» 28. Первой в списке стояла 20 Галилей жил в Падуе, но часто посещал Венецию; точно так же Донн, будучи в Венеции, должен был приезжать в Падую, где была многочисленная община англичан и шотландцев. 21 Wootton. Galileo (2010). 5, 6. 22 Хэрриот независимо открыл законы падения тел Галилея и закон преломления Снеллиуса (как мы их теперь называем), но не опубликовал свои работы. См. также ниже: гл. 2, 3, 6 и 7. 23 Jacquot. Thomas Harriot’s Reputation for Impiety (1952). 24 Hill. Philosophia epicuraea (2007). 25 Brown. Hac ex consilio meo via progredieris (2008). 836–838. Не думаю, что книга хранилась в библиотеке колледжа, поскольку в библиотечные книги обычно не вставлялись чистые листы. 26 Trevor-Roper. Nicholas Hill, the English Atomist (1987). 11 (цит. Роберт Хьюс). 13 (цит. Томас Хеншоу). 27 Ibid., 3, 4. 28 Brown. Hac ex consilio meo via progredieris (2008). В Елизаветинскую эпоху к ветрам относились очень серьезно: граф Оксфордский не смог сдержать ветры, когда кланялся Елизавете; устыдившись, он уехал за границу на семь лет, а по возвращении услышал такие слова королевы: «Милорд, я забыла о ветрах» (TrevorRoper. Nicholas Hill, the English Atomist, 1987. 9).
книга Николаса Хилла об определении пола атомов: как отличить мужской атом от женского? Существуют ли атомы-гермафродиты? 29 Донн мог узнать от Хилла о возможности жизни на других планетах и о том, что планеты вращаются вокруг других звезд; эти странные идеи он также мог позаимствовать у Джордано Бруно30. Если Донн читал «Звездный вестник» Галилея, где говорится, что на Луне есть горы и долины, то мог отреагировать точно так же, как великий немецкий астроном Иоганн Кеплер, который той же весной прочел один из первых экземпляров книги, доставленных в Германию, – он увидел в ней подтверждение необычной теории Бруно о том, что жизнь есть и в других местах Вселенной. Если Донн читал «Разговор с звездным вестником» Кеплера, то он увидел там прямое указание на связь с теорией Бруно31. Шутки по поводу испускания ветров стали уже неуместными. Для Бруно признание научного сообщества пришло слишком поздно – в 1600 г. в Риме он был заживо сожжен инквизицией; вероятно, Хилл тоже не дождался признания своих идей – согласно более поздним свидетельствам, в 1610 г. он покончил жизнь самоубийством: проглотил крысиную отраву и умер в страшных муках, изрыгая богохульства и проклятия. В это время Хилл жил в ссылке в Роттердаме: он был среди заговорщиков, пытавшихся помешать королю Якову VI Шотландскому унаследовать английский трон после смерти Елизаветы I в 1603 г., и ему пришлось бежать из страны32. После смерти сына Лоуренса, которого Хилл очень любил, жизнь для него утратила смысл. В 1601 г. он посвятил свой единственный опубликованный труд не великому человеку (великих людей, благоволивших к нему, было немного), а новорожденному сыну: «В мои годы я обязан ему чем-то серьезным, поскольку он в таком нежном возрасте порадовал меня тысячей милых проказ». Наверное, Хилл этого уже не узнал, но в 1610 г. эпикурейская философия внезапно превратилась во «что-то серьезное». Начиналась революция в сознании, и Донн, который несколько лет назад высмеивал новые идеи, но прочел Гильберта, Галилея и Хилла и, возможно, был знаком с Хэрриотом, первым понял, что мир никогда не будет прежним. Таким образом, в 1611 г. революция уже шла полным ходом, и Донн, в отличие от Шекспира и большинства образованных современников, прекрасно это понимал. А теперь перенесемся вперед во времени. Возьмем образованного англичанина образца 1733 г., через столетие с четвертью; в этом году были опубликованы «Письма об английской нации» Вольтера (год спустя на французском языке они вышли под названием «Философские письма»), где перед европейским читателем предстали достижения новой, и особенно английской науки. Книга Вольтера утверждала, что Англия обладает особой научной культурой: то, что в 1733 г. считал истиной образованный англичанин, не представлялось таковой французу, итальянцу, немцу и даже голландцу. Наш англичанин уже смотрит в телескоп и микроскоп; у него дома есть часы с маятником и ртутный барометр – и он знает, что в конце трубки находится вакуум. У него нет знакомых (по крайней мере, образованных и достаточно современных людей), которые верят в ведьм, оборотней, магию, алхимию и астрологию; он считает Одиссею вымыслом, а не фактом. Он уверен, что единорог – мифическое животное. Он не верит, что форма или цвет растения както отражает его целебные свойства. Он убежден, что ни одно живое существо, достаточно крупное, чтобы его можно было увидеть невооруженным глазом, не зарождается 29 Обсудив с моим соседом в деревне трудности определения пола у утят, я теперь знаю, как и, вне всякого сомнения, Донн, что определение пола – задача не из легких. 30 Ibid., 28–34. 31 Kepler. Kepler’s Conversation with Galileo’s Sidereal Messenger (1965). 34–36, 38, 39. 32 Trevor-Roper. Nicholas Hill, the English Atomist (1987). 11.
самопроизвольно – даже муха. Он не верит в лезвийную мазь и в то, что мертвое тело кровоточит в присутствии убийцы. Как и все образованные люди в протестантских странах, он считает, что Земля вращается вокруг Солнца. Он знает, что радуга образуется в результате расщепления света и не оказывает никакого влияния на жизнь людей. Он убежден, что будущее предсказать невозможно. Он знает, что сердце – это насос. Он видел паровую машину в действии. Он верит, что наука изменит мир и что современные люди превзошли древних во всех отношениях. Ему трудно поверить в чудеса, даже в те, что описаны в Библии. Он считает Локка величайшим философом всех времен и народов, а Ньютона – величайшим ученым. (К этой мысли его подталкивают «Письма об английской нации».) В его библиотеке пара сотен – а возможно, пара тысяч – книг. Возьмем, например, обширную (современный каталог занимает четыре тома) библиотеку Джонатана Свифта, автора «Путешествий Гулливера» (1726). Она содержала не только все великие произведения литературы и исторические труды, но также работы Ньютона, журнал «Философские труды Королевского общества» (второй научный журнал, Journal des savants, начал публиковаться всего двумя месяцами ранее) и «Беседы о множественности миров» (Entretiens sur la pluralité des mondes, 1686) Фонтенеля. Свифт, несмотря на неприязнь к современной науке (к которой мы вернемся в главе 14), был достаточно хорошо знаком с тремя законами движения планет Кеплера, чтобы использовать их для вычисления орбит воображаемых лун Марса; его враждебность была основана на глубоком изучении научных трудов 3334. Во времена Свифта культура элиты еще сильнее отличалась от культуры масс, чем в прошлом, и, кроме того, наука еще не стала слишком специализированной и являлась неотъемлемой частью культурного багажа каждого образованного человека. Даже в 1801 г. Кольридж решил, что «до того, как мне исполнится тридцать лет, я достигну глубокого понимания всех работ Ньютона» 35. В период с 1600 по 1733 г. (приблизительно – в Англии процесс проходил с большей скоростью, чем других странах) интеллектуальный мир образованной элиты менялся быстрее, чем в любой другой период предыдущей истории и, возможно, вообще когда-либо, вплоть до XX в. На смену магии пришла наука, на смену мифу – факт. Философия и наука Древней Греции сменились тем, что мы до сих пор считаем нашей философией и нашей наукой, в результате чего рассказ о среднем образованном человеке 1600 г. ведется в терминах «веры», тогда как о среднем образованном человеке 1733 г. – в терминах «знания». Тем не менее переход еще не завершился. Химия практически не существовала. Для лечения болезней по-прежнему использовались кровопускание, а также слабительные и рвотные средства. И люди по-прежнему считали, что зимой ласточки спят на дне прудов36. Но изменения, произошедшие за следующие сто лет, были гораздо менее масштабными, чем за предыдущее столетие. Эти великие преобразования мы называем «научной революцией». 33 Lynall. Swift and Science (2012). 34 Свифт считал научные исследования пустой тратой времени, поскольку у них не было практического применения; этот взгляд наиболее полно изложен в третьей части «Путешествий Гулливера» при описании летающего острова Лапута. 35 Letter to Thomas Poole. 23 March 1801. 36 К концу столетия великий естествоиспытатель Гилберт Уайт все еще сомневался, чему отдать предпочтение в этом сложном вопросе – гибернации или миграции: White. Natural History (1789), 28, 36, 64–65, 102, 138–139, 165, 167, 188. Краткое изложение книги, которую цитирует Уайт (144), Migrationes avium Карла Д. Экмарка (1757), см. в: Griffiths . Select Dissertations from the Amoenitates academicae (1781): Экмарк утверждал, что некоторые птицы мигрируют, но ласточки зимуют в прудах. Эти же взгляды обычно приписывают Линнею, который рецензировал его диссертацию.
§3 Вечером 11 ноября 1572 г., вскоре после захода солнца, молодой датский дворянин по имени Тихо Браге разглядывал ночное небо. Прямо над головой он увидел звезду, которая светила ярче всех остальных звезд и которой на этом месте не должно было быть. Опасаясь, что это обман зрения, он показывал звезду другим людям – они тоже ее видели. Но этого объекта там быть не могло. Браге разбирался в астрономии, а главный принцип аристотелевской философии гласил, что небеса неизменны. Поэтому, если данный объект новый, он должен находиться не на небе, а в верхних слоях атмосферы – то есть это никак не могла быть звезда. Если же это звезда, то свершилось чудо, появился некий загадочный божественный знак, смысл которого необходимо расшифровать. (Браге был протестантом, а протестанты утверждали, что все чудеса остались в далеком прошлом, так что этот аргумент вряд ли мог его убедить.) Браге знал, что за всю историю наблюдений за небом только один человек, Гиппарх Никейский (190–120 до н. э.), утверждал, что видел новую звезду. По крайней мере, Плиний (23–79 н. э.) приписывал это утверждение Гиппарху, однако Плиния нельзя было считать надежным источником, и поэтому напрашивался вывод, что кто-то из них ошибся – либо Гиппарх, либо Плиний 37. Браге стал доказывать, что невероятное событие действительно произошло, поскольку элементарные тригонометрические расчеты демонстрировали, что новая звезда не может располагаться в верхних слоях атмосферы – она должна быть на небесах38. Вскоре звезда стала ярче Венеры, и какое-то время ее можно было видеть даже днем. Затем она начала тускнеть и через полгода погасла совсем. После себя звезда оставила массу книг, в которых Браге и его коллеги спорили о ее местоположении и значении39. Другим результатом появления сверхновой стала программа исследований: заявления Браге привлекли внимание короля Дании, который предоставил астроному остров Вен и (как впоследствии выразился Браге) тонну золота на строительство обсерватории для астрономических наблюдений. Наблюдения за новой звездой привели Браге к выводу, что для понимания устройства Вселенной необходимы более тщательные измерения 40. Он изобрел новые, необыкновенно точные инструменты. Когда обнаружилось, что обсерватория слегка вибрирует от ветра, что влияет на точность измерений, Браге перенес все свои астрономические приборы в подземные помещения. На протяжении следующих пятнадцати лет (1576–1591) исследования Браге на острове Вен превратили астрономию в первую современную науку41. Сверхновая 1572 г. не была причиной научной революции – точно 37 Браге не считал Вифлеемскую звезду настоящей звездой, поскольку в Евангелии от Матфея сказано, что она двигалась по небу. Еще более яркая сверхновая звезда появилась в 1006 г., но в известных ему книгах не упоминалось об этом явлении. 38 Томас Кун полагал, что, если бы не Коперник, Браге не понял бы, что новая звезда расположена на небе (Kuhn . Structure, 1970. 116), хотя сам Коперник ничего не говорил об изменениях в надлунном мире, а Браге не был последователем Коперника. Утверждение Куна противоречит его теории о том, что ученые способны выявлять аномалии, однако следует принять во внимание тот факт, что Браге принадлежал к культуре, которая ставила под сомнение и ниспровергала освященные временем истины (например, религию). 39 Gingerich. Tycho Brahe and the Nova of 1572 (2005); McGrew. Alspector-Kelly & others . The Philosophy of Science (2009). 120–122. Мнение, что именно работы Браге, а не Коперника стали началом революции в астрономии, см. в: Donahue. The Dissolution of the Celestial Spheres (1981); Lerner. Le Monde des sphères (1997); Grant . Planets, Stars and Orbs (1994); Randles. The Unmaking of the Medieval Christian Cosmos (1999). 40 Wesley. The Accuracy of Tycho Brahe’s Instruments (1978). 41 Thoren. Lord of Uraniborg (2007); Christianson. On Tycho’s Island (2000); Mosley. Bearing the Heavens
так же, как пуля, 28 июня 1914 г. убившая эрцгерцога Франца Фердинанда, не была причиной Первой мировой войны. Тем не менее именно появление сверхновой отмечает (причем довольно точно) начало этой революции, как смерть эрцгерцога знаменует начало войны. Аристотелевскую философию природы было невозможно адаптировать для объяснения этой аномалии; если новая звезда действительно существует, значит, вся система построена на ложных допущениях. Карта созвездия Кассиопея, на которой указано положение сверхновой 1572 г. (верхняя звезда, обозначенная I); из книги Тихо Браге «О новой звезде», 1573 Браге не догадывался о том, к чему приведет его беспокойство по поводу сверхновой, которая названа в его честь – «сверхновая Тихо» – и которую и в наше время можно наблюдать в созвездии Кассиопеи, только в радиотелескоп. Но после 1572 г. в мире началась масштабная научная революция, которая изменила природу знания и возможности человечества. Без нее не было бы промышленной революции и современных технологий, без которых мы уже не можем обойтись; жизнь человека была бы гораздо беднее и короче, а большинство людей были бы обречены на тяжелый труд. Трудно сказать, сколько продлится и чем закончится научная революция – ядерной войной, экологической (2007).
катастрофой или (что менее вероятно) всеобщим счастьем, миром и процветанием. Теперь становится очевидным, что это величайшее событие в истории человечества со времен неолитической революции, однако мы до сих пор не пришли к единому мнению, что такое научная революция и почему она произошла – или даже относительно существования самого понятия. В этом отношении научная революция совсем не похожа, например, на Первую мировую войну, о которой достигнуто общее согласие, что это было за событие, а также относительное согласие по поводу ее причин. Продолжающаяся научная революция раздражает историков: они предпочитают писать о революциях прошлого, тогда как это наша реальность, то, что нас окружает. Как мы вскоре убедимся, бо́льшая часть споров на данную тему является результатом неверных представлений и элементарного недопонимания; после их устранения становится очевидно, что же это такое – научная революция. 2. Идея научной революции Несмотря на все свои несовершенства, современная наука – это способ познания, достаточно точный, чтобы с его помощью устанавливать достоверные факты об окружающем мире. В этом смысле рано или поздно люди должны были эту технику познания открыть42. Стивен Вайнбер. Объясняя мир (2015)43 §1 Когда в 1948 г. Герберт Баттерфилд читал лекцию о научной революции в Кембриджском университете, шел всего второй год лекций по истории науки: в предыдущем году курс читали королевский профессор истории Г. Н. Кларк, специалист по XVII в., и медиевист М. М. Постан. Именно в Кембридже Ньютон (1643–1727) написал свой труд «Математические начала натуральной философии» (Philosophiæ naturalis principia mathematica, 1687), и здесь же Эрнест Резерфорд (1871–1937) в 1932 г. впервые расщепил ядро атома. Здесь историки не дремали и считали себя обязанными изучать историю науки. Они также всегда настаивали, что история науки пишется историками, а не учеными4445. И историки, и ученые Кембриджа получили одинаковое образование: латынь была у них обязательным предметом. Они встречались за ланчем и ужином в своих колледжах, но жили в разных интеллектуальных мирах. Свою книгу «Происхождение современной науки» (The Origins of Modern Science, 1949) Баттерфилд начал с выражения надежды, что история науки послужит долгожданным мостом между искусствами и науками. Его надеждам не суждено было сбыться. В 1959 г. (когда латынь была окончательно исключена из вступительных экзаменов) кембриджский химик и известный писатель Ч. П. Сноу прочел лекцию, в которой жаловался, что в Кембридже преподаватели наук и искусств практически 42 Перевод В. Краснянской. 43 Weinberg. To Explain the World: The Discovery of Modern Science (2015). xi. 44 Английский Кембридж отставал от Кембриджа из Массачусетса: в Гарварде Джордж Сартон впервые прочел курс лекций об истории науки в 1917 г., а в 1940 г. он стал профессором истории науки. 45 Mayer. Setting Up a Discipline (2000); первое назначение историка для исследования и преподавания истории науки произошло позже, в 1948 г. Butterfield. The Origins of Modern Science (1950); Bentley. The Life and Thought of Herbert Butterfield (2011). 177–203.
перестали разговаривать друг с другом 46. Лекция называлась «Две культуры и научная революция» (The Two Cultures and the Scientific Revolution) – речь шла о революции Резерфорда, которая привела к созданию атомной бомбы 47. Баттерфилд, использовавший термин «научная революция» за десять лет до Сноу, последовал примеру (так всегда считалось) Александра Койре (1892–1964)48. Койре, (еврей, родившийся в России, получивший образование в Германии, в пятнадцать лет брошенный царским режимом в тюрьму за революционную деятельность, сражавшийся в рядах французской армии в Первую мировую войну, присоединившийся к движению Сопротивления во Вторую мировую и ставший ведущей фигурой среди американских историков науки), опубликовавший свою работу в 1935 г. на французском языке, говорил о научной революции XVII в., от Галилея до Ньютона; ровно десятью годами раньше появилась классическая работа Гейзенберга по квантовой механике49. Для Койре и Баттерфилда именно физика – сначала физика Ньютона, затем физика Альберта Эйнштейна (1879–1955) – символизировала современную науку. В настоящее время мы можем поставить в один ряд с ней и биологию, но они писали свои работы до открытия ДНК Джеймсом Уотсоном и Фрэнсисом Криком в 1953 г. Когда Баттерфилд читал свои лекции, медицинская революция – первое чудо-лекарство, пенициллин – только начиналась, и даже в 1959 г. Ч. П. Сноу считал, что важную новую науку делают физики, а не биологи. Таким образом, сначала речь шла не об одной научной революции, а о двух: первая была представлена классической физикой Ньютона, а вторая – ядерной физикой Резерфорда. И очень медленно первая одерживала верх над второй, становясь единственной 50. Таким образом, сама идея о существовании такого явления, как «научная революция», которое имело место в XVII в., относительно нова. Что касается историков науки, то именно Баттерфилд популяризировал этот термин, многократно встречающийся в его книге «Происхождение современной науки», однако в первый раз он осторожно называет ее «так называемой научной революцией, обычно ассоциировавшейся с XVI и XVII вв.». Фразой «так называемой» Баттерфилд как будто оправдывается; еще более странным выглядит утверждение, что этот термин уже широко используется 51. Где же, если не у Койре (работа 46 За годы, минувшие после лекции Сноу, проблема двух культур только углубилась; история науки в наше время не только не служит мостом между искусствами и науками, но и изображает ученых так, что большинство из них не могут себя узнать. История науки лишь усугубила проблему, а не помогла ее разрешить. 47 Snow. The Two Cultures (1959). См. также: Leavis. Two Cultures? (2013). 48 Cohen. The Scientific Revolution: A Historiographical Inquiry (1994). 21, 97–121; и, например, Porter. The Scientific Revolution and Universities (1996). 535. 49 Koyré. Études Galiléennes (1966), 12 (где термин «революция» является эквивалентом «мутации» Гастона Башляра). Работа Гейзенберга «О квантово-теоретическом истолковании кинематических и механических соотношений» (Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen) (1925) заложила основы современной квантовой механики; за ней последовала публикация уравнения Шредингера (которое описывает, как со временем изменяется квантовое состояние физической системы) и принципа неопределенности Гейзенберга (чем точнее определяется положение частицы, тем менее точно может быть вычислен ее импульс, и наоборот) в 1927 г. Первое издание «Этюдов о Галилее» Койре датируется 1939 г. (хотя в действительности работа была издана в апреле 1940 г. – Costabel. Sur l’origine de la science classique (1947). 208; сам Койре иногда говорил о 1940 г.), и поэтому почти все комментаторы датируют первое использование им термина «научная революция» 1939 г. Однако первое эссе появилось еще в 1935 г.: Murdoch. Pierre Duhem and the History of Late-Medieval Science (1991). 274. Поэтому «последние десять лет» означают «после 1925 г.». 50 В дополнение к Snow. The Two Cultures (1959) также Ashby. Technology and the Academics (1958). 51 Butterfield. The Origins of Modern Science (1950). viii.
которого ничего не говорила бы его аудитории), Баттерфилд мог найти этот термин, использовавшийся применительно к XVI и XVII вв.? По всей видимости, фраза «научная революция XVII в.» впервые была произнесена американским философом и педагогом Джоном Дьюи, основателем прагматизма, в 1915 г.52, но маловероятно, что Баттерфилд читал Дьюи. Вне всякого сомнения, источником для Баттерфилда была работа Гарольда Дж. Ласки «Подъем европейского либерализма» (The Rise of European Liberalism, 1936), пользовавшаяся необыкновенным успехом книга, переизданная в 1947 г.53 Ласки был известным политиком, видным социалистом и интеллектуалом своего времени; он в достаточной степени увлекался марксизмом, чтобы его привлекало слово «революция». Таким образом, именно у него, а не у Койре Баттерфилд позаимствовал этот термин, хотя чувствовал себя немного неловко, полагая, что многие слушатели и читатели уже знакомы с ним. Таким образом, в этом отношении научная революция не похожа на Американскую и Французскую, которые были названы революциями тогда, когда они произошли; мы имеем дело с конструкцией интеллектуалов, оглядывающихся назад из XX в. Образцом для этого термина послужил термин «промышленная революция», который к концу XIX в. уже получил широкое распространение (по всей видимости, первым его употребил Хорас Грили, известный своей фразой «Иди на запад, молодой человек!») 54, но который также был придуман постфактум 55. И это означает, что всегда найдутся люди, заявляющие, что лучше бы обойтись без таких конструкций – хотя полезно помнить, что историки постоянно (и зачастую непреднамеренно) используют их: например, «средневековый» или «Тридцатилетняя война» (термины, которые могли появиться только постфактум), а также термин «государство» для любого периода, предшествовавшего Возрождению, или «класс» для обозначения классов в обществе до середины XIX в. Подобно термину «промышленная революция», идея научной революции несет с собой проблемы мультипликации (сколько было научных революций?) и периодизации (Баттерфилд рассматривает период с 1300 по 1800 г., чтобы иметь возможность обсуждения как корней, так и последствий научной революции XVII в.). Со временем тезис о существовании явления, которое можно назвать научной революцией, все больше подвергался критике. Одним из аргументов против него была непрерывность – современная наука является наследницей средневековой науки, а значит, и Аристотеля 56. Другие критики, начиная с Томаса Куна, который опубликовал в 1957 г. книгу «Революция 52 Дьюи атаковал марксизм: «…Наши педанты от экономики скажут, что экономические силы представляют собой неизбежную эволюцию, побочными продуктами которой являются государство и церковь, искусство и литература, наука и философия. Бесполезно высказывать предположение, что если современная промышленность дала мощный стимул для научных исследований, то промышленная революция XVIII в. пришла после научной революции века XVII. Догма исключает любую связь». Dewey . German Philosophy and Politics (1915). 6. Эта фраза встречается и в последующих сочинениях Дьюи. 53 Laski. The Rise of European Liberalism (1936). Орнштейн в 1913 г., Презервед Смит в 1930 г. и Бернал в 1939 г. также использовали термин «научная революция» (Cohen . The Scientific Revolution: A Historiographical Inquiry, 1994. 389–396, но это не дает оснований называть его широко распространенным. 54 Greeley. The Age We Live In (1848). 51: «Лоуэлл, Манчестер, Лоренс – воплощения промышленной революции, которая быстро преобразует весь цивилизованный мир». 55 См., например, Butterfield. The Origins of Modern Science (1950). 197–198: «Научная, промышленная и аграрная революции образуют систему таких сложных и взаимозависимых изменений, что в отсутствие подробного исследования мы вынуждены сваливать их в одну кучу как аспекты одного общего процесса…» 56 См. комментарий «Греческая и средневековая “наука”».
Коперника» (The Copernican Revolution), а затем «Структура научных революций» (The Structure of Scientific Revolutions, 1962), говорил о множестве научных революций: дарвиновская, квантовая, революция ДНК и т. д.57 Другие утверждали, что настоящая научная революция произошла в XIX в., когда наука соединилась с техникой 58. Все эти разные революции полезны для понимания прошлого, но они не должны отвлекать внимание от главного события: изобретения науки. Совершенно очевидно, что в приведенных выше примерах слово «революция» имеет разный смысл; полезно выделить три значения, примерами которых служат Французская революция, промышленная революция и коперниканская революция. У Французской революции были начало и конец; грандиозный переворот в той или иной степени затронул все сферы жизни Франции того времени, а когда революция началась, никто не мог предсказать, как она закончится. Промышленная революция – это совсем другое: довольно трудно определить, когда она началась и когда закончилась (считается, что она длилась приблизительно с 1760 г. до периода 1820–1840 гг.), а некоторые регионы и люди были затронуты ей быстрее и гораздо сильнее, чем все остальные, однако все согласны, что она началась в Англии, а ее основой служили паровая машина и фабричная система. И наконец, коперниканская революция – это мутация, или трансформация, понятий, в результате которой в центр Вселенной поместили Солнце, а не Землю, и теперь именно Земля вращалась вокруг Солнца, а не наоборот. В первые сто лет после публикации в 1543 г. книги Коперника «О вращении небесных сфер» (De revolutionibus orbium coelestium) лишь ограниченное число специалистов были знакомы с подробностями его аргументации, которая была признана верной во второй половине XVII в. Неспособность увидеть эти различия и задать вопрос, что именно имели в виду те, кто первыми стали использовать термин «научная революция», привела к невероятной путанице. Источник этой путаницы прост: с самого начала термин «научная революция» имел два разных применения. Для Дьюи, Ласки и Баттерфилда научная революция была продолжительным и сложным процессом преобразований, сравнимым с Реформацией (которую Ласки называл теологической революцией) или промышленной революцией. Койре отождествлял ее (следуя концепции «эпистемологического разрыва» Гастона Башляра) с единичной интеллектуальной мутацией: заменой аристотелевской идеи места (в котором всегда есть верх и низ, право и лево) идеей пространства; по его утверждению, эта замена сделала возможным появление понятия инерции, которое стало основой современной физики 59. Койре пользовался огромным влиянием в Америке, и его башляровская концепция интеллектуальной мутации была принята Томасом Куном в «Структуре научных революций». В Англии Ласки и Баттерфилд оказали не меньшее влияние на такие работы, как «Научная революция» (The Scientific Revolution, 1954) Руперта Холла, в которой отрицалась какая-либо связь между научной и промышленной революциями, и «Наука в истории» (Science in History) Дж. Д. Бернала, второй том которой, «Научная и промышленная революции» (The Scientific and Industrial Revolutions, 1965), был посвящен их тесной связи. Между этими двумя концепциями научной революции имеется фундаментальное различие. Коперник, Галилей, Ньютон, Дарвин, Гейзенберг и другие, открытия которых привели к конкретной интеллектуальной реконфигурации, мутациям, или трансформациям, в науке, прекрасно представляли последствия своей работы. Они понимали, что если их идеи признают, то последствия будут судьбоносными. Поэтому существует соблазн 57 Koyré. The Astronomical Revolution (1973) (French original, 1961). 58 Cunningham & Williams. De-Centring the ‘Big Picture’. 640 (1993). 59 Shapin. The Scientific Revolution (1996). 3.
рассматривать научные революции как сознательные действия людей, которые достигли своих целей. Научная революция, о которой говорил Баттерфилд, была другой. Сравнение научной революции с политической в какой-то степени оправданно, поскольку обе меняют жизнь всех, кого затрагивают; и та и другая имеют распознаваемые начало и конец, для обеих характерна борьба за влияние и статус (в научной революции между философами, последователями Аристотеля, и математиками, которые отдавали предпочтение новой науке). Но самое главное – и политическая, и научная революция имеют непредвиденные последствия. Марат жаждал свободы, а в результате революции к власти пришел Наполеон. Ленин, всего за два месяца до Октябрьской революции 1917 г. опубликовавший работу «Государство и революция», искренне верил, что коммунистическая революция быстро приведет к отмиранию государства. Даже Американская революция, которая ближе всего подошла к осуществлению идеалов, вдохновивших ее, демонстрирует огромную разницу между «Здравым смыслом» (Common Sense, 1776) Томаса Пейна, где нарисована демократическая система, в которой большинство может по большей части делать то, что пожелает, и сложной системой сдержек и противовесов, проанализированной в сборнике статей «Федералист» (The Federalist, 1788), – системой, предназначенной для того, чтобы держать в узде таких радикалов, как Пейн. В научной революции среди тех, кто планировал радикальные интеллектуальные перемены, были Бэкон и Декарт, но их планы были воздушными замками, и они даже не могли представить достижений Ньютона. Тот факт, что результат научной революции в целом не был предсказан или спланирован ни одним из ее участников, вовсе не свидетельствует о том, что ее нельзя называть революцией, – это лишь означает, что она не является четко очерченным эпистемологическим разрывом, который описывал Койре60. Аналогичным образом, когда сначала Томас Ньюкомен (1711), а затем Джеймс Уатт (1769) изобретали новые мощные паровые машины, ни один из них не предвидел, что в век пара появится грандиозная железнодорожная сеть, опутывающая весь мир, – первая общественная железная дорога на паровой тяге была введена в строй только в 1825 г. Именно эту разновидность революции с неожиданными последствиями и непредсказуемыми результатами Баттерфилд называл термином «научная революция». Если рассматривать термин «революция» в узком смысле, как резкие перемены, одновременно затрагивающие всех, то научной революции не существует – как и неолитической революции, революции в военном деле (после изобретения пороха) или промышленной революции (после изобретения паровой машины). Но мы должны признать существование продолжительных, неравномерных революций, если хотим отвлечься от политики и понять масштабные экономические, социальные, интеллектуальные и технологические перемены. Кто, например, станет отрицать «цифровую революцию» на том основании, что это не одиночное и дискретное событие, локализованное во времени и пространстве? Можно усмотреть определенную иронию в том, что Баттерфилд принял на вооружение ретроспективный термин «научная революция», а также в выборе названия для его книги, «Происхождение современной науки». В 1931 г. он опубликовал работу «Виг-интерпретация истории» (The Whig Interpretation of History), в которой атаковал историков, представлявших английскую историю таким образом, словно она естественно и неизбежно вела к триумфу либеральных ценностей 61. Историки, утверждал Баттерфилд, должны научиться видеть прошлое так, как будто будущее им неизвестно – как жившим в ту эпоху людям. Они должны представить мир, где ценности, которых мы придерживаемся, и институты, 60 Классический анализ неожиданных последствий революционных перемен можно найти в: Tocqueville. The Old Regime and the Revolution (1856). 61 Butterfield. The Whig Interpretation of History (1931). О непреходящем значении книги см., например, Wilson & Ashplant. Whig History (1988).
которыми мы восхищаемся, даже невозможно было вообразить, не говоря уже о том, чтобы одобрить. Не дело историков хвалить тех людей прошлого, с чьими ценностями и мнениями они согласны, и критиковать тех, с кем расходятся во взглядах; судить имеет право только Бог62. Атака Баттерфилда на либеральную традицию исторического анализа в Англии была полезной, хотя вскоре он понял, что та историческая наука, за которую он выступал, была бы не в состоянии осмыслить прошлое, поскольку оценить значимость событий позволяет только взгляд из будущего; история превратится в подобие Бородинской битвы в восприятии ее участников – по крайней мере, как описал ее Толстой в «Войне и мире», – а читатели и сами историки будут бродить в потемках, не в силах понять смысл происходящего. Разумеется, Толстой знал больше своих персонажей и в отступлениях объяснил смысл того, что вольно или невольно скрывали воюющие стороны. Но впоследствии историки обратили слово «виг-история» против самого Баттерфилда, обвинив его в том, что он принимает на веру превосходство современной науки над всеми достижениями прошлого. Сама идея книги об «истоках» кажется им противоречащей принципам, которые он установил в «Вигинтерпретации истории» 6364. Это справедливый упрек, но относится он к ранним принципам Баттерфилда, а не к его последующей практике; нам необходимо знать истоки современной науки, чтобы понять мир, в котором мы живем. §2 В последнее время большинство ученых с неохотой признавали термин «научная революция», а многие открыто отвергали его. В литературе часто цитируют парадоксальное начало книги Стивена Шейпина «Научная революция» (The Scientific Revolution, 1996). «Никакой научной революции не было, и эта книга о ней»65. Главный источник их дискомфорта (после устранения путаницы со значением слова «революция») указывает на тот аспект изучения истории, который Баттерфилд просто считал само собой разумеющимся и не видел необходимости обсуждать: «главным рабочим инструментом» историка служит язык 66. Вся книга Баттерфилда «Виг-интерпретация истории» представляет собой критику анахроничного мышления в исторической науке, однако Баттерфилд 62 Совершенно очевидно, это ошибочный тезис: я убежден, что никому не захочется читать рассказ о рабстве, если автор не способен высказать свое отношение к этому явлению. 63 Баттерфилд выражался недвусмысленно: «Последствия его [виг-историка] фундаментального заблуждения ярче всего проявляются в поиске истоков»; «История – это не изучение истоков, а скорее анализ всех средств, с помощью которых прошлое превратилось в настоящее». Butterfield. The Whig Interpretation of History (1931), 42, 43, 47. Об эволюции его взглядов см.: Sewell . The ‘Herbert Butterfield Problem’ and Its Resolution (2003). 64 Elton. Herbert Butterfield and the Study of History (1984). 736. «Истоки», – говорит Б. Дж. Доббс, – это самая виговская история науки, которую только можно представить»: Dobbs. Newton as Final Cause (2000). 30. См.: Westfall. The Scientific Revolution Reasserted (2000). 41–43. 65 Shapin. The Scientific Revolution (1996). Наиболее авторитетные источники на тему научной революции: Dijksterhuis. The Mechanization of the World Picture (1961); Cohen. The Birth of a New Physics (1987); Lindberg & Westman (eds.). Reappraisals of the Scientific Revolution (1990); Cohen. The Scientific Revolution: A Historiographical Inquiry (1994); Applebaum, Encyclopedia of the Scientific Revolution (2000); Osler (ed.). Rethinking the Scientific Revolution (2000); Dear. Revolutionizing the Sciences (2001); Rossi . The Birth of Modern Science (2001); Henry . The Scientific Revolution (2002); Wussing. Die grosse Erneuerung (2002); Hellyer (ed.). The Scientific Revolution (2003); Cohen. How Modern Science Came into the World (2010); Principe. The Scientific Revolution (2011). Обзор современных научных тенденций см. в: Smith. Science on the Move (2009). 66 Wilson & Ashplant . Whig History (1988). 14.
не обращается к главному источнику анахронизма: язык, на котором мы пишем о прошлом, отличается от языка людей, о которых мы рассказываем 67. Когда в 1988 г. аргументы Баттерфилда были повторены Эдрианом Уилсоном и Т. Г. Эшплантом, главной особенностью работы историка стал тот факт, что дошедшие до нас тексты написаны практически на иностранном языке68. Внезапно выяснилось, что со словом «революция» возникает проблема, которую раньше не замечали, – и со словом «наука» тоже. Дело в том, что это наши слова, а не их69. Слово science (наука) происходит от латинского scientia , что означает «знание». Одна точка зрения, основанная на отрицании Баттерфилдом виг-истории и на взглядах Витгенштейна (к ним мы обратимся ниже), заключается в том, что истина, или знание, – это то, что люди считают таковым 70. В этой логике астрология раньше была наукой – как и богословие. В средневековых университетах основной курс обучения включал семь «искусств» и гуманитарных «наук»: грамматику, риторику и логику, математику, геометрию, музыку и астрономию (включая астрологию) 71. Сегодня их часто относят к искусствам, но изначально каждая дисциплина называлась одновременно искусством (практический навык) и наукой (теоретическая система); например, астрология была прикладным искусством, а астрономия – теоретической системой 72. Эти науки и искусства давали студентам основу для последующего изучения философии, богословия, медицины или юриспруденции. Эти предметы тоже назвали науками, но философия и богословие были чисто абстрактными изысканиями, без соответствующего прикладного искусства. У них имелись практические последствия и применения – богословие необходимо в искусстве проповедования, этика и политика, изучавшиеся философами, применялись на практике, – но в университетах отсутствовали курсы прикладного богословия или прикладной философии. Они не считались искусствами, и тогда было немыслимо сказать, что философия 67 В «Происхождении современной науки» можно найти признаки интереса к языку; например, в обсуждении корней просвещения: «…Тогда как “разум” когда-то был тем, что требовалось дисциплинировать долгим и упорным обучением, само значение слова начало меняться, и теперь каждый человек может сказать, что обладает им, особенно если его разум не был испорчен образованием и традициями. Фактически “разум” стал означать нечто гораздо большее, чем то, что мы сегодня называем здравым смыслом». 68 Wilson & Ashplant . Whig History (1988). Главный источник такого подхода – Skinner. Meaning and Understanding in the History of Ideas (1969). (Аргумент Скиннера, как изначально было заявлено, позаимствован у Витгенштейна, хотя в исправленном издании 2002 г. это уже не так очевидно: Wootton . The Hard Look Back, 2003.) На историю науки он повлиял не сразу, а после публикации таких работ, как Shapin & Schaffer. Leviathan and the Air-pump (1985) и Cunningham. Getting the Game Right (1988). 69 Последняя онлайновая версия (март 2014) Оксфордского словаря английского языка датирует первое появление слова «научный» в значении «связанный с науками (особенно естественными)… рассматриваемый наукой» 1675 г.; никаких свидетельств его использования до 1757 г. не сохранилось. Термин «наука» в современном значении («интеллектуальная и практическая деятельность, охватывающая те области исследований, которые связаны с явлениями физической Вселенной и их законами») впервые встречается в 1779 г. (что делает более раннее употребление слова «научный» в современном значении довольно странным, но, как мы вскоре убедимся, слово «наука» в этом значении использовалось гораздо раньше). 70 Например, Шейпин утверждает: «Для историков, специалистов по культурной антропологии и социологии знаний отношение к истине как к признанному убеждению считается максимой метода, и это справедливо» (Shapin. A Social History of Truth. 1994. 4). См. комментарий «Релятивизм и релятивисты», 1. 71 Wagner. The Seven Liberal Arts (1983). 72 Помимо этих гуманитарных искусств, которыми владели образованные люди, существовали и другие искусства, связанные с физическим трудом (ремесла): например, ювелирное дело и специальность каменщика.
является искусством, а не наукой, как мы считаем теперь 73. Более того, среди этих наук существовала иерархия: богословы считали себя вправе указывать философам, чтобы те продемонстрировали рациональность веры в бессмертную душу (несмотря на тот факт, что Аристотель не разделял это мнение: философские аргументы против бессмертия души были осуждены богословами в 1270 г. в Париже); философы считали себя вправе указывать математикам, чтобы те доказали, что любое движение на небесах является круговым, поскольку только круговое движение может быть неизменным и вечным, а также продемонстрировали, что Земля находится в центре всех этих небесных окружностей 74. Можно сказать, что суть научной революции состоит в том, что она представляет собой успешный бунт математиков против власти философов и тех и других против власти богословов 75. Примером такого бунта может служить название работы Ньютона «Математические начала натуральной философии» – это название является преднамеренным вызовом 76. Более ранний пример можно найти у Леонардо да Винчи, который в своем трактате «О живописи»77, вышедшем после его смерти (1519), писал: «Никакое человеческое исследование не может быть названо истинной наукой, если оно не проходит через математические доказательства. И если ты скажешь, что науки, которые начинаются и кончаются в душе, обладают истиной, то этого нельзя допустить, а следует отрицать по многим основаниям. И прежде всего потому, что в таких умозрительных рассуждениях отсутствует опыт 78, без которого ни в чем не может быть достоверности» 79. 73 Когда богословие перестало быть наукой? Возможно, после Temple . Miscellanea: The Third Part (1701). 261. 74 Так, Джозеффо Царлино описывал науку музыки как «подчиненную» (sottoposto) философии (Zarlino. Dimostrationi harmoniche, 1571. 9). Когда астрономы из ордена иезуитов в Риме в 1611 г. признали, что Венера вращается вокруг Солнца, они «скандализовали философов», которые не привыкли к такому нарушению субординации (Lattis. Between Copernicus and Galileo, 1994. 193). 75 Например, Milliet de Chales . Cursus seu mundus mathematicus (1674). I, †3r: «Plebeiae sunt caeterae disciplinae, mathesis Regia; ††1r: Primum internaturales scientias locum, sibi iure vendicare Mathematicas disciplinas»; а в расширенном посмертном издании, Milliet de Challes. Cursus seu mundus mathematicus (1690). Vol. 1. 1, 2: «Quòd si hoc praesertim saeculo, assurgere non nihil videtur Physica, fructúsque edidisse non poenitendos, si multa scita digna, jucunda, Antiquis etiam incognita decreta sunt; ideò sane quia Mathematici philosophantur, rebúsque physicis Mathematices placita admiscent». Важные источники на эту тему: Bennett . The Mechanics’ Philosophy and the Mechanical Philosophy (1986), а также таблица в Gascoigne . A Reappraisal of the Role of the Universities (1990). 227 и серьезная статья о сотрудничестве математиков и анатомов, Bertoloni Meli. The Collaboration between Anatomists and Mathematicians in the Midseventeenth Century (2008). Интересным (и частичным) исключением из общего правила, что новые ученые были математиками или врачами, является Роберт Бойл: Shapin . Boyle and Mathematics (1988). Признание противоречий между математиками и философами помогает прояснить роль университетов в научной революции: позитивный взгляд на их роль см. в: Gascoigne . A Reappraisal of the Role of the Universities (1990) (обратите внимание на табл. 5.2, в которой показано, что лишь треть ученых, родившихся в период с 1151 по 1650 г., занимали должности в университетах) и в Porter . The Scientific Revolution and Universities (1996). 76 До Ньютона был Кеплер: его книга «Новая астрономия, причинно обоснованная, или небесная физика, основанная на комментариях к движениям звезды Марс, наблюдавшимся достопочтенным Тихо Браге» (Astronomia Nova ΑΙΤΙΟΛΟΓΗΤΟΣ seu physica coelestis, tradita commentariis de motibus stellae Martis ex observationibus G. V. Tychonis Brahe) (1609) намеренно объединяет миры математика (который имеет дело с астрономией) и натурфилософа (который имеет дело с физикой и причинностью в природе). 77 Впервые опубликован в 1651 г.; текст был составлен приблизительно в 1540 г. из записок Леонардо его учеником Франческо Мельци и долгое время распространялся в рукописи. 78 Леонардо подписывался не без хвастовства: «Leonardo Vinci disscepolo della sperientia» («Леонардо Винчи, ученик опыта») (Nicholl . Leonardo da Vinci, 2004. 7).
Этими словами Леонардо, который был не только художником, но и инженером, отрицал всю аристотелевскую натурфилософию (именно это он имел в виду, говоря о науках, «которые начинаются и кончаются в душе») и ограничивал истинные науки теми формами знания, которые одновременно являются математическими и основаны на опыте; он упоминает об арифметике, геометрии, перспективе, астрономии (включая картографию) и музыке. Он понимал, что математические науки зачастую отвергались как «механические» (то есть запятнанные тесной связью с ручным трудом), но настаивал, что лишь они способны давать истинное знание. Впоследствии читатели Леонардо не могли поверить, что он имел в виду именно это, но факт остается фактом 80. В результате этого восстания математиков в наше время философия из чистой науки превратилась просто в искусство. Главной частью философии – в том виде, в котором эта дисциплина была унаследована от Аристотеля и преподавалась в университетах, – было изучение природы; слово nature (природа) происходит от латинского natura , эквивалентом которому в греческом языке является physis . Для последователей Аристотеля изучение природы означало понимание мира, а не изменение его, и поэтому не существовало искусства (или технологии), которое ассоциировалось с наукой о природе. А поскольку природа есть воплощение самого разума, то в принципе возможно вычислить, как устроен мир. Для Аристотеля идеальная наука состояла из цепочки логических умозаключений, начинающихся с неоспоримых посылок 81. Когда в XVII в. появилась альтернатива аристотелевской философии, поначалу получившая название «новой философии» (как мы видели, Джон Донн использовал этот термин в 1611), стала очевидной необходимость найти новый словарь для описания нового знания82. Слово, которое используется в современном английском языке, science (наука), было слишком расплывчатым: как мы видели, уже существовало много наук. Другой вариант – к нему прибегали довольно часто – заключался в том, чтобы продолжать пользоваться терминами латинского происхождения «натурфилософия» и «натурфилософ»83. Поскольку эти термины ассоциировались с более высоким статусом, новые философы, естественно, стали на них претендовать 84: например, Галилей, будучи профессором математики, в 1610 г. стал философом при великом герцоге Тосканском 85. (Гоббс считал Галилея величайшим философом всех времен) 86. Для некоторых 79 Перевод А. Губера. 80 Leonardo da Vinci. Treatise on Painting (1956). No. 1. О замешательстве читателей см.: Leonardo da Vinci. Trattato della pittura (1817). 2. Развернутые аргументы о том, что математика является основой всего истинного знания, см.: Aggiunti. Oratio de mathematicae laudibus (1627). Esp. 8, 26, 33. Нет никаких оснований приписывать этот текст Галилею (Peterson. Galileo’s Muse, 2011), но он явно одобрял его. 81 Более подробно об Аристотеле см. ниже, гл. 3. 82 Первой книгой, которая открыто причисляла себя к «новой философии», по всей видимости, был антиаристотелевский трактат Франческо Патрици «Новая универсальная философия» (Nova de universis philosophia), опубликованный в 1591 г. 83 Термины латинского происхождения philosophia и philosophus были натурализованы в классической латыни, хотя происхождение у них греческое. 84 Biagioli. The Social Status of Italian Mathematicians, 1450–1600 (1989). 85 Сам Галилей использует следующий титул: «Filosofo e matematico primario del sermo Gran Duca di Toscana». Галилей был единственным философом герцога и первым среди его математиков. 86 «Galilaeus, non modo nostri, sed omnium saeculorum philosophus maximus». Hobbes. De mundo (1973). 178.
единственной настоящей философией была натурфилософия. Так, например, Роберт Гук, один из первых, кому платили за проведение экспериментов, прямо говорил: «Задача философии – находить совершенное знание природы и свойства тел», а также способы применения этого знания. Это он называл «истинной наукой» 87. Такое использование терминов «философия» и «философ» продолжалось гораздо дольше, чем кажется. В 1889 г. Роберт Генри Терстон опубликовал книгу «Развитие философии паровой машины» (Development of the Philosophy of the Steam Engine); под «философией» он подразумевал «науку». Но термин «натурфилософия» был неудовлетворительным, поскольку подразумевал, что новая философия похожа на старую и у нее нет практического применения. Существовал и другой вариант – использовать уже существующее словосочетание, в котором не было термина «философия», – «естественные науки»; это словосочетание было широко распространено в XVII в.88 (Только в XIX в. термин «наука» стал повсеместно использоваться как сокращение для «естественных наук».) Существовал и более общий термин «естественное знание». Наука о природе нуждалась в названии, и в конце XVI в. появилось слово «натуралист» – и лишь гораздо позже «натуралистом» стали называть ученого, который изучает живые существа (даже в 1755 г. доктор Джонсон в своем словаре английского языка определяет натуралиста как «человека, искушенного в натурфилософии»). Альтернативой «натуралисту» был «натуристорик», термин, позаимствованный из «Натуральной истории» (Naturalis historia) Плиния (78 н. э.), однако с приходом новой науки репутация Плиния оказалась подорванной, и простые натуральные истории вскоре сменились более сложными программами наблюдений. Таким образом, латынь не могла предложить идеального решения. А греческий? Очевидным вариантом были physic(s) (или physiology ) и physician (или physiologist )89. Оба набора терминов, как и их греческие оригиналы, относились к изучению всей природы, живой и неживой, – например, «Физиологические очерки» (Physiological Essays) Бойля (1661) были посвящены естественным наукам в целом. Однако на оба термина уже претендовали врачи (долгое время медицина считалась «искусством», базирующимся на науке о природе), что было очень неудобно. Тем не менее английские интеллектуалы второй половины XVII в. использовали термин physicks для обозначения «науки о природе», или «натурфилософии» (в противоположность physick для обозначения медицины). Для пресвитерианского священника Ричарда Бакстера «истинная Physicks – это наука о познаваемых творениях Бога», а для Джона Харриса, который с 1698 г. читал лекции 87 Hooke. The Posthumous Works (1705). 3, 4. 88 Поиск в интернете в Early English Books Online (далее EEBO) дает 245 ссылок на разные формы и варианты написания natural science; еще 29 ссылок на sciences natural и 8 на science of nature . Использование этого термина Галилеем см. ниже, Милле де Шале – см. выше. Альтернативный термин – physical science (25 ссылок). На французском см., например: Dupleix . La Physique, ou science naturelle (1603); первый пример science naturelle в единственном числе, который мне удалось найти, датируется 1586 г., во множественном числе – 1537 г. На итальянском Царлино определяет изучение материальных объектов как scienza naturale , а также fisica (Zarlino . Dimostrationi harmoniche, 1571. 9); музыку он считает смешанной наукой, отчасти физической, отчасти математической. По мнению Эдриана Джонса, «в раннем современном обществе не было науки» (Johns. Identity, Practice and Trust, 1999. 1125; см. также: Johns. The Nature of the Book, 1998. 6 n. 4 и 42, 43: «В определенном смысле истории ранней современной науки больше не существует»). Он не признает существование «естественных наук» и говорит только о натурфилософии и математике, а не о «физиологии», «физике» и т. д. Утверждая, что scientia относится только к «конкретному, доказуемому знанию», он демонстрирует фундаментальное непонимание, что значил этот термин в XVII в., поскольку науками, кроме музыки, считались, например, география и анатомия. Такая же путаница присутствует в Cunningham . Getting the Game Right (1988) и в: Henry. The Scientific Revolution (2008). 4, 5. 89 Был и третий термин, в настоящее время полностью вышедший из употребления, physiologer .
о новой науке, «Physiology, Physicks, или натурфилософия, – наука о природных телах» 90, хотя он и признавал, что некоторые используют термин physiology в значении, которое оставалось общеупотребительным до конца XVIII столетия – в оригинальном значении, предшествовавшем его использованию при изучении биологии человека. Тот, кто изучал натурфилософию, был physiologist. И только в XIX в. physiology окончательно отдали врачам, тогда как естествоиспытатели дали новое определение термину physics (физика), исключив из него «биологию» (это слово было изобретено в 1799 г.), и в дополнение к слову physics появился и новый термин, physicist (физик) 91. Затем требовалось изобрести термин, который отражал бы, каким образом новая наука пересекается с традиционными дисциплинами натурфилософии (включавшей то, что мы сегодня называем физикой и математикой (в том числе механику и астрономию). Так возникли термины «физико-математический» и «физико-механический», например «физикомеханические эксперименты», а также странные гибриды вроде «механической философии» и «математической философии» 92. Таким образом, мы имеем дело не с трансформацией, отраженной в одной паре терминов, – в XIX в. «натурфилософия» превратилась в «науку»93. Это сложная сеть терминов, когда изменение в значении одного из них влияет на значение всех остальных 94. 90 Baxter. A Paraphrase on the New Testament (1685), annotations on 1 Corinthians. Ch. 2 (misquoted in OED s. v. physic); и Harris. Lexicon technicum (1704), цит. в OED s. v. physiology (я цитирую по второму изданию, 1708). См. также: Hooke. The Posthumous Works (1705). 172: ‘the Science of Physicks, or of Natural and Experimental Philosophy’. Уоттон считает, что в английском языке physick и physical оправданно ограничены медициной (Wotton. Reflections upon Ancient and Modern Learning, 1694. 289), но на практике он использует термин physical для обозначения физики в целом. 91 Слово physiology использовалось как синоним physical science, см.: Gilbert . De magnete (1600) (physiologia nova ); и Charleton. Physiologia Epicuro-Gassendo-Charletoniana (1654); см. также: Wotton. Reflections upon Ancient and Modern Learning (1694). 457. 92 Из них самыми распространенными были «механическая философия» (62 ссылок в EEBO), «физикомеханический» (122); еще чаще встречается «экспериментальная философия» (352 ссылки – и еще 24 для термина «экспериментальная натурфилософия». В Benedetti. Consideratione (1579) встречается термин «математический философ», который противопоставляется «натурфилософу»; далее (49) Бенедетти обыгрывает разные значения слова naturale: всерьез можно принимать только математических философов, поскольку натурфилософы полностью natural (в смысле «глупы»). Термин «натурфилософия» был проблематичен, и до 1650 г. Гильберт в своем труде о магнетизме использует выражение philosophia naturalis всего один раз, в связи со старым способом мышления (Gilbert. De magnete, 1600. 116), а в «Диалогах» Галилея он появляется три раза, всегда в отсылках к аристотелевской философии. Как считал богослов, философ и математик Марен Мерсенн, Галилей был не философом, а «математиком и инженером» (Garber. On the Frontlines of the Scientific Revolution, 2004. 151, 152, 156–1599). И только в 1640-х гг. натурфилософия становится важной категорией – в основном благодаря влиянию Декарта. 93 Эндрю Каннингем особенно настаивал на том, что правильной категорией для раннего современного периода является натурфилософия и что натурфилософия отличается от науки тем, что в центре ее стоит Бог. См. его дебаты с Эдвардом Грантом: Cunningham. How the Principia Got Its Name (1991); Grant . God, Science and Natural Philosophy (1999); Cunningham. The Identity of Natural Philosophy (2000); и Grant . God and Natural Philosophy (2000). Похоже, Грант был прав. См. также: Dear. Religion, Science and Natural Philosophy (2001). Еще более интересный аргумент был выдвинут Джоном Шустером (см.: Schuster. Descartes-Agonistes, 2013. 31– 98), но я не согласен с его утверждением, что натурфилософия является категорией для анализа научной революции и что научная революции есть гражданская война внутри натурфилософии. Более полезный, на мой взгляд, материал по другой категории, физикоматематике, см. в: Dear. Discipline and Experience (1995). 168– 179, Schuster. Cartesian Physics (2013). 57–61 и Schuster. Descartes-Agonistes (2013). 10–13, 56–59. Вопрос о том, следует ли рассматривать новую науку как вынужденный разрыв с натурфилософией или как борьбу внутри ее, зависит от того, считать ли зрелого Декарта типичным или нетипичным. 94 Kuhn . The Road since Structure (2000). 42, 43. Discipline and Experience (1995). 151, 152 о «сетевой модели» Мэри Гесе.
Самым удивительным новшеством XIX в. в том, что касается языка науки, стало появление слова scientist (ученый). Но тот факт, что никого не называли «ученым» до 1833 г., когда это слово придумал Уильям Уэвелл, вовсе на означает отсутствие термина для специалиста в естественных науках – их называли naturalists, physiologists или physicians ; на итальянском они были scienziati , на французском savants , на немецком Naturforscher , а на английском virtuosi 95. Трактат Роберта Бойля «Христианский виртуоз» (The Christian Virtuoso, 1690) повествует о человеке, который «одержим экспериментальной философией»96. По мере того как термины, подобные virtuosi , постепенно устаревали, их заменило словосочетание «люди науки», которое в XVI и XVII столетиях использовалось для обозначения всех, кто получил гуманитарное или философское образование («люди науки, а не ремесла»), а в XVIII в. приобрело более узкий смысл и применялось к людям, которых мы теперь называем «учеными». Слово scientist (ученый) медленно входило в обиход по вполне понятной причине (как и современное слово телевизор) – это был незаконнорожденный гибрид латыни и греческого. Геолог Адам Седжвик написал на полях своего экземпляра книги Уэвелла: «Лучше умереть от этого отсутствия, чем оскотинивать наш язык таким варварством»97. Даже в 1894 г. Томас Гексли («бульдог Дарвина») настаивал, что тот, у кого есть капля уважения к английскому языку, не станет использовать слово, которое он считал «не более приятным, чем “электроказнь” (греко-латинский, а не латино-греческий гибрид), – причем он был не одинок 98. В этом отношении полезно сравнить слово scientist со словом microscopist 95 По поводу французского см.: Schaffer. Scientific Discoveries (1986). 408. 96 Boyle. The Christian Virtuoso (1690), титульный лист = Boyle. The Works (1999). Vol. 11. 97 Цит. по: Secord . Visions of Science (2014). 105. 98 Ross. ‘Scientist’: The Story of a Word (1962). 78. Уэвелл понимал, что причиной сопротивления этому термину была его этимология: «Некий изобретательный человек [сам Уэвелл на собрании Британской ассоциации содействия науке] предположил, что по аналогии с “артистом” можно образовать слово scientist (ученый), и добавил, что можно отбросить сомнения относительно окончания, поскольку у нас есть такие слова, как “экономист” и “атеист”, – но это не считали приемлемым» (Whewell. On the Connexion of the Physical Sciences, 1834. 59). Уэвелл счел нужным затронуть этот вопрос в книге отчасти потому, что scientist, в отличие от man of science , был гендерно нейтральным термином (он рецензировал книгу популяризатора науки Мэри Сомервиль). К этому вопросу он вернулся через несколько лет в контексте общей дискуссии о языке науки, заявив: «Сочетания разных языков в происхождении слов в целом следует избегать, но в отдельных случаях это приемлемо». Далее он утверждал (вопреки распространенному мнению), что окончание -ist «присутствует в словах любого происхождения… Поэтому мы можем создавать такие слова, когда они необходимы. Поскольку мы не можем называть physician того, кто занимается физикой, я назвал его physicist . Нам очень нужно название, которое описывает человека, занимающегося наукой. Я склонен называть его Scientist . Таким образом, мы можем сказать, что Artist – это музыкант, живописец или поэт, а Scientist – математик, физик или натуралист». (Whewell. The Philosophy of the Inductive Sciences, 1840. cvi, cxiii; слово artist выглядит как латинско-греческий гибрид, но на самом деле оно, подобно dentist , заимствовано из французского.) Но, несмотря на усилия Уэвелла, слово scientist не появилось в Galton. English Men of Science (1874), где рассказывалось о 190 членах Королевской академии. Согласно сервису Google ngram, частота употребления scientist + scientists превышает частоту употребления man of science + men of science лишь в 1882 г. В этом же году слово scientist впервые прозвучало в ежегодном послании президента Британской ассоциации содействия науке, однако великий биолог Дарси Вентворт Томпсон избегал его даже в 1920-х гг. Как и следовало ожидать, в Северной Америке термин приживался быстрее, чем в Британии, где ученые по-прежнему получали классическое образование. См.: Ross. ‘Scientist’: The Story of a Word (1962); Secord . Visions of Science (2014). 105 (автор ошибается, утверждая, что Уэвелл задумывал термин как «оскорбление»; Уэвелл использует в качестве одного из примеров слово sciolist (шарлатан) не потому, что считал науку недостойным занятием, а исключительно потому, что это латинский гибрид того же типа, который его оппоненты отвергали как неприемлемый); Barton . Men of science (2003). 80–90 и n. 33.
(1831), которое не вызвало возражений, поскольку было образовано только из греческих составляющих99. Если мы посмотрим на другие европейские языки, то увидим, что только португальский последовал примеру английского в создании лингвистического гибрида: cientista . Таким образом, можно считать ошибочным «утверждение, что «слово scientist возникло в 1833 г. потому, что только тогда люди осознали его необходимость»: потребность в таком термине ощущалась давно 100. Проблема заключалась в подборе подходящего слова – которое еще не использовалось в другом значении и было должным образом сконструировано. Поэтому препятствие устранили только тогда, когда потребность стала настоятельной, и ради ее удовлетворения пришлось нарушить одно из базовых правил словообразования. По существу, слово scientist было всего лишь новым, удобным словом для обозначения понятия, которое давно существовало 101. Слово scientific (научный) возникло в промежутке между классическим science и появившимся в XIX в. scientist. Scientificus (от scientia и facere , создание знания) – это не классическая латынь; термин был изобретен Боэцием в VI в. В английском языке он появился только в 1637 г. (если не считать пары упоминаний в 1579), после чего стал распространяться все шире. У термина было три основных значения: он мог обозначать определенный вид компетенции («научный» как противоположность «механическому», образование грамотного человека или джентльмена, в отличие от торговца) или доказательный метод (то есть посредством аристотелевых силлогизмов), но его третье значение (например, «научное измерение треугольников» в работе о межевании, 1645) уже связано с новыми науками эпохи научной революции. Во французском языке слово scientifique появилось раньше, в XIV в., и имело отношение к получению знаний; в XVII столетии его использовали в отношении абстрактных и теоретических наук, а в качестве эквивалента английскому scientist – un scientifique – оно стало применяться с 1895 г., приблизительно в то же время, когда английский термин получил широкое распространение102. Разумеется, у каждого европейского языка были свои особенности. Во французском языке XVII в. мы находим термины, эквивалентные английскому physician (physicien ) и naturalist (naturaliste ). Слово physicien во французском языке никогда не использовалось в значении «врач» и поэтому вполне подходило для названия специалиста в области естественных наук; затем оно эволюционировало и стало французским эквивалентом английскому physicist 103. В Италии, наоборот, связь между fisico и медициной в XVI в. уже была достаточно сильна, и сторонники новой философии редко называли себя fisici 104, но у итальянцев уже имелось слово scienziato (человек знания), отсутствовавшее в английском и во французском (scientiste почти всегда использовалось в уничижительном 99 1831 – из Google Books; OED дает 1835–1836. 100 Hannam. God’s Philosophers (2009). 338. 101 Hill. The Word Revolution’ in Seventeenth-century England (1986), 149, о том, как ‘things precede words’. 102 Benveniste . Problèmes de linguistique générale II (1974). 247–253; даты для английского термина получены из OED, проверены по EEBO Google Books; датой 1895 г. я обязан Пьеру Фиала, который выполнил поиск по базе данных Frantext. 103 Во французском языке вы найдете слово physique в единственном числе, а не во множественном, когда речь идет о науке: например, Daneau. Physique françoise, comprenant… le discours des choses naturelles, tant célestes que terrestres, selon que les philosophes les ont descrites (1581). 104 Исключением является Бруно: Bruno. The Ash Wednesday Supper (1995). 139.
смысле для обозначения человека, который делает культ из науки). Таким образом, утверждать – как это часто делается, – что до появления «ученых» никакой науки не было, – значит демонстрировать свое невежество в области эволюции языка в отношении познания природы и исследователей природы в период с XVII по XIX в.105 Те, кто не решается использовать термины «наука» и «ученый» для XVII столетия, считая их анахроничными, не понимают, что вся история изобилует переводами с одного языка на другой и что science – это просто сокращение от весьма распространенного в XVII в. термина natural science, а слово scientist – замена для naturalist, physician, physiologist и virtuoso. Первое официальное собрание группы, которая впоследствии стала Королевским обществом, обсуждало организацию сообщества для продвижения «Физико-математико-экспериментальных знаний»: участники ясно дали понять, что сфера их интересов – не натурфилософия в ее традиционном понимании, а новый тип знания, который возник в результате вторжения математиков на территорию философов 106. Утверждалось также, что в XVII в. не было ученых, потому что не существовало профессиональной ниши, которую мог бы занять ученый. «В Англии эпохи Стюартов не было ученых, – говорят нам, – и все, кого мы объединяем под этим названием, были дилетантами»107. Если следовать этой же логике, Гоббс, Декарт и Локк не были философами, поскольку никто не платил им за написание философских трудов; и тогда единственными настоящими философами в XVII в. можно читать схоластиков, которые преподавали в университетах и иезуитских колледжах. В этом отношении некоторые новые ученые не были, подобно новым философам, ни дилетантами, ни профессионалами: Роберт Бойль, в честь которого назван закон сжатия газов, был богат, независим, и профессиональная деятельность была для него неуместной как для сына графа. Джон Уилкинс, оставивший после себя множество научных трудов, был священником, а затем и епископом, но в 1662 г., когда образовалось Королевское общество, уже занимал должности директора Мертон-колледжа в Оксфорде и мастера Тринити-колледжа в Кембридже (на эту должность его назначили при Кромвеле), хотя его университетская карьера была разрушена Реставрацией, и ему пришлось вернуться к церковной карьере108. Чарльз Дарвин тоже был любителем, а не профессиональным ученым 109. Тем не менее было бы серьезной ошибкой считать новую науку исключительно любительским – то есть неоплачиваемым – занятием. В этом отношении она отличается от новой философии Гоббса, Декарта и Локка: у этих философов не было профессии, тогда как для представителей новой науки исследования являлись частью их оплачиваемой работы. Джованни Баттиста Бенедетти (1530–1590, математик и философ герцога Савойского) 110, Кеплер (математик императора Священной Римской империи) и Галилей 105 Случайным образом выбранный пример: Denton. The ABC of Armageddon (2001). 84, 85. 106 Shapiro J. W. (1969), 192. 107 Laslett. Commentary (1963). 108 Большинство должностей в Оксфорде и Кембридже предполагали духовный сан, и поэтому почти все ученые в Англии были священниками. 109 Дарвин, насколько мне известно, никогда не называл себя «ученым», однако даже в 1892 г. еще можно было утверждать, что слово «натуралист» служило общим термином для обозначения исследователей в области естественных наук (результаты поиска naturalist в OED). 110 См. титульный лист Consideratione, 1579 (математик) и титульный лист De temporum emendatione opinio, 1578 (философ).
(на протяжении восемнадцати лет профессор математики) не были ни дилетантами, ни любителями: профессиональные математики, они занимались задачами, входящими в университетский курс обучения, даже если решение этих задач отличалось от того, чему учили в университетах. Тихо Браге, как мы уже видели, получал государственное финансирование. Изготовление математических инструментов и картография были коммерческими предприятиями (например, ими занимался Герард Меркатор (1522–1599). Таких людей было много в Англии эпохи Стюартов. Королевское общество финансировало эксперименты Роберта Гука (ум. 1703), Дени Папена (ум. 1712) и Фрэнсиса Хоксби (ум. 1713), хотя регулярное жалованье получал только Гук 111. Кристофер Рен, один из основателей Королевского общества, которого мы знаем больше как архитектора, был профессором астрономии в Оксфордском университете, занимая должность, введенную в 1619 г., а до этого преподавал астрономию в Грешем-колледже в Лондоне (основан в 1597); астрономия тогда считалась разделом математики, а архитектура требовала математических навыков. Исаак Ньютон был профессором математики в Кембридже, занимая должность, введенную в 1669 г. Профессиональной нишей, которую занимали представители новой науки, была математика, а большое количество математиков не преподавали в двух английских университетах: например, Томас Диггес (1546–1595), который внес значительный вклад в крупнейший инженерный проект Елизаветинской эпохи, реконструкцию гавани Дувра, а также мечтал о превращении Англии в выборную монархию, или Томас Хэрриот (ум. 1621), который благодаря своим знаниям в области астрономии, навигации, картографии и военно-инженерном деле был приглашен для организации экспедиции Рэли в колонию Роанок (1585)112. Таким образом, многие математики считали, что новая философия попадает в область их профессиональных интересов 113. И естественно, главные предметы исследования новой науки были тесно связаны с профессиональными занятиями математиков XVII в.: астрономией/астрологией, навигацией, картографией, землеустройством, архитектурой, баллистикой и гидравликой 114. Вполне разумно избегать слов «наука» и «ученый», когда речь идет о XVII в., если появление этих слов связывают с переломным моментом, однако «наука» представляет собой просто сокращение термина «естественные науки», а термин «ученый» указывает не на изменения в природе науки или даже на новую социальную роль ученых, а на изменения в культурной значимости классического образования, произошедшие в XIX в., – изменения, не понятые теми историками науки, которые не получили даже зачатков классического образования. §3 Хотя Коперник, Галилей и Ньютон прекрасно сознавали значимость своих идей и мы 111 После них с 1716 по 1743 г. эксперименты курировал Джон Теофил Дезагюлье. 112 О Диггесе см.: Johnson & Larkey . Thomas Digges, the Copernican System (1934); Ash . A Perfect and an Absolute Work (2000); и Collinson. The Monarchical Republic (1987). О Хэрриоте см.: Fox (ed.). Thomas Harriot (2000); Schemmel. The English Galileo (2008); и Greenblatt, Invisible Bullets (1988). 113 Неспособность Ласлетта признать математику профессией, связанной с наукой (он упоминает только медицину), предполагает, что он не знаком с работой Taylor. The Mathematical Practitioners (1954). Такая ошибка, хотелось бы надеяться, невозможна сегодня благодаря, например, Dear. Discipline and Experience (1995). 114 Ключевая фигура – фламандский математик Симон Стевин, публиковавший работы почти во всех этих областях: Science in the Netherlands around 1600 (1970).
с полным правом называем их работы революционными, они никогда открыто не говорили о себе, что «совершают революцию». Даже во времена Ньютона слово «революция» редко использовалось для обозначения широкомасштабных перемен и почти никогда до Славной революции 1688 г., произошедшей через год после публикации его «Начал», причем его применение было ограничено только политическими революциями 115116. Баттерфилд был прав, подчеркивая, что историк должен стремиться к пониманию мира таким, каким его видели люди, жившие в то время117, однако, как мы уже видели, одного понимания их взглядов недостаточно. Историк должен стать посредником между прошлым и настоящим, найдя язык, который передаст современным читателям убеждения и верования людей, мысливших иначе. Таким образом, вся история предполагает перевод с исходного языка – то есть языка математиков, философов и поэтов XVII в. – на целевой язык, в нашем случае язык начала XXI в.118 Поэтому историк вполне обоснованно переводит «естественные науки» как «науку», а «физиолога» как «ученого». Но возможно, дело не только в переводе? Ведь в языке Ньютона не только нет ни одного слова или словосочетания, эквивалентных нашему слову «революция», но и отсутствует само это понятие. Можно утверждать, что культура Ньютона была по сути своей консервативной и традиционалистской и Ньютон не смог бы сформулировать идею революции, даже если бы захотел. В главе 3 мы покажем, что такой подход может быть полезным обобщением для описания культуры эпохи Возрождения и XVII в., однако в ретроспективе мы сталкиваемся с разного рода важными исключениями в разных областях, и именно эти исключения сделали возможной современную науку. Но пока достаточно лишь отметить, что существует слово, которое – по крайней мере, для протестантов – имело коннотацию «революция»; это слово «реформация». Всего за несколько десятилетий, с 1517 по 1555 гг., Лютер и Кальвин радикально изменили доктрины, обряды и социальную роль христианства; они совершили революцию, которая стала причиной ста пятидесяти лет Религиозных войн. Таким образом, научной революции предшествовала еще одна революция – Реформация. Гук в 1665 г. писал, что «главной целью» его самого и других членов Королевского общества была «реформация в философии»119. Томас Спрэт, в 1667 г. писавший историю Королевского общества, неоднократно сравнивал реформацию в натурфилософии со случившейся раньше реформацией в религии120121. 115 Один из первых примеров расширенного применения этого термина можно найти в: Daniel Defoe. Robinson Crusoe (1719): «Революция в торговле привела к революции в природе вещей». Но это уже XVIII в., а не XVII. 116 Snow. The Concept of Revolution (1962). В Hill. The Word ‘Revolution’ in Seventeenthcentury England (1986) приводятся более ранние даты, но большинство примеров по меньшей мере сомнительны. 117 «Настоящее историческое понимание достигается не подчинением прошлого настоящему, а скорее тем, что мы делаем прошлое настоящим и пытаемся увидеть жизнь глазами человека другой эпохи, а не своими… Изучение прошлого, когда, если можно так выразиться, один глаз устремлен в настоящее, является источником всех грехов ложных аргументов истории, начиная с самого простого, анахронизма». Butterfield. The Whig Interpretation of History (1931). 16, 31, 32. 118 Hull. In Defence of Presentism (1979). 119 Hooke. Micrographia, or Some Physiological Descriptions of Minute Bodies (1665). a4. 120 Позже Питер Шоу писал о «глубокой реформации в философии», которая изменила натурфилософию и медицину (Shaw. A Treatise of Incurable Diseases, 1723. 3), а Ричард Дэвис в 1740 г. сказал, что приблизительно в 1707 г., задолго до публикации «Начал» Ньютона, «сведущие люди начали понимать, как много автор [то есть Ньютон] сделал для реформации в философии» (Davies. Memoirs of Saunderson, 1741. v). 121 Sprat. The History of the Royal-Society (1667). 327, 363.
Спрэт признал, что некоторые противники компромиссов в своем неприятии всех аспектов древней учености доходили до призывов вообще упразднить Оксфорд и Кембридж. Он сравнил этих фанатиков с людьми, которые вознамерились упразднить епископства в Англии, а закончили тем, что убили короля и установили республику: Признаюсь, я не хотел тут упоминать сторонников новой философии, которые не проявили какой-либо сдержанности в отношении их [университетов]: они недавно пришли к выводу, что невозможно ничего достичь в новых открытиях, пока не будут отвергнуты все древние искусства и упразднены их колыбели. Но опрометчивость поступков этих людей скорее вредит, чем помогает тому, чего они стремятся достичь. Они с такой яростью принялись за очищение философии, как наши современные зелоты – за реформацию религии. И обе партии достойны порицания. Ничто их не удовлетворит, кроме полного уничтожения, с корнями и ветвями122, всего, что имеет лицо древности123. Таким образом, Спрэт признавал, что некоторые сторонники новой науки напоминают ему цареубийц (монархия, как и система епископата, имела «лицо древности»), – в сущности, он назвал их революционерами. Спрэт опубликовал свой труд через семь лет после восстановления монархии и стремился поддержать общество, которому покровительствовал король. Он должен был отрицать любую связь между радикализмом в науке и радикализмом в политике, и в этом свете еще более примечательным выглядит его сравнение некоторых сторонников новой философии с людьми, которые лишь недавно перевернули существующий порядок вещей. Не стоит удивляться, что Антуан Лавуазье в 1790 г., в разгар Французской революции, объявил, что он совершает революцию в химии. В отличие от Спрэта Лавуазье говорит на современном языке, поскольку жил во времена революции, преобразовавшей язык политики, сформировав терминологию, которой мы пользуемся до сих пор. Многие французские интеллектуалы еще до 1789 г. обсуждали возможность политической революции, а после 1776 г. образцом для них служила Американская революция 124. Во Франции слово предшествовало делу, хотя их разделял не такой уж большой промежуток времени 125. В XVII в. Галилей и Ньютон не были знакомы с этим языком 126. Однако и они, 122 Отсылка к биллю «О корнях и ветвях» 1641 г., который предусматривал ликвидацию епископата и стал непосредственной причиной гражданской войны. 123 Sprat. The History of the Royal-Society (1667). 328, 329. 124 Cohen . The Eighteenth-century Origins of the Concept of Scientific Revolution (1976); и Baker. Inventing the French Revolution (1990). 125 Любопытно, что Лавуазье говорил о революции в химии еще до 1776 г. «Важность предмета заставила меня вновь взяться за эту работу, – писал он в своем лабораторном журнале в 1772 или 1773 г., – которая, как мне кажется, повлечет за собой революцию в физике и химии». 126 Существует какой-либо термин, кроме «реформации», способный заменить «революцию»? (Однажды Ласлетт предложил новое название для научной революции: Laslett. Commentary, 1963). В 1620 г. Фрэнсис Бэкон призывал к Great Instauration – в данном случае слово instauration имеет значение «основание» и достаточно расплывчато. Бэкон надеялся, что появится новая, полезная технологическая наука – и в конечном итоге она появилась (хотя и не так быстро, как он рассчитывал). В 1660-х гг. Королевское общество назвало Бэкона тем, кто первый провозгласил принципы новой науки. Таким образом, посредством термина Great Instauration можно избавиться от анахронизма (как в Webster. The Great Instauration, 1975), но его истинный смысл остается неясным; в любом случае, члены Королевского общества не взяли на вооружение фразу Бэкона (ссылка на Lord Bacon’s Design for the Instauration of Arts and Sciences встречается только один раз, в Philosophical Transactions от 25 марта 1677).
и их современники ясно давали понять, что стремятся к радикальным, системным переменам: тот факт, что в их языке отсутствовало слово «революция», не означает, что они должны были воспринимать знания как нечто стабильное и низменное. «Что касается нашей работы, – писал неназванный член Королевского общества в 1674 г., – мы все согласны, или должны согласиться, что это не роспись стен старого здания, а постройка нового»127. Ниспровержение старого и новое начало с чистого листа – это и есть революция. §4 Чрезмерно скрупулезные историки отказываются использовать не только слова revolution (революция), «наука» (science ) и scientist (ученый), когда речь идет о XVII в., но также еще одно слово Баттерфилда, modern (современный), поскольку оно кажется им по сути своей анахроничным. Однако слово «современный» встречается в названиях трактатов эпохи Возрождения по военному искусству, демонстрируя, что авторы прекрасно сознавали революционные последствия появления пороха 128. В эпоху Возрождения проводили четкое разграничение между старинной музыкой и современной, которая была полифонической, а не монодической – отец Галилея, Винченцо, написал трактат «Dialogo della musica antica et della moderna» (Диалог о старинной и современной музыке) 129. На современных картах изображалась Америка 130. Первой историей, написанной в терминах прогресса, стала история ренессансного искусства Вазари, «Жизнеописания наиболее знаменитых живописцев, ваятелей и зодчих» (Le Vite de’piu eccelenti Pittori, Scultori e Architetti, 1550) 131. Вскоре (1560) появился перевод Франческо Бароцци комментариев Прокла к первой книге Евклида, в которой история математики рассматривалась как последовательность изобретений и открытий. И действительно, математики (которые часто общались с художниками, поскольку обучали их геометрии перспективы) 132, уже стремились показать, что также являются двигателями прогресса, и начали публиковать книги со словом «новый» в названиях, создав моду, которую подхватили экспериментальные науки: «Новая теория планет» (Theoricae Novae Planetarum, Пурбах, написана в 1454, опубликована в 1472); «Новая наука» (Nuova scienza, Тарталья, 1537); «Новая философия» (The New Philosophy, Гильберт, ум. 1603 – это подзаголовок или, возможно, правильное название посмертно опубликованной работы «О нашем подлунном мире» (Of Our Sublunar World); схема титульного листа допускает двоякое толкование); «Новая астрономия» (Astronomia Nova, Кеплер, 1609); «Беседы и математические доказательства двух новых наук» (Discorsi e dimostrazioni matematiche 127 Hunter & Wood. Towards Solomon’s House (1986). 81. Сравните Sprat. The History of the RoyalSociety (1667). 29: «одно великое сооружение должно быть разрушено, а вместо него возведено другое». 128 О слове modern в английском языке см.: Withington. Society in Early Modern England (2010). 73–101. 129 Galilei. Dialogue on Ancient and Modern Music (2003). 130 «Внимательно изучите эти современные карты, и вы все увидите собственными глазами: не только одним взглядом окинете весь мир, но и увидите каждое отдельное место в нем». Blundeville. A Briefe Description of Universal Mappes (1589). C4r. 131 Kuhn . Structure (1970). 161; Feyerabend . Farewell to Reason (1987). 143–161. Вскоре (1587–1595) последовала попытка Бернардино Балди написать историю современной математики по образцу «Жизнеописаний» Вазари: Swerdlow. Montucla’s Legacy (1993). 301; и Rose. Copernicus and Urbino (1974). 132 См. гл. 6.
intorno a due nuove scienze, Галилей, 1638); «Новые опыты, касающиеся пустоты» (Expériences nouvelles touchant le vide, Паскаль, 1647); «Новые анатомические опыты» (Experimenta nova anatomica… Пеке, 1651); «Новые физико-механические опыты…» (New Experiments Physicomechanical…, Бойль, 1660). И этот список далеко не полон 133. Пионер идей прогресса Бэкон написал «Новый Органон» (Novum Organum) и «Новую Атлантиду» (Nova Atlantis), его трактат «О мудрости древних» (De Sapientia Veterum, 1609) подразумевал резкий контраст между древностью и современностью. Если ученые старательно подчеркивали новизну в названиях своих трудов, то почему они не использовали слово «современный»? Ответ прост. И в исламе, и в христианстве термин «новая философия» означал постязыческую философию 134. Например, для Уильяма Гильберта, основателя новой науки под названием «магнетизм», Фома Аквинский был современным философом 135. Следовательно, ему нет смысла называть свою натурфилософию «современной», и он предпочитает слово «новая». В философии, в отличие от военного дела и музыки, слово «современный» было неприемлемым, поскольку уже использовалось в другом значении. То же самое относится к архитектуре, поскольку в XV в. «современная архитектура» означала готическую архитектуру 136. В науке ситуация начала меняться только в конце XVII в., в процессе дебатов об античных и современных авторах. Джонатан Свифт в своей «Битве книг» (The Battle of the Books, 1720) причисляет Аквинского к современникам, но в данном случае он сознательно старается казаться старомодным 137. Рене Рапен, который одним из первых противопоставил древних авторов современным, заново определил понятие современной философии, в 1676 г. назвав Галилея «основателем современной философии» – суждение тем более удивительное, если учесть, что оно исходило от иезуита, а Галилей в 1633 г. был осужден инквизицией, – но это выражение тогда не появилось в английском языке138. Тем не менее термин «новая философия» может быть применен, хотя и с осторожностью, для описания современной науки: первым его использовал Бойль в 1666 г.139 Фраза «современная наука» впервые встречается у Гидеона Харви в 1699 г., в его беспорядочных нападках как на старую, так и на современную философию 140. Таким образом, в конце XVII в. старой философией считалась схоластика, а современной наукой – наука Декарта и Ньютона. Слово «современный» медленно закреплялось в научном контексте, и то же самое 133 Около двух сотен примеров см. в: Thorndike . Newness and Craving for Novelty (1951). 134 См., например, Thorndike. A History of Magic and Experimental Science (1923). II. 451–527; и Crombie. Styles of Scientific Thinking (1994). 345. 135 Gilbert . De magnete (1600). Ch. 1. Гильберт также говорит о «других современных» авторах, то есть авторах эпохи Возрождения. 136 Filarete. Trattato di architettura (1972). Bk 13; Panofsky . Renaissance and Renascences (1970). 28. Цит. по: Greenblatt & Koerner. The Glories of Classicism (2013). См.: http://fontisa.sns.it/TOCFilareteTrattatoDiArchitettura.php, 380. 137 Swift. A Tale of a Tub (2010). 153. 138 Rapin. Reflexions upon Ancient and Modern Philosophy (1678). 189 (first French edition, 1676). 139 Boyle. Hydrostatical Paradoxes (1666). A7r = Boyle. The Works (1999). Vol. 5, 195; и Glanvill . Plus ultra (1668). 1. О том, что Гленвилл, Бэкон, Галилей, Декарт и Бойль относятся к современным авторам. 140 Harvey. The Vanities of Philosophy and Physick (1699). 10.
происходило со словом «прогресс», которое получило распространение (вместе со сходными по значению терминами) только к концу XVII в. Полное название Королевского общества, основанного в 1660 г., звучало так: «Лондонское королевское общество по развитию знаний о природе». «Развитие» предполагает прогресс, и поэтому неудивительно, что полным названием «Истории Королевского общества» Спрэта было «История учреждения, формирования и прогресса Лондонского королевского общества по развитию экспериментальной философии» – разумеется, «экспериментальная философия» была еще одним термином для обозначения того, что мы теперь называем «наукой», а слово «прогресс» имело двойной смысл, между старым значением (путь, процесс изменений) и новым (процесс развития); «развитие» – это еще одно связанное с прогрессом слово. Год спустя Джозеф Гленвилл опубликовал «Высшая точка: прогресс и развитие знания со времен Аристотеля» (Plus ultra: or the Progress and Advancement of Knowledge since the Days of Aristotle). К концу столетия прогресс уже признавался всеми, о чем говорит заглавие книги Даниэля Леклерка «История физики, или рассказ о подъеме и прогрессе искусств, а также о некоторых открытиях разных эпох» (1699) 141. Еще до того как слово «прогресс» вошло в моду, Роберт Бойль дважды использовал его как эпиграф к цитате из Галена: «Мы должны проявить смелость и выйти на охоту за истиной; даже если мы не найдем ее, то, по крайней мере, подойдем к ней ближе, чем теперь»142. Для описания прогресса Бойль использовал метафору охоты. Именно этот триумф идеи прогресса, а также новое значение слова «современный» знаменуют окончание первой фазы продолжительной научной революции, которая не закончилась и в наше время 143. В любом случае существовали альтернативы языку прогресса, которые служили той же самой цели, – языки изобретений и открытий. В 1598 г. Браге настаивал, что новая геогелиоцентрическая система космоса является его изобретением – то есть его утверждение об изобретении теории аналогично его же утверждению об изобретении секстанта. Другие пытались оспорить первенство в создании геогелиоцентрической системы, которое по праву принадлежало ему 144. Когда в 1610 г. Галилей объявил о том, что он увидел в телескоп, то его сравнивали с его земляком, флорентинцем Америго Веспуччи, а также с Христофором Колумбом и Фернандо Магелланом 145. Открыв луны Юпитера, Галилей, подобно мореплавателям, открыл новые миры. После него каждый ученый мечтал о подобных открытиях. Первый профессиональный ученый, Роберт Гук (1635–1703), писал, что множество людей всех возрастов интересовались «природой и причинами вещей»: 141 Glanvill. Plus ultra (1668); Le Clerc. на французском, 1696). The History of Physick (1699) (впервые опубликовано 142 «Audendum est, et veritas investiganda; quam etiamsi non assequamur, omnino tamen propius, quam nunc sumus, ad eam pervenivemus». (Корневое значение слова «исследовать» – «преследовать».) Boyle. The Origine of Formes and Qualities (1666) = Boyle. The Works (1999). Vol. 5. 281; Boyle . A Free Enquiry (1686) = Boyle. The Works (1999). Vol. 10, 437. См.: Eamon. Science and the Secrets of Nature (1994). 269–300. 143 Wotton. Reflections upon Ancient and Modern Learning (1694), предисловие с ненумерованными страницами, 91, 105, 146, 169, 341. Первые примеры фразы «прогресс науки» см.: Jarrige . A Further Discovery of the Mystery of Jesuitisme (1658); Borel. A New Treatise (1658). 2 – Борель пребывал в заблуждении, что Бэкон написал книгу de progressu Scientiarum (92); Naudé . Instructions Concerning Erecting of a Library (1661); Bacon . The Novum organum… Epitomiz’d (1676). 11; и Le Clerc. The History of Physick (1699). To the Reader (с ненумерованными страницами). 144 Цит. в: Gingerich & Westman. The Wittich Connection (1988). 19. 145 Wootton. Galileo (2010). 96, 123, 286 n. 53.
Но их усилия, будучи лишь одиночными и крайне редко объединенными, поддержанными или управляемыми искусством, привели только к скромным, незначительным результатам, вряд ли достойным упоминания. Так человечество думало все эти шесть тысяч лет, и если оно будет так думать еще шесть тысяч, то останется там же, где было, полностью неприспособленное и неспособное победить трудности познания природы. Но этот новый мир должен быть завоеван картезианской армией, дисциплинированной и регулярной, хотя и небольшой по численности146. Королевское общество как раз и было той «картезианской армией, дисциплинированной и регулярной, хотя и небольшой по численности». Нарисованная Гуком картина была обманчивой – и он обманулся. Ему противостояли не ацтеки, а философы, последователи Аристотеля. Ему не требовалось покорять природу, чтобы понять ее. Его армия не должна была быть дисциплинированной и регулярной; единственное, в чем нуждалась эта армия (как мы увидим в главе 3), – конкуренция. Однако Гук был прав в главном. Он выбрал в качестве образа картезианскую армию, поскольку хотел вызвать в своем воображении самую решительную и необратимую трансформацию в истории; он хотел открыть новые миры, хотел, чтобы его открытия принесли пользу обществу, подобно тому как завоевание Нового Света обогатило Испанию времен Кортеса. Гук не оперировал такими понятиями, как «наука», «революция» или «прогресс», но они являются вполне допустимым переводом его терминов («познание природы», «новый мир», «картезианская армия») на наш язык, позволяющим сказать, что он мечтал о том, что мы называем научной революцией. И он не был одинок. «Аристотелева философия не подходит для новых открытий, – писал Джозеф Гленвилл в 1551 г. – Перед нами еще не открытая Америка тайн и неизвестное Перу природы». И у меня нет сомнений, что наши потомки превратят множество вещей, которые сегодня всего лишь слухи , в практическую реальность . Настанет эпоха, когда путешествия в неизведанные Южные Земли или даже на Луну будет не более странным, чем в Америку . Для тех, кто придет после нас, будет обычным делом купить пару крыльев и полететь в далекие Края , как теперь мы покупаем пару Башмаков , чтобы совершить Путешествие . А беседы на расстоянии с Индиями посредством Симпатической передачи в будущем станут такими же привычными, как для нас письменная корреспонденция… Теперь у тех, кто судит согласно узости старых принципов , эти парадоксальные ожидания вызовут улыбку. Но те великие изобретения, которые в последние эпохи изменили лик всего нашего мира, вне всякого сомнения, в прежние времена, будучи голыми предположениями, чистыми гипотезами, выглядели нелепо . Разговоры об открытии новой Земли [Новый Свет на Американском континенте] были продиктованы любовью к Античности : плавание, не видя звезд и берегов, руководствуясь одним лишь минералом [компасом], – история еще более 147 абсурдная, чем полет Дедала . Конечно, Гленвилл оказался прав: мы летаем и «беседуем» на расстоянии; мы побывали не только в Австралии, но и на Луне. Томас Гоббс в 1655 г. полагал, что не существовало настоящей астрономии до Коперника, физики до Галилея, физиологии до Уильяма Гарвея. «И лишь после них в течение очень короткого времени астрономию и общую натурфилософию отлично 146 Hunter & Wood. Towards Solomon’s House (1986). 87. 147 Glanvill. The Vanity of Dogmatizing (1661). 178, 181–183.
продвинули вперед… Следовательно, натурфилософия – новое явление»148. Однако самое яркое описание идеи о том, что знание трансформируется и что новое знание совсем не похоже на старое, принадлежит Генри Пауэру (одному из первых англичан, экспериментировавших с микроскопом и барометром): И это век, в котором разум всех людей переживает своего рода брожение, и дух мудрости и учености восстает и начинает освобождаться от всех бренных и земных преград, которые так долго мешали ему, а также от безжизненной слизи и caput mortuum [лишенных смысла] бесполезных представлений, которые так долго и жестоко сковывали его. Думаю, в наш век философия прибывает подобно приливу, хотя перипатетики еще надеются остановить приливное течение или (по примеру Ксеркса) обуздать море, дабы помешать подъему свободной философии. Думаю, я вижу, как весь старый мусор будет смыт, а гнилые постройки разрушены и унесены этим могучим потоком. В наши дни должны быть заложены основания гораздо более величественной философии, которая никогда не сможет быть опровергнута: это будет эмпирическое и чувственное обследование феноменов природы, выводящее причины вещей из таких первоисточников природы, которые, как мы наблюдаем, производимы искусством и безошибочным доказательством механических орудий: несомненно, этот, и никакой другой, и есть путь построения истинной и вечной философии…149 В 1666 г. математик и картограф Джон Уоллис (который придумал символ ∞ для обозначения бесконечности) выражался более осторожно: «Затем Галилей и (после него) Торричелли и другие применили механические принципы для разрешения философских противоречий; хорошо известно, что натурфилософия оказалась более вразумительной, и меньше чем за сто лет она добилась большего прогресса, чем за предыдущие столетия» 150. Гук, Гленвилл, Гоббс и Уоллес сами участвовали в этой трансформации, однако их видение происходящего разделяли и хорошо информированные наблюдатели. В 1666 г. епископ Сэмюэл Паркер восславил недавнюю победу «механической и экспериментальной философии» над философией Аристотеля и Платона и заявил: …Мы можем обоснованно ожидать от Королевского общества (если они будут следовать своему предназначению) великого Развития натурфилософии, невиданного во все предшествующие эпохи; поскольку они отбросили все разрозненные Гипотезы и полностью посвятили себя опытам и наблюдениям , они могут не только представить миру полную историю природы (которая есть наиболее полезная часть физиологии [науки о природе]), но также заложить прочную и надежную основу, на которой будут возводиться Гипотезы151. Паркер считал (вполне обоснованно), что теперь, когда установлен правильный метод исследования, должно произойти великое развитие знания. Два года спустя поэт Джон Драйден (тоже не без веских оснований) высказал мнение, что этот процесс уже идет: Разве не очевидно, что за эти последние сто лет (когда изучение философии 148 Hobbes. Elements of Philosophy (1656). B1r (first Latin edition, 1655). 149 Power. Experimental Philosophy (1664). 192. 150 Wallis. An Essay of Dr John Wallis (1666). 264. 151 Parker. A Free and Impartial Censure (1666). 45.
было занятие всех виртуозов в христианском мире), нам явилась почти новая Природа? Что было обнаружено больше ошибок [Аристотелевой] школы, проделано больше полезных опытов в философии, раскрыто больше важных секретов в оптике, медицине, анатомии, астрономии, чем за все доверчивые и слепые столетия от Аристотеля до наших дней? Истинно – ничто не распространяется так быстро, как Наука, должным образом и повсеместно взращиваемая152. Хронология Драйдена верна: «эти последние сто лет» переносят нас практически точно к вспышке сверхновой в 1572 г. Показателен и его лексикон: он использует термин «виртуозы» для обозначения ученых и «наука» – для науки 153. Он видит, что новая наука опирается на новые стандарты доказательств. Он признает возможность релятивизма (сколько существует новых разновидностей природы?) и в то же время настаивает, что новая наука является не просто чем-то вроде местной моды, а необратимой трансформацией наших знаний о природе154. §5 Можно привести еще много свидетельств обоснованности идеи научной революции, но многих ученых все равно убедить не удастся. Тревога, которая охватывает историков, когда они видят слова «научный», «революция», «современный» и (хуже всего)«прогресс» в работах, посвященных естественным наукам XVII в., вызвана не только страхом анахронизмов; это симптом более широкого интеллектуального кризиса, который проявляется в отказе от главных нарративов любого рода 155. Считается, что проблема с главными нарративами состоит в том, что они отдают предпочтение какому-то одному взгляду; альтернативой является релятивизм, утверждающий, что все точки зрения одинаково весомы. Самые убедительные аргументы в пользу релятивизма дает философия Людвига Витгенштейна (1889–1951)156. Витгенштейн преподавал в Кембридже с 1929 по 1947 г. – он ушел за год до лекций Баттерфилда о научной революции, – но Баттерфилду не приходило в голову, что ему нужно проконсультироваться у Витгенштейна или любого другого философа, чтобы научиться размышлениям о науке. И только в конце 1950-х гг., после публикации в 1953 г. «Философских исследований» (Philosophische Untersuchungen), аргументы, позаимствованные у Витгенштейна, начали трансформировать историю и философию науки; их влияние можно увидеть, например, в «Структуре научных 152 Dryden. Of Dramatic Poesie (1668). 9. 153 Возможно, это первое использование термина «наука» в значении более широком, чем «естественные науки»: неспособность OED распознать значение, в котором в данном случае используется слово, вероятно, обусловлена тем, что оно не рассматривается в контексте. 154 Kuhn. Structure (1970). 162, 163. 155 Термин «главный нарратив» введен в Lyotard. La Condition postmoderne (1979). 156 В литературе по истории науки обычно считается само собой разумеющимся, что Витгенштейн был релятивистом. Эта точка зрения представляется мне неверной, но я решил не излагать свои аргументы в основном тексте; см. комментарий «Витгенштейн: не релятивист»). В основном тексте, здесь и в гл. 15, я излагаю позицию, названную мной витгенштейновской, которая действительно может быть основана на работах Витгенштейна, но – по моему мнению – не является позицией самого Витгенштейна.
революций» Томаса Куна157. После этого распространилось утверждение, что Витгенштейн показал полную культурную относительность рациональности: наша наука может отличаться от науки древних римлян, но у нас нет оснований заявлять, что она лучше, поскольку их мир был совсем не похож на наш. Истина – согласно витгенштейновской доктрине 158 – есть то, что мы решили сделать истиной; она требует общественного консенсуса между тем, что мы говорим, и тем, каков мир159. Первая волна релятивизма затем сменилось другой, в основе которой стояли совсем другие интеллектуальные традиции: лингвистическая философия Д. Л. Остина, постструктурализм Мишеля Фуко, постмодернизм Жака Деррида и прагматизм Ричарда Рорти. Для отсылки к этим разным традициям часто используется фраза «лингвистический поворот», поскольку все они характеризуются общим пониманием того, что – по выражению Витгенштейна – «границы моего мира суть границы моего языка» 160. Как мы вскоре увидим, бо́льшая часть споров относительно научной революции вызвана последствиями этой точки зрения. В истории науки особенно важна одна поствитгенштейновская традиция: ее часто называют «исследованиями науки и технологии»161. Это движение основали Барри Барнс и Дэвид Блур с кафедры науковедения Эдинбургского университета (основана в 1964); оба они находились под сильным влиянием Витгенштейна (например, Блур был автором работы «Витгенштейн: Социальная теория знания» (Wittgenstein: A Social Theory of Knowledge, 1983). Барнс и Блур предложили так называемую «сильную программу». Сильной ее делает убеждение, что социологически можно объяснить само содержание науки, а не только способы ее организации или ценности и стремления ученых. Суть программы состоит в принципе симметрии: одинаковое объяснение должно даваться всем научным теориям, независимо от их успешности162. Таким образом, встретив человека, заявляющего, что Земля плоская, я буду искать психологическое и/или социологическое объяснение его странного убеждения; при встрече с человеком, считающим Землю шаром, плывущим в пространстве и вращающимся вокруг Солнца, я должен искать объяснения того же рода для его убеждений. Сильная программа настаивает: нельзя говорить, что второе утверждение верно или даже что люди в него верят потому, что имеют убедительные доказательства. Таким образом, из рассмотрения систематических исключается основная характеристика 157 Winch. The Idea of a Social Science (1958); Hanson. Patterns of Discovery (1958); Kuhn. Structure (1962). Витгенштейн оказал решающее влияние на Дэвида Блура и Эдинбургскую школу: Bloor. Knowledge and Social Imagery (1991); и Bloor. Wittgenstein (1983). Резкую критику намерения использовать Витгенштейна для обоснования релятивистской социологии см. в: Williams. Wittgenstein and Idealism (1973). 158 Wittgenstein. Philosophical Investigations (1953). 159 Например, Phillips. Wittgenstein and Scientific Knowledge (1977). 200, 201. Я начал с Витгенштейна, но Уильям Джемс, считавший, что у понятия истины нет человеческого измерения, умер в 1850 г.: James. Humanism and Truth (1904) (1978). 40, 41. 160 Rorty (ed.). The Linguistic Turn (1967); Wittgenstein. Tractatus Logico-philosophicus (1933). В Williams. Wittgenstein and Idealism (1973) утверждается, что Витгенштейн обсуждал границы языка вообще, а не границы конкретного языка или конкретного человека (каждый человек, разумеется, может иметь доступ к нескольким языкам). Витгенштейн явно имел в виду и то и другое, и он намеренно использует первое лицо то в единственном, то во множественном числе, чтобы передать обе точки зрения. 161 Biagioli (ed.). The Science Studies Reader (1999) – это введение в то, что мы раньше называли «исследованием науки», а теперь – «исследованием науки и технологии». 162 Также известный как постулат эквивалентности. См. комментарий «Релятивизм и релятивисты», 2.
научных споров: апелляция к более убедительным доказательствам. Ни один из последователей Витгенштейна не может без критики принимать саму идею «доказательств» – некоторые вообще ее отвергают. Бертран Рассел познакомился с Витгенштейном в 1911 г. В кратком некрологе, написанном сорок лет спустя, он вспоминает об их первой встрече: Поначалу я сомневался, гений он или сумасшедший, но очень скоро отдал предпочтение первому варианту. Некоторые из его ранних взглядов делали этот выбор трудным. Он утверждал, например, что все экзистенциальные пропозиции бессмысленны. Это было в лекционном зале, и я предложил ему обдумать пропозицию: «В этой комнате в настоящее время нет гиппопотама». Когда он отказался в это верить, я заглянул под все столы и ничего не нашел; но убедить его не удалось163. Таким образом, не стоит удивляться, что концепции истории и философии науки, появившиеся после Витгенштейна, не рассматривали суть и предмет науки 164. Барнс и Блур – социологи, и поэтому их позиция вполне понятна: и они, и их коллеги должны искать социологические объяснения. Однако они этим не ограничиваются. Релятивистский взгляд, отрицающий науку как способ понимания реальности, не является выводом, который эти ученые сделали из своих исследований; это посылка (соответствующая их толкованию Витгенштейна), на которой основаны исследования. Чтобы оправдать эту точку зрения, ее сторонники настаивают, что доказательства не находят, а всегда «конструируют» внутри конкретной социальной общности. Предпочесть одну совокупность доказательств другой – это значит принять точку зрения одного сообщества и отвергнуть точку зрения другого. Таким образом, успех программы научных исследований зависит не от ее способности генерировать новое знание, а от способности добиться поддержки сообщества. Как формулирует Витгенштейн, «в конце оснований стоит убеждение. (Подумай о том, что происходит, когда миссионер обращает туземцев) 165»166. Эти ученые рассматривают науку с точки зрения риторики, убеждения и авторитета, потому что принцип симметрии обязывает их предполагать, что суть науки именно в этом. И это прямо противоречит взглядам самих первых ученых. Так, например, широко известна статья «Totius in verba : риторика и авторитеты раннего Королевского общества» (Totius in verba : Rhetoric and Authority in the Early Royal Society), хотя само Королевское общество выбрало девиз nullius in verba («слова не считаются», то есть «ничего не принимать на веру»), – основатели общества заявляли, что отказываются от форм знания, основанных на риторике и авторитетах167. Разновидность истории, которая позиционирует себя как 163 Russell. Obituary: Ludwig Wittgenstein (1951). 164 Исследователи философии Витгенштейна не понимают, почему он придерживался таких взглядов в 1911 г.: McDonald. Russell, Wittgenstein and the Problem of the Rhinoceros (1993). (Память подвела Рассела, поскольку его переписка того времени не оставляет сомнений: в комнате не было носорогов, а не гиппопотамов.) 165 Здесь и далее «О достоверности» Витгенштейна цитируется в переводе Ю. Асеева, М. Козловой. 166 Wittgenstein. On Certainty (1969). § 612. 167 Dear. Totius in verba (1985). Что Дир подразумевает под выражением totius in verba ? Он так и не говорит. Правильный перевод с латыни nullius in verba – «ничьими словами», поскольку это цитата из Горация, и именно таков смысл фразы в оригинальном контексте (Sutton . Nullius in verba (1994). Цитата из Горация уже была использована в Carpenter. Philosophia libera (1622) (текст отличается от издания 1621 г.), но nullius может означать nihil, и поэтому перевод «слова не считаются» тоже допустим. Однако фраза totius in verba не может означать «считается только язык [или риторика]» (что явно подразумевает Дир); она должна
чрезвычайно чувствительная к языку людей прошлого, решительно отвергает все, что эти люди говорили о себе, причем неоднократно. Анахронизм, с позором выдворенный через черный ход, триумфально возвращается через парадную дверь. Возможно, в это трудно поверить, но сторонники сильной программы заняли доминирующее положение в истории науки. Наиболее ярким проявлением такого подхода в действии служит книга «Левиафан и воздушный насос» (Leviathan and the Air-pump) Стивена Шейпина и Саймона Шеффера, которая признана самой влиятельной работой в этой области после «Структуры научных революций» Томаса Куна 168. По слова Стивена Шейпина, новая история науки предлагает социальную историю истины 169. Утверждается, что научный метод постоянно меняется, и поэтому такого понятия, как научный метод, просто не существует. Знаменитая книга Пола Фейерабенда называлась «Против метода» (Against Method) 170 и имела подзаголовок «Все проходит»; за ней последовала работа «Прощай, разум» (Farewell to Reason) 171. Некоторые философы и почти все антропологи согласны с ним: стандарты рациональности, утверждают они, локальны и чрезвычайно изменчивы172. Но мы должны отвергнуть идею Витгенштейна, что истина есть просто консенсус, поскольку она несовместима с пониманием одной из фундаментальных задач науки – показать, что от общепринятых взглядов следует отказаться, когда они противоречат фактам 173. Классическим в этом отношении является «Письмо к Кристине Лотарингской» Галилея (1615) в защиту учения Коперника. Галилей начинает с того, что есть вопросы, по которым философы согласны друг с другом, однако он с помощью своего телескопа обнаружил факты, которые полностью противоречат их убеждениям; следовательно, им нужно пересмотреть свои взгляды 174. То, что казалось истиной, больше не может считаться таковой. Галилей здесь участвует в том, что Шейпин и Шеффер называют «эмпирической языковой игрой» (можно даже сказать, изобретает ее), в которой факты скорее означать «вообще словом» – totius и nullius не являются антонимами во всех своих значениях. К фразе nullius in verba я вернусь ниже, в гл. 7. Отказ Галилея считать, что успех в науке может определяться искусством риторики, см. в гл. 15. 168 См. комментарий «Релятивизм и релятивисты», 3. 169 См. комментарий «Релятивизм и релятивисты», 4. 170 Работа «Против метода» была издана в виде книги только в 1975 г., но в виде доклада на конференции появилась в 1966 г. (Feyerabend. Against Method, 1970). На суперобложке первого издания поместили не биографию автора, как обычно, а его гороскоп: Фейерабенд был последователен в своем релятивизме (и обыгрывал его). Его защиту астрологии см.: Feyerabend . Science in a Free Society (1978). 91–96. 171 Feyerabend. Against Method (1975); Feyerabend. Farewell to Reason (1987). 172 Wilson (ed.). Rationality (1970); и Hollis & Lukes (eds.). Rationality and Relativism (1982). 173 Последователи Витгенштейна настаивают, что система верований не может быть опровергнута новыми фактами; последователи Поппера утверждают, что опровержение носит непосредственный характер, а последователи Куна – что новые факты могут вызвать кризис в системе верований, что в конечном итоге приведет к революционному переходу к новому консенсусу. Позиции Куна и Поппера в принципе совместимы с пониманием целей науки; витгенштейновская точка зрения, как ее представляют его последователи, полностью антинаучна. К этому вопросу я возвращаюсь ниже, в гл. 15. 174 Galilei. Le opere (1890). Vol. 5. 309, 310.
«открываются, чем изобретаются» 175. Это верно. Но последователи Витгенштейна считают, что нет никаких оснований думать, что эта игра более обоснованна, чем любая другая, и в этом случае Галилей становится не более убедительным, чем философы, которым он оппонирует176. И в этот момент витгенштейновская история науки прямо противоречит свидетельству самого Галилея о том, что он делает, и история науки вступает в прямой конфликт с наукой 177. Когда Шейпин и Шеффер говорят о «эмпирической языковой игре», словно это одна из многих равноценных языковых игр, они предполагают, что за языковыми играми Галилея и его противников нет никакой реальности, поскольку сама реальность определяется языковыми играми; они предполагают, что «границы моего мира суть границы моего языка»178. Это не может быть истиной в абсолютном смысле; телескоп Галилея трансформировал мир астрономов раньше, чем у них появились новые слова для описания того, что они теперь могли видеть, – даже до появления слова «телескоп». Когда Галилей писал о своих открытиях, он не был обязан делать это так, чтобы вызвать недоумение остальных: ужас вызвал смысл его слов, а не форма. Но, хотя философы прекрасно его поняли, некоторые продолжали настаивать: того, что якобы видели Галилей и другие астрономы, там быть не могло. Два мира, Галилея и их, имели разные границы, и тем не менее они прекрасно понимали друг друга. Границы были установлены не языком, а приоритетами, ощущением того, что можно обсуждать, а что нет179. Может показаться, что телескоп – это особый случай. Разумеется, наш мир меняется, когда мы изобретаем новую технологию или проникаем туда, где раньше не были. Но мы ежедневно сталкиваемся с тем, для чего у нас нет названия, и в таких обстоятельствах мы часто не находим нужных слов или говорим, что «этого не описать словами». И только позже мы иногда находим слова (любви, горя, ревности, отчаяния) для того, что чувствуем. «Ему и в голову не приходило, – писал Толстой о князе Андрее, – чтобы он был влюблен в Ростову». В целом главная особенность некоторых переживаний – музыки, секса, смеха – состоит в том, что нет и не может быть адекватных слов, чтобы их описать. Но это не значит, 175 Shapin & Schaffer. Leviathan and the Air-pump (1985). 67. 176 Вопрос же вот в чем: «А что, если бы ты должен был изменить свое мнение и об этих фундаментальных вещах?» И ответ на это, как мне кажется, таков: «Ты не должен его изменять» (Wittgenstein. On Certainty, 1969. § 512). 177 Витгенштейн пишет: «Допустим, мы встретили людей, которые не считают это убедительным основанием. И все же как мы себе это представляем? Ну, скажем, вместо физика они вопрошают оракула. (И потому мы считаем их примитивными.) Ошибочно ли то, что они советуются с оракулом и следуют ему? Называя это “неправильным”, не выходим ли мы уже за пределы нашей языковой игры, возражая им?» (Wittgenstein. On Certainty, 1969. § 609). В данном случае вместо того, чтобы обратиться к Галилею (или к Бойлю, который намеренно копирует Галилея), Шейпин и Шеффер обращаются к Витгенштейну и используют его языковую игру как базу для сражения с наукой. 178 На самом деле сторонники сильной программы относятся к эмпирической языковой игре как к одной из одинаково ложных языковых игр, поскольку, на их взгляд, единственной правомерной языковой игрой является витгенштейновская метаигра. Все ограничены языком, за исключением тех, кто пишет о том, как все ограничены языком. Но не стоит задерживаться на этой фатальной ошибке. 179 Кун утверждал, что существуют ограничения для коммуникации между людьми, населяющими разные интеллектуальные миры, но считается, что он переоценивал этот аргумент: трудности Галилея и его критиков заключались не в коммуникации, а в согласии; они играли по разным правилам, но могли понять смысл ходов противника. Взгляды Куна описаны в Sankey. Kuhn’s Changing Concept of Incommensurability (1993) и критикуются в: Sankey . Taxonomic Incommensurability (1998); см. также: Hacking. Was There Ever a Radical Mistranslation? (1981).
что они не существуют. Но, даже несмотря на то, что положение «границы моего мира суть границы моего языка» действительно не всегда, мы должны признать, что язык зачастую определяет границы наших дискуссий и точного понимания. Облака получили названия только в XIX в. – термины cirrus (перистое облако) и nimbus (дождевое облако) могут показаться устаревшими, поскольку они латинские, однако римляне не различали разных типов облаков 180. Разумеется, задолго до того, как появились названия для разных типов облаков, люди воспринимали их примерно так же, как мы: достаточно взглянуть на голландские морские пейзажи XVII в., чтобы понять, что на них точно воспроизведены разные облака, хотя художники не знали их названий. Очевидно, Роберт Гук совершенно четко видел облака, когда спрашивал: «Какова причина разной формы облаков – складчатых, пушистых, кудрявых, закрученных, туманных и тому подобное?» 181 Но он прекрасно понимал свои ограниченные лингвистические возможности в описании этого природного явления. Классификация облаков является важным событием в истории метеорологии, после которого стали возможны их более серьезное обсуждение и глубокое понимание. Когда мы изучаем идеи, лингвистические изменения являются ключом к выяснению того, что люди понимают такого, чего не понимали их предшественники. За десять лет до открытий Галилея, сделанных с помощью телескопа, первый ученый-экспериментатор Уильям Гильберт признал: «Таким образом, иногда мы используем новые и необычные слова, но не для того, дабы с помощью глупой завесы слов закрыть факты [rebus] тенями и туманами (как к тому стремятся алхимики), а для того, чтобы ясно и правильно изложить сокрытые вещи, которые не имеют названия и которых мы до сей поры не сознавали»182. Он начинает свою книгу со словаря, чтобы помочь читателю понять смысл новых слов. Затем, через несколько месяцев после того как Галилей открыл небесные тела, которые мы называем лунами Юпитера, Иоганн Кеплер изобрел новое слово для этих новых объектов: они стали «спутниками» 183. Таким образом, историкам, которые воспринимают язык всерьез, необходимо искать появление новых языков, которые должны отражать изменения в том, что люди могут думать, и в том, как они могут осмысливать свой мир 184. Здесь важно различать это утверждение и аргумент, с которого началась эта глава. Историк всегда должен изучать язык, который использовали люди в прошлом, и быть внимательным к изменениям в этом языке, но это не означает, что ему всегда следует использовать этот язык при описании прошлого. Термин Кеплера «спутник» указывает, что Галилей открыл новую разновидность сущности, но вполне допустимо сказать, что Галилей открыл луны Юпитера (эту терминологию не использовал ни Галилей, ни Кеплер – насколько мне известно, самое раннее ее использование относится к 1665 г., и, строго говоря, 180 Hamblyn. The Invention of Clouds (2001); и Gombrich. Art and Illusion (1960). 150–152. 181 Hooke. The Posthumous Works (1705). 3. 182 Gilbert. On the Magnet (1900). iii. Это суть вопроса. Вся концепция Витгенштейна, как ее толкуют социологи, направлена на оспаривание идеи восприятия, которое не зависит от изложения. Так, он говорит, что «представление о «соответствии действительности» не имеет какого-то ясного применения». Наука, естественно, стремится доказать, что имеет, – точно так же, как Рассел хотел доказать, что в комнате нет гиппопотамов. 183 Работа «Narratio de observatis Jovis satellitibus» датирована 11 сентября 1610 г., но опубликована в 1611 г. (современное издание в: Kepler. Dissertatio cum nuncio sidereo, 1993). На классической латыни satellitium означает эскорт или охрану. 184 «Когда изменяются языковые игры, изменяются и понятия, а вместе с понятиями и значения слов». Wittgenstein. On Certainty (1969). § 65.
в этом случае мы имеем дело с анахронизмом), особенно если учесть, что для нас звезды (термин Галилея) неподвижны, а спутники (термин Кеплера) представляют собой рукотворные объекты, запущенные в космос. Современная история науки, несмотря на все рассуждения о языках и дискурсах, была недостаточно внимательна к появлению в XVII в. нового языка, предназначенного для науки о природе, – его мы будем рассматривать в части III. И действительно, этот язык был таким незаметным, что те же самые исследователи, которые до второй половины XIX в. отказывались использовать слово «ученый» в отношении кого-либо, с готовностью рассуждали о «фактах», «гипотезах» и «теориях», словно это транскультурные понятия. Данная книга стремится исправить этот очевидный промах 185. Один из ее главных постулатов формулируется просто: революция в идеях требует революции в языке. Утверждение о существовании научной революции XVII в. проверить несложно – достаточно взглянуть на сопровождавшую ее революцию в языке. И действительно, революция в языке является лучшим доказательством реальности революции в науке. По мере того как будет продвигаться наш рассказ, полезно помнить некоторые особенности лингвистических изменений. Очевидно (в чем мы уже убедились на примере «искусств» и «наук»), что со временем значение слов меняется. Но зачастую слова не просто меняют значение, а приобретают новые, иногда явно не связанные с оригинальным. Мы видели, что слово «революция» в настоящее время имеет самые разные значения, и одним из источников путаницы в вопросе существования научной революции служит невозможность отделить эти значении одно от другого. Когда я прихожу в местное отделение (branch – ветвь) своего банка, то не думаю о его разветвленном бизнесе как о дереве; в данном случае «ветвь» (branch ) – просто устоявшаяся метафора. Нечто похожее произошло со словом volume (том), когда его используют в контексте измерений: сначала во французском, а затем и в английском языке его стали применять для обозначения не книги, а пространства, занимаемого трехмерным объектом (объем). Говоря об измерении volume сферы, я использую метафору. Когда мы пишем о «законах природы», слово «законы» тоже имеет метафорический смысл. Что такое законы природы? Для понимания разных контекстов, в которых используется эта фраза, полезно вспомнить о ее происхождении; в конечном итоге это поможет понять, что лучший ответ на вопрос: «Что такое законы природы?» – перечисление того, каким образом мы используем это выражение (в данном случае, как выразился Витгенштейн, значение есть использование). Так, например, в Великобритании есть неписаная конституция. Что такое неписаная конституция? Любой достойный ответ будет полон загадок и парадоксов, но он должен включать рассказ о том, что мысль о необходимости конституции для государства впервые высказал в 1735 г. Болингброк и что идея неписаной конституции отличает Великобританию от Соединенных Штатов и Франции, первых стран, принявших конституцию. После того как писаные конституции стали нормой, понятие неписаной конституции стало включать явно неразрешимые загадки (как понять, что такое неписаная конституция? В чем источник ее власти?), и точно так же понятия, которые мы используем при обсуждении науки («открытия», «законы природы») по сути своей загадочны – по крайней мере, для нас. Единственный способ понять их – восстановить их историю 186. По моему мнению, в XVII в. понятие естественных наук подверглось фундаментальному пересмотру, и к концу столетия в основном приняло 185 Примечательно, что по прошествии такого времени после «лингвистического поворота» базовая история некоторых ключевых слов/понятий, благодаря которым возможна научная деятельность, еще не написана. Таким образом, данную книгу отчасти можно рассматривать как дополнение к рассказу Бруно Снелла о зачатках науки: Snell. The Origin of Scientific Thought (1953, впервые опубликован в 1929) и Snell. The Forging of a Language for Science in Ancient Greece (1960). 186 Tuck. Natural Rights Theories (1979). 1, 2.
современную форму. Я не утверждаю, что оно устойчиво и правильно, – оно просто успешно в том смысле, что дало основу для открытия новых знаний и новых технологий187. §6 Бо́льшая часть этой главы была посвящена языку науки, как и бо́льшая часть книги, однако аргументы книги в равной степени относятся к тому, что Леонардо называл «проверкой опытом». Первое поколение историков и философов, изучавших научную революцию, принижало значение новых фактов и новых экспериментов, утверждая, что значение имеет лишь то, что Баттерфилд называл «транспозицией в мышлении самого ученого». Основы современной науки, как утверждал в 1924 г. философ Эдвин Берт, были метафизическими 188. По мнению Койре, «мысль, чистая, незамутненная мысль, а не опыт или чувственное восприятие… лежит в основе «новой науки» Галилео Галилея» 189. Таким образом, ключевая (на взгляд Койре) идея, сделавшая возможной современную науку, идея инерции, была следствием размышлений Галилея о повседневном опыте, обычного мысленного эксперимента. Я считаю это ошибкой, переворачивающей всю историю современной науки с ног на голову и выворачивающей ее наизнанку 190. Суть научной революции как раз и состоит в новом опыте и новом чувственном восприятии. Совершенно очевидно, что если бы для научной революции требовалось только новое мышление , то было бы невозможно объяснить, почему она не произошла раньше XVII в.191 Тем не менее вот уже тридцать лет второе поколение историков и философов науки атакует утверждение, что научная революция значительно расширила возможность человека понять природу; став на релятивистскую точку зрения, они отказываются признавать превосходство Ньютона над Аристотелем или Николаем Орезмским даже в том смысле, что его теории сделали возможными более точные предсказания и новые типы вмешательства в природу. Их аргументы убедили почти всех антропологов, почти всех профессиональных историков и многих философов. Но они ошибаются. Благодаря научной революции мы обладаем гораздо более надежным знанием, чем древние и средневековые философы, – мы называем его наукой. Для первого поколения суть новой науки состояла в мышлении, для второго это просто языковая игра. Две эти дискуссии, о мышлении и о знании, взаимосвязаны, поскольку оба поколения отвергали идею о том, что новая наука основана 187 «Для понимания и поддержки научной практики, – пишет Хасок Чан, – я бы предложил фундаментальную переориентацию нашей концепции знания, чтобы воспринимать его как возможность, а не как веру» (Chang. Is Water Н2О? 2012. 215; и об «успехе», 227–233). К этой мысли я вернусь в последней главе. 188 Burtt. The Metaphysical Foundations of Modern Physical Science (1924). 189 Butterfield. The Origins of Modern Science (1950). 5; Burtt. The Metaphysical Foundations of Modern Physical Science (1924) (об этой работе см.: Daston. History of Science in an Elegiac Mode (1991); и Koyré. Galileo and the Scientific Revolution of the Seventeenth Century (1943). 346. 190 И разумеется, неверным пониманием Галилея: см., например, работу Галилея о приливах (Galilei. Le opera, 1890. Vol. 5. 371–395), в которой опыт описывается как надежный ориентир – «sensate esperienze (scorte sicure nel vero filosofare)» (378); Stabile. Il concetto di esperienza in Galilei, 2002); Galilei. Le opera, 1890. Vol. 10. 118 (Galileo to Altobelli), Vol. 18. 249 (Galileo to Liceti) & 69 (Baliani to Galileo). Отец Галилея, Винченцо, уже многократно подчеркивал первичность опыта: Palisca. Vincenzo Galileo (2000). 191 Если бы для порождения новой науки было достаточно только мышления, она началась бы не с Галилея, а с философа XIV в. Николая Орезмского. Можно возразить, что важным условием нового мышления было повторное открытие некоторых классических текстов (Архимеда, Лукреция, Платона), однако этот процесс завершился к середине XV в.
на новом типе взаимодействия с чувственной реальностью. Оба не видели главную особенность новой науки: она систематически применяла проверку опытом. Положение новых ученых второй половины XVII в. кардинальным образом отличалось от положения их древних, арабских и средневековых предшественников. У них был печатный станок (изобретение XV в., влияние которого усилилось в XVII в.), создавший новые типы интеллектуального сообщества и изменивший доступ к информации; у них был набор инструментов (телескопы, микроскопы, барометры), изготовленных из стекла, которые служили агентами перемен; они обладали новым стремлением все проверять опытом, что дало начало экспериментальному методу; у них был новый, критический взгляд на авторитеты, и у них был новый язык – язык, на котором мы теперь говорим и на котором гораздо легче формулировать новые мысли. Взаимосвязанные и усиливающие друг друга, все эти элементы создали предпосылки для научной революции. §7 В 1748 г. Дени Дидро, великий философ Просвещения, анонимно опубликовал эротический роман под названием «Нескромные сокровища» (слово «сокровище» в данном случае является эвфемизмом для вагины). Книга была сразу же запрещена – в чем, вероятно, не сомневался ни он, ни его издатель – и имела огромный успех. Глава 32 снабжена подзаголовком «…быть может, не лучшая и наименее читаемая в этой книге» – наименее читаемая, потому что, в отличие от других, в ней не было секса. В главе описывается, как главный герой (султан Мангогул, лестное изображение Людовика XV) видит сон, в котором он летит на спине мифического крылатого зверя к парившему в воздухе зданию. Вокруг здания собралась толпа уродливых людей, а перед ними на трибуне, над которой натянута паутина, стоит старик и выдувает мыльные пузыри. Все обнажены, если не считать маленьких лоскутков ткани – как оказалось, клочков одежды Сократа. Выясняется, что здание – это храм философии. Внезапно «…я заметил вдалеке ребенка, направлявшегося к нам медленными, но уверенными шагами. У него была маленькая головка, миниатюрное тело, слабые руки и короткие ноги, но все его члены увеличивались в объеме и удлинялись, по мере того как он продвигался. В процессе этого быстрого роста он представлялся мне в различных образах: я видел, как он направлял на небо длинный телескоп, устанавливал при помощи маятника быстроту падения тел, определял посредством трубочки, наполненной ртутью, вес воздуха и с призмой в руках разлагал световой луч. К этому времени он стал колоссом, головой он поднимался до облаков, ноги его исчезали в бездне, а простертые руки касались обоих полюсов. Правой рукой он потрясал факелом, свет которого разливался по небу, озарял до дна море и проникал в недра земли 192. Колосс ударил по зданию, и оно рухнуло. Мангогул проснулся 193. «Что это за гигант направляется к нам?» – спросил Мангогул перед тем как проснуться. Ответ может показаться очевидным: Дидро, пишущий о трансформации знания, которую мы теперь называем научной революцией. Вскоре мы увидим, что Галилей направил свой телескоп на небо, Мерсенн (следуя примеру Галилея) точно измерил скорость падающих тел, Паскаль взвесил воздух, Ньютон расщепил свет с помощью призмы. Но Дидро назвал новорожденного колосса вовсе не «Наука», как мы могли ожидать. Во французском языке слово «наука» недостаточно конкретно для обозначения новых наук Галилея и Ньютона, поскольку, как мы видели, существовали и существуют разные науки, в том числе (в наше время) общественные. Не подходят и «естественные науки», поскольку этот термин, как и «натурфилософия», не делает различия между новой наукой и старой. Платон, 192 Здесь и далее «Нескромные сокровища» Дидро цитируются в переводе Д. Лившиц, Э. Шлосберг. 193 Diderot. The Indiscreet Jewels (1993). 136.
вызвавшийся объяснить, что происходит, говорит: «Узнайте же, это Опыт»194. Но разве в опыте есть что-то новое? Разве опыт не есть нечто общее для всех человеческих существ? Как может «Опыт» быть подходящим названием для новой науки? Отвечая на этот вопрос, я буду возвращаться к проблеме, на которую указывает нам Дидро, называя своего колосса «Опытом», – трудности нахождения адекватного языка для описания новой науки. С этой проблемой сталкиваемся не только мы, когда пытаемся понять ее, – серьезные трудности испытывали и те, кто изобрел новую науку, и те, кто подобно Дидро, восхвалял ее. Я приведу аргументы, что новая наука была бы невозможна без создания нового языка, который необходим для размышлений и который должен был сформироваться из доступных слов и фраз. Сначала это произошло в английском языке, где, например, в XVII в. стали расходиться значения слов experience (опыт) и experiment (эксперимент). (Дидро, который начинал свою литературную карьеру с переводов с английского на французский, был хорошо знаком с этим новым языком.) Таким образом, expérience Дидро переводится не как «эксперимент» (во французском языке до сих пор нет такого слова), однако совершенно очевидно, что «эксперимент» больше подходит для описания новой науки, чем «опыт», хотя Леонардо считал опыт ключом к надежному знанию. Мы можем точно определить, когда начался процесс формирования нового языка науки: с нового слова, еще больше расширившего ту роль, которую должен был сыграть опыт. Это слово discovery (открытие), существующее во всех европейских языках. Далее мы увидим, как в XVII в. опыт в форме наблюдений и экспериментов, ведущих к открытиям, приобрел новое значение, как новая концепция открытия сделала возможным появление науки и как эта новая наука начала менять мир, результатом чего стали новые технологии, без которых мы уже не можем обойтись. Это история рождения науки, ее младенчества и ее удивительного превращения в колосса, под тенью которого мы все живем. Но необычная глава из книги Дидро содержит и предупреждение: сон, чудовища и аллегории, лингвистическая неопределенность – все это передает ощущение тревоги. Какова будет история опыта, точнее, этой новой разновидности опыта? Может показаться, что нам ответить на этот вопрос гораздо проще, чем Дидро, поскольку он все еще находился в плену ньютоновской философии (во Францию она пришла позже, чем в Англию), а мы уже можем оглянуться на пройденный путь. Но у Дидро было перед нами одно преимущество: он окончил Сорбонну в 1732 г. и получил образование в мире философии Аристотеля. Он знал, каким потрясением стало разрушение привычного мира, поскольку сам пережил его. С высоты птичьего полета – а именно так смотрят историки – научная революция выглядит долгим и медленным процессом, который начался с Тихо Браге и закончился Ньютоном. Но для людей, которые в ней участвовали, – Галилея, Гука, Бойля и их коллег – она представляет собой череду внезапных, резких перемен. В 1735 г. Дидро, получивший традиционное образование, по-прежнему собирался стать католическим священником, но в 1748 г., по прошествии чуть более десяти лет, уже работал над своей великой «Энциклопедией» (Encyclopaedia), первый том которой появился в 1751 г. Для него разрушение храма философии было не историческим событием, а личным переживанием – моментом, когда он очнулся от ночного кошмара. Часть I Небо и земля А что может быть прекраснее небесного свода, содержащего все прекрасное!195 194 «Reconnoissez l’Expérience, me répondit-il; c’est elle-même» (Diderot . Les Bijoux indiscrets, 1748. Vol. 1. 352). 195 Здесь и далее «О вращении небесных сфер» Коперника цитируется в переводе И. Веселовского.
Николай Коперник. О вращении небесных сфер (1543)196 Две главы части I этой книги посвящены трем интеллектуальным революциям, которые изменили наши взгляды на Вселенную. Первая связана с тем, что до открытия Колумбом Америки в 1492 г. не существовало четкого и общепринятого понятия «открытие»; сама эта идея, как будет показано, является условием для появления науки. Вторая показывает, что открытие Америки опровергает главное представление о нашей Земле, которое в 1492 г. считалось само собой разумеющимся: на другой стороне Земли нет никаких континентов. Южная Америка находилась как раз на полпути от разных частей Старого Света. Прямым следствием этого – предмет рассмотрения в главе 4 – стала радикальная трансформация представлений о строении Земли: появилась теория земного шара. Это была важная предпосылка для революции в астрономии, которая не заставила себя долго ждать. Далее мы снова отдадим должное тому, что Томас Кун назвал «революцией Коперника». Этой революции пришлось ждать до XVII в.: лишь немногие астрономы XVI столетия соглашались с утверждением Коперника, что Земля не пребывает неподвижно в центре Вселенной, а вращается вокруг Солнца. Настоящая революция в астрономии началась со сверхновой звезды Тихо Браге, с отказа от веры в хрустальные сферы и с изобретения телескопа. То есть не в 1543 г., а в 1611 г. Титульный лист альбома Яна ван дер Страта «Новые открытия» (ок. 1591) с изображением тех знаний, которые отличают современный мир от древнего. Предметами гордости являются открытие Америки и изобретение компаса; между ними располагается печатный станок. На рисунке также присутствуют порох, часы, шелкоткачество, 196 Copernicus. On the Revolutions (1978). 7.
дистилляция и седло со шпорами 3. Рождение открытия Суть науки – открытие. Н. Р. Хансон . Анатомия открытия (1967)197 §1 В ночь с 11 на 12 октября 1492 г. Христофор Колумб открыл Америку. Первым после викингов европейцем, увидевшим Новый Свет, был либо Колумб на «Санта-Марии», который утверждал, что заметил в темноте проблеск света несколько часов назад, либо впередсмотрящий на «Пинте», который действительно увидел освещенную луной землю 198. Они думали, что земля, к которой они приближаются, была частью Азии, – Колумб до самой смерти (1506) отказывался признать Америку новым континентом. Первым картографом, изобразившим Америку как обширную землю (но еще не континент), стал в 1507 г. Мартин Вальдземюллер199. Колумб открыл Америку, неизвестный мир, пытаясь проложить новый путь в уже известную страну, Китай. Но, когда он обнаружил новую землю, у него не было слова для описания того, что он сделал. Не получивший формального образования Колумб знал несколько языков – итальянский, португальский, кастильский, латынь, в дополнение к генуэзскому диалекту, языку своего детства, – но только в португальском имелось слово (discobrir ) для обозначения «открытия», причем появилось оно недавно, лишь после неудачной первой попытки Колумба в 1485 г. заручиться поддержкой короля Португалии для организации экспедиции. Появление понятия открытия совпало с планами успешной экспедиции Колумба, но сам он не пользовался этим термином, поскольку писал отчеты о своей экспедиции не на португальском, а на испанском и латыни. Ближайшие по значению латинские глаголы – invenio (находить), reperio (приобретать) и exploro (изучать), от которых образуются существительные inventum, repertum и exploratum. Invenio использовал Колумб для объявления об открытии Нового Света, reperio – Ян ван дер Страт для названия альбома гравюр, иллюстрирующих новые открытия (ок. 1591) , а exploro – Галилей, когда сообщал об открытии лун Юпитера (1610)200. В современном переводе все эти слова часто передаются словом «открытие», но при этом мы забываем, что в 1492 г. устоявшегося понятия «открытие» еще не существовало. Даже по прошествии ста с лишним лет Галилей, писавший на латыни, был вынужден прибегать к таким обтекаемым фразам, как «неизвестный всем предшествующим астрономам», чтобы передать его смысл 201202. 197 Hanson. An Anatomy of Discovery (1967). 352. 198 Columbus. The Journal (2010). 35, 36. 199 Lester. The Fourth Part of the World (2009). 200 Grafton, Shelford & others . New Worlds, Ancient Texts (1992). 80; Galilei. Le opere (1890). Vol. 3. 57; выше, p. 56. 201 Galilei . The Essential Galileo (2008). 47; Giordano da Pisa: «Non é ancora venti anni che si trovó l’arte di fare gli occhiali, che fanno vedere bene, ch’é una de le migliori arti e de le piú necessaire che’l mondo abbia, e é così poco che ssi trovò: arte novella che mmai non fu. E disse il lettore: io vidi colui che prima la trovó e fece, e favvellaigli»
Вскоре во всех европейских языках укоренилось одинаковое метафорическое использование слова «открыть» для описания путешествия с целью поиска новых земель. В авангарде шел португальский язык, поскольку португальцы первыми, начиная с 1421 г., предприняли ряд экспедиций с целью найти морской путь к островам пряностей в Индии, вдоль побережья Африки (попутно выяснив, что, вопреки общепринятому мнению, которому учили в университетах, в экваториальных областях не слишком жарко и там можно жить). Слово descobrir использовалось уже в 1484 г. и означало «исследовать» (вероятно, это перевод латинского patefacere , открывать). Однако в 1486 г. Фернан Дульмо предложил совершенно новый вид предприятия, путешествие через океан на запад, в неизвестные края, с целью найти (descobrirse ou acharse – открыть или найти) новые земли (это было через два года после того, как Колумб предложил плыть на запад, чтобы добраться до Китая) 203. Вероятно, путешествие так и не состоялось, однако это было бы скорее открытие, а не исследование. Дульмо ничего не открыл, но его идея открытия вскоре зажила своей жизнью204. Новое слово начало распространяться в Европе после публикации в 1504 г. второго из двух писем, написанных (предположительно) Америго Веспуччи, где он описывал свои путешествия в Новый Свет по поручению португальского короля. Это письмо к «Пьеро Содерини», написанное и впервые опубликованное на итальянском языке, к 1516 г. выдержало уже больше десяти изданий. В итальянском тексте девять раз встречалось слово discoperio , позаимствованное из португальского; в переводе на латынь (с промежуточным французским) слово discooperio встречалось дважды 205. Это было первое использование (цит. по Renaissance Vision, 2007. 5); и Filarete: «Pippo di ser Brunelleschi inventò la prospettiva, la quale precedentemente non si era mai usata… Benché gli antichi fossero acuti e sottili, essi non conobbero la prospettiva» (цит. по Camerota. La prospettiva del Rinascimento, 2006. 61). 202 Сравните рассказ Джордано да Пиза (написанный на итальянском в 1306 г.) об изобретении очков, о которых он услышал в проповеди: «Не прошло и двадцати лет с тех пор, как было найдено [si trovó ] искусство изготовления очков, призванных улучшить зрение. Это одно из самых лучших и необходимых искусств в мире. Как мало времени прошло с тех пор, как было найдено новое, никогда не существовавшее [arte novella che mai non fu ] искусство». Проповедник сказал: «Я видел человека, первым нашедшего очки, и я беседовал с ним». Совершенно очевидно, что у Джордано не было слова для таких понятий, как «изобретение» или «открытие», и поэтому он прибегнул к парафразу: «новое, никогда не существовавшее искусство». Филарете (ум. ок. 1469, писал на итальянском) так рассказывал об изобретении перспективы Брунеллески: «Пиппо ди сер Брунеллески нашел [inventò ] ту перспективу, которая в прежние времена не применялась… Несмотря на ум и искусство древних, они не были знакомы с перспективой». Inventare не могло адекватно передать идею открытия чего-то, прежде неизвестного. Филарете прекрасно понимал: читатели полагают, что любое открытие является повторным, и поэтому посчитал необходимым выразить несогласие с этой точкой зрения. 203 О значении слова descobrir см.: Morison . Portuguese Voyages to America (1940). 5–10, 43 (значение в 1484 г. переведено Морисоном как «исследовать»), 45, 46 (1486, переведено Морисоном как «открывать»). См. также: Randles . Le Nouveau Monde (2000). 10 о слове descubre, которое появилось в испанском в 1499 г. и означало «открывать». 204 Аргументом в пользу утверждения, что концепция открытия в 1486 г. была новой, могут служить документы XIV в. (Verlinden. Lanzarotto Malocello, 1958), посвященные первому путешествию португальцев на Канары. «Predictarum insularum fuerunt prius nostri regnicole inventores» [ «первые, кто нашел эти острова, были из нашего королевства»], 1188; «avendo délie nos as yllas que trobou e nos gaanou que som no mar do Cabo Nom» [ «получив от него острова, которые он нашел и завоевал для нас»], 1197 – здесь слова inventores по trobou, по всей вероятности, подразумевают открытие. Но фраза querentes ad eas insulas, quas vulgo repertas dicimus [ «направившись к тем островам, которые в обычной речи мы называем «найденными»], 1191, показывает, что «найденный» – это всего лишь распространенная фигура речи (разумеется, невозможно «найти» необитаемый остров, поскольку его никто не «терял»). Более того, образованные люди знали, что не существует такого понятия, как открытие, – и действительно, Канары были известны римлянам. 205 Caraci Luzzana. Amerigo Vespucci (1999). 321–383; можно найти на
слова в современном значении «открытие»: discooperio есть в поздней латыни (слово встречается в Вульгате, латинском переводе Библии), но лишь в значении «обнаруживать». Поскольку discooperio отсутствует в классической латыни, широкого распространения термин не получил; в любом случае концепция открытия была настолько новой, что поначалу требовала разъяснения. Веспуччи любезно пояснял, что пишет об обнаружении новых земель, «о которых ничего не сообщали древние писатели» 206. Новое слово распространялось так же быстро, как и известия о Новом Свете. Фернан Лопеш де Каштаньеда опубликовал свой труд «История открытия и завоевания Индии португальцами» (História do descobrimento e conquista da Índia) (то есть Нового Света) в 1551 г.; его быстро перевели на французский, итальянский и испанский, а затем на немецкий и английский, и он сыграл ключевую роль в укоренении этого нового слова. О скорости его распространения можно судить по появлению в названиях книг: голландский язык – 1524 (но затем только в 1652); португальский – 1551; итальянский – 1552; французский – 1553; испанский – 1554; английский – 1563; немецкий –1613. Книгопечатание Ниже приводятся данные о количестве напечатанных экземпляров книг; естественно, это лишь приблизительная оценка. Революция в книгоиздании была масштабной, но одновременно растянутой во времени, и этот процесс в точности совпадает по времени с научной революцией (см. ниже). В 1500 г. она только начинала ускоряться: (Из Buringh & van Zanden. Charting the ‘Rise of the West’, 2009. 418.) Если для Веспуччи концепция открытия была новой, то, наверное, это же относится и к изобретению? В XVI и XVII вв. порох, книгопечатание и компас чаще всего упоминались в числе изобретений, доказывающих превосходство современных людей над древними. Все они появились до путешествия Колумба, но мне не удалось найти письменных упоминаний о них до 1492 г.207 Именно открытие Америки продемонстрировало значение компаса; книгопечатание и порох, возможно, тоже считались революционными в своих областях, http://eprints.unifi.it/archive/00000533/02/Lettera_al_Soderini.pdf. В более ранних рассказах о Новом Свете нет слова discooperio , а оригинальный итальянский текст не сохранился. Вальдземюллер слишком хорошо знал латынь, чтобы скопировать в своей Cosmographiae introductio слово, использованное Веспуччи. О’Горман считает, что invenio Вальдземюллера следует переводить как «задумать», а не «открыть», но тогда игнорируется тот факт, что Вальдземюллер работал с латинским текстом письма Веспуччи, в котором discooperio уже было переведено как invenio (O’Gorman. The Invention of America, 1961. 123 и n. 117). 206 Waldseemüller . The Cosmographiæ introductio (1907), 88 (перевод исправлен; см. xliv). Полезную дискуссию можно найти в Brotton . A History of the World in Twelve Maps (2012). 155, 156, но Броттон цитирует (166, 167) неправильный перевод Вальдземюллера (из Hessler. The Naming of America, 2008), создавая впечатление, что Вальдземюллер полагал, будто Птолемей знал об Америке, и таким образом намекая, что даже у Вальдземюллера отсутствовало полноценное понятие открытия. Латинский текст и достоверный перевод см. в: Waldseemüller. The Cosmographiæ introductio (1907). xxviii. 68. См. также, например, Grynaeus. Novus orbis regionum ac insularum veteribus incognitarum (1532). Это противоречило заявлению Колумба о том, что найденная им во время первых двух путешествий земля была «хорошо известной древним, а не новой, как утверждают завистники и невежи» (цит. по: Washburn . The Meaning of ‘Discovery’, 1962. 12). Даже в 1535 г. Овьедо все еще защищал точку зрения, что о существовании Нового Света просто забыли: Bataillon. L’Idée de la découverte de l’Amérique (1953). 44; O’Gorman. The Invention of America (1961), 16. По их мнению, новым был не Новый Свет, а пересечение океана. 207 См., например, Wolper. The Rhetoric of Gunpowder (1970).
но были признаны таковыми только в постколумбовский период. И для этого были веские причины: считается, что первое сражение, исход которого решил порох, состоялось в 1503 г. при Чериньоле, а до 1500 г. влияние книгопечатания было невелико. Мы привыкли к разным значениям слова «открытие» и поэтому склонны предполагать, что оно всегда означало примерно то же, что и в наши дни. «Неожиданное открытие – оказывается, мне положен возврат налога», – говорим мы. Но «открытие» в этом значении следует за упоминанием об открытии Колумбом Нового Света; именно путешествия с целью поиска новых земель дали толчок к использованию слова «открыть» в значении «обнаружить», и этому способствовала практика перевода invenio как «открытие». После 1492 г. основное значение слова «открыть» – не просто «обнаружить» или «выяснить»: тот, кто объявляет об открытии, подобно Колумбу, заявляет о том, что он первым сделал это, проложил дорогу тем, кто последует за ним. «Мы открыли тайну жизни», – во всеуслышание объявил Фрэнсис Крик в пабе Eagle в Кембридже 13 февраля 1953 г. – в день, когда они с Джеймсом Уотсоном поняли структуру ДНК 208. Открытия – это определенные моменты в необратимом историческом процессе. Концепция открытия несет с собой представление о времени как о линейном, а не циклическом. Если открытие Америки было счастливой случайностью, то оно сделало возможным еще более выдающуюся случайность – открытие открытия 209210. Я сказал «более выдающуюся», поскольку именно само понятие открытия изменило наш мир так, как не могло изменить просто обнаружение новых земель 211. Раньше считалось, что история повторяет себя, традиция служит надежным путеводителем в будущем, а величайшие достижения цивилизации принадлежат не настоящему или будущему, а прошлому, Древней Греции и классическому Риму. Конечно, наш мир создан наукой и технологией, но научный и технический прогресс зависит от существования одного важного допущения – допущения о возможности открытий 212. Новый подход кратко 208 Watson. The Double Helix (1968). 197. 209 О рождении открытия: Fleming (ed.). The Invention of Discovery (2011) и Margolis. It Started with Copernicus (2002). Ch. 3 – в этих работах не исследуется новая терминология. О любопытстве: Huff. Intellectual Curiosity and the Scientific Revolution (2011); Harrison. Curiosity, Forbidden Knowledge (2001); Ball. Curiosity (2012); Daston . Curiosity in Early Modern Science (1995); Daston & Park. Wonders and the Order of Nature (1998). 303–328. Интересный рассказ о культурных основах современной науки можно найти в Muraro. Giambattista della Porta, mago e scienziato (1978). 171–179. 210 Уделяя такое внимание «открытию», я предлагаю объяснение новым культурным ценностям позднего европейского Возрождения. В качестве характерной европейской ценности можно назвать и «любопытство», но тогда требуется найти объяснение, откуда вдруг взялось одобрение любопытства (которое всегда считалась грехом); благосклонно к нему стали относиться только в конце XVII в. (один из первых примеров мы найдем у Гоббса в «Природе человека» (Humane Nature, 1650), где любопытство определяется как «жажда знания»). Таким образом, одобрение любопытства следует рассматривать как следствие, а не как причину научной революции. Я убежден, что «открытие» является полезной категорией при сравнении культуры позднего европейского Возрождения с другими культурами: критику утверждения, что в Китае тоже предпринимались экспедиции для поиска новых земель, см. в: Finlay . China, the West and World History (2000). 211 Разумеется, изобретение не менее важно, чем открытие. Но главные изобретения современности основаны на предшествующих научных открытиях: для паровой машины, например, это закон Бойля. Конструкторы первых паровых машин не знали о скрытой теплоте, но понимали, что такое давление воздуха, и это позволило им осознать, что паровая машина может быть не только игрушкой, как для Герона Александрийского, но способна обуздывать громадную энергию. 212 «В XV в. морские экспедиции португальцев обнаружили небольшие группы новых островов и расширили знания европейцев об уже известных континентах, но осознание, что в мире есть новые континенты, неведомые в древности, открыло разлом во времени и пространстве. По сравнению с более ранними описаниями путешествий работы, написанные после 1492 г., демонстрируют обостренное чувство
изложил Луи Леруа (или Региус, 1510–1577) в 1575 г.213. Ле Руа, который был профессором греческого и перевел «Политику» Аристотеля, первым полностью осознал особенность новой эпохи (я цитирую по английскому переводу 1594): Вещей, которые предстоит найти, гораздо больше, чем уже придуманных и найденных. Не будем столь наивными, чтобы слишком много приписывать древним, верить, что они знали все и все сказали, ничего не оставив тем, кто придет после них… Не будем думать, что природа преподнесла им все свои дары и что в грядущие времена она оскудеет… Сколько [тайн природы] были впервые узнаны и изучены в наш век? Новые земли, новые моря, новые люди, манеры, законы и обычаи, новые болезни и новые лекарства, новые свойства Неба и Океана, прежде нам неведомые, новые звезды? А сколько еще осталось для наших потомков? То, что теперь скрыто, со временем выйдет на свет, и те, кто придет после нас, будут удивляться нашему невежеству214. Мир преобразовало именно это допущение о новых открытиях, поскольку оно сделало возможным современную науку и технику215. (Идея о том, что существуют «новые люди, манеры, законы и обычаи», также указывает на рождение идеи сравнительного изучения обществ, культур и цивилизаций)216. Текст Леруа помогает провести границы между событиями, словами и понятиями. Географические открытия случались и до 1486 г. (когда Дульмо изменил значение слова descobrir ), например, Азорские острова были открыты приблизительно в 1351 г. – но никто не считал это открытием; никто не потрудился оставить запись об этом событии по очень простой причине – из-за отсутствия интереса. Впоследствии Азорские острова были повторно открыты в 1427 г., но это событие все так же не привлекло внимания, и поэтому никаких достоверных сведений об этом не сохранилось. В то время господствовало убеждение, что нового знания не существует: когда я на улице поднимаю монетку, то знаю, что она принадлежала человеку, проходившему тут раньше меня, и точно так же моряки эпохи Возрождения, первыми добравшиеся до Азорских островов, предполагали, что другие люди уже побывали здесь раньше их. В отношении Азорских островов они ошибались, но в отношении Мадейры нет – остров, открытый приблизительно в то же время, был известен Плинию и Плутарху. Но никто не считал незначительным открытие Колумбом (как он сам полагал) нового пути в Азию; современники спорили о том, знали ли об Америке в древности, но никто не утверждал, что какой-то греческий или римский мореплаватель совершил путешествие на запад раньше Колумба. (Этому есть очевидное объяснение: у греков и римлян не было компаса, и они предпочитали не удаляться от берега.) Таким образом, Колумб знал, что совершает открытие – если не новых земель, то нового маршрута, – а первооткрыватели Азорских островов не знали. В то время уже существовал способ сказать, что нечто было найдено впервые и о нем не знали прежде (люди продолжали использовать такие фразы, чтобы передать смысл новизны и возможностей – каким новым и разнообразным может быть мир» (Daston & Park . Wonders and the Order of Nature, 1998. 147). См. также, например: Humboldt . Examen critique (1836). Vol. 1. viii – x. 213 Bury. The Idea of Progress (1920). 44–49. 214 Leroy. Variety of Things (1594). Fol. 127rv. О светской исторической философии Леруа см.: Huppert. The Life and Works of Louis Le Roy, by Werner L. Gundersheimer (1968). 215 Принцип прогресса знания был сформулирован на основе новых географических открытий, см.: Piccolomini. De la sfera del mondo (1540). 39v. 216 Этим аргументом я обязан Стюарту Кэрролу.
«открытия», когда писали на латыни), но до 1492 г. почти ни у кого не возникало такого желания, поскольку господствовало убеждение, что «нет ничего нового под солнцем» (Еккл. 1: 9). Появление нового значения слова descrobrir указывало на радикальный сдвиг во взглядах, а также в том, как люди понимают свои действия. Поэтому можно с уверенностью сказать, что до 1486 г. не было путешествий с целью поиска новых земель – только путешествия с целью исследования. Открытие – это новое предприятие, которое появилось вместе со словом. Главная проблема истории идей, частью которой является история науки, заключается в лингвистических изменениях. Обычно изменения в языке служат указателем перемен в мышлении людей – они способствуют этим переменам и облегчают нам их понимание. Иногда усиленное внимание к изменениям в языке может создать ложное впечатление, что произошло нечто важное или что некое событие произошло в определенный момент, тогда как на самом деле это случилось раньше. Общего правила нет: каждый случай нужно рассматривать отдельно 217. Возьмем, например, слово boredom (скука). Страдали ли люди от скуки до того, как в 1829 г. появилось это слово? 218 Конечно, страдали: у них имелось существительное ennui (1732), существительное bore (1766) и глагол to bore (1768). Шекспир использовал слово tediosity. Таким образом, boredom – это новое слово, но не новое понятие и уж никак не новое ощущение (хотя, возможно, во времена Диккенса оно встречалось чаще, чем во времена Шекспира, и если ennui считалось явно французским словом, то boredom, вне всякого сомнения, было английским). Другие примеры чуть посложнее. Слово «ностальгия» придумали (на латыни) в 1688 г. как перевод немецкого Heimweh (тоска по дому). Впервые оно появляется в английском языке в 1729 г., задолго до homesick и homesickness . До 1695 г. французы для обозначения этого состояния использовали выражение la maladie du pays . Значит ли это, что ностальгия – новое чувство? Сомневаюсь – несмотря на то, что для него не существовало отдельного слова. Новой была идея, что это потенциально смертельная болезнь, требующая медицинского вмешательства219. Отсутствие простого правила в сочетании с тем фактом, что изменения в языке заключаются в присвоении новых значений старым словам, объясняет, почему некоторые важнейшие интеллектуальные события остались невидимыми: мы склонны предполагать, что открытие, подобно скуке, было всегда, хотя в одни эпохи открытий делалось больше, а в другие меньше. Новыми нам кажутся слова, а не понятия, которые они обозначают. Это справедливо для скуки, но не для открытия. Некоторые занятия зависят от языка. Невозможно играть в шахматы, не зная правил, – поэтому вы не сможете играть, не имея языка, на котором выражается, например, понятие «мат». Конкретный язык не имеет значения: ладья останется той же фигурой, если назвать ее замком – как и фрисби не изменит своей сущности под названием «Pluto Platter». В отсутствие слова «ладья» вы можете использовать любую фразу, например, «фигура, которая изначально стоит в четырех углах», – точно так же фрисби можно называть летающим диском, – но довольно быстро выясняется, что пользоваться длинными фразами неудобно, и возникает потребность в специальном слове. Отдельные слова и целые фразы могут выполнять одну и ту же функцию, но слова лучше справляются с задачей. Появление нового слова или нового значения старого слова зачастую указывает на поворотный пункт, 217 Квентин Скиннер предложил «оригинальность» в качестве примера понятия, которое, вне всякого сомнения, предшествовало слову: Skinner. Visions of Politics (2002). Vol. 1. 159. 218 1829 г. получается при поиске в Google Books; OED выдает 1853 г. 219 Данные по nostalgia см.: OED. Первое появление в английском языке: Harle. An Historical Essay on the State of Physick in the Old and New Testament (1729) (OED дает 1756); использование во французском maladie du pays – Constantini. La Vie de Scaramouche (1695).
когда определенное понятие становится общеупотребительным и начинает по-настоящему работать. Невозможно играть в шахматы, не осознавая этого, независимо от того, как вы называете игру, и поэтому игра в шахматы относится к «концепции актора», или «суждению актора»: вы должны знать концепцию, чтобы выполнить действие 220. Распознать концепцию актора зачастую бывает трудно. Вы можете испытывать Schadenfreude , радость из-за чужого несчастья, или злорадство, не зная этого слова; таким образом, понятие Schadenfreude не было новым, когда в конце XIX в. это слово появилось в английском языке, но с появлением специального термина его стало легче распознавать, описывать и обсуждать. Термин помог лучше понять человеческую мотивацию: слово и понятие соединились. Еще один пример – embarrass (смущаться). Совершенно очевидно, что люди смущались, попав в неловкое положение, еще до того, как в конце XIX в. слово embarrass приобрело новое значение (его оригинальное значение – мешать, затруднять), но осознавать свое состояние им стало проще. Только после этого дети стали стесняться своихродителей. Schadenfreude и embarrass не относятся к «концепции актора», поскольку эти чувства можно испытывать, не зная обозначающего их слова, но слова являются интеллектуальными инструментами, которые позволяют обсуждать эмоциональные состояния и без которых это было бы трудно; при наличии слов нам значительно легче идентифицировать эмоциональные состояния четко и недвусмысленно. Таким образом, хотя открытия и изобретения случались до 1486 г., появление и распространение слова «открытие» знаменует поворотный момент, поскольку делает открытие «концепцией актора»: вы можете предпринять действие с целью совершить открытие, осознавая это. Леруа критикует идею, что все достойное упоминания было уже сказано, а нам остается лишь интерпретировать и разъяснять работы предшественников, и побуждает читателей делать новые открытия: «Убеждать знающих добавить собственными изобретениями потребное наукам; сделать для потомков то, что сделали для нас древние, для того чтобы Знание не терялось, а могло увеличиваться день ото дня» 221. Стоит немного задержаться и обратить внимание на язык Леруа: у него часто встречаются слова inventer и l’invention ; он пишет, что «были найдены многие чудесные вещи [такие, как печатный станок, компас и порох], неизвестные в древности». Кроме того, он использует слово decouvremens , которое переводится как «открытие»: «decouvremens de terres neuves incogneuës à l’antiquité»; «Des navigations & decouvremens de païs»; истина, говорит он, не была «entierement decouverte» 222. В данном случае значение слова еще близко к оригинальному – путешествие с целью поиска и открытия новых земель. Требовалось ли ему конкретное слово, чтобы сформулировать свое утверждение? Наверное, нет. Достаточно примера Колумба, который показывал – ему и всем остальным, – что история человечества не является историей повторений и случайностей, а может стать и уже становится историей прогресса. §2 Утверждение, что в 1492 г., когда Колумб открыл Америку (или в 1486 г., когда Дульмо говорил об открытиях, или в 1504 г., когда Веспуччи распространил в Европе новое слово), концепция открытия была новой, может показаться в корне неверным. Ведь еще в 1499 г. 220 Я позаимствовал этот термин из Dunn. Modern Revolutions (1972). 226; основные вопросы см.: Skinner. Visions of Politics. Vol. 1 (2002). 128–144 и Shapin & Schaffer. Leviathan and the Air-pump (1985). 14. 221 Leroy. Variety of Things (1594). Sig. A4v. 222 Leroy. De la vicissitude (1575). Sommaire de l’œuvre.
ученый-гуманист Полидор Вергилий опубликовал книгу, название которой перевели как «Об изобретателях» (De inventoribus rerum) и которая на первый взгляд кажется историей открытий 223. Книга Вергилия пользовалась огромным успехом и выдержала более ста изданий224. Вергилий снова и снова задавал себе вопрос: «Кто изобрел?..» Обращаясь к множеству примеров из разных областей знания, таких как язык, музыка, металлургия, геометрия, он почти в каждом случае находит в своих источниках несколько ответов на поставленный вопрос, но в целом его точка зрения заключается в том, что римляне и греки получили бо́льшую часть знаний от египтян, тогда как иудеи и христиане утверждают, что египтяне своими знаниями обязаны евреям, в первую очередь Моисею. (Если бы Вергилий обратился к исламским авторитетам, то нашел бы аргументы в пользу евреев как источника знания, но ключевой фигурой мусульмане считали не Моисея, а Еноха) 225. Громадная эрудиция Вергилия характеризуется несколькими любопытными моментами. Его больше интересуют первые изобретатели, а не долгий процесс развития той или иной дисциплины. Он практически ничего на говорит о прогрессе226. Когда речь идет о философии и естественных науках, Вергилий не указывает существенного вклада, внесенного мусульманами (упомянут только Авиценна (980–1037), а арабы даже не названы изобретателями арабских цифр) и христианами: почти все важное произошло очень давно. Следует признать, что среди перечисленных изобретений есть и несколько современных – стремена, компас, часы, порох, печатный станок, – но ничего не сказано о новых наблюдениях, новых объяснениях или новых доказательствах. Аристотель приписывается к числу изобретателей только потому, что у него была первая библиотека, Платон – из-за своего заявления о том, что мир создан Богом, Асклепий – потому что первым начал удалять зубы, Архимед – потому что изготовил механическую модель Вселенной. Гиппократ Хиосский включен в список не за первый учебник по геометрии, а за свой интерес к этому предмету. Евклид не упоминается вообще, Птолемей – только как географ, но не астроном, а Герофил (древнегреческий анатом) только за сравнение ритма пульса с музыкальным размером. Если мы используем слово «открытие» в значении, отличном от «изобретения» (разумеется, у Вергилия было всего одно слово, inventiones , охватывающее оба значения), то автор упоминает всего два открытия: объяснение затмений Анаксагором и догадку Парменида, что «утренняя звезда» и «вечерняя звезда» – это одно и тоже. (Мы не можем расширить категорию открытия, включив в нее, например, утверждение, что кровь голубки, вяхиря или ласточки является лучшим средством от сглаза, хотя некоторые сторонники культурного релятивизма сказали бы, что должны.) Эти открытия были включены в книгу по чистой случайности, поскольку Вергилий взял за образец длинную главу из «Естественной истории» (ок. 78) Плиния под названием «О первых изобретателях разных вещей», в которой перечислены многие изобретения (плуг, алфавит), в том числе некоторые «науки» (астрология и медицина) и технологии (в том числе арбалет), но ни одного конкретного открытия. Теорема Пифагора (на которую только туманно намекал Вергилий при описании угольника архитектора), закон Архимеда, анатомические открытия Эрасистрата – все это и многое другое отсутствует и у Плиния, 223 Vergil. On Discovery (2002); Copenhaver. The Historiography of Discovery in the Renaissance (1978); и Atkinson. Inventing Inventors in Renaissance Europe: Polydore Vergil’s ‘De inventoribus rerum’ (2007). 224 Hay. Polydore Vergil (1952). 74. 225 Zhmud. The Origin of the History of Science (2006). 299–301. 226 В этом и других аспектах книга Леруа является ответом Вергилию; его главный шаг – отказ считать Библию источником.
и у Вергилия и могло бы быть включено в книгу, если бы авторов интересовали открытия, а не изобретения или инновации. Проверить утверждение, что у Вергилия не упоминаются открытия, легко: в трех первых современных переводах Вергилия слово «открытие» в соответствующем значении присутствует только один раз: «Орест, сын Денкалиона, открыл вино у горы Этна на Сицилии» (1686)227. Нет нужды говорить, что у Вергилия не упомянуты современные путешествия с целью поиска новых земель, хотя он вносил дополнения в свой текст вплоть до 1533 г. В Древнем Риме, тексты которого Вергилий прекрасно знал, и в эпоху Возрождения до 1492 г. не существовало такого понятия, как открытие 228. Однако древние греки были знакомы с этим понятием (они использовали слова, родственные eureka: heuriskein, eurisis ; их можно перевести как «изобретение» или «открытие») и разработали литературный жанр, связанный с открытиями, – эвроматографию 229. Среди наследия Евдема (ок. 370–300 до н. э.) есть сочинения по истории арифметики, геометрии и астрономии. До наших дней дошли только цитаты в более поздних работах; история геометрии была важным источником для Прокла (412–485), комментарии которого к книге I Евклида впервые были напечатаны (на основе рукописи с ошибками) на греческом в 1533 г., а затем, в значительно улучшенном переводе на латынь, в 1560 г. Прокл, например, приписывает Пифагору доказательство теоремы, которую мы теперь называем теоремой Пифагора, а Менелаю – теоремы, которая стала основой для астрономии Птолемея. Будь у Вергилия возможность прочесть Прокла, часть этих сведения могла бы войти в его книгу, хотя вряд ли он воспринял бы концепцию открытия. Почти вся греческая культура была ассимилирована римлянами, но концепцию открытия они усвоить не смогли, и маловероятно, что Вергилий, обученный мыслить подобно римлянам, отреагировал бы иначе230. §3 Вергилий был одним из ведущих интеллектуалов-гуманистов XVI в.; к этому времени гуманистическое образование (то есть обучение писать на латыни так же, как римлянин классической эпохи) стало считаться наилучшим способом введения молодого человека в мир знаний, поскольку давало навыки, которые легко переносились в политику и торговлю. Но в университетах, в отличие от домашних классов, гуманистическое образование стояло не на первом месте. Во всех европейских университетах с конца XI до середины XVIII в. сохранялась одна и та же система обучения: главным предметом программы была философия – философия Аристотеля 231. Натурфилософия Аристотеля изложена в четырех 227 Vergil. A Pleasant and Compendious History (1686). 149. См. также: Vergil . An Abridgement (1546) и Vergil. The Works (1663). 228 Исключением в древнеримских текстах является введение к книге IX «Архитектуры» (De architectura) Витрувия, где автор, воздавая должное великим мыслителям, описывает такие открытия (в нашем понимании), как теорема Пифагора и закон Архимеда. Для более поздних читателей это было парадигматическое описание открытия; Вергилий, вне всякого сомнения читавший Витрувия, не ссылается на него. 229 Соответственно, они имели представление о прогрессе: Dodds. The Ancient Concept of Progress (1973). 230 Примечательно, что у римлян не было слова «новшество»: в словаре Льюиса и Шорта главное значение для innovo (классическая латынь) и innovatio (постклассическая латынь) – «обновление». Такое значение предполагает цикличность истории. Так, например, Марк Аврелий пишет: «Поэтому помни… Первое, что все от века единообразно и вращается по кругу, и безразлично, наблюдать ли одно и то же сто лет, двести или бесконечно долго» (Aurelius. The Meditations, 1968. Vol. 1. 31). 231 Единственным серьезным исключением была Голландия: в университетах Республики Соединенных Провинций Нидерландов в конце XVII в. преподавали картезианскую философию.
его книгах: «Физика», «О небе», «О возникновении и уничтожении» и «Метеорологика», и то, что мы считаем научными дисциплинами, изначально было изложено в виде комментариев к этим текстам 232. Аристотель был убежден, что знание, в том числе натурфилософия, по сути своей носит дедуктивный характер. Точно так же, как геометрия начинается с бесспорных допущений, или аксиом (прямая линия – кратчайшее расстояние между двумя точками), а затем путем логических рассуждений делаются неожиданные выводы (квадрат гипотенузы равен сумме квадратов катетов), в основе натуральной философии должны лежать бесспорные допущения (небеса неизменны), из которых выводятся законы (единственная форма движения, способная без изменений продолжаться вечно, – это круговое движение, и, следовательно, любое движение в небе является круговым). В идеале возможна формулировка любого научного доказательства в силлогистических терминах. Вот пример силлогизма: Все люди смертны. Сократ человек. Значит, Сократ смертен. Аристотель объяснял природные явления с точки зрения четырех причин: формальных, конечных, материальных и действующих. Таким образом, если я делаю стол, то формальная причина – это конструкция в моей голове, финальная причина – желание иметь место, где я буду есть, материальная причина – разные куски дерева, а действующая причина – пила и молоток. Природу Аристотель рассматривал с тех же позиций, то есть как продукт рациональной, целенаправленной деятельности. Природные существа стремятся реализовать свою идеальную форму: они ориентированы на цель (натурфилософия Аристотеля телеологична; греческое слово telos означает «цель»). Таким образом, головастик имеет форму молодой лягушки, а его цель, или конечная причина, – стать взрослой лягушкой. Как это ни удивительно, те же принципы применяются и к неживой материи, в чем мы вскоре убедимся. Аристотель считал, что Вселенная состоит из пяти элементов. Небо сделано из эфира, или пятого элемента, прозрачного и неизменного, не горячего и не холодного, не сухого и не влажного. Небо простирается от Земли, которая находится в центре Вселенной, в виде череды материальных сфер, на которых расположены Луна, Солнце и планеты, а над ними – звезды. Таким образом, Вселенная конечна и имеет сферическую форму; более того, она имеет ориентацию – верх и низ, левую и правую стороны. Аристотель не мыслил пространство абстрактным (в отличие от геометров), а всегда рассматривал его в терминах места. Он отрицал саму возможность пустого пространства, или вакуума. По его мнению, пустое пространство – это парадокс. Подлунный мир, по нашу сторону от Луны, является миром, где происходят процессы возникновения и уничтожения, – остальной мир неизменен с начала времен. Наш мир характеризуется четырьмя первичными свойствами (горячее и холодное, сухое и влажное) и парами свойств, принадлежащих каждому из четырех элементов (земля, вода, воздух и огонь); земля, например, холодная и сухая. Эти элементы естественным образом образуют концентрические сферы, окружающие центр Вселенной. Поэтому вся земля стремится к центру Вселенной, а весь огонь – к границе лунной сферы. Вода и воздух иногда стремятся вниз, а иногда вверх – Аристотель не знал о законе всемирного тяготения. Головастик содержит в себе потенциал лягушки, и по мере роста эта возможность превращается в действительность. Элемент земля потенциально находится в центре 232 Для ознакомления см.: Bodnár. Aristotle’s Natural Philosophy (2012), а также Kuhn. Structure (2000). 15–20. The Road since
Вселенной, и когда он падает к этому центру, то реализует свой потенциал. Вся вода потенциально является частью океана, окружающего землю: в реке она течет вниз, чтобы реализовать свой потенциал. Вода приобретает вес, если взять ее из того места, которому она принадлежит: попробуйте зачерпнуть ведро воды из пруда. На своем месте она невесома – когда вы плаваете, то не ощущаете на себе веса воды. Таким образом, Аристотель рассматривает естественное движение элементов не как движение в пространстве, а в телеологических терминах, как реализацию потенциала. Это по сути своей качественный, а не количественный процесс 233. Иногда Аристотель упоминает и о количествах. Так, например, он говорит, что если у вас есть два предмета, то тяжелый будет падать быстрее легкого – если он в два раза тяжелее, то и падать будет в два раза быстрее. Однако количественные соотношения его не интересовали, и он не стал развивать эту тему. Имел ли он в виду, что если у вас есть килограммовый пакет сахара и двухкилограммовый пакет сахара, то двухкилограммовый будет падать в два раза быстрее? Или он хотел сказать, что если у вас есть куб, сделанный из тяжелого материала, скажем из красного дерева, и другой куб того же размера, но из более легкого материала, например сосны, то если первый в два раза тяжелее второго, то и падать он будет в два раза быстрее? Это два разных утверждения, но Аристотель не проводил между ними различия, а также не проверял свое утверждение, что тяжелые предметы падают быстрее легких, поскольку считал это самоочевидным. Аристотель проводил четкую границу между философией (которая объясняет причины) и математикой (она лишь выявляет закономерности). Философия говорит нам, что Вселенная состоит из концентрических сфер; закономерности движения планет по небу – это предмет изучения астрономии, которая является разделом математики. Астрономия и другие математические дисциплины (география, музыка, оптика, механика) берут основные принципы из философии, но развивают эти принципы посредством математических рассуждений, примененных к опыту. Таким образом, Аристотель отделяет физику (которая является разделом философии, дедуктивна, телеологична и занимается причинами) от астрономии (раздел математики, занимающийся описанием и анализом). Аристотель известен исследованием природных явлений; например, он изучал развитие куриного эмбриона внутри яйца. Но в том виде, в котором его воспринимали европейские университеты в Средние века и в эпоху Возрождения, его работы считались учебником уже имеющегося знания, а не проектом, побуждающим к дальнейшим исследованиям. Сама возможность нового знания подвергалась сомнению; считалось, что все, что нужно знать, уже есть в работах Аристотеля и обширных комментариях к ним. Таким образом, университетский Аристотель был не реальным, а адаптированным для учебной программы общества, где самой важной дисциплиной считалось богословие. Подобно тому как богословие преподавалось в виде комментариев к Библии и текстам Отцов Церкви, философия (и входящая в нее натурфилософия, изучение природы) имела вид комментариев к Аристотелю и его комментаторам. Изучение философии рассматривалось в качестве подготовки к изучению богословия, поскольку обе дисциплины занимались толкованием официальных текстов 234. 233 В XIV в. пытались рассматривать многие свойства (такие как горячее, холодное или зеленое) с позиций количества и представить как аргумент в дискуссии, что можно измерить количества (например, ускорение падающих тел), которые считались не поддающимися измерению. Довольно часто эту попытку называют предвестником научной революции, но к такому утверждению следует относиться с осторожностью; см.: Murdoch. Philosophy and the Enterprise of Science in the Later Middle Ages (1974). 234 Важно понимать, что взгляды Аристотеля одобрялись по двум причинам: они были рациональны и официальны. Когда авторитет Аристотеля пал, вместе с ним была уничтожена сама идея авторитетов в натурфилософии. См., например, неуклюжие увертки Пикколомини, который осмелился спорить с Аристотелем: Piccolomini . Della grandezza della terra et dell’acqua (1558). 1r-2v.
Что это означало на практике? Аристотель считал, что твердые вещества плотнее и тяжелее мягких; из этого следовало, что лед тяжелее воды. Но почему он плавает? Все дело в форме: плоские предметы не способны проникнуть в воду и остаются на поверхности. Так, ледяная корка плавает на поверхности пруда. Последователи Аристотеля придерживались этих взглядов вплоть до XVII в., несмотря на два очевидных противоречия. Во-первых, это не соответствовало теории Архимеда, которая была доступна на латыни уже с XII в. и утверждала, что плавают только объекты, которые легче воды, вытесняемой ими. Математики были согласны с Архимедом, философы – с Аристотелем. Более того, в Европе не было недостатка льда; например, во Флоренцию летом его доставляли с Апеннин, чтобы хранить рыбу. Простейший эксперимент показал бы, что лед плавает независимо от формы. Философы, твердо уверенные в правоте Аристотеля, не видели нужды в проверке его утверждений 235. Яркий пример такого безразличия к тому, что мы называем фактами, демонстрирует Алессандро Акиллини (1463–1512), знаменитый философ и гордость Болонского университета 236. Он был последователем исламского комментатора Аверроэса (1126–1198), который старательно избегал использования религиозных категорий при толковании Аристотеля и, таким образом, тайно отрицал Сотворение мира и бессмертие души. Блестящие рассуждения Акиллини и греховный характер его идей нашли отражение в популярной поговорке: «Это либо дьявол, либо Акиллини» 237. В 1505 г. он опубликовал книгу об аристотелевской теории элементов, «Элементы» (De elementis), в которой рассматривал вопрос, уже давно вызывавший спор среди философов: пригодны ли для жизни экваториальные области или там слишком жарко. Акиллини цитировал Аристотеля, Авиценну и Пьетро д’Абано (1257–1316), после чего делал следующий вывод: «Растут ли фиги на экваторе круглый год, имеет ли воздух там умеренную температуру, имеют ли живущие там животные умеренное строение, находится ли там земной рай – этого не открывает нам естественный опыт» 238. По мнению Акиллини, вопрос о том, растут ли фиги на экваторе, точно так же не имеет ответа, как вопрос о местонахождении райского сада, – оба они не являются предметом изучения для философа. Но дело в том, что португальцы в поисках морского пути к источнику пряностей вдоль побережья Африки в 1474–1475 гг. достигли экватора, а в 1488 г. – мыса Доброй Надежды. В 1505 г. уже существовали карты, на которых были отмечены новые открытия. Год спустя Ян Глоговчик, профессор Ягеллонского университета в Кракове, указал (в математической, а не философской работе), что обитаемый и цветущий остров Тапробана (Шри-Ланка) расположен у самого экватора 239. Опыт перестал быть чем-то неизменным, совпадающим с тем, что было известно Аристотелю, но Акиллини был профессионально не готов к таким переменам, хотя также преподавал анатомию, самую эмпирическую из университетских дисциплин. К 1505 г. взаимоотношения между опытом и философией уже нуждались в пересмотре, но Акиллини был не способен осознать проблему 240. В отличие от него кардинал Гаспаро 235 См. ниже, гл. 8, § 2, гл. 15, § 6. 236 Thorndike. A History of Magic and Experimental Science (1923). Vol. 5. 37–49. 237 Westman. The Copernican Question (2011). 99. 238 Thorndike. Science and Thought in the Fifteenth Century (1929). 209 (перевод скорректирован). Торндайк не видел первого издания: Achillini. De elementis (1505). 84v-85r. 239 Thorndike. Science and Thought in the Fifteenth Century (1929). 209. 240 Развернутую аргументацию, что опыт должен быть важнее авторитетов, особенно в вопросах географии,
Контарини в своей книге об элементах, опубликованной посмертно в 1548 г., объяснял, что Аристотель, Авиценна и Аверроэс отрицали обитаемость экваториальной зоны: «Этот вопрос, который много лет обсуждался величайшими философами, в наше время был разрешен опытом. Новые морские путешествия испанцев и особенно португальцев показали, что земли ниже линии равноденствия и между тропиками обитаемы и что в них живут многочисленные народы…» 241 Для Контарини опыт был новой разновидностью авторитета. Он умер в 1542 г., за год до публикации «О вращении небесных сфер» Коперника и «О строении человеческого тела» (De humani corporis fabrica) Везалия. Тогда еще не было очевидно, что, после того как опыт признан наивысшим авторитетом, неизбежно должна появиться новая философия, которая разрушит храм привычного знания, – это лишь вопрос времени. Это стало очевидно к 1572 г. §4 До открытий Колумба главной целью интеллектуалов эпохи Возрождения было восстановление утерянной культуры прошлого, а не самостоятельное открытие нового знания. Пока Колумб не продемонстрировал, что классическая география абсолютно ошибочна, считалось, что утверждения древних нельзя ставить под сомнение – их можно только интерпретировать 242. Но и после открытия Америки старые представления не собирались сдавать позиции. В 1514 г. Джованни Манарди выражал недовольство теми, кто продолжал сомневаться, могут ли человеческие существа выдержать экваториальную жару. «Если кто-то предпочитает свидетельство Аристотеля и Аверроэса свидетельству тех людей, кто там был, – возмущался он, – то единственный аргумент для спора с ними – тот, которым воспользовался сам Аристотель, когда отвечал сомневающимся, что огонь горячий, то есть отправиться в плавание, взяв с собой астролябию и абак, и убедиться самому»243. Где-то между 1534 и 1549 гг. музыкант и математик Жан Тенье заметил, что Аристотель иногда ошибался; ему возразил представитель папы, предложив привести убедительный пример ошибки Аристотеля. Оппоненты полагали, что Тенье не сможет этого сделать. Ответом стала лекция, развенчивающая теорию Аристотеля о падении тел, самый слабый аспект его физики 244. Нам трудно понять, что это оставалось серьезной проблемой и в XVII в.245 Галилей см. в: Piccolomini. Della grandezza della terra et dell’acqua (1558). 7v-10r. 241 Thorndike. Science and Thought in the Fifteenth Century (1929). 210. 242 См., например, предисловие к книге 1 «Рассуждений» Макиавелли (Machiavelli. Selected Political Writings, 1994. 82–84); Montaigne . The Complete Essays, 1991. 605, 606; и Schmitt. Experience and Experiment (1969) о Дзабарелле. 243 Цит. в: Eamon. Science and the Secrets of Nature (1994). 272. 244 Thorndike. A History of Magic and Experimental Science (1923). Vol. 5. 581, 582; и Taisnier. Opusculum (1562). 16, 17. Иногда можно услышать утверждение, что Петр Рамус защищал тезис о ложности всех высказываний Аристотеля, но это ошибка перевода: Ong. Ramus (1958). 36–46. 245 Эдмунд О’Меара писал в своей Pathologia hæreditaria generalis (Dublin, 1619. 62–64): «Я удивляюсь высокомерию тех, кто осмеливается выступать против опыта, первопроходца всех наук и знания, если только по той причине, что многие стыдятся и раздражаются от необходимости признать все новое, что противоречит их твердым убеждениям, от которых они не могут отступить даже на волосок, чтобы не показать своих прошлых ошибок; многие так бессмысленно поклоняются Гиппократу, Галену и Аристотелю, даже обожествляют их, что думают, что все, что они не говорили, не должно быть сказано, а все, что они не знали, не должно быть узнано». (Перевод из: Lower. Richard Lower’s ‘Vindicatio’, 1983. 201, 202.)
рассказывает о профессоре, который отказывался признать, что нервы соединяются с мозгом, а не с сердцем, потому что это противоречило утверждению Аристотеля, – и стоял на своем, даже когда ему показывали нервы в препарированном трупе246247. Широко известен пример философа Кремонини, который, будучи близким другом Галилея, отказывался смотреть в телескоп. Кремонини опубликовал объемный труд о небе, в котором не упоминались открытия Галилея – по той простой причине, что они не имели отношения к реконструкции идей Аристотеля 248. В 1668 г. Джозеф Гленвилл, известный сторонник новой науки, оказался втянутым в спор с человеком, который отвергал все открытия, сделанные с помощью телескопов и микроскопов, на том основании, что эти инструменты «лживы и вводят в заблуждение . Этот ответ напоминает мне об одной доброй женщине , которая на слова мужа во время спора: «Я это видел – и я не должен верить собственным глазам?» – ответила: «Неужели ты больше веришь своим глазам, чем своей любимой женушке?». Похоже, этот джентльмен думает, что неразумно верить нашим глазам , а не его любимому Аристотелю »249. Даже великий анатом XVII в. Уильям Гарвей, открывший систему кровообращения, одобрительно отзывался об Аристотеле как о «великом диктаторе философии», хотя для Уолтера Чарлтона, одного из основателей Королевского общества и противника схоластики, Аристотель было просто «деспотом школ»250. §5 Таким образом, религия, латинская литература и философия Аристотеля были едины: нового знания не существует. Следовательно, то, что выглядело как новое знание, на самом деле забытое старое, а история движется по кругу. В глобальном масштабе вся Вселенная должна (по крайней мере, если отбросить открывшуюся истину и прислушаться к астрологам) повторять себя. «Все, что было в прошлом, будет в будущем», – писал Франческо Гвиччардини в своей книге «Максимы» (осталась в семье после его смерти в 1540 г. и впервые была опубликована в 1857)251. Как выразился Монтень в 1580 г., «верования, суждения и мнения людей… имеют собственные циклы, сезоны, рождения и смерти, в точности как капуста» 252. Он позволял себе цитировать наивысшие авторитеты: «Аристотель говорит, что все мнения людей существовали в прошлом и будут существовать в будущем бесчисленное количество раз; Платон говорит, что они обновятся и вернутся 246 Galilei. Dialogue Concerning the Two Chief World Systems (1967). 107, 108; обсуждение этого и других подобных примеров, а также поговорки, что лучше ошибаться с Платоном/Аристотелем/Галеном, чем оказаться правым, см.: Maclean. Logic, Signs and Nature (2002). 191–193. 247 Galilei. Dialogue Concerning the Two Chief World Systems (1967). 107, 108; обсуждение этого и других подобных примеров, а также поговорки, что лучше ошибаться с Платоном/Аристотелем/Галеном, чем оказаться правым, см.: Maclean. Logic, Signs and Nature (2002). 191–193. 248 Muir. The Culture Wars of the Late Renaissance (2007). 15–18; сравните с Pascal. Œuvres (1923). 9 – Пьер Гиффар об экспериментах Паскаля. 249 Glanvill . Plus ultra (1668). 65, 66. 250 Harvey. Anatomical Exercitations (1653). Preface, fol. 4r; и Charleton. Charletoniana (1654). 183. 251 Guicciardini . Maxims and Reflections (Ricordi) (1972). 76. 252 Montaigne. The Complete Essays (1991). 648. Physiologia Epicuro-Gassendo-
через 36 000 лет» (волнующая мысль, поскольку согласно библейской хронологии мир был создан всего шесть тысяч лет назад; немногим лучше возраст, приводимый Цицероном, 12 954 года). Джулио Чезаре Ванини писал (в 1616 г.; два года спустя его казнили, обвинив в атеизме): «И снова Ахилл отправится в Трою, возродятся обряды и религии, человеческая история повторится. Сегодня не существует ничего такого, чего не существовало в древности; что было, то и будет». В масштабе истории предполагалось, что для каждого общества характерен бесконечный цикл конституционных форм (anacyclosis ), от демократии до тирании и обратно, и отсюда недалеко до предположения, что культуры повторяются вместе с формой правления 253. Последователи Платона отрицали возможность по-настоящему нового знания, поскольку Платон считал, что душе уже известна истина, и то, что кажется новым, на самом деле представляет собой воспоминания (anamnesis ). В диалоге «Менон» Сократ убеждал мальчика-раба, что тот уже знает, что квадрат гипотенузы равен сумме квадратов двух других сторон треугольника. Совершенно очевидно, что открытие иногда включает признание значимости чего-то уже известного. Когда Архимед воскликнул «Эврика!» и голым побежал по улицам Сиракуз, мы говорим, что он открыл так называемый закон Архимеда. Но можно утверждать, что Архимед осознал последствия того, что ему уже было известно: погружаясь в ванну, он вытесняет воду. Осознание и воспоминание предполагают, что настоящий и будущий опыт похож на прошлый; открытие предполагает, что мы можем испытывать нечто, неведомое прежде. Концепция открытия неразрывно связана с такими понятиями, как исследование, прогресс, оригинальность, аутентичность и новизна. Это характерный продукт Позднего Возрождения. Платоновские доктрины повторения и воспоминания тем не менее не составляли реальной проблемы; обе они были поддержаны Проклом, который, подобно всем грекам, рассуждал в терминах открытия. Настоящим препятствием, помимо безоговорочной веры в Аристотеля, была еще более безоговорочная вера в Библию. Если греки и римляне были убеждены, что человек начинал с уровня животных, а затем постепенно приобретал умения и навыки, необходимые для цивилизации, то Библия утверждала, что Адам уже знал названия всех вещей, Каин и Авель занимались земледелием и скотоводством, сыновья Каина изобрели металлургию и музыку, Ной построил ковчег и стал делать вино, а его ближайшие потомки принялись за строительство Вавилонской башни. Предположения, что для возникновения разнообразных навыков, которых требует цивилизация, необходимо продолжительное время или что Авраам, Моисей и Соломон не имели представления о некоторых видах знания, – все это считалось просто неприемлемым. Греки, как указывали первые Отцы Церкви, признавали себя наследниками египтян, и нетрудно увидеть, что египтяне получили свои знания от евреев. «Так что перестаньте подражание называть изобретением», – гневно восклицал Тациан (ок. 120–180), решительно отвергая утверждения, что египтяне и греки открывали что-либо, неизвестное евреям 254. Христианство не только навязывало искаженную хронологию; богослужение было организовано вокруг бесконечного цикла, ежегодного воспроизведения жизни Христа. «Каждый год церковь радуется, поскольку в Вифлееме снова родился Христос; когда зима подходит к концу, он въезжает в Иерусалим, где его предают и распинают; по окончании длинного Великого поста пасхальным утром он воскресает из мертвых». В то же время таинство мессы утверждает «неизменную современность Страстей Господних» и празднует 253 Montaigne. The Complete Essays (1991). 644 (the 1588 text); Borges. The Total Library (2001). The Doctrine of Cycles (115–122), Circular Time (225–228), где Ванини «цитируется» на с. 225 (на самом деле Борхес развивает то, что сказал Ванини: см.: Vanini. De admirandis (1616). 388); и Trompf . The Idea of Historical Recurrence (1979). 254 Zhmud. The Origin of the History of Science (2006). 299.
«слияние настоящего времени с прошлым»255. Концепция открытия не могла укорениться в культуре, настолько поглощенной библейской хронологией и литургическим повторением, с одной стороны, и светскими идеями возрождения, повторения и перетолковывания – с другой. В 1620 г. Фрэнсис Бэкон жаловался, что мир заколдован, – настолько необъяснимым ему казалось преклонение перед Античностью. В 1646 г. Томас Браун возмущался широко распространенным допущением, что чем дальше в прошлое, тем ближе к истине. (Он явно намекал на мнение Бэкона, утверждавшего обратное – что veritas filia temporis , «истина – дитя времени») 256. Показательным для этой направленности ортодоксальной культуры в прошлое можно считать название одной из самых известных книг, в которой описываются новые открытия Колумба и Веспуччи: «Paesi nuovamenti retrovati» ( Виченца, 1507; «Земли, заново открытые недавно»). Год спустя в немецком переводе название превратилось в «Newe unbekanthe Landte» («Новые неизвестные земли») 257. Эта поправка знаменует первую, локальную победу науки. Для нас естественно считать, что и до 1492 г. было много «нового». Но то, что выглядит новым для нас, современникам обычно не казалось новым (или, по меньшей мере, неоспоримо новым). Ярким примером могут служит революционные достижения в искусстве, которые можно было наблюдать во Флоренции в начале XV в. Леонт Баттиста Альберти, в 1434 г. вернувшийся в город после многолетнего изгнания (по свидетельству самого Альберти и его земляков-флорентинцев, он родился в изгнании, в 1404 г., и бо́льшую часть взрослой жизни провел в Болонье и Риме), был потрясен увиденным. Над городом возвышался новый собор, сооружение «настолько обширное, что оно осеняет собою все тосканские народы», а работы блестящих художников – самого Брунеллески, Донателло, Мазаччо, Гиберти, Луки делла Робиа – превосходили все, что было создано прежде. «Я часто дивился, да и сокрушался, видя, как столь отменные и божественные искусства и науки, которые… изобиловали у доблестнейших древних наших предков, ныне пришли в такой упадок и как бы вовсе утрачены»258, – писал он в 1436 г. Но теперь, при виде достижений флорентинских художников, он думал, что «имена наши заслуживают тем большего признания, что мы без всяких наставников и без всяких образцов создаем [troviamo ] искусства и науки неслыханные и невиданные»259. Купол, построенный Брунеллески, – «это искуснейшее изобретение, которое поистине, если только я правильно сужу, столь же невероятно в наше время, сколь, быть может, оно было неведомо и недоступно древним». Столкнувшись с достижениями, невиданными в древности, Альберти тем не менее считает своим долгом проявить осторожность: «поистине», «если я правильно сужу», «быть может»260. Примечательно, что Альберти выделяет купол, построенный Брунеллески, 255 Righter. Shakespeare and the Idea of the Play (1962). 15, 23. 256 Bacon. Instauratio magna (1620). Vol. 1. § 84. 99 = Bacon . Works (1857). Vol. 1. 191 и Browne. Pseudodoxia epidemica (1646). 20; см. также: Pascal. Préface sur le traité du vide (Pascal. Œuvres complètes, 1964. 772–785) и Glanvill. The Vanity of Dogmatizing, 1661. 140, 141. 257 Johnson. Renaissance German Cosmographers (2006). 34, 35. 258 Здесь и далее «Три книги о живописи» Альберти цитируются в переводе А. Габричевского. 259 Alberti. On Painting and On Sculpture 648 (1972). 33 (посвящение Брунеллески; перевод изменен). 260 Ср. с тем, что писал Пьер Гиффар об экспериментах Паскаля в 1647 г.: «Хотя эксперименты господина Паскаля кажутся нам новыми, представляется, что их уже проводили прежде, и некоторые из древних авторов на их основе делали вывод, что в природе может существовать пустота…» Откуда же еще, вопрошал он, Эпикур и Лукреций могли черпать уверенность в существовании вакуума? Взгляды Гиффара устарели; Паскаль не выдвигал подобных аргументов, и даже Гиффар в конце концов признал, что его эксперименты могут
а не искусство перспективы в живописи, его главное достижение: и Альберти, и его преемники не могли понять, была ли эта техника совершенно новой или просто заново открытой, которую использовали древние греки и римляне для создания театральных декораций, как описано у Витрувия. Сам Альберти (что характерно) в 1435 г. заявлял, что законы перспективы, «возможно», не были известны древним; в 1461 г. Филарете настаивал, что древние о них ничего не знали, однако Себастьяно Серлио в 1437 г. придерживался прямо противоположных взглядов, открыто заявляя, что «перспектива – это то, что Витрувий называл scenographia »261. В таких обстоятельствах убеждение, что новых знаний не существует, подвергалось серьезному испытанию, но все же устояло. Чтобы получить представление о его стойкости, достаточно вспомнить Макиавелли, который почти сто лет спустя начинает свою книгу «Рассуждения о первой декаде Тита Ливия» (ок. 1517) с упоминания об открытии (относительно недавнем) новых земель, говорит о том, что он тоже может предложить читателю нечто новое, а затем неожиданно заявляет, что в политике – точно так же, как в юриспруденции и медицине, – необходимо руководствоваться опытом древних; выясняется, что он предлагает не путешествие в неизведанное, а комментарии к Ливию. Поэтому неудивительно, что для Макиавелли совершенно очевидно, что, несмотря на изобретение пороха, военная тактика римлян остается примером, которому все должны следовать: свою книгу «Искусство войны» (Libro dell’arte della guerra, 1519) он писал для тех, кто, подобно ему, был delle antiche azioni amatori (ревнителем подвигов древности) 262. Естественно, что через полвека после открытия Америки Коперник также проявил осторожность и упомянул взгляды пифагорейца Филолая (ок. 470–385 до н. э.) в качестве важных предшественников идеи движения Земли 263. Ученик Коперника, Ретик, в первом опубликованном изложении теории Коперника старался по возможности не упоминать о гелиоцентризме, поскольку опасался враждебной реакции читателей 264. В «Знамениях» (Prognostication, 1576) Томаса Диггеса подчеркивается абсолютная новизна и оригинальность системы Коперника, но в иллюстрации к тексту Коперник не упоминается – на ней представлены «небесные орбиты согласно древнейшим взглядам пифагорейцев»; в последующих изданиях эта фраза была перенесена в содержание и в название главы265. Даже Галилей в «Диалоге о двух главнейших системах мира» (Dialogo sopra i due massimi sistemi del mondo, 1632) постоянно упоминает Коперника вместе с Аристархом Самосским (ок. 310–230 до н. э.), которому он приписывает (ошибочно) создание гелиоцентрической системы 266. Новое еще не считалось достойным восхищения, и поэтому оно изо всех сил старалось окружить себя защитным панцирем древности. Лишь немногие, подобно Леруа, были готовы искренне принимать все новое. не иметь аналогов. (Цит. по: Dear. Discipline and Experience, 1995. 191; французский текст в: Pascal. Œuvres, 1923. 9.) 261 Alberti. On Painting and On Sculpture (1972). 57, 58; см. выше, с. 58; и Serlio . Libro primo [– quinto] d’architettura (1559). Book 2. 1r (1537 – дата первого издания). 262 Discourses on Livy, introduction to Book 1 (абзац, отсутствующий в переводе Невилла 1675); Book 2. Ch. 17; Machiavelli . Art of War. Preface. 263 Copernicus. On the Revolutions (1978). 5; и Gingerich. Did Copernicus Owe a Debt to Aristarchus? (1985). 264 Rheticus . Narratio prima (1540); и Rosen (ed.). Three Copernican Treatises (1959). 135. 265 Digges & Digges . A Prognostication Everlasting (1576). Fol. 43. 266 Galilei. Dialogue Concerning the Two Chief World Systems (1967). 274, 276, 318, 328.
В культуре, обращенной в прошлое, важным было различие не между старым знанием и новым знанием, а между тем, что знали все, и знанием немногих привилегированных, которые получили доступ к тайной мудрости 267. Считалось, что знания не могут быть утраченными навсегда. Они либо уходят в тень, становятся эзотерическими или оккультными, либо просто теряются, чтобы в конечном итоге через несколько столетий обнаружиться в библиотеке какого-либо монастыря. Как писал в XIV в. Чосер: Зане со старых вспаханных полей Мы с новым возвратимся урожаем; А чтеньем книг старинных, ей-же-ей, Мы новые познанья умножаем… 268269 Открытие Америки сыграло решающую роль в легитимации новизны, поскольку через сорок лет уже никто не спорил, что это было беспрецедентное событие, игнорировать которое невозможно 270. Кроме того, это было публичное событие, начало процесса, когда новое знание, в противоположность старой культуре скрытности, отвоевывало себе место на публичной арене. Однако дань новизне отдавали еще до 1492 г. В 1483 г. Диогу Кан установил мраморную колонну в устье реки, которую мы называем Конго, – это была самая южная точка, до которой он сумел добраться. Колонна стала первой из целой череды – каждая должна была обозначать границу известного мира, заменяя Геркулесовы столбы (Гибралтарский пролив), служившие для этой цели в древности. Затем, после Колумба, к португальцам присоединились испанцы. В 1516 г. будущий король Испании и Священной Римской империи Карл V выбрал в качестве герба Геркулесовы столбы, а в качестве девиза – plus ultra , «дальше предела»; впоследствии этот девиз взял себе Бэкон. (Удовлетворительного перевода фразы plus ultra не существует, поскольку это грамматически неправильная латынь) 271. Уже в 1555 г. Жуан ди Барруш заявил, что столбы Геркулеса, «которые он, если можно так выразиться, ставил у каждого порога… были стерты из памяти людей, погружены в молчание и забвение»272. Один из оппонентов Галилея, Лудовико делле Коломбе, в 1610–1611 гг. жаловался, что Галилей ведет себя как человек, который поднял парус и, закричав: «Plus ultra!» – вышел за Геркулесовы столбы в океан, тогда как ему, конечно, следовало признать, что авторитетное мнение Аристотеля является той точкой, где должно заканчиваться исследование 273. Бедный Лудовико – похоже, он даже не понял, что открытие Америки сделало нелепым утверждение, что не следует стремиться к неизведанному. Тем не менее в июне 1633 г., во время суда над Галилеем, его друг Бенедетто Кастелли писал ему, что католическая церковь, похоже, собирается воздвигнуть 267 Eamon. Science and the Secrets of Nature (1994); Long . Openness, Secrecy, Authorship (2001). 268 Перевод С. Александровского. 269 Цит. по: Minnis. Medieval Theory of Authorship (1988). 9. 270 См. выступление Гийома де Тесту в защиту концепции choses nouvelles в 1556 г.: Lestringant. L’Atelier du cosmographe (1991). 187. 271 Rosenthal . Plus ultra, non plus ultra (1971); Rosenthal. The Invention of the Columnar Device (1973). 272 Randles . The Atlantic in European Cartography (2000). 15. 273 Galilei. Le opere (1890). Vol. 3. 253.
новые столбы Геркулеса с надписью non plus ultra 274. Но для того чтобы новизна – за пределами географии и картографии – стала пользоваться уважением, потребовалось больше ста лет, причем только у математиков и анатомов, а не философов и богословов. В 1553 г. Джованни Баттиста Бенедетти опубликовал трактат «Решение всех задач Евклида» (Resolutio omnium Euclidis problematum), на титульном листе которого было смело заявлено, что это «открытие» (per Joannem Baptistam de Benedictis Inventa ); он последовал примеру Тартальи, который утверждал, что изобрел «Новую науку» (1537). Но Тарталья и Бенедетти были известны своей склонностью к хвастовству. Показательным в отношении новой культуры открытий является трактат Роберта Нормана «Новое притяжение» (The Newe Attractive), опубликованный в 1581 г. Прямо на титульном листе Норман объявлял, что он открыл «новое… тайное и неуловимое свойство», отклонение иглы компаса. Он не знал ни греческого, ни латыни (в отличие от нидерландского), но достаточно хорошо разбирался в открытиях, чтобы сравнивать себя с Архимедом и Пифагором, как их описывал Витрувий. Норман включал себя в число тех, кто «испытывает необыкновенное наслаждение от собственных изобретений и открытий»275. Титульный лист трактата «Космография» (Cosmographia) Франческо Бароцци, переведенного на итальянский в 1607 г., сообщал, что книга содержит новые открытия (alcune cose di nuovo dall’autore ritrovate ); на титульном листе оригинального издания 1585 г. этой фразы не было. В 1608 г. уже можно было сетовать, что «ныне открытие новых вещей буквально обожествляется». Важным условием этого, разумеется, был тот факт, что первооткрыватели, подобно Тарталье, Бенедетти, Норману и Бароцци, уже не делали тайны из своих открытий 276. Двадцать лет спустя ученик Галилея, недавно назначенный на должность профессора математики в Пизе, жаловался, что «из всех миллионов вещей, которые можно открыть [cose trovabili ], я не открыл ни одной», вследствие чего он испытывал «бесконечные страдания»277. Во все времена жили нетерпеливые молодые люди, которые беспокоились, что проживут жизнь не так, как им хотелось бы, но Никколо Аджунти, вероятно, был первым, переживавшим, что не сделает великого открытия. Среди знакомых Галилея важным считалось только одно – открытие. Знания, полученные в результате путешествий с целью открытия новых земель, были примечательны не только своей неоспоримой новизной, но также публичностью. География менялась, но не философами, которые преподавали в университетах, не учеными мужами, корпящими над книгами, и не математиками, пишущими новые теоремы на своих досках; новое знание не было получено логическими рассуждениями из общепризнанных истин (как рекомендовал Аристотель) или найдено на страницах древних манускриптов. Его привезли полуграмотные моряки, обученные лишь в любую погоду нести вахту на палубе. «Сегодня простые моряки, – писал Жак Картье в 1545 г., – научились возражать философам посредством истинного опыта» 278. Роберт Норман называл себя «неученым механиком». Таким образом, новые знания отражали победу опыта над теорией и ученостью, и именно за это их и восхваляли. «Невежественный Колумб, – писал Марен Мерсенн в 1625 г., – 274 Galilei. Le opere (1890). Vol. 15. 155. 275 Norman. The New Attractive (1581). Aiirv. 276 Lodovico delle Colombe. Цит. в: Wootton. Galileo (2010). 7; сравните того же автора в 1612 г.: Galilei. Le opere (1890). Vol. 4. 317. 277 Galilei. Le opere (1890). Vol. 13. 345. 278 Цит. по: Eamon . Science and the Secrets of Nature (1994). 272.
открыл Новый Свет, тогда как Лактанций, ученый богослов, и Ксенофан, мудрый философ, отрицали его существование» 279. Как сформулировал Джозеф Гленвилл в 1661 г., «мы верим вращению иглы [то есть что компас указывает на север] без свидетельства из былых времен . И мы не ограничиваем себя единственно поведением звезд и страхом быть мудрее отцов. Слушайся мы авторитетов, четвертая часть Земли [Америка] оставалась бы нам неизвестной , а столбы Геркулеса до сих пор были бы Non ultra: пророчество Сенеки [что можно плыть на запад, чтобы добраться до Индии] осталось бы неисполненным, а половина нашего шара была бы пустой полусферой» 280. Важна здесь – вопреки утверждению Дидро – не сама идея, что опыт является наилучшим способом приобретения знания. Поговорка «experientia magistra rerum», «опыт – великий учитель», была известна и в Средние века: по книгам невозможно научиться верховой езде или стрельбе из лука 281. Важнее другое – представление о том, что опыт полезен не просто потому, что помогает научить уже известному другим людям, – он позволяет познать то, что остальные считают неверным. Именно это значение опыта – как пути к открытию – почти не признавалось до открытия Америки. Конечно, сами географические открытия были только началом. Из Нового Света хлынули необычные растения (помидоры, картофель, табак) и животные (муравьеды, опоссумы, индейки). Начался не только долгий процесс попыток описания прежде неизвестной флоры и фауны Нового Света; это также привело к шокирующему открытию, что многие европейские растения и животные должным образом не изучены и не описаны. После того как начались открытия, выяснилось, что их можно делать практически везде – нужно только уметь смотреть. Другими глазами люди посмотрели и на Старый Свет282. У описания нового было и другое следствие. Для авторов древности и эпохи Возрождения каждое известное животное или растение имело сложную цепь ассоциаций и смыслов. Львы были царственными и смелыми, павлины – гордыми, муравьи – трудолюбивыми, лисы – хитрыми. Описания с легкостью переходили от физического облика к символам и считались неполными без ссылок на поэтов и философов. С новыми растениями и животными – как Старого Света, так и Нового Света – не были связаны ни цепи ассоциаций, ни оттенки культурных смыслов. Что символизирует муравьед? А опоссум? Таким образом, естественная история медленно отделялась от общего знания и начинала формировать собственную область исследований 283. §6 Существительное discovery (открытие) впервые появляется в своем новом значении в 1554 г., глагол to discover (открывать) – в 1553 г., а фраза «путешествие с целью открытия 279 Thorndike. A History of Magic and Experimental Science (1923). Vol. 7. 430; или, например, Thevet. Cosmographie universelle, 1575: «en ces matieres cy, les plus sçavans n’y voient pas si clairement, que font les Matelots et ceux qui ont par cy devant long temps voiagé en ces terres, d’autant que l’experience est maistresse de toutes choses»: цит. в Lestringant . L’Atelier du cosmographe (1991). 25; см. также: 27–35, 45, 46, 50. 280 Glanvill. The Vanity of Dogmatizing (1661). 140. 281 Об experientia magistra rerum , см. выше, примеч. 64; Gilbert . Machiavelli and Guicciardini (1965). 39; Tedeschi . The Roman Inquisition and Witchcraft (1983); Gerson . Opera omnia (1706). Vol. 1. 76; Himmelstein . Synodicon herbipolense (1855). 207. Однако Эразм Роттердамский считал, что на опыте учатся только глупцы: Vaughan. An Unnoted Translation of Erasmus in Ascham’s ‘Schoolmaster’ (1977). 282 Cooper. Inventing the Indigenous (2007). 283 Ashworth Jr. Natural History and the Emblematic World View (1990).
новых земель» встречалась в 1574 г.284 Уже в 1559 г. в первой английской заявке на патент, поданной итальянским инженером Якобом Аконциусом, говорилось об открытии не нового континента, а нового механизма: В высшей степени справедливо, чтобы те, которые искали и нашли вещи, полезные для общества, получали бы некоторые плоды от своих прав и трудов, поскольку они отказались от всех других источников дохода, потратились на эксперименты и зачастую понесли серьезные убытки, как это случилось со мной. Я открыл много полезных вещей, новые виды колесных машин, печей для красильщиков и пивоваров, и если люди будут их использовать без моего согласия, не понеся за это наказания, то я, потративший столько сил и средств, останусь без вознаграждения. Посему я прошу запретить использование моих колесных машин для помола и дробления, а также печей, похожих на мои, без моего согласия285. В конечном итоге его просьбу удовлетворили, отметив: «Справедливо, что изобретатели должны быть вознаграждены и защищены от других людей, которые зарабатывают на их открытиях»286. Это может показаться исключительным сдвигом в значении термина, поскольку легко понять, как можно «открыть» нечто уже присутствующее в мире, но гораздо труднее представить открытие того, что никогда прежде не существовало; однако этому сдвигу способствовали разные значения латинского слова invenio , среди которых есть как обнаружение, так и изобретение. В 1605 г. новое понятие открытия было обобщено Фрэнсисом Бэконом в работе «О достоинстве и приумножении наук» (Of the Proficiency and Advancement of Learning). Фактически Бэкон заявлял, что он открыл, как делать открытия: И подобно тому как нам никогда не удалось бы открыть Вест-Индию [то есть всю Америку]287, если бы этому не предшествовало изобретение морского компаса (хотя в первом случае речь идет об огромных пространствах, а во втором – всего лишь о малозаметном движении стрелки), нет ничего удивительного в том, что в развитии и расширении наук не достигнуто более или менее значительного прогресса, потому что до сих пор игнорируется необходимость существования особой науки об изобретении и создании новых наук288289. Утверждение Бэкона, что он изобрел искусство (то есть технику) совершения 284 Discovery: OED; discover: Münster. A Treatyse of the New India (1553), sig. H7r; voyage of discovery: Bourne. A Regiment for the Sea (1574). 35v. 285 Phillips. The English Patent (1982). 71. 286 Обратите внимание, что здесь попеременно используются термины «изобретение» и «открытие». Обычно мы различаем изобретения и открытия, но это различие формировалось медленно, и даже в наши дни «изобретение» определено четче, чем «открытие». Например, мы не можем сказать, как это сделал Джон Рей в 1691 г., что слюнные протоки относятся к «новейшим изобретениям», но можем, как Х. У. Хаггард в 1929 г., говорить об «открытии акушерских щипцов». (Оба примера из OED, invention и discovery .) 287 Ср. Blundeville (1594): «Америка, которую мы теперь называем Вест-Индией» (OED s. v. West Indies ). 288 Перевод Н. Федорова. 289 Bacon . The Advancement of Learning (1605). 48v = Bacon. Works (1857). Vol. 3. 384. Общее обсуждение данной темы см.: Gascoigne. Crossing the Pillars of Hercules (2012). Позже Гук в своей работе The Present State of Natural Philosophy попытался сформулировать правила совершения открытий и доказать, что для приумножения наук требуется упорный труд, а не гениальность: Hooke. The Posthumous Works (1705). 1–70.
открытий, опиралось на ряд интеллектуальных шагов. Прежде всего, он отверг все существующее знание как не приспособленное для совершения открытий и бесполезное для преобразования мира. Схоластическая философия, которую преподавали в университетах и в основе которой были взгляды Аристотеля, утверждал Бэкон, увязла в череде беспредметных споров, не способных генерировать новые знания, к которым он стремился. В действительности он отверг идею знания, основанного на уверенности, на доказательстве. Философия Аристотеля базировалась на идее возможности логическим путем вывести знания из общепризнанных основных принципов, и поэтому все науки должны быть подобны геометрии. Бэкон ввел понятие истолкования; если раньше ученые писали о истолковании книг, то теперь Бэкон говорил об «истолковании природы» 290. Верным истолкование делает не его формальная структура, а польза – тот факт, что оно создает возможность для предсказания и управления. Бэкон отмечал, что открытия, преобразующие современный ему мир, – компас, печатный станок, порох, Новый Свет – были сделаны случайно. Никто не знает, что было бы при систематическом поиске нового знания. Таким образом, Бэкон отверг глубоко укоренившийся в обществе водораздел между теорией и практикой. Общество проводило четкую границу между джентльменом с ухоженными руками и ремесленником или рабочим, у которого были загрубевшие ладони, но Бэкон настаивал, что эффективная наука потребует сотрудничества между джентльменом и ремесленником, между книжным знанием и лабораторным опытом. Таким образом, главный тезис Бэкона заключался в том, что знание (по крайней мере, такое знание, которое он пропагандировал) есть сила: понимая что-либо, вы получаете возможность воспроизводить природные явления и управлять ими291. Творения человеческого знания не обязательно уступают творениям природы; человек в принципе способен на гораздо большее, чем природа, он может сделать то, что «раньше чем оно было открыто, едва ли кому-нибудь могло прийти на ум чего-нибудь ожидать от него; напротив, всякий пренебрег бы им, как невозможным» 292293. Если цель греческой философии состояла в созерцательном постижении, то цель философии Бэкона – новая технология. Бэкон возлагал на новую технологию огромные надежды: это будет нечто вроде «магии», то есть с ее помощью можно будет делать то, что непосвященным представляется невозможным (как ружья казались разновидностью магии американским индейцам) 294. Вслед за этим – открытием открытия – последовала приверженность тому, что Бэкон, когда писал по-английски, называл advancement, progression или proficiency (используя это слово в его изначальном значении, «движение вперед»), а переводчики на современный язык начиная с 1670 г. называли «развитием» или просто «прогрессом». Открытие Америки началось в 1492 г.; открытие прогресса тоже. Бэкон был первым, кто попытался систематизировать идею постоянного прогресса знания 295. При жизни он опубликовал три книги, описывающие новую философию – «О достоинстве и приумножении наук» (1605, 290 Serjeantson. Francis Bacon and the ‘Interpretation of Nature’ in the Late Renaissance (2014). 291 Бэкону часто приписывают фразу: «Знание – сила». На самом деле он писал, что «человеческое знание и человеческая сила совпадают»: Weeks . Francis Bacon and the Art-Nature Distinction (2007). 123. 292 Бэкон Ф. Новый органон. Перевод С. Красильщикова. 293 Weeks. Francis Bacon and the Art – Nature Distinction (2007). 105, цит. Novum organum CIX. 294 Weeks. The Role of Mechanics in Francis Bacon’s ‘Great Instauration’ (2008). Сравните della Porta. Natural Magick (1658) [1589]. 2. 295 Сравните Pascal . Œuvres (1923). 136–141; а также выше, с. 36.
расширенная версия на латыни 1623), «О мудрости древних» (The Wisdom of the Ancients, 1609) и «Новый органон» (1620, первая часть задуманной, но неоконченной более объемной работы, «Великое восстановление» (The Great Instauration); после его смерти, в 1626 г., были изданы «Новая Атлантида» и «Естественная история» (Sylva sylvarum). Несмотря на латинское название, «Естественная история» написана на английском. Слово silva на латыни означает «дерево» – а также набор материалов, необходимых для строительства. Таким образом, Sylva sylvarum в буквальном переводе означает «дерево деревьев» – в сущности, склад лесоматериалов . Органон – это греческое слово, обозначающее инструмент (Галилео называет свой телескоп органоном) 296. Таким образом, «Новый органон» дает инструменты, умственный багаж, а «Sylva sylvarum» – материал для инициативы Бэкона 297. Книги Бэкона были опубликованы, но оказали не большое влияние, и спрос на них оказался невелик: например, потребовалось двадцать пять лет, чтобы появилось второе издание «Нового органона». До 1640-х гг. у Бэкона не было последователей в Англии. (Бо́льшим влиянием он пользовался во Франции, где некоторые его работы вышли в переводе на французский) 298. Причина этого проста: Бэкон сам не сделал никаких научных открытий. Его претензии на новую науку были чисто теоретическими. И только во второй половине XVII в. о нем снова вспомнили и провозгласили пророком новой эры. §7 Бэкон писал об открытиях, а другие эти открытия совершали. На протяжении XVI в. медленно и неуверенно формировались основные правила научного открытия: открытия совершаются в конкретный момент (даже если их значение становится очевидным только со временем); они принадлежат отдельным людям, которые объявляют о них миру (даже если в открытие вовлечено много людей); они записываются в новых терминах; они символизируют необратимые перемены. Никто не придумывал и не записывал эти правила – к их осознанию пришли по той простой причине, что они были основаны на географическом открытии, которое привело к смене парадигмы 299. Один из первых, кто понял, как работают эти правила, был анатом Габриэле Фаллопио. Он рассказывал, что когда приступил к преподаванию в Пизанском университете (1548), то сказал своим студентам, что обнаружил третью кость в ухе (кроме молоточка и наковальни), которую не заметил великий анатом Андреас Везалий – что не удивительно, поскольку это самая маленькая кость в теле человека. Один из студентов возразил, что Джованни Филиппо Инграссиас, преподававший в Неаполе, уже открыл эту кость и назвал ее «стремечко». (Инграссиас сделал свое открытие в 1546 г., но его работа была опубликована только после смерти, в 1603 г.) Когда Фаллопио в 1561 г. опубликовал свою книгу, он признал приоритет Инграссиаса и позаимствовал название, предложенное для новой кости. Его достойное восхищения поведение не осталось незамеченным: оно вошло в учебник Каспара Бартолина в 1611 г.300 Фаллопио знал правила и был твердо намерен соблюдать их, поскольку хотел, чтобы его собственные открытия были 296 Galilei. Le opere (1890). Vol. 3. 59. 297 De Bruyn. The Classical Silva (2001). 298 Fattori. La diffusione di Francis Bacon nel libertinismo francese (2002). Анализ его идей Мерсенном см.: Thorndike. A History of Magic and Experimental Science (1923). Vol. 7. 430. 299 О «парадигме» см. комментарий «Релятивизм и релятивисты», 5. 300 Bartholin . Anatomicae institutiones (1611). 449.
должным образом признаны. Инграссиасу принадлежит первенство в отношении стремечка; Фаллопио открыл клитор 301. Может показаться, что открыть существование клитора было не так уж сложно, но следует иметь в виду, что, согласно общепризнанным взглядам, унаследованным от Галена, мужчины и женщины обладают одинаковыми половыми органами, только по-разному расположенными – яичники (так мы их называем теперь), например, – это просто женские яички. Таким образом, открытие клитора стало еще одной важной победой практики над теорией, поскольку у этого органа нет мужского аналога и он характерен только для анатомии женщины 302. Таким образом, анатомы стали пионерами в тщательной регистрации заявлений об открытиях: учебник Бартолина 1611 г. начинается с рассказа об открытии клитора, и в нем приводятся конкурирующие претензии Фаллопио (ему отдается пальма первенства) и Реальдо Коломбо, коллеги и соперника Фаллопио из Университета Падуи (хотя он предполагал, что клитор был известен в древности) 303. Как бывший студент-медик и профессор университета в Падуе, где были сделаны многие анатомические открытия, Галилей, вне всякого сомнения, был знаком с этой новой культурой притязаний на приоритет: лучший студент Фаллопио, Иероним Фабриций, открывший клапаны в венах, был его врачом и личным другом. Когда в ночь на 7 января 1610 г. Галилей направил свой телескоп на Юпитер, он заметил в окрестностях планеты объекты, которые принял за неподвижные звезды. Следующей ночью положение этих звезд относительно Юпитера неожиданно изменилось. Поначалу Галилей решил, что планета отклоняется от своей орбиты, а звезды остаются неподвижными. А в ночь на 15 января вдруг понял, что видит луны, вращающиеся вокруг Юпитера. Он знал, что совершил открытие, – и знал, что нужно делать. В своих записках Галилей перешел с итальянского на латынь – он собрался их опубликовать 304. Луны Юпитера были открыты одним человеком в определенный момент времени, и с самого начала – а не по прошествии времени – Галилей точно знал не только о своем авторстве, но и о том, что он совершил открытие. Поскольку Галилей поспешил опубликовать свои наблюдения, его претензия на приоритет не оспаривалась. Впоследствии он заявлял, что в 1610 г. впервые наблюдал пятна на Солнце, но не спешил с публикацией, и в 1612 г. он и его соперник, иезуит Кристоф Шейнер, одновременно заявили о своем приоритете305. Они по-разному объясняли увиденное, но, по крайней мере, согласились, что опубликованные обоими рисунки отражают одно и то же явление. Но не всегда все было так просто. Классический пример – открытие кислорода. В 1772 г. Карл Вильгельм Шееле открыл вещество, которое назвал «огненным воздухом», а в 1774 г. независимо от него Джозеф Пристли открыл газ, названный им «бесфлогистонным воздухом» (флогистоном называли предполагаемое вещество, высвобождающееся при горении, – противоположность кислороду). В 1777 г. Антуан Лавуазье опубликовал новую теорию горения, прояснявшую роль нового газа, которые он назвал «кислородом», что означает (в переводе с греческого)«порождающий 301 Wotton & Bentley . Reflections upon Ancient and Modern Learning. The Second Part (1698). 45–46; Thorndike. A History of Magic and Experimental Science (1923). Vol. 5. 44, 45; Park. The Rediscovery of the Clitoris (1997). 302 Laqueur . Making Sex (1990). 303 Bartholin . Anatomicae institutiones (1611). 174. 304 Gingerich & van Helden . From Occhiale to Printed Page (2003). 251–254. 305 Galilei & Scheiner. On Sunspots (2008).
кислоту», поскольку ошибочно считал его важным компонентом всех кислот. (Природа кислот была объяснена только в 1812 г. в работе сэра Гемфри Дэви.) Даже Лавуазье не понимал истинную сущность кислорода: зачастую открытие – это долгий процесс, осознаваемый только постфактум 306. В случае с кислородом можно сказать, что этот процесс начался в 1772 г. и закончился только в 1812 г. Ян Гевелий с одним из своих телескопов. Из «Селенографии» (Selenographia, 1647, подробная карта Луны). Гевелий, который жил в польском Данциге, построил огромный телескоп длиной 150 футов. Он также опубликовал подробный звездный атлас. (Не сохранилось рисунков и гравюр телескопов Галилея, а два сохранившихся прибора менее мощные, чем тот, который он использовал в 1610–1611 гг., поэтому мы не знаем, как выглядели его телескопы для астрономических наблюдений.) Существует мнение, что дело не в том, что некоторые открытия трудно выявить, – все претензии на открытие являются беспочвенными. Утверждается, что заявления об открытии всегда делаются после события и что в реальности (если реальность вообще существует) 306 Kuhn. Historical Structure of Scientific Discovery (1962).
первооткрывателей всегда несколько и невозможно определить, когда именно открытие было сделано307. Когда Колумб открыл земли, которые мы теперь называем Америкой? Никогда, поскольку так и не понял, что приплыл не в Индию308. Кто открыл Америку? Вероятно, Вальдземюллер за своим письменным столом, поскольку он был первым, кто осознал, что сделали Колумб и Веспуччи. Простой пример открытия лун Юпитера показывает, что эти заявления, кажущиеся правдоподобными, на самом деле ошибочны. Одна из ошибок состоит в утверждении, что претензии на открытие обязательно ретроспективны, поскольку «открытие» – это «термин успеха», подобно мату в шахматах309. Нечто подобное происходит при сдаче экзамена на водительские права – вы можете быть уверены в успехе, только пройдя все испытание. Но любой опытный шахматист способен планировать мат за несколько ходов; он знает, как выиграть партию, не после того, как передвинул фигуру, а когда понял, какой ход нужно сделать. Открытие Галилеем спутников Юпитера не похоже на мат в шахматах или на выигрыш забега: он не планировал открытие и не предвидел его. Не похоже это и на эйс в теннисе: вы понимаете, что подали его, только после того, как соперник не справился с подачей. Скорее напрашивается аналогия с пением: Галилей понял, что делает, во время самого процесса. Некоторые достижения по определению носят ретроспективный характер (Нобелевская премия или открытие Америки), некоторые происходят одновременно с действием (сочинение музыки), а другие могут быть предсказаны (мат в шахматах). Научные открытия бывают трех видов. Как мы видели, открытие кислорода было ретроспективным. Классический пример одновременного открытия – возглас Архимеда: «Эврика». Он понял, что знает ответ на вопрос, как только увидел подъем уровня воды в ванне, – вот почему он был голым и мокрым, когда бежал по улице, объявляя о своем открытии. То же самое произошло при открытии лун Юпитера: Галилей испытал «эвристический момент» 310. Но самые интересные случаи – это предсказанные открытия, поскольку они прямо опровергают утверждение об обязательности ретроспективных конструкций. Так, в 1705 г. Галлей заметил, что на небе каждые семьдесят пять лет появляется очень яркая комета, и предсказал, что она – теперь мы называем ее кометой Галлея – вернется в 1758 г. Комета появилась в предсказанное время, в Рождество 1758 г.; в 1717 г. Галлей уточнил свой прогноз, сказав, что это будет «конец 1758 г. или начало следующего» 311. Когда же Галлей совершил свое открытие? Конечно, в 1705 г., когда определил закономерность регулярного появления кометы, хотя заслуживает упоминания и уточненное предсказание 1717 г. Совершенно очевидно, что он не делал открытия в 1758 г., поскольку к этому времени его уже давно не было в живых. Открытие подтвердилось в 1758 г. (и в 1759 г. комету назвали его именем), но сделано оно было в 1705 г.; мы не находим ничего нового в утверждениях Галлея, когда говорим, что он предсказал возвращение кометы. Точно так же Вильгельм 307 Schaffer . Scientific Discoveries (1986); Schaffer. Making Up Discovery (1994). 308 Этот аргумент приводится в O’Gorman. The Invention of America (1961). О’Горман усложняет вопрос, странным образом проводя разграничение между «открытием» и «изобретением» (9), но настаивает, что Америку открыл Вальдземюллер (123). 309 Schaffer. Making Up Discovery (1994). 13. 310 Гаспаре Азелли действительно закричал «Эврика!», когда в 1622 г. случайно открыл млечные сосуды лимфатической системы, препарируя собаку: Bertoloni Meli . The Collaboration between Anatomists and Mathematicians in the Mid-seventeenth Century (2008). 670. 311 Broughton. The First Predicted Return of Comet Halley (1985); Yeomans. Rahe & Freitag. The History of Comet Halley (1986).
Фридрих Бессель предсказал существование Нептуна, основываясь на отклонениях орбиты Урана. Поиск новой планеты начался задолго до 1846 г., когда ее наконец удалось увидеть 312. Витгенштейн считал, что существуют термины, которые мы постоянно используем, но не можем адекватно объяснить. Возьмем, например, термин «игра». Что общего у футбола, дартса, шахмат, игры в кости и игры в слова? В некоторых играх ведется счет, а в шахматах нет (за исключением счета в матче). В некоторых играх участвуют две стороны, но не во всех; пасьянс и чеканка мяча в футболе – это занятия для одного. Игры обладают, как выразился Витгенштейн, «фамильным сходством», но это не означает возможность адекватного определения термина – или разницы между игрой и спортом 313. Аналогичным образом, поскольку понятие открытия формировалось в течение продолжительного времени, оно включило многие существенно разные виды этого события. Некоторые открытия являются наблюдениями – например, пятна на Солнце. Другие, такие как всемирное тяготение и естественный отбор, называются теориями. Некоторые представляют собой технические новшества, вроде паровой машины. Понятие открытия не более логически последовательно и обоснованно, чем понятие игры; потому философы и историки неизбежно сталкиваются с разного рода трудностями, но это не значит, что мы должны перестать им пользоваться. Этим отличаются все основные понятия современной науки. Но в случае открытия мы имеем прямой случай, который привел к смене парадигмы и стал основой всего языка. Это открытие Америки Колумбом. Кто открыл Америку? Колумб и впередсмотрящий на «Пинте». Что они открыли? Землю. Когда они это сделали? В ночь с 11 на 12 октября 1492 г. И Колумб, и впередсмотрящий, Родриго де Триана, заявляли о том, что открытие совершили именно они. Великого социолога Роберта Мертона занимала мысль, что почти всегда найдется несколько человек, претендующих на лавры первооткрывателя, и вовсе не потому, что один успешно опубликовал свои претензии (как Галилей в случае с лунами Юпитера), а остальные оказываются в проигрыше314. Мертон умел доносить свои идеи до других. Мы обязаны ему такими важными фразами, содержащими сильную аргументацию, как «непреднамеренные последствия» и «самоисполняющееся пророчество»; одна из его фраз, «ролевая модель», перешла из университетского жаргона в повседневную речь. Подобно всем великим коммуникаторам, Мертон любил язык: он написал целую книгу о слове «серендипность» и еще одну о фразе «стоять на плечах гигантов», а также был одним из редакторов сборника цитат из области социологии315. Тем не менее он жаловался, что, несмотря на все старания, ему не удалось добиться поддержки идеи множественности открытия (сама идея, указывал он, была открыта много раз). Как бы то ни было, мы не можем отбросить мысль, что открытие, подобно состязаниям в беге, представляет собой игру, в которой один человек выигрывает, а все остальные проигрывают. По мнению социологов, любое состязание имеет победителя и поэтому победа 312 Существуют разные мнения относительно того, когда Бессель мог сделать свое предсказание. Сравните Bamford . Popper and His Commentators on the Discovery of Neptune (1996). 216, где называется 1823 г., и Smith . The Cambridge Network (1989). 398, 399, где речь идет о 1840 г. В Morando. The Golden Age of Celestial Mechanics (1995). 216, говорится, что «после 1835 г.». 313 Wittgenstein. Philosophical Investigations (1953). § 66–68. 314 Merton. Priorities in Scientific Discovery (1957); Merton. Singletons and Multiples (1961); Merton. Resistance (1963); и Merton . The Sociology of Science (1973) (сборник вышедших ранее статей); см. также: Lamb & Easton. Multiple Discovery (1984); и Stigler. Stigler’s Law of Eponymy (1980). 315 Merton. On the Shoulders of Giants (1965); Merton & Barber . The Travels and Adventures of Serendipity (2006); и Sills & Merton . International Encyclopedia of the Social Sciences: Social Science Quotations (1991).
полностью предсказуема. Если лидер споткнется и упадет, это не значит, что никто не выиграет, – просто победителем будет кто-то другой. В каждом состязании есть несколько потенциальных победителей. Но, с точки зрения участника, победа – непредсказуемое достижение, личный успех. Мы настаиваем на том, что на науку следует смотреть с позиции участника, а не социолога (или букмекера). Думаю, Мертон был прав, находя это загадочным, поскольку в бизнесе мы думаем о прибыли и убытках как с точки зрения участника (руководителя со своей стратегией), так и экономики в целом (быки и медведи, бум и спад). Точно так же в медицине мы обычно переключаемся между историями болезни и эпидемиологическими данными. Я не знаю, когда умру, но существуют таблицы ожидаемой продолжительности жизни, и страховщики оформляют мне страховку на основе данных из этих таблиц. Мы почему-то околдованы идеей индивидуальной роли в открытии, подобно тому как мы околдованы идеей победы, и совершенно очевидно, что такая одержимость выполняет важную функцию, поддерживая конкуренцию и побуждая к усилиям. Мертон считает открытия не единичными событиями (как победа в состязании), а множественными (как пересечение финишной черты). Йост Бюрги открыл логарифмы приблизительно в 1588 г., но опубликовал свою работу позже Джона Непера (1614). Хэрриот (1602) , Снелл (1621) и Декарт (1637) независимо друг от друга открыли закон преломления света, но первым опубликовал свое открытие Декарт. Галилей (1604) , Хэрриот (ок. 1606) и Бекман (1619) независимо друг от друга открыли закон падения тел, но опубликовал его только Галилей 316. Бойль (1662) и Мариотт (1676) независимо друг от друга открыли закон Бойля. Дарвин и Уоллес независимо друг от друга открыли эволюцию видов (и совместно опубликовали свое открытие в 1858). Но самыми удивительными можно считать случаи, когда несколько человек практически одновременно заявляют об открытии. Так, например, Иоганн Липперсгей, Захарий Янсен и Якоб Метиус утверждали, что изобрели телескоп приблизительно в одно время, в 1608 г. На первый взгляд, те, кто считает понятие открытия фикцией, должны приветствовать подобные случаи, но это не так: что касается множественных открытий, то это тоже фикция. Искусственная стратегия, которую они используют для обесценивания таких случаев, состоит в утверждении, что во всех случаях, когда несколько разных людей заявляли о своем приоритете, они на самом деле открывали разные вещи. То есть Пристли и Лавуазье не открыли кислород; они сделали совершенно разные открытия 317. Однако совершенно очевидно, что Липперсгей, Янсен и Метиус изобрели (или заявляли, что изобрели) один и тот же прибор. Но давайте вернемся к нашему первому примеру, солнечным пятнам (отбрасывая пример с телескопом, где можно подозревать, что настоящим изобретателем был кто-то один, а остальные украли его идею). В период с 1610 по 1612 г. четыре разных человека открыли пятна на Солнце: Галилей, Шейнер, Хэрриот (он не опубликовал свое открытие) и Йоханнес Фабрициус. Вполне возможно, что Галилей позаимствовал идею у Шейнера или Шейнер у Галилея, но остальные двое, вне всякого сомнения, сделали открытие независимо – друг от друга и от первых двух. Таким образом, действительно может существовать множественное, одновременное открытие. Если кто-то хочет заявить, что все четверо сделали разные открытия, поскольку по-разному истолковывали увиденное, он должен также согласиться, что Коперник, наблюдавший восходящую в утреннем небе Венеру, видел не ту планету, что любой другой астроном со времен Птолемея, – он видел Венеру, вращающуюся вокруг Солнца, а они – вращающуюся вокруг Земли318. Тем не менее 316 Koyré. Études Galiléennes (1966). 80–158; Schemmel. The English Galileo (2008). 317 Schaffer . Scientific Discoveries (1986). 400–406. 318 Hanson. Patterns of Discovery (1958). 4–30 (очень похоже на тезис Куна о «разных мирах»); Putnam. Meaning and the Moral Sciences (1978). 22–25; Lehoux. What Did the Romans Know? (2012). 226–229.
все они могли прийти к согласию относительно координат наблюдаемой планеты, и никто никогда не утверждал, что Коперник открыл Венеру. (С другой стороны, можно утверждать, что первый человек, который понял, что утренняя звезда и вечерняя звезда – это один и тот же объект (Фалес или Парменид), действительно открыл Венеру)319. §8 Как мы видели, Бэкон, построивший свою философию науки вокруг идеи открытия, в качестве примера использовал Колумба; пять лет спустя Галилея провозгласили Колумбом астрономии: quasi novello Colombo («как бы новый Колумб»; «как бы» здесь носит доброжелательный оттенок) 320. Открытию сопутствовала конкуренция за первенство. Колумб настаивал, что первым увидел землю, поскольку Фердинанд и Изабелла обещали этому человеку пожизненную пенсию. Он предложил Триане второй приз – шелковый камзол. Галилей спешил опубликовать свои открытия, сделанные с помощью телескопа. В особенности он хотел вовремя получить экземпляры книги, чтобы отправить их во Франкфурт до начала весенней книжной ярмарки 321. Галилей соревновался с неизвестными, воображаемыми конкурентами с того самого момента, как понял, что у Юпитера есть луны. (Он никогда не слышал о Хэрриоте, но знал, что телескопы получают распространение и скоро все будут с их помощью рассматривать небо) 322. Мы живем в обществе, построенном на конкуренции, и поэтому склонны воспринимать конкурентное поведение как само собой разумеющийся универсальный аспект общественной жизни. Однако здесь следует проявлять осторожность. Существительное competition (конкуренция, соревнование) впервые появляется в английском языке в 1579 г., а глагол compete (конкурировать, соревноваться) в 1620 г. В конце XVI в. французское слово concurrence все еще означает «согласие», а не «конкуренция»; в начале XVII в. итальянское concorrente только начинает приобретать современное значение. Не существовало и очевидного синонима, по крайней мере в английском: rival (соперник, соперничать – существительное 1577, глагол 1607) и rivalry (соперничество, 1598) возникли примерно в одно время с competition и отражают потребность в новом языке для конкурирующего поведения, которое было не только причиной, но и результатом новой культуры открытия 323. Разные люди по-разному реагировали на новый, быстро распространявшийся дух конкуренции. В случае с великим математиком Робервалем результатом стало 319 Burkert. Lore and Science (1972). 307. 320 Galilei. Le opere (1890). Vol. 10. 296; см. также, например, 372. 321 Wilding. Galileo’s Idol (2014). 108–111. 322 Строго говоря, Галилей знал о Хэрриоте, поскольку читал работу Уильяма Гильберта «О магните», в которой вскользь упоминается Хэрриот, которому дается характеристика «весьма ученый». Хэрриот смог сделать телескоп, с помощью которого можно было увидеть луны Юпитера, вскоре после того как прочел «Звездный вестник» Галилея: вероятно, он прочел книгу в июле, а луны наблюдал в октябре – раньше он этого делать не мог, поскольку Юпитер находился слишком близко к Солнцу (Roche. Harriot, Galileo and Jupiter’s Satellites, 1982). 323 О concurrence см.: Leroy . De la vicissitude (1575); Vocabolario delli Accademici della Crusca не приводит современного значения слова concorrente, но использует его в современном значении при определении rivale. Английский язык см.: OED (также emulation , 1552), а первое использование competition см.: Stubbes. The Discoverie of a Gaping Gulf (1579). E5r.
патологическое убеждение, что другие люди крадут его идеи. Гоббс писал о своем друге: «У Роберваля есть одна странность: как только люди публикуют выдающуюся теорему, которую они открыли, он тут же рассылает письма, объявляя, что открыл ее первым» 324. Ньютон ждал почти тридцать лет, прежде чем опубликовать полное описание своего варианта математического анализа; похоже, вопрос приоритета его совсем не интересовал. К моменту публикации, в 1693 г., он сильно отставал от Лейбница, который опубликовал свою, несколько отличавшуюся от ньютоновской, версию в 1684 г. Однако после 1704 г. между ними разгорелся жаркий спор – о том, что Лейбниц мог видеть рукопись Ньютона и украсть его идеи. Друзья Ньютона убедили его опубликовать свой великий труд «Начала» (1687) , в котором объяснялись законы тяготения. Двумя годами позже Лейбниц опубликовал альтернативную теорию. Возник спор о том, разработал ли Лейбниц ее самостоятельно (на чем он настаивал) или после прочтения «Начал». Первое обвинение против Лейбница было ошибочным, но Ньютон продолжал настаивать и даже написал для себя якобы беспристрастную оценку Королевского общества относительно истинных и ложных аргументов в споре. Второе обвинение, как показали недавние исследования, было вполне обоснованным. В этом отношении Лейбниц действительно был плагиатором. Ньютон оказался втянут (как обоснованно, так и не обоснованно) в самый ожесточенный и долгий спор о приоритете, жалуясь, что у него «украли открытия» 325. Тот факт, что Ньютон, так долго проявлявший безразличие к этим вопросам, не удержался и вступил в битву за свой приоритет, объясняется не чем иным, как ожиданиями его друзей и учеников. Его окружала культура, одержимая претензиями на приоритет (самого Ньютона обвинял в плагиате Гук, утверждавший, что подсказал ему обратную квадратную зависимость, но этот дар Ньютон отказывался признавать) 326. В большей степени это была культура новой науки, чем просто конкуренция, однако именно конкуренция составляла ее основу; без нее просто не могло быть науки. Существование конкуренции среди ученых само по себе является свидетельством наличия идеи открытия; отсутствие конкуренции говорило бы об отсутствии такого понятия, как открытие. Утверждение, что понятие открытия во всех отношениях является новым, выглядит довольно смелым, но его легко проверить (как мы один раз уже его проверяли, когда искали открытия в трактате Вергилия «Об изобретателях») 327. Когда был первый спор о приоритете? В данном случае я имею в виду не дискуссию о приоритете, начатую впоследствии историками (кто открыл Америку, Колумб или викинги?), а спор, который привел к конфликту современников. Задолго до спора о том, кто открыл пятна на Солнце (начиная с 1612), имела место ожесточенная дискуссия (после 1588) между Тихо Браге и Николаусом Реймерсом Бэром, которого называли Урсус (Медведь), о приоритете в создании гелиоцентрической космологии (Браге опубликовал свои идеи чуть раньше Урсуса, но Урсус заявлял о независимости своего открытия и о том, что эта гипотеза не нова, – против обоих утверждений Браге решительно возражал) 328. Оба также 324 Цит. по: Hobbes. Examinatio et emendation (1660), в Malcolm . Hobbes and Roberval (2002). 164, 165 (перевод Малькома). 325 Hall. Philosophers at War (1980); Bertoloni Meli . Equivalence and Priority (1993). Спор о приоритете: Iliffe. In the Warehouse (1992). 326 Westfall. Never at Rest (1980). 446–453, 471, 472, 511, 512. 327 По какой-то причине Мертон, начинавший как историк науки, так и не проанализировал аргументацию, которую я собираюсь предложить. См.: Merton . Science, Technology and Society (1970) [1938]. 169. N. 30. 328 Jardine. The Birth of History and Philosophy of Science (1984). О космологии Браге см. ниже, глава 5.
утверждали, что именно они изобрели математический метод под названием простаферезис, который помогал выполнять сложные вычисления до изобретения логарифмов (логарифмы – это еще одно множественное изобретение, поскольку к этой идее независимо друг от друга пришли Джон Непер в 1614 и Йост Бюрги в 1620)329. Но Браге и Урсус также не были первооткрывателями спора о приоритете; скорее приоритет их волновал потому, что математики относились к нему серьезно как минимум с 1520 г.330 В 1520 г. Сципион дель Ферро открыл метод решения кубических уравнений. Дель Ферро рассказал об открытии одному из своих учеников, однако этот же метод независимо от него открыл Никколо Фонтана по прозвищу Тарталья (что означает «заика»). Тарталья победил ученика дель Ферро в публичной дуэли, устроенной для демонстрации математических способностей (и для привлечения учеников; в итальянских городахгосударствах эпохи Возрождения математическое образование считалось очень важным для коммерческого успеха, но количество потенциальных учеников было ограничено, что стало причиной яростной конкуренции за них среди математиков). Математик и философ Джироламо Кардано убедил Тарталью раскрыть ему секрет, внушив ложные надежды на значительное финансовое вознаграждение. Кардано поклялся хранить тайну, а Тарталья зашифровал секрет в стихотворении, чтобы впоследствии иметь возможность продемонстрировать свой приоритет. Чуть позже Кардано обнаружил, что Ферро сделал открытие раньше Тартальи, и поэтому решил, что это освобождает его от клятвы, и в 1545 г. опубликовал метод – что привело к ожесточенному спору между Кардано и Тартальей, а затем к «дуэли» между учеником Кардано и Тартальей (в которой победил ученик Кардано) 331. Этот маленький эпизод ясно демонстрирует, каковы предварительные условия для спора о приоритете. Во-первых, должно существовать сплоченное сообщество экспертов, разделяющих критерии, согласно которым определяется успех (например, в «дуэлях»). Вовторых, это экспертное сообщество должно иметь общую базу знаний, что позволяет им оценить не только истинность результата, но и его новизну. В-третьих, должны существовать способы определения приоритета – зашифрованное стихотворение Тартальи было средством продемонстрировать, что он уже знает решение, хотя и держит его в секрете. (В 1610 г. Галилей, используя похожий метод, опубликовал анаграммы, чтобы доказать, что он открыл фазы Венеры и странную форму Сатурна, хотя еще не объявил об этих открытиях. Роберт Гук в 1660 г. впервые сообщил о законе, связывающем силу и деформацию, который мы теперь называем законом Гука, также с помощью анаграммы, а Гюйгенс, открывший спутник Сатурна (теперь он носит имя Титан) и кольцо Сатурна, использовал анаграммы, чтобы защитить свои притязания на приоритет) 332. И наконец, должен существовать механизм для обнародования знания – например, Кардано выпускает книгу. В нормальных обстоятельствах это публикация , которая создает, в первую очередь, экспертное сообщество и определенную совокупность знаний (это, в сущности, две стороны одной медали), а также предоставляет возможность для неоспоримой претензии на приоритет. Можно представить споры о приоритете и в отсутствие печатного станка, но нам не известны такие случаи до изобретения книгопечатания 333. Если мы обратимся 329 Clark & Montelle. Priority, Parallel Discovery and PreEminence (2012). 330 Возможно, еще более ранний пример, Van Brummelen . The Mathematics of the Heavens (2009). 182. 331 Hellman . Great Feuds in Mathematics (2006); Toscano. La formula segreta (2009). 332 Biagioli. From Ciphers to Confidentiality (2012). 333 Тема революции, совершенной книгопечатанием, красной нитью проходит через всю книгу: мы вернемся к ней в гл. 3, 5–8 и 17.
к прошлому, например к Древнему Риму, где Гален участвовал в публичных диспутах с другими врачами (нечто вроде дуэлей между математиками в Италии эпохи Возрождения), то найдем там серьезное соперничество между людьми, называвшими себя экспертами; однако там отсутствует согласие о содержании экспертизы и о том, как выявлять победителя 334. Необыкновенное многословие Галена – его сохранившиеся труды насчитывают до 3 миллионов слов, причем это всего лишь треть его работ, – является следствием навязчивого и тщетного желания преодолеть это непреодолимое препятствие. По иронии судьбы, в университетах средневековой Европы врачей учили, что Гален является воплощением медицинской науки. В Риме существовала конкуренция между несколькими медицинскими школами (эмпирики, методисты, рационалисты), но явного победителя не было; в средневековом университете был один победитель и отсутствовала конкуренция 335, а в эпоху Возрождения печатный станок впервые создал условия для настоящей конкуренции – то есть для конфликта и победы. В анатомии этот процесс начался значительно позже, чем в математике. В 1543 г. Андреас Везалий опубликовал книгу «О строении человеческого тела», в которой указал на массу ошибок в работах Галена. Он конкурировал с Галеном, но еще не существовало сообщества анатомов, соперничающих друг с другом, а Везалий не стремился заявить о своем приоритете. Скорее он устанавливал точку отсчета, которая позволяла другим заявлять о приоритете. (Как мы видели, и Инграссиас, и Фаллопио получили возможность сообщить об открытии стремечка, поскольку обнаружили нечто, отсутствующее у Везалия.) Один из главных тезисов Мертона о науке состоит в том, что научное знание является публичным – то есть знание, которое сделано доступным, чтобы другие могли ставить его под сомнение, проверять и обсуждать 336. Знание, доступное одному человеку, не является научным, поскольку не прошло проверку у коллег. Поэтому не может существовать науки без надежного способа публикации знания. Открытия, оставшиеся неизвестными или опубликованные по прошествии длительного времени, не являются настоящими открытиями 337. Споры о приоритете – надежный показатель того, что знание стало публичным, прогрессивным и ориентированным на открытия. Поэтому первое появление открытий в той или иной дисциплине указывает на важный момент в ее истории, начало того, что мы, оглядываясь назад, можем назвать «современностью». Мы видели, что сначала такие споры появились в математике, а в 1561 г. Фаллопио был вовлечен в спор с Коломбо о том, кто открыл клитор 338. Поскольку Коломбо к тому времени уже умер, а Фаллопио 334 Mattern . Galen and the Rhetoric of Healing (2008); Lehoux . What Did the Romans Know? (2012). 6–8, 10, 11, 132. 335 В средневековых университетах дискуссии были обычным явлением, однако они сильно отличались от настоящей интеллектуальной конкуренции: от участников требовалось умение аргументированно излагать обе точки зрения, и поэтому дискуссия представляла собой соревнование в искусстве риторики, а не состязание идей в поисках истины. 336 Merton. The Sociology of Science (1973). 273–275. 337 Четкая граница между публичным и частным знанием, на первый взгляд, принижает достижения тех, кто совершил открытия, но не опубликовал их. Но, как мы увидим чуть позже (например, в гл. 5, 7, 8 и 11), наука существует только тогда, когда есть сообщество ученых; прогресс является результатом конкуренции внутри этого сообщества. Другой вариант этой же аргументации основан на идее трех миров Поппера. Поппер проводит различия между миром материальных объектов, миром мыслительных состояний и третьим миром – миром научных проблем, гипотез, теорий, аргументов, журналов и книг. Наука принадлежит к этому третьему миру (Popper. Objective Knowledge, 1972. 107. См. также его более ранние тезисы: Popper. The Logic of Scientific Discovery (1959). 44–47). 338 Park . The Rediscovery of the Clitoris (1997).
умер в 1562 г., спор продолжил ученик Фаллопио, Леон Каркано. Через сто лет разразился жаркий спор между Томасом Бартолином и Улофом Рудбеком о том, кто из них открыл лимфатическую систему человека 339. Эти споры, переходящие в перебранки, требовалось как-то разрешать. Браге подал в суд на Урсуса (который умер до начала судебных заседаний), но было совершенно очевидно, что суды не обладают необходимой компетенцией 340. Поэтому спор между Ренье де Граафом и Яном Сваммердамом о том, кто открыл яйцеклетки в яичниках, начавшийся в 1672 г., был передан на рассмотрение Королевского общества341. Королевское общество отдало пальму первенства не участникам спора, а Нильсу Стенсону. Не менее важным аспектом, чем спор о приоритете, является название открытия. Ученые нередко заявляют о своем праве на название своего открытия, по аналогии с открытием новых земель; Инграссиас назвал новую кость стремечком, Галилей назвал луны Юпитера планетами Медичи, а Лавуазье придумал название для кислорода. Часто открытия называют именем их авторов; с 1597 г. общепринятым стало различать три системы мира, Птолемея, Коперника и Браге342. Этьен Паскаль, отец Блеза Паскаля, в 1637 г. открыл необычную математическую кривую: в 1650 г. его друг Жиль де Роберваль назвал ее «улиткой Паскаля» – вернее, из уважения к скромности Этьена Паскаля (он был еще жив), «улиткой месье П.» 343. Такие названия сами по себе являются заявками на приоритет, которые делают почитатели первооткрывателей, – здесь прослеживается неявная аналогия с открытием Америки344. Это объясняет, почему у нас нет частей тела, названных в честь Гиппократа или Галена, звезд – в честь Птолемея, живых существ – в честь Аристотеля или Плиния. Присвоение названий неотделимо от открытий; оно не могло существовать до того, как люди стали путешествовать с целью открытия новых земель. И действительно, для присвоения названия ученые должны заявить о приоритете, чтобы иметь аргументы в свою пользу. Даже Везалий, первый великий анатом эпохи Возрождения, не заявлял о своем приоритете, и именно поэтому, несмотря на его многочисленные открытия, ни одна часть тела не получила его имени. 339 Ambrose . Immunology’s First Priority Dispute (2006). 340 Serrano . Trying Ursus (2013). 341 Ruestow. The Microscope in the Dutch Republic (1996). 47, 48; Cobb . Generation (2006). 155–187. 342 R öslin. De opere Dei creationis (1597). (Этой ссылкой я обязан Адаму Мосли.) Сравните три системы медицины в Severinus . Idea medicinae philosophicae (1571). Насколько мне известно, Броттон ошибается, утверждая, что Браге нескромно называл систему своим именем: Brotton. A History of the World in Twelve Maps (2012). 266. 343 http://www-history.mcs.st-andrews.ac.uk/Curves/Limacon.html. 344 Конечно, подобные претензии часто имеют в своей основе национальную гордость: см.: Wallis . An Essay of Dr John Wallis (1666). 266; Anon. An Advertisement Concerning the Invention of the Transfusion of Bloud (1666). 490.
Математическая кривая, названная «улиткой месье П[аскаля]». Из «Математических работ» Роберваля, 1731 §9 Понимание того, что географические открытия означают нечто новое, пришло очень быстро – в 1507 г. Вальдземюллер решил назвать «Америкой» земли, исследованные Веспуччи; вскоре так стали называть весь континент 345. Эпонимия (наименование географических объектов в честь людей) раньше не была особенно распространена. Хотя новым явлением она тоже не была: в конце концов, христианство названо по имени Христа. Точно так же, по именам авторов, назывались ереси – например, донатизм и арианство. Некоторые города получили названия в честь своих основателей: Александрия в честь Александра Великого, Кейсария – Цезаря Августа, Константинополь – Константина 346. 345 На карте Вальдземюллера «Америка» не обозначает весь континент, но его соавтор Матиас Рингман в книге, сопровождавшей карту, однозначно использовал это название для континента в целом, и к 1650 г. оно появляется на других картах с тем же значением: Meurer. Cartography in the German Lands, 1450–1650 (2007). 1205. На других картах название «Азия» продолжало использоваться как минимум до 1537 г.: Rosen . The First Map to Show the Earth in Rotation (1976). 174. Reprinted in Rosen. Copernicus and His Successors (1995). О названии Америки см.: Johnson . Renaissance German Cosmographers (2006) – хотя, к сожалению, в этой стране эпонимия воспринимается как нечто само собой разумеющееся. 346 Галилей указывает это на первой странице «Звездного вестника» (1610). На карте 1339 г. остров, который мы теперь называем Лансароте, назван Insula de Lanzarotus Marocelus; Ланчелотто Малочелло предъявил
Подробные астрономические таблицы Альфонсины были названы в честь человека, по поручению которого они были созданы, короля Кастилии Альфонсо X (1221–1284)347. Исследуя побережье Африки, португальские мореплаватели составляли карты и придумывали названия, зачастую заимствуя их у местных племен или используя имена святых. Наконец, в 1488 г. Бартоломеу Диаш достиг южной оконечности континента, которую назвал мысом Доброй Надежды. Самую дальнюю точку за мысом, до которой добрался Диаш, он называл «Rio do Infante», то есть «рекой инфанта», в честь принца Энрике, прозванного Мореплавателем 348. Колумб назвал открытые им острова СанСальвадор, Санта-Мария-де-ла-Консепсьон, Фернандина, Изабелла, Хуана и Эспаньола, а первый испанский город получил название Ла-Навидад; все эти имена связаны с христианским вероучением или с испанской королевской семьей. Единственное географическое название в честь простолюдина, появившееся в Новом Свете до 1507 г., – это, по всей видимости, Рио-де-Фонсоа, по имени спонсора экспедиции 1499 г.349 Эпонимия приобрела гигантские масштабы благодаря практике наименования новых земель в честь покровителей (Филиппины в честь короля Испании Филиппа II, Вирджиния в честь Елизаветы I, королевы-девственницы (от англ. Virgin), Каролина в честь Карла I), но это почти всегда была короли или королевы (исключением является Земля Ван-Димена, получившая имя генерал-губернатора голландской Ост-Индии в 1642 г., но гораздо позже названная в честь Абела Тасмана, который ее открыл). Подобно самому понятию открытия, эпонимия вскоре была перенесена из географии в точные науки. Новизна этого подхода иллюстрируется желанием Галилея найти в 1610 г. прецедент наименования звезды в честь человека, когда он назвал открытые им луны Юпитера «звездами Медичи». Единственным примером, который ему удалось отыскать, была попытка римского императора Августа назвать комету в честь Юлия Цезаря (конечно, неудачная, поскольку комета, которую мы теперь знаем как комету Галлея, быстро исчезла с небосклона)350. Естественно, Август заявлял, что Цезарь был не человеком, а богом, поскольку все планеты носили имена богов (и этот принцип соблюдался при выборе имен вновь открытых планет: Уран, Нептун, Плутон) 351352. На латыни дни недели названы в честь планет (включая Солнце и Луну, которые в системе Птолемея тоже относились к планетам); в языках германской группы некоторые дни переименованы в честь языческих претензии на владение островом около 1336 г. (Verlinden . Lanzarotto Malocello (1958). Название «остров Ланчелотто» не тождественно названию Лансароте, и мы точно не знаем, когда произошла эта трансформация – но явно после 1385 г. Лихтенштейн, подобно Лансароте, назван по имени владельца, но это произошло только в 1719 г. 347 Мои поиски первого употребления слова «Альфонсины» (на латыни) дают 1483 г., однако оно вполне могло встречаться и раньше. 348 Randles. Bartolomeu Dias (2000). 26. 349 McIntosh . The Johannes Ruysch and Martin Waldseemüller World Maps (2012). 17. 350 Galilei. The Essential Galileo (2008). 46. 351 В честь людей названы двенадцать химических элементов и множество звезд, комет и астероидов – но ни одной планеты или планетарного спутника. Гершель хотел назвать Уран в честь короля Георга III; Леверье хотел назвать Уран в честь Гершеля, а Нептун – в честь себя самого (Hoskin. The Discovery of Uranus, 1995. 175; Morando. The Golden Age of Celestial Mechanics, 1995. 218, 220), но классическая традиция называть планеты (а теперь и их луны) сохранилась, по крайней мере для нашей Солнечной системы. 352 Об успехе Галилея в возвышении Медичи над языческими богами см.: Aggiunti . Oratio de mathematicae laudibus (1627). 20.
богов. С другой стороны, Америго Веспуччи не был ни богом, ни императором, ни королем. Эпонимия неожиданно спустилась на землю. В географии открытия и присваивание имен шли рука об руку, но в науке второе отставало от первых. Для нас это не слишком очевидно, поскольку классические открытия стали связывать с именами первооткрывателей. «Закон Архимеда» (о том, что тело не утонет, если вес вытесненной телом жидкости равен или превышает вес самого тела), по всей видимости, получил такое название только после 1697 г.353 Этимологический и технический словарь 1721 г. содержит только два примера эпонимии, если не считать три эпонимические системы мира, Птолемея, Браге и Коперника (или Пифагора): фаллопиевы трубы и нерв под названием accessorius Willisii , открытый Томасом Уиллисом (1621– 1675)354. Когда же эпонимия пришла в науку? Как мы видели, до наименования Америки эпонимия в географии была редким явлением, причем сама Америка оставалась исключением, будучи названной в честь обычного человека. Цицерон использовал такие прилагательные, как Pythagoreus, Socraticus, Platonicus, Aristotelius и Epicureus , и поэтому совершенно естественно, что мы найдем прилагательные и для других философов – Ippocratisa (ок. 1305), Thomista (1359), Okkamista (1436) и Scotista (1489) – хотя многие из этих слов медленно входили в обиход; мне не удалось найти ни одно из них раньше 1531 г. (когда появляется «Scotist»), за исключением Epicureus (которое встречается в Библии Уайклифа в 1382)355. То, что кажется нам естественным процессом наименования идей и открытий посредством связи их с именами авторов (в данный момент я страдаю как минимум от трех заболеваний, названных в честь их первооткрывателей), стало распространенным явлением только после появления концепции открытия 356357. Слово «алгоритм», латинский вариант имени персидского математика аль-Хорезми (780–850), появилось по меньшей мере в начале XIII в., но это исключение358. «Теорема Менелая», названная в честь Менелая 353 Ramazzini & St Clair. The Abyssinian Philosophy Confuted (1697). 354 Bailey. An Universal Etymological English Dictionary (1721). 355 Ippocratista: Siraisi . Taddeo Alderotti (1981). 40; Scotista: Gerson. Opera (1489). Index, s. v. Distinctionis; остальные из OED. 356 Простым примером того, что эпонимия, которая кажется нам нормой, не считалась таковой до открытия Америки, могут служить религиозные ордена, которые мы называем доминиканцами и францисканцами. Они были основаны в 1216 и 1221 гг., однако свои неофициальные названия в честь основателей, Доминика и Франциска, орден проповедников и орден «младших братьев» получили гораздо позже: доминиканцы только в 1509 г. (в 1534 г. на английском), францисканцы в 1515 г. (в 1534 г. на английском). Статьи «Dominicanus» и «Franciscanus» из Latham (ed.). Dictionary of Medieval Latin from British Sources (1975); Dominican и Franciscan : Erasmus. Ye Dyaloge Called Funus (1534). (The OED дает 1632 г. для Dominican .) 357 Об эпонимии написано мало, но на http://www.whonamedit.com можно найти интересный словарь медицинских эпонимов, а закон Стиглера гласит, что никакое научное открытие не было названо в честь первооткрывателя: Stigler. Stigler’s Law of Eponymy (1980). Когда Паскаль пишет (Pascal. Œuvres complètes, 1964. 523): «[Q]uand nous citons les auteurs, nous citons leurs démonstrations, et non pas leurs noms; nous n’y avons nul égard que dans les matières historiques», он проводит различие между двумя способами использования имени автора. Упоминание имени Коперника (использование имени для ссылки на книгу) – это краткий способ указания на гелиоцентризм, однако если речь идет о сверхновой 1604 г. (вопрос исторического факта), то достоверность ее существования зависит от авторитета Кеплера и других астрономов, наблюдавших это явление. 358 См.: OED, algorism .
Александрийского (70–140) и составившая основу астрономии Птолемея, в V в. открыто приписывалась Менелаю Проклом. В 1560 г. Франческо Бароцци на полях своего перевода Прокла назвал ее теоремой Менелая (Demonstratio Menelai Alexandrini ), хотя арабам и средневековым комментаторам она была известна как «фигура секущих» 359. В указателе, но не в тексте или в примечаниях, современное название имеет и теорема Пифагора (раньше ее называли Dulcarnon, от арабского «двурогий», что отсылает к форме рисунка, иллюстрирующего теорему). И действительно, указатель демонстрирует систематическое стремление по возможности связать идеи с их авторами, а в тексте и указателе Бароцци даже обозначает один комментарий как «примечание Франческо Бароцци». Поскольку теперь каждая идея должна была иметь автора, то в тех случаях, когда автора найти не удается, его отсутствие должно быть отмечено – примечание Бароцци было ответом на «примечание неизвестного автора», найденное в древней рукописи 360. Это новое явление: Витрувий, впервые опубликованный в 1486 г., описывал метод Платона для удвоения площади квадрата и изобретение чертежного треугольника (два практических применения теоремы Пифагора), а также открытие закона Архимеда, но указатели разных изданий Витрувия демонстрируют, что процесс ассоциации имен с идеями шел очень медленно. В немецком переводе 1548 г. впервые появился обширный список имен, но даже там, несмотря на присутствие Архимеда и Пифагора, не нашлось места для закона Архимеда или теоремы Пифагора 361. В 1567 г. великий протестантский логик и математик Петр Рамус говорил о «законах Птолемея» и «законах Евклида»362. Но Рамус обращался к прошлому. И действительно, можно сформулировать общий закон (естественно, закон Вуттона, поскольку речь идет об эпонимии): если научное открытие было совершено до 1560 г. и названо в честь первооткрывателя, это произошло много лет спустя. В качестве примера, выбранного случайным образом, можно привести Леонардо Пизанского, известного как Фибоначчи, предполагаемого изобретателя ряда Фибоначчи. Он сделал свое открытие в 1202 г., а формулу назвали в его честь только в 1870-х гг.363 Если 1560 г. считать началом проникновения эпонимии в науку, то широкое распространение она получила (и стала применяться к современным открытиям) после 1648 г., когда классический опыт с вакуумом (с использованием длинной стеклянной трубки, запаянной с одного конца, и ртути) получил название опыта Торричелли 364. (Впервые опыт был поставлен в 1643 г., однако почти никто не знал, что его придумал Эванджелиста Торричелли; как мы видели, в 1650 г. Роберваль назвал математическую кривую в честь Этьена Паскаля). В 1651 г. Паскаль с ужасом отверг предположение, что он хотел выдать опыт Торричелли за свой: все понимают, говорил он, что это был бы эквивалент воровства 359 Proclus & Euclid . In primum Euclidis (1560). 207; Van Brummelen . The Mathematics of the Heavens (2009). 56. 360 Proclus & Euclid . In primum Euclidis (1560). 198, 200. 361 Proclus & Euclid . In primum Euclidis (1560). Указатель (ссылка admirabile ) – сравните с 134, 270; Drayton . Poly-Olbion (1612). A3rv. – содержит множество сведений о происхождении названия. Известно, что существуют некоторые сомнения в авторстве Пифагора: Прокл осторожно указывал, что теорему приписывают Пифагору (и даже заявлял о ее ограниченном значении). Vitruvius. Zehen Bücher (1548). 362 Ruby . The Origins of Scientific Law (1986). 357. 363 Devlin. The Man of Numbers (2011). 145. 364 Я просмотрел труд Бартолина, Bartholin, and others . Institutiones anatomicae (1641), в поисках части человеческого организма, названной в честь какого-либо человека, но ничего не нашел; первооткрыватели скрупулезно перечислены, но их открытия еще не названы их именами.
в науке365. Паскалю, по всей видимости, уже было очевидно, что человек может «владеть» идеей или экспериментом, но до 1492 г. такое предположение озадачило бы любого366. И действительно, слово plagiary (плагиат) появляется в английском языке только в 1598 г., plagiarism (плагиаторство) – в 1621 г., plagiarize (заниматься плагиатом) – в 1660 г., plagiarist (плагиатор) – в 1674 г.367 В 1645 г. Томас Браун собрал многочисленные примеры того, как греческие и римские тексты копировались целыми кусками и выходили под именем других авторов 368. «Практика копирования, распространенная в наши дни, тогда не считалась чудовищной. Плагиат появился не вместе с книгопечатанием, – заключает он, – а в те времена, когда воровство было затруднительным» из-за малого количества книг в обращении369. Новой была не практика копирования других авторов, а идея, что этого следует стыдиться. Брауну не приходило в голову, что понятием интеллектуальной собственности он обязан не только печатному станку, но и Колумбу. Приблизительно с середины XVII в. в английском языке начали в массовом порядке появляться прилагательные, связанные с научными экспериментами, теориями и открытиями и образованные от фамилий ученых. В 1647 г. Роберт Бойль говорил о the Ptolemeans, the Tychonians, the Copernicans 370. За ними последовали Galenic (1654), Helmontian (1657)371, Torricellian (1660), Fallopian (1662)372, Pascalian (1664), Baconist (1671)373, Euclidean (1672), Boylean (1674) и Newtonian (1676)374. В начале XVIII в. научные законы впервые стали называть по имени тех, кто их открыл. (Понятие научного закона само по себе было новым, и именно поэтому не существует законов, названных в честь древних или 365 Pascal. Œuvres (1923). 478–495; Dear. Discipline and Experience (1995). 186–189. (Койре считает эти протесты неискренними: Koyré . Études d’histoire de la pensée scientifique (1973). 378.) Паскаль также утверждал, что поскольку он придумал опыт «пустота в пустоте», то ему принадлежит заслуга в открытиях, сделанных другими в модифицированных версиях опыта. Похожее заявление сделал Лейбниц; см.: Bertoloni Meli. Equivalence and Priority (1993). 6. 366 Эта идея появилась задолго до юридической заявки на авторское право, которой не существовало в британском законодательстве до 1710 г.; впоследствии она появилась и в других странах. Издатели могли заявлять о монопольном праве на печать текста в пределах конкретной юрисдикции; авторы же не имели вообще никаких охраняемых законом прав: Kastan . Shakespeare and the Book (2001). 23–26. 367 Plagiary : поиск в EEBO дает 1585 г., которого нет в OED, но в значении «похититель». 368 В Средние века главным значением слова auctor было «авторитет»: «Ни один “современный” писатель не заслуживал, чтобы его называли auctor, в период, когда люди считали себя карликами, стоящими на плечах гигантов, то есть “древних” (Minnis. Medieval Theory of Authorship, 1988. 12). Даже в XVII в. Шекспира называли «автором» только после смерти: Kastan. Shakespeare and the Book (2001). 69–71. Здесь, конечно, уместно упомянуть о знаменитом рассуждении Фуко о функции автора: «Qu’est-ce qu’un auteur?» (1969), в: Foucault . Dits et écrits (2001). Vol. 1. 817–849. 369 Browne. Pseudodoxia epidemica (1646). 22. 370 OED, s. v. Ptolemean . 371 Starkey. Nature’s Explication and Helmont’s Vindication (1657). 372 Bartholin . Walaeus and others, Bartholinus Anatomy (1662). 373 Stubbe. An Epistolary Discourse Concerning Phlebotomy (1671). 374 Даты из OED, если не указано иное; на латыни boyliano впервые появляется в Line. Tractatus de corporum inseparabilitate (1661).
средневековых математиков и философов; в отличие от Рамуса мы не говорим о законах Евклида и Птолемея, поскольку под «законом» Рамус понимал математическое определение, а не природную закономерность.) Так появился закон Бойля (1708) 375, закон Ньютона (1713)376 и закон Кеплера (1733)377. Составление карты Луны, начатое ван Лангреном в 1645 г., стало важным прецедентом для эпонимического наименования, помогло перенести его из географии в астрономию. Первым селенографам предстояло дать названия такому большому количеству объектов, что им пришлось увековечивать и древних, и современных ученых, причем как противников, так и союзников. Иезуит Джованни Баттиста Риччоли, поддерживавший теорию Браге, назвал кратер именем Коперника. Это не доказывает, как предполагают некоторые, что он был тайным сторонником системы Коперника, – просто кратеров было слишком много. § 10 Открытие само по себе не является научной идеей – скорее это идея, лежащая в основе науки: мы можем называть ее метанаучной идеей. Трудно представить такую науку (в том значении, в котором мы сегодня используем этот термин), которая не претендует на прогресс и не представляет этот прогресс в виде конкретного приобретения нового знания. Метафора открытия, путешествия с целью открытия новых земель, которые привели к смене парадигмы, тезис о существовании одного первооткрывателя и момента открытия, практика эпонимии, а также другие, более современные способы признания открытия, такие как Нобелевская премия (1895) или медаль Филдса (1936), – все это, вне всякого сомнения, аспекты локальной культуры, однако любая научная культура будет нуждаться в альтернативном наборе понятий, выполняющих ту же функцию признания, побуждения и изменения. Как мы уже видели, в качестве показательного примера можно взять эллинистическую науку, или науку Архимеда. Она обладала многими характеристиками того, что мы называем «наукой» (первые современные ученые фактически просто пытались подражать своим греческим предшественникам), и имела зачаточное понимание науки как открытия 378. Тем не менее ни один древний грек не выпустил медаль с выбитым на ней словом Eureka и не начал награждать ею успешных ученых, как мы награждаем медалью Филдса выдающихся математиков. А «Звездный вестник» (1610) Галилея начинается с заявления (несколько завуалированного из скромности) о собственной бессмертной славе, которая не нуждается ни в статуях, ни в медалях379. В то время еще не было премий или медалей, присуждаемых за научные достижения, но в воображении Галилея такие награды уже существовали. Фрэнсис Бэкон в «Новой Атлантиде» (1627) описывал галерею со статуями великих изобретателей (таких как Гутенберг) и первооткрывателей (в частности, Колумба) 380. В 1654 г. Уолтер Чарлтон призывал воздвигнуть в честь Галилея «колосса из золота»381. Нобелевская премия – это всего лишь современный вариант колосса 375 Harris. Lexicon technicum (1704). 376 Reynolds . Death’s Vision (1713). 377 Voltaire . Letters Concerning the English Nation (1733). 378 Zhmud . The Origin of the History of Science (2006). 379 Galilei . The Essential Galileo (2008). 45. 380 Bacon . Sylva sylvarum (1627). 45, 46 = Bacon . Works (1857). Vol. 3. 165, 166. 381 Charleton. Physiologia Epicuro-Gassendo-Charletoniana (1654). 3.
Чарлтона. Открытие сначала было локальным понятием, символизировавшим установку новых «столбов Геркулеса» португальскими мореплавателями, которые продвигались вдоль побережья Африки. Вместе с ним появилось слово descubrimento , которое изначально использовалось в значении «исследование», а затем «открытие»; потом этот термин распространился по всей Европе, на разных языках. Что это: локальное явление или межкультурное? Концепция открытия сначала была ограничена конкретной областью деятельности (поисками морского пути в Азию) и конкретной культурой (португальской культурой XV в.), но вскоре стала известна всей Западной Европе. Это было важным предварительным условием наступления новой эры интеллектуальной революции, поскольку такая концепция необходима для развития любого общества, которое стремится развивать науку. Широкое распространение слов, обозначающих «открытие» в Европе XVI и XVII в., отражает, в первую очередь, проникновение новой разновидности картографических знаний, которые первоначально носили локальный характер, но быстро стали межкультурными (точно так же, как португальское морское судно, галеон, быстро стали копировать в других европейских странах). Уместно также отметить, что новые географические открытия сразу же признавались по всей Европе – не обязательно быть испанцем, чтобы поверить, что Колумб открыл новый континент. Кроме того, это понятие отражает распространение новой культуры, ориентированной на прогресс. Утвердившись, идея открытия проникла из географии в другие дисциплины. Это также одна из форм межкультурной передачи. Довольно продолжительное время – несколько веков – новые научные знания были ограничены территорией Европы, а также кораблями и колониями за ее пределами. Вся Европа оказалась способной – одни регионы в большей степени, другие в меньшей – отбросить старые теории и принять новые, отказаться от идеи фундаментальной полноты знания и перейти к понятию знания как незавершенной работе. За пределами Европы знания распространялись не так быстро и уверенно382. Этому существует множество объяснений, но главное – Европа обеспечивала широкие возможности для конкуренции и разнообразия. Все европейские общества были фрагментированы и разделены, имели множество местных юрисдикций (например, независимые города и университеты), каждое государство соперничало со всеми остальными, и везде наблюдалось противостояние религиозных и светских властей. И разумеется, Европа унаследовала греческую и латинскую культуру: новая наука могла претендовать на роль продолжателя уважаемой интеллектуальной программы, традиций Пифагора, Евклида, Архимеда и даже, в некоторых отношениях, Аристотеля. Таким образом, категория «открытия» смогла распространиться среди большого разнообразия локальных европейских культур эпохи Возрождения, но не слишком преуспела в этом в других регионах мира. Другие культуры (и в определенной степени католические культуры Европы после осуждения Коперника) не были готовы принять такие радикальные интеллектуальные перемены. Я считаю, что понятие открытия в некотором роде является важнейшей предпосылкой для систематического обновления знаний о природе; обновление подчиняется определенной логике, и если знания нацелены на обновление, то они должны уважать эту логику. Но идея открытия не несет с собой культурного единообразия; наоборот, она способствует разнообразию. Она совместима с любыми формами нового знания, с геоцентризмом Риччоли и гелиоцентризмом Коперника, с отрицанием вакуума Декартом и принятием вакуума Паскалем, со взглядами Ньютона на однородное пространство и время и теорией относительности Эйнштейна. Она не навязывает необходимость определенного вида науки. Более того, социальная практика, которую мы обозначаем как «открытие», может быть запутанной, противоречивой и парадоксальной: не всегда очевидно, кто и когда 382 Huff. Intellectual Curiosity and the Scientific Revolution (2011).
совершил открытие. Таким образом, с одной стороны, открытие представляет собой нечто большее, чем локальную практику, – это предпосылка науки; с другой стороны, оно опирается на случайные, локальные методы определения, что считать открытием, а что нет. Существование идеи открытия – необходимая предпосылка науки, но ее точная форма отличается вариативностью и гибкостью; там, где она встречает сопротивление, как в Османской империи и в Китае, такой род деятельности, как наука, не может укорениться 383. С появлением идеи открытия и последующими спорами о приоритете и стремлением связывать каждое открытие с именем автора впервые начало явственно проступать нечто похожее на современную науку. А с новой наукой пришла и новая разновидность истории384. Вот, например, второй абзац статьи «магнит» из технического словаря 1708 г.: Стурмий в своем труде «Epistola Invitatoria dat. Altdorf», 1682 г., отмечает, что притягивающие свойства магнита были замечены в доисторические времена. Но только наш соотечественник Роджер Бэкон открыл свойство вращения , или стремление магнита указывать на полюс, и это произошло 400 лет назад. Итальянцы первыми открыли, что он может передавать свои свойства стали или железу. Разное склонение иглы на разных меридианах впервые обнаружил Себастьян Кабот, а ее наклонение к ближайшему полюсу – наш соотечественник Роберт Норман385. Вариация склонения, которое не всегда одинаково в одном и том же месте, была замечена несколькими годами раньше Гевелием, Озу, Пети, Фолькамером и другими386. Подобные истории – это не только истории открытий, но и истории прогресса. Таким образом, можно подвести итог нашим рассуждениям. Открытие Америки в 1492 г. создало новое занятие для интеллектуалов: открытие нового знания. Это занятие требовало определенных общественных и технических предпосылок: надежных методов коммуникации, общей совокупности специальных знаний и признанной группы экспертов, способной разрешать споры. Сначала картографы, затем математики, а вслед за ними астрономы включились в процесс, который по сути своей был конкурентным и сразу же привел к спорам о приоритете, а со временем – к эпонимическим названиям. Неотделимыми от идеи открытия были идеи прогресса и интеллектуальной собственности. В 1605 г. Бэкон объявил, что нашел основной метод совершения открытий и обеспечения прогресса, а в 1610 г. «Звездный вестник» Галилея подтвердил идею существования новой натурфилософии, обладавшей беспрецедентной способностью совершать открытия. Разумеется, открытия имели и историю, и прецеденты. Самым показательным примером может служить патент. В 1416 г. власти Венеции выдали патент на пятьдесят лет Францискусу Петри, изобретателю новой сукновальной машины. В 1421 г. великий инженер и архитектор Брунеллески получил от города Флоренции трехлетний патент на конструкцию баржи для перевозки мрамора. В 1474 г. Венецианская республика формализовала свою 383 Насколько я понимаю, Джозеф Нидэм в своих исследованиях китайской науки и цивилизации показал, что в Средние века китайская технология превосходила европейскую, но в Китае не было интеллектуальной деятельности, соответствующей европейскому понятию естественных наук. 384 Здесь следует упомянуть классический прецедент в работе Евдема Родосского (ок. 370–300 до н. э.): Zhmud. The Origin of the History of Science (2006). 385 «Склонение» здесь означает отклонение к востоку и западу, а «наклонение» – вверх или вниз от горизонтального положения. В качестве общего термина для обоих случаев я использую «отклонение». 386 Harris . Lexicon technicum (1704).
патентную систему, потребовав от претендентов на монополию сначала зарегистрировать свои новые изобретения в органах власти. (Это стало образцом для первого английского патента, выданного Якобусу Аконциусу в 1565)387. До того как Колумб открыл Америку, он уже знал о вознаграждении, обещанном за успех. Но срок действия патентов ограничен, и они дают привилегии только в пределах конкретной юрисдикции. Вознаграждение Колумба было всего лишь пожизненным, а поскольку он не рассчитывал открыть неизвестные земли (вместо нового пути в известные), то ему не приходило в голову потребовать привилегии в их наименовании. В отличие от патента у открытия нет временных или пространственных ограничений – это новая форма бессмертия. В любом случае общественные и технические предпосылки для совершения открытий в 1492 г. только начинали появляться, поскольку именно печатный станок (изобретенный ок. 1450) распространял новости об открытиях сначала Колумба, затем Кардано, Тихо Браге, Галилея и всех остальных. Именно печатный станок создал общую базу знаний, служившую мерилом для этих новых открытий388. Но в 1610 г. еще не было ясно, как заниматься этим новым родом деятельности. Бэкон думал, что нашел ответ, однако он ошибался. На самом деле он высказывал неверные суждения в отношении настоящей науки, например, не признавал работы Коперника и Гильберта. Но Бэкон был в этом не одинок (в главе 4 мы обсудим некоторые из ошибок, сделанных первыми учеными). Иногда ошибки были очевидными. Великий Галилей посвятил бо́льшую часть жизни доказательству того, что единственной возможной причиной приливов может быть движение Земли. Именно упорство в отстаивании этого аргумента привело к его осуждению инквизицией. Но его теория не объясняет фактов: будь он прав, прилив наблюдался бы в одно и то же время только один раз в день. Единственным человеком, которого удалось убедить, был Джованни Баттиста Бальяни, который для того, чтобы сделать теорию Галилея рабочей (более или менее), поместил Землю на орбиту вокруг Луны! Тем не менее Галилей нисколько не сомневался в верности своих аргументов389. На протяжении столетия после публикации анатомии Везалия и космологии Коперника (обе вышли из печати в 1543) постепенно появлялся набор ценностей, связанных с интеллектуальной деятельностью, которую мы теперь называем наукой: непременными условиями успеха были оригинальность, приоритет, публикация и то, что можно назвать непробиваемостью – то есть способностью выдерживать враждебную критику, и особенно критику, направленную на фактические аспекты. Результатом стал совершенно новый тип интеллектуальной культуры: инновационный, агрессивный, конкурентный, но в то же время одержимый точностью. Нет никаких априорных оснований считать это правильным способом интеллектуальной деятельности. Просто он практичен и эффективен, если ваша цель – получение новых знаний. С самого начала было очевидно, что открытие, приоритет и оригинальность – категории неопределенные или даже непонятные и что эти ценности противоречат обязанности многократной проверки перед публикацией. Обратимся к открытию как высшей форме оригинальности. Кто открыл Америку: Триана, Колумб, Веспуччи или Вальдземюллер? Эта честь отдана Колумбу, поскольку именно его экспедиция первой добралась до новой земли, даже несмотря на то, что он так этого и не понял: важность открытия перевесила его неспособность понять, что он совершил. Галилей понимал это 387 Phillips . The English Patent (1982); Long. Invention, Authorship, ‘Intellectual Property’ (1991). 388 May. The Venetian Moment (2002). 389 Wootton. Galileo: Reflections on Failure (2011); о Бальяни см.: Wallis. An Essay of Dr John Wallis (1666). 270. Уоллис считает, что, согласно теории Галилея, должно быть два прилива в день, но см.: Palmieri . Reexamining Galileo’s Theory of Tides (1998). 242.
и спешил напечатать «Звездный вестник» – но тот же Галилей более тридцати лет скрывал открытый им закон ускорения падающих тел, твердо решив ничего не публиковать, пока не будет уверен в успехе или не окажется на пороге смерти. (Хэрриот и Бекман также открыли закон падения тел; оба умерли, не опубликовав его.) Коперник тоже все откладывал и откладывал публикацию своего труда «О вращении небесных сфер». Желание быть первым все время наталкивалось на страх, что тебе не поверят, посчитают чудаком или глупцом. Несмотря на все конфликты и противоречия, которые сохраняются и в наше время, именно идея открытия дала начало новой науке и, возможно, новому набору интеллектуальных ценностей, которые лежат в ее основе. Это кажется очевидной истиной – чего не понимают историки науки, которые предпочитают считать, что каждая культура обладает собственной наукой и что эти науки имеют одинаковую ценность. Открытие не более универсально, чем крикет, бейсбол или футбол; оно характерно для постколумбова мира и может выжить только в обществе, поощряющем конкуренцию. Это единственное занятие, которое производит, как выразился Пьер Бурдье, «трансисторические истины». И конечно, победа концепции открытия не была полной до середины XVIII в. Старые идеи обладали слишком большим авторитетом – особенно потому, что опирались на Библию, – и не могли исчезнуть без следа. Но самым удивительным можно считать случай Ньютона, который после того, как сделал свои великие открытия и опубликовал их в «Началах», начал подозревать, что они не новые, а повторные. Разве Моисей не должен был все это знать? Ньютон планировал второе издание, где собирался продемонстрировать, что все, что считалось в его книге новым, на самом деле давно известно. Его помощник Фатио де Дюилье писал в 1692 г.: «Мистер Ньютон убежден, что нашел убедительные свидетельства [avoir decouvert assez clairement ] того, что древние, в частности Пифагор, Платон и т. д., имели все аргументы, которые он приводит в пользу истинной системы мира, основанной на гравитации…»390 Ньютон собрал обширный материал, чтобы подтвердить этот странный тезис. Но тут уместно привести три оговорки. Во-первых, когда Ньютон работал над «Началами», он еще не выдвинул эту теорию и не собирался разрабатывать свою новую физику, читая древние источники. Во-вторых, сам Ньютон понимал, что эта теория встретит сопротивление, и поэтому откладывал второе издание, которое вышло только в 1713 г. И в-третьих, современники Ньютона считали его открытия абсолютно новыми. Теория Ньютона о том, что древние знали законы тяготения, была его личной причудой, полезным противоядием (по нашему предположению) от греха тщеславия, который угрожал ему, считай он себя величайшим ученым всех времен; только один или два ближайших друга были готовы принимать эту теорию всерьез. Старое убеждение, что нового знания не существует, на мгновение вынырнуло на поверхность, но лишь затем, чтобы исчезнуть без следа в мощном потоке, само существование которого оно отрицало. 4. Планета земля …Ничтожная зелено-голубая планета. Дуглас Адамс. Автостопом по Галактике (1979)391 §1 390 McGuire & Rattansi . Newton and the ‘Pipes of Pan’ (1966). 109. О дискуссии, которая понравилась бы Ньютону, см.: Russo . The Forgotten Revolution (2004). 365–379. 391 Adams. The Hitchhiker’s Guide (1986). 15, 274, 463.
Начиная с 1460 г. путешествия с целью открытия и исследования новых земель привели к невероятным изменениям в географической науке. Если мир, известный людям в первой половине XV в., более или менее совпадал с миром, который знал образованный римлянин во времена Христа, то к началу XVI в. стало ясно, что существуют обширные обитаемые территории, о которых не знали ни греки, ни римляне. Считалось, что области в районе экватора должны быть необитаемы, но это представление оказалось абсолютно неверным. Это расширение известного мира тщательно регистрировали картографы, и это стало первой великой победой опыта над философской теорией. Как бы то ни было, предмет этой главы не сами по себе путешествия с целью открытия новых земель. Накануне открытия Америки Колумбом произошла тихая революция – появление понятия, которое мы теперь называем «земным шаром». Эта революция произошла всего за несколько лет и не встретила (если точнее, то почти не встретила) сопротивления. Она имела огромное значение, но стандартная историческая литература ее совсем не заметила. Как однажды написал Томас Кун: Историк, читающий устаревший научный текст, обычно сталкивается с отрывками, не имеющими смысла… Игнорировать эти отрывки или отбрасывать их как результаты ошибки, незнания, предрассудков было обычным делом, и эта реакция иногда оправданна. Однако гораздо чаще благожелательное прочтение проблемных отрывков заставляет поставить другой диагноз. То, что казалось текстовыми аномалиями, оказывается артефактами, результатом неправильного прочтения392393. Предметом моего анализа является целое собрание текстов, на первый взгляд бессмысленное. На протяжении последних пятидесяти лет историки науки, вдохновленные Куном, разыскивали подобные тексты, чтобы продемонстрировать их значимость, их способность придать смысл тому, что кажется бессмысленным, однако именно эти тексты были проигнорированы. Почему? Потому что не указывали на явление, которое считалось несуществующим: тихую революцию. По мнению Куна, революция всегда сопровождается спорами и конфликтом 394, а поскольку споров практически не было, легко предположить, что не было и революции. С другой стороны, именно такая аномалия делает эти тексты превосходным местом для начала новой, посткуновской истории науки. Какой формы Земля? Ответ на этот вопрос кажется очевидным. Разве кто-то сомневается, что Земля круглая? В XIX в. со всей серьезностью утверждалось, что современники Колумба считали мир плоским и думали, что он поплывет за край земли 395. Это полный вздор. Однако тот факт, что все (по крайней мере, каждый более или менее образованный человек) верили в возможность совершить кругосветное путешествие (что в 1519–1522 гг. сделал Магеллан), вовсе не означает, что они считали Землю круглой. Как это ни странно, Колумб полагал, что старый мир, известный Птолемею, представляет собой половину идеальной сферы, однако новый мир имеет форму верхней половины груши или женской груди; когда Азорские острова остались позади, у него создалось впечатление, что он все время плывет вверх 396. Черешок, или сосок, этой второй полусферы – это место, где 392 Перевод И. Налетова. 393 Kuhn. Dubbing and Redubbing: The Vulnerability of Rigid Designation (1990). 299. 394 Kuhn. Structure (1970). 171. 395 Russell. Inventing the Flat Earth (1991). 396 Columbus. The Four Voyages (1969). 217–219.
находится земной рай 397. «Земля» (скорее агломерат из земли и воды) имеет неправильную форму. Представление, что агломерат из земли и воды не является идеальной сферой, было общепризнанным в позднем Средневековье, и новая космография требовала его опровержения 398399. Аристотель полагал, что Вселенная разделена на надлунный мир, где ничего никогда не меняется, а все движения являются круговыми, и подлунный мир. В подлунном мире можно найти четыре элемента, составляющие основу нашего повседневного опыта, – землю, воду, воздух и огонь. Эти элементы естественным образом создают концентрические сферы с общим центром: земля окружена водой, вода окружена воздухом, а воздух окружен огнем. Однако эта структура не идеальна, и поэтому суша поднимается из воды и на земле все четыре элемента взаимодействуют между собой. Именно это взаимодействие элементов делает возможным существование живых существ, и без него Вселенная была бы необитаема 400. Такая конструкция ставила перед исламскими и христианскими философами проблему, которая не волновала их языческих предшественников: почему четыре элемента не образуют идеальные концентрические сферы? 401 Они задумались над этим вопросом отчасти потому, что он позволял ввести в философию Бога-Творца, неизвестного Аристотелю и Птолемею. Согласно Книге Бытия, на третий день творения Бог собрал вместе все воды, чтобы создать сушу. Простой ответ состоял в том, что существование суши – это чудо. Поскольку океанские воды выше земли (считалось, что выше самых высоких гор; в противном случае вы не нашли бы источников, бьющих из-под земли вблизи горных пиков) 402, то напрашивался вывод, что океаны не затапливают землю, как во времена Ноя, только по воле Божественного провидения. Философам такой ответ казался неубедительным даже несмотря на то, что нечто подобное можно было найти в «Естественной истории» Плиния 403, и они искали естественного объяснения. Если начальное разделение требовало 397 O’Gorman . The Invention of America (1961). 98–101. 398 Первые современные картографы называли себя кимографами, поскольку рисовали карты и неба, и земли, а также регулярно изготавливали парные глобусы; слово «космография» имеет древнегреческие корни и является традиционным термином, тогда как термин «космология» относительно новый: он появился не раньше второй половины XVI в. 399 Biro . On Earth as in Heaven (2009); Schuster & Brody . Descartes and Sunspots (2013); также Johnson. The German Discovery of the World (2008). 51–57; первой книгой со словом «космология» в названии, по моему мнению, была Mizauld . Cosmologia: Historiam coeli et mundi (1570). (Worldcat дает пару более ранних ссылок, но обе, по всей видимости, на несуществующие книги.) 400 Aristotle. On the Heavens (1939). 401 Если точнее, то на эту проблему первым, по всей видимости, обратил внимание последний из языческих философов, Олимпиодор Александрийский: Duhem . Le Système du monde. Vol. 9 (1958). 97, 98. 402 Было понятно, что вода испаряется из океанов, а потом выпадает в виде дождя, питая реки, которые впадают в океан. Однако считалось, что только дождевая вода не может объяснить размер рек или существование источников, бьющих из-под земли; утверждалось, что источники питаются напрямую от океана. Эта теория просуществовала до XVIII в. и была опровергнута, например в: Vallisneri . Lezione accademica intorno all’origine delle fontane (1715), где объяснялось, как на подземное перемещение воды влияет расслоение породы. 403 Pliny the Elder . Natural History (1938). Book 2. Cap. 65; переводчик не смог передать смысл этого фрагмента: сравните Pliny the Elder . L’Histoire du monde (1562). Скорее Плиний утверждал, что расстояние от центра земли до берега океана меньше, чем от самого глубокого места океана до открытого моря.
божественного вмешательства, то как охарактеризовать взаимоотношения между землей и водой после Всемирного потопа? Концентрические сферы, из которых состоит Вселенная. Из книги Йодокуса Трутфеттера «Руководство по натурфилософии», 1514. Подлунная область разделена на четыре сферы: землю, воду, воздух и огонь; снаружи находятся планеты, в том числе Солнце и Луна. Зодиак неподвижных звезд располагается на самой дальней видимой сфере, за которой есть еще три невидимых Вопрос был простым, а диапазон возможных ответов ограничен. На протяжении 250 лет все возможные варианты были тщательно проанализированы 404. 404 Главный текст, на котором основаны следующие пункты, – это Duhem . Le Système du monde. Vol. 9 (1958). 79–235 (доступен онлайн на www.gallica.fr). Поскольку дискуссии по этому вопросу обычно связаны с недостаточным знакомством с литературой, я попытаюсь дать более полную библиографию, в хронологическом порядке; необходимое предварительное условие – знакомство с работой Rosen . Copernicus and the Discovery of America (1943). Boffito . Intorno alla ‘Quaestio’ (1902) (равносильно целой антологии источников) – доступно онлайн на www.archive.org; Thorndike. A History of Magic and Experimental Science (1923). Vol. 4. 161, 166, 176, 233; Vol. 5. 9, 24, 25, 156, 321, 389, 427, 428, 552, 553, 569, 591, 614; Vol. 6. 10, 12,
1. Вода была вытеснена со своего изначального места, и ее сфера теперь является центром Вселенной. Этот вариант предполагает, что все корабли плывут вверх, когда направляются в открытое море (мы по-прежнему отдаем дань традиции, когда говорим the high sea или the high seas (англ. «открытое море»). Этой точки зрения придерживался Сакробоско (ок. 1195 – ок. 1256), автор стандартного учебника по астрономии, по которому преподавали в университетах в Средние века и в эпоху Возрождения, а после него – Брунетто Латини (1220– 1294), Ристоро д’Ареццо (сочинение датируется 1282), Пабло Бургосский (1351– 1435) и Просдочимо де Бельдоманди (ум. 1428). В 1320 г. Данте назвал эту теорию общепринятой (хотя его текст, «Вопрос о воде и земле» (Quaestio de aqua et terra), был неизвестен вплоть до его первой публикации в 1508). 2. Земля (в отличие от водной сферы) больше не является сферой; скорее в результате образования выпуклости, или вздутия, она приобрела вытянутую, неправильную форму, так что ее центр тяжести (точка, в которой она, будучи подвешенной, сохраняла бы неподвижность) совпадает с центром Вселенной, но не с ее геометрическим центром. Именно выпуклость делает возможным существование суши. Так считал Эгидий Римский (1243–1316), который вычислил, что диаметр Земли должен почти вдвое превосходить изначальный, а также тот, что указывал Данте. Недостаток этой теории заключался в том, что она требовала отказаться от представления, будто мир был создан из сфер, вложенных одна в другую, – очень высокая цена, помыслить о которой соглашались лишь немногие. 3. Если земля может быть не идеальной сферой, то следует допустить такую же возможность и для воды. Выдвигались предположения, что вода также имеет не сферическую, а овальную форму и океаны глубже у полюсов; Франческо Манфредонский (ум. ок. 1490) считал это одной из причин появления суши. Слабость данного аргумента, о чем, вероятно, знал Франческо, заключается в том, что если воды имеют яйцеобразную форму, то суша должна находиться только в районе экватора; следовательно, одного этого аргумента для обоснования недостаточно. 4. Земля представляет собой сферу, но больше не находится в центре мира. Так считал Робертус Англикус (1271), но его теория не могла завоевать много сторонников, поскольку противоречила основному принципу философии 27, 34, 50, 60, 83, 380; Vol. 7. 50, 54, 55, 339, 385, 395, 396, 404, 481, 601, 644, 692; Wright . The Geographical Lore of the Time of the Crusades (1925). 186, 187, 258; Thorndike. Science and Thought in the Fifteenth Century (1929). 200–216; Duhem . Le Système du monde. Vol. 9 (1958). 79–235 (доступно на www.gallica.fr); O’Gorman . The Invention of America (1961), особенно 56, 58; Goldstein . The Renaissance Concept of the Earth (1972); Randles . De la terre plate au globe terrestre (1980); In Defense of the Earth’s Centrality and Immobility (1984). 20–32 (лучше начинать с нее); Hooykaas . G. J. Rheticus’s Treatise on Holy Scripture and the Motion of the Earth (1984). 127–132; Margolis . Patterns, Thinking and Cognition (1987). 235–243; Russell. Inventing the Flat Earth (1991) (хотя он не совсем понял смысл работы Рандлеса); Wallis . What Columbus Knew (1992); Vogel . Das Problem der relativen Lage von Erdund Wassersphäre im Mittelalter (1993); Randles . Classical Models of World Geography (1994) (reprinted in Randles . Geography, Cartography and Nautical Science in the Renaissance (2000); Grant . Planets, Stars and Orbs (1994). 622–637; Vogel . Sphaera terrae (1995); Headley . The Sixteenth-century Venetian Celebration of the Earth’s Total Habitability (1997); Margolis . It Started with Copernicus (2002). 96–102; Besse . Les Grandeurs de la terre (2003). 65–110; Vogel . Cosmography (2006); Lester . The Fourth Part of the World (2009); Biro . On Earth as in Heaven (2009); Schuster & Brody . Descartes and Sunspots (2013). Удобный исходный пункт для анализа средневековых дискуссий дает Alighieri . La Quaestio de aqua et terra (1905) (факсимиле и переводы), доступный на www.archive.org (перевод Филиппа Уикстеда есть также на http://alighieri.scarian.net/translate_english/alighieri_dante_a_question_of_the_water_and_of_the_land.html). Примечательно, что соответствующие вопросы даже не упомянуты в Westman . The Copernican Question (2011), хотя Уэстмен знаком с двумя работами Гранта и работой Голдштейна (Margolis . Patterns, Thinking and Cognition, 1987. 314), а историки картографии обычно не знакомы: например, Brotton . A History of the World in Twelve Maps (2012); Simek. Heaven and Earth in the Middle Ages (1996); Woodward . The Image of the Spherical Earth (1989). Обширная работа Woodward (ed.). Cartography in the European Renaissance (2007) содержит три предложения на эту тему (59 и 327 – где аргументация Рандлеса неверно интерпретирована), но в основной части, на глобусах, этого нет (136, 137).
Аристотеля: Земля должна находиться в центре мироздания. Однако эта трудность подтолкнула философов к новым размышлениям. Предположим, говорили они, что Земля – сфера, но неоднородная: под воздействием Солнца суша стала менее плотной, чем была изначально, в результате чего центр масс сместился. Таким образом, центр масс Земли по-прежнему совпадает с центром мироздания – в отличие от геометрического центра. Вода же остается симметрично распределенной вокруг центра мира. Так считали парижские философы XIV в.: Иоанн Жандунский (1286–1328), Жан Буридан (ок. 1300 – ок. 1358), Николас Боне (ум. 1360), Николай Орезмский (ок. 1320–1382) и Альберт Саксонский (ок. 1320– 1390)405. Эта теория сохраняла систему вложенных друг в друга сфер и обладала тем преимуществом, что в ней вода всегда текла вниз (в отличие от первого варианта, рассмотренного выше). Эти четыре точки зрения предполагали само собой разумеющимся, что сфера воды больше сферы земли. Приблизительно с 1200 по 1500 г. общепринятым считалось представление (ошибочно приписываемое Аристотелю), что сфера воды в десять раз больше; каждого элемента имелось одинаковое количество, но вода занимала объем в десять раз больший, чем объем земли, воздух – в десять раз больший, чем вода, а огонь – в десять раз больше, чем земля 406. Относительный размер сфер и величина их сдвига по отношению друг к другу определяют размер зоны суши. Было принято считать, что земля составляет примерно четверть шара из земли и воды – или даже половину. Первый вариант предполагал, что за пределами известного мира ничего нет; второй – что существуют еще не открытые земли. Эти земли обычно помещали в Южное полушарие и считали необитаемыми. Все признавали, что возможно лишь ограниченное число причин изменения в соотношении между землей и водой. Либо Бог действует непосредственно, собирая и удерживая воду, чтобы очистить место для земли, или земля высыхает под воздействием солнца, или звезды притягивают воду или землю, смещая их. Но в конечном итоге мы приходим к пятому варианту: не существует отдельных сфер земли и воды, воды меньше, чем земли, а океаны расположены во впадинах земли – вода и земля составляют одну общую сферу. Этого современного (хотя, конечно, мы уже не считаем землю одним из четырех элементов) представления придерживались Роберт Гроссетест (ок. 1175–1253), Андало ди Негро (1260–1334), Фемо Джудеи (середина XIV в.) и Марсилий Ингенский (1340–1396). Мнения Роберта Гроссетеста и Марсилия Ингенского были доступны в виде книг в эпоху Возрождения (хотя Марсилия читали философы, а не астрономы), но в XV в. о существовании подобных взглядов было довольно хорошо известно – их пересказывали ради того, чтобы опровергнуть. Таким образом, земля может – на самом деле должна – быть распределена по всей поверхности планеты. Такой точки зрения придерживался Роджер Бэкон (1214–1294), вероятно, под влиянием Гроссетеста, а также автор «Приключений сэра Джона Мандевиля» (The Travels of Sir John Mandeville, ок. 1360)407. Из всех теорий только эта полностью совместима с существованием антиподов (то есть участков суши, расположенных в противоположных областях на поверхности земного шара). Важно подчеркнуть, что в XV в. последняя теория не находила поддержки. Для 405 Oresme . Le Livre du ciel et du monde (1968). 397, 562–573. 406 Duhem . Le Système du monde. Vol. 9 (1958). 91–96. В 1505 г. Алессандро Акиллини высказал сомнения в верности общепринятых соотношений, но (если я правильно его понял) не заходил так далеко, чтобы ставить под сомнение теорию двух сфер: Achillini . De elementis (1505). 84v-85r. 407 Hiatt. Terra incognita (2008). 100–104.
астрономов и географов в 1475 г. (когда впервые была напечатана «География» Птолемея, хотя первая рукопись перевода на латынь появилась в 1406) основным был выбор между вариантом со сферой элемента вода , смещенной от центра мира, и вариантом со сферой элемента земля , смещенной от центра мира (но включающей его). Чтобы принять путешествие Колумба, вовсе не обязательно считать обе эти теории неверными; просто нужно согласиться, что западный маршрут в Индию может быть короче, чем путь вокруг Африки или сухопутный маршрут. Однако после открытия нового континента устаревшие взгляды Гроссетеста снова стали пользоваться уважением среди философов. Сферы земли, воды, воздуха и огня. Из «Трактата о сфере» Сакробоско. Венеция, 1501. Земля плавает, как яблоко в ведре. Ориентация на север – юг; наверху располагается Иерусалим, центр известного мира Разные центры сфер воды (центр в точке А) и земли (центр в точке В). Из «Трактата о сфере» Сакробоско. Венеция, 1537. Относительный их объем указан как 10:1, хотя, как показал Коперник, в этом случае сфера земли не захватывала бы центр сферы воды, который
считается центром мироздания Относительный и абсолютный объемы земли и воды. Из «Трактата о сфере» Сакробоско, 1537. Коперник бы пожаловался, что две сферы изображены в разных масштабах Таким образом, в 1475 г. все пришли к убеждению, что центры двух сфер, земли и воды, не совпадают. Возникли вопросы и относительно других центров. Где находится геометрический центр мира? Совпадает ли он с центром одной из сфер и если совпадает, то с которым? А если земля не однородна, где находится ее центр тяжести? И наконец, где расположен центр тяжести объединенных сфер земли и воды? Если у Вселенной Аристотеля был один центр, то теперь появилось пять возможных способов определения центра мира. §2 В конце Средних веков и в эпоху Возрождения студенты изучали астрономию по «Трактату о сфере» (Sphaera, ок. 1220) Иоанна Сакробоско, который преподавал в Париже, но, возможно, был англичанином (в таком случае его имя могло звучать как John of Holywood – Джон из Святого Леса) 408. Его учебник был впервые напечатан в 1472 г. и выдержал более двухсот изданий 409. Кроме того, многочисленные комментаторы старались объяснить и дополнить текст книги – начиная с Майкла Скота (ок. 1230) 408 Thorndike. The Sphere of Sacrobosco and Its Commentators (1949) содержит текст и перевод. 409 Существуют два списка, которые существенно различаются: Roberto de Andrade Martins на http://www.ghtc.usp.br/server/Sacrobosco/Sacrobosco-ed.htm, и Hamel . Studien zur ‘Sphaera’ (2014). 68–133.
и заканчивая Джамбаттистой Капуано ди Манфредония) 410 (ок. 1475) и ведущего астронома иезуитов конца XVII в. Христофора Клавия (1570). По «Трактату о сфере», все еще считавшемуся стандартным учебником, читал лекции Галилей, когда занимал должность профессора в Пармском университете (1592–1610); последнее издание для студентов, в 1633 г., знаменует смерть астрономии Птолемея как живой традиции. Следуя представлению, что земной шар состоит из двух неконцентрических сфер, земли и воды, а также подражая птолемеевскому «Альмагесту» (который был доступен на латыни с XI в.), Сакробоско отдельно доказывает, что поверхность земли изогнута (он демонстрирует, что это очевидно тому, кто путешествует в направлении север – юг или восток – запад) и что поверхность воды изогнута. (Это было очевидным, поскольку впередсмотрящий на мачте корабля мог видеть дальше, чем тот, кто стоял на палубе.) Некоторые современные комментаторы говорят, что Сакробоско доказал, что Земля круглая 411, однако он ничего такого не утверждал, и средневековые комментаторы тоже этого не утверждали – ни он сам, ни они не верили, что у двух сфер общий центр. Теперь нам должно быть очевидно, что когда средневековые философы говорили о «земле», то обычно имели в виду сферу элемента земля, которая формировала сушу в тех местах, где поднималась над поверхностью океана; эта сфера плавала в океане, который сам представлял собой сферу большего размера. Однако термин «земля» с самого начала был неопределенным. Например, у Джона Уоллингфордского мы встречаем разделенные всего двумя предложениями упоминания земли в значении: а) суша, б) элемент земля и в) весь земной шар, то есть агломерация земли и воды412. Третье значение (которое отсылает нас к «Сну Сципиона» Цицерона) для всех, кто принимал доминирующую теорию двух сфер, явно не имело отношения к философии, причем до такой степени, что в конце Средневековья и в начале эпохи Возрождения трудно найти примеры использования слова terra в этом значении, разве что у писавших на латыни гуманистов, например Петрарки 413. Фактически представление о агломерации земли и воды как едином шаре или сфере исчезло приблизительно в 1400 г. Но и раньше эта теория не была доминирующей. Теперь агломерация земли и воды приняла неправильную форму. Все эти дискуссии конца Средневековья проходили в контексте географических знаний, не отличавшихся от знаний древних. Никто не верил, что Земля плоская (считалось, что она представляет собой часть сферы), но считалось, что обитаемые области могут быть с достаточной точностью изображены на плоской поверхности. У этой обитаемой части Земли был центр, который обычно помещался в Иерусалиме. Однако имелся и другой центр: если перемещаться с запада на восток, от островов Блаженства (Канарских островов) до Геркулесовых столбов (обозначавших границы, путешествия за которые невозможны), на экваторе существовала воображаемая точка под названием Арим, или Арин, якобы в 10° к востоку от Багдада. Для арабов и астрономов, опирающихся на арабские источники, Арим являлась нулевой точкой для долготы и широты 414. Считалось, что суша ограничена одним 410 В начале карьеры его называли Франческо, а не Джамбаттисто, что может вызвать путаницу. 411 Например, Taylor . The Haven-finding Art: A History of Navigation from Odysseus to Captain Cook (1971). 154; Russell. Inventing the Flat Earth (1991). 19; Lester . The Fourth Part of the World (2009). 28, 29. 412 Hiatt. Terra incognita (2008). 142. (Цит. British Library MS Cotton Julius D.VII). 413 Hiatt. Terra incognita (2008). 133. Цит. Petrarch. Le familiari (Familiarum rerum libri). Ed. V. Rossi (4 vols., Florence: Sansoni, 1933–1942). Vol. 2. 248. 414 Wright . The Geographical Lore of the Time of the Crusades (1925). 86, 87, 259–261; Arim. Oresme. Le Livre du ciel et du monde (1968). 24, 330–335; Sen . Al-Biruni on the Determination of Latitudes and Longitudes in India (1975).
полушарием, а остальная поверхность покрыта океаном. Самые дальние области суши на севере и юге считались необитаемыми, потому что там слишком холодно или слишком жарко, и поэтому обитаемая область занимает примерно половину всей суши, или одну шестую часть поверхности всей агломерации земли и воды. Как указывал Данте в 1320 г., тут мы сталкиваемся с очевидной проблемой: аргументы философов не совпадают с картами географов. Если философы правы и обитаемая земля – это сфера, плавающая на поверхности большей по размеру сферы воды, то на карте обитаемая суша должна иметь форму круга. На географических картах же она больше напоминала расстеленный на земле плащ; однако известный мир назывался orbis terrarum , круг земель, как будто имел соответствующую форму. В отличие от философов Данте воспринимал географию всерьез, но ни один философ не мог согласиться с его отказом от основополагающего принципа, что Вселенная состоит из сфер. Если идеализированная схема Аристотеля, состоящая из концентрических сфер, была симметрична по всем осям, то более сложные средневековые варианты (за исключением пятого) имели только одну ось симметрии. Более того, эта ось проходила не с севера на юг через полюса, а через Иерусалим и геометрический центр Вселенной. Если бы философы позднего Средневековья попытались представить (разумеется, на это были способны немногие) Землю, которая вращается в пространстве вокруг оси север – юг, то многие из них пришли бы к выводу, что центр тяжести Земли (или сферы земли, или сферы воды) находится за пределами этой оси; такой вращающийся шар естественным образом совершал бы колебательные движения. Исключение составляли парижские философы, для которых оба центра, земли и воды, совпадали с центром Вселенной. Теорию дневного вращения Земли, несмотря на ее логичность, признавал лишь один из известных философов, парижанин Николай Орезмский (1320–1382). Важно, что Орезмский, в отличие от других философов, соглашавшихся (как и он) с существованием двух сфер, земли и воды, с разными геометрическими центрами, не считал, что сфера воды больше, чем сфера земли. Он утверждал, что если бы две сферы имели общий центр, то вода неизбежно покрывала бы всю поверхность Земли – за исключением, возможно, горных вершин. В его представлении сфера воды похожа на плащ или капюшон, покрывающий Землю. В результате у него получалась – что видно по иллюстрациям к «Книге о небе и мире» (Livre du ciel et du monde, 1377) – Земля как единый шар, способный вращаться вокруг своей оси (но поскольку его окружала сфера воды, антиподов на нем быть не могло) 415. Так сложилось, что книга Орезмского не была опубликована и не могла получить широкое распространение, поскольку была написана на французском 416. Таким образом, теорию двух сфер, из которых состоит наш мир, разделяли почти все философы, астрономы и картографы (несмотря на известные проблемы) вплоть до конца XV в., а обнаруженная «География» Птолемея без особого труда встроилась в эту 415 См. цветную иллюстрацию 3. В данном контексте при размышлении об антиподах важно не забывать об Австралии и Новой Зеландии (остававшихся неисследованными вплоть до конца XVIII в.). Два места на земном шаре называются антиподами, если они прямо противоположны друг другу. Теория двух сфер, как ее обычно преподносили, делает существование антиподов невозможным, поскольку ограничивает сушу одним полушарием. Орезмский же считал, что путь от Африки до Индии в западном направлении, вероятно, меньше, чем путь на восток, из чего следовало, что он допускал наличие суши вблизи экватора на расстоянии более 180° объединенной сферы земли и воды, из чего следует и возможность существования истинных антиподов – как крайний случай. Тем не менее он настаивал, что в более высоких широтах антиподов быть не может, поскольку не меньше половины сферы Земли должно быть покрыто водой. 416 Duhem . Un précurseur français de Copernic (1909); Duhem . Le Système du monde. Vol. 9 (1958). 202–204, 329–344; Sarnowsky . The Defence of the Ptolemaic System’ (2007). 35–41; Grant . Planets, Stars and Orbs (1994). 642–647; Oresme . Le Livre du ciel et du monde (1968).
систему417. Португальские мореплаватели достигли экватора в 1474/75 г. (понять это нетрудно: Полярная звезда пропадает из виду), открыв новое небо с новыми звездами, однако они не обнаружили необитаемой зоны. Это требовало лишь незначительной корректировки взглядов – не более418. Не подлежало сомнению, что Птолемей в «Географии» (в отличие от «Альмагеста») рассматривает землю и воду как единую сферу, и это не могло не вызвать интереса. После перевода «Географии» Птолемея в 1443 г. появилось упоминание о земном шаре, «согласно описанию Птолемея» 419. Колумб читал Птолемея и был убежден, что земля и вода образуют одну сферу; он заказал маленький глобус, чтобы показать на нем планируемое путешествие. В то же время Колумб отвергал свидетельства Птолемея о границах обитаемой области, предпочитая взгляды Марина Тирского (ок. 100–150), который утверждал, что она простирается дальше, чем половина земного шара, – что очень трудно совместить с теорией двух сфер. Однако это еще не было серьезным кризисом теории двух сфер: географы, призванные Фердинандом и Изабеллой для оценки планов Колумба, без колебаний отвергли их целиком и полностью420. Кризис начался после того, как в 1492 г. Колумб высадился на незнакомую землю. В 1493 г. Питер Мартир писал, что Колумб вернулся от «западных антиподов». В нотариальном свидетельстве, составленном Валентином Фернандесом в 1503 г., открытие Бразилии Педру Алваришем Кабралом описывалось как «открытие земли антиподов» 421. (Он был прав: Бразилия является антиподом восточной оконечности мира, известного древним.) Но решающим событием стала публикация в 1503 г. первого письма, написанного (или предположительно написанного) Веспуччи и названного «Новый Свет» (Mundus novus), которое за четыре года было издано двадцать девять раз 422. (Второе письмо Веспуччи познакомило европейскую публику со словом «открытие»; первое к тому времени уже уничтожило средневековую космографию.) Веспуччи утверждал, что столкнулся с новым, обширным континентом, не относящимся к уже известному миру, – он открыл Новый Свет. Более того, было совершенно очевидно, что этот новый континент хоть и находится на расстоянии четверти земного шара от исходной точки путешествия, но от других частей известного мира его отделяет половина земного шара. Кроме того, Веспуччи добрался до 50° южной широты: он обнаружил не просто экваториальный антипод, существование которого допускали некоторые сторонники теории двух сфер. Антиподы стали реальностью, и вся суша нашей планеты уже не помещалась в одно полушарие. Таким образом, главная проблема с антиподами заключалась не в том, что люди ходят там «вниз головой» по отношению к остальным, – нужно быть уж совсем простодушным, чтобы не принять этой идеи, – а в том, что теория двух сфер могла признать антиподы лишь как крайний случай, вдоль границы между Северным и Южным полушариями, и только 417 Общепринятые взгляды см.: Thorndike. The Sphere of Sacrobosco and Its Commentators (1949). 274, 275, 296 (комментарии приписывают Майклу Скоту). 418 Johnson . The German Discovery of the World (2008). 57–71 (хотя ее аргументы противоречат моим). 419 О первых образцах глобусов см.: Helas . Mundus in rotundo et pulcherrime depictus (1998); Helas . Die Erfindung des Globus durch die Malerei – Zum Wandel des Weltbildes im 15. Jahrhundert (2010). Средневековые изображения земного шара, такие как globus cruciger , следует понимать как изображение либо сферы земли, либо сферы неба – другими словами, мира как единого целого (Vogel . Sphaera terrae, 1995. 360). 420 Colón . The Life of the Admiral Christopher Columbus (1992). 15–40 (the globe is on 19); Dalché . The Reception of Ptolemy’s Geography (2007). 329; Randles . The Evaluation of Columbus’ ‘India’ Project (1990). 421 Besse . Les Grandeurs de la terre (2003). 62, 63. 422 Vogel . America (1995). 14.
в том случае, если сфера воды сжималась так, что ее диаметр почти совпадал с диаметром сферы земли423. Утверждение Веспуччи требовало серьезного пересмотра предполагаемого соотношения между элементами воды и земли. До этого момента можно было верить, что обе сферы, земли и воды, имеют округлую форму, а область суши (orbis terrarum , обитаемый мир) в полном соответствии с Библией имеет четыре угла 424. Теперь эти углы превратились, по выражению Джона Донна, в «мысленные углы земного шара» 425. Карта мира. Из «Географии» Птолемея. Рим, 1490. Те же иллюстрации были использованы в двух более ранних изданиях (Болонья, 1477, Рим, 1478) и, следовательно, являются самыми ранними печатными иллюстрациями к «Географии» 423 Например, Гильом Филастр писал в 1414–1418 гг.: «Я говорю, что если предположить, что земля имеет форму сфер, то живущие в самых дальних землях на востоке являются антиподами тех, кто живет в самых дальних землях на западе». Hiatt. Terra incognita (2008). 158. 424 Ezekiel 7:2; Isaiah 11:12. О четырех углах обитаемой земли: Oresme . Traitié de l’espère (1943). Ch. 31. 425 Donne. Holy Sonnets VII.
Представления Клавия в его комментариях к Сакробоско (1570, но здесь рисунок из дополненного издания 1581) об общепринятом соотношении между водой и землей, которое он отвергал. Точки обозначают два геометрических центра, сферы воды (внизу) и сферы земли (вверху). Поскольку дискуссия о том, существует ли всего одна сфера из земли и воды или две разные сферы, неотделима от дискуссии о существовании антиподов (что невыполнимо при модели из двух сфер, за исключением, возможно, узкой полосы пересечения сфер, если они одного размера, то иллюстрация Клавия также включает (несуществующих) антиподов, которые находятся под водой. Но, как известно, антиподы существуют, и поэтому эта традиционная модель неверна Первыми, кто осознал это, были Мартин Вальдземюллер и Матиас Рингманн, когда в 1507 г. трудились над картой мира и сопутствующим ей «Введением в космографию»426. Они пытались понять последствия того, что говорил Веспуччи, и им нужен был способ обозначить Землю, или мир, – единый шар из суши и воды. Они назвали его omnem terrae ambitum , полной окружностью Земли, из которой, по их мнению, Птолемею была известна лишь четверть. Другие первые карты мира представляли собой изображения orbis terrarum . На классической латыни, в которой берет начало этот термин, orbis обычно обозначает диск, но иногда сферу или шар. У Цицерона orbis иногда означает обитаемую сушу в виде диска, 426 См. цветную иллюстрацию 6.
возвышающегося над волнами, а иногда весь шар из земли и океана. Эту двойственность унаследовала эпоха Возрождения. Так, например, атлас Ортелия 1570 г. назывался Theatrum orbis terrarum, то есть театр сферы земель. Фронтиспис книги не оставляет сомнений, что orbis – это шар, но множественное число слова terrae указывает на собрание карт разных стран. В отличие от Ортелия Меркатор использовал фразу orbis terrae – в 1569 г. слово terra уже начало использоваться в значении Земля, или мир (как планета Земля); в неуклюжей фразе Вальдземюллера и Рингманна поменялось одно слово. В 1606 г. название атласа Ортелия уже можно было перевести как «Театр всего мира». И только позже, в 1629 г., был изобретен удовлетворительный специальный термин, который однозначно определял новое понятие: «земной шар» 427. Мы можем подробно проследить развитие этого понятия после публикации «Введения в космографию» Вальдземюллера и Рингманна в 1507 г. Первый признак перемен присутствует уже в учебнике физики, напечатанном в Эрфурте в 1514 г. Автор, Йодокус Трутфеттер, сначала описывает теорию одной сферы, а затем начинает объяснять точку зрения, что море выше суши; он приводит мнение современных космографов о существовании обитаемых антиподов на крайнем востоке и крайнем западе мира, но не забывает упомянуть, что Августин отвергал возможность существования антиподов. В отличие от текста иллюстрация не отличается осторожностью: на ней изображены только три подлунные сферы – земли, воздуха и огня. Совершенно очевидно, что земля и вода теперь составляли единую сферу428429. В 1515 г. Иоахим Вадиан, обладавший самыми разнообразными талантами (он был придворным поэтом империи Габсбургов), опубликовал в Вене маленький памфлет «Дорогой читатель» (Habes lector), переизданный несколько раз, в котором предположил, что открытие Америки означает, в противоположность общепринятому толкованию Аристотеля, что обитаемые земли почти случайным образом разбросаны по поверхности шара, а земля и вода до такой степени перемешаны, что образуют единую сферу 430. Геометрический центр шара, утверждал Вадиан, совпадает с центром тяжести. Что касается опасений Августина, что признание существования антиподов равносильно признанию существования людей, которые не произошли от Адама, ответ прост: можно пройти по суше от Испании до Индии, почти половину земли, и не найти никаких свидетельств того, что любая обитаемая земля находится на большом расстоянии от остальных (намек на то, что Америка расположена 427 Leurechon. Selectae propositiones (1629). 19. Корректировка самой ранней даты (1646), на которую указывает Рандлес: Randles . Geography, Cartography and Nautical Science in the Renaissance (2000). Article 1. 74. Первое из известных использований в английском языке (раньше указываемой OED даты, 1658) – Charleton . The Darkness of Atheism Dispelled 1652). 8. 428 Если мы перейдем от печатных источников к рукописным, то найдем четкое изложение новой теории в тексте, написанном в период с 1505 по 1508 г. Дуарте Пачеко Перейрой (Morison. Portuguese Voyages to America, 1940. 132–135): «Из этого следует, что земля содержит воду и что море не окружает землю, как утверждал Гомер и другие авторы, а скорее земля в ее величии окружает и включает все воды в своих впадинах и в центре; более того, опыт, будучи отцом знания, устраняет все сомнения и недоразумения». Эта точка зрения, по всей видимости, представляет собой нечто среднее между тем, что стало новой стандартной теорией, и теорией Бодена, которая будет рассмотрена ниже. 429 Trutfetter . Summa in tota[m] physicen (1514). Book 2. Ch. 2 (sig. liii – miiv). В Trutfetter . Summa philosophiae naturalis (1517), сокращенной версии предыдущего издания, этот вопрос не рассматривается. 430 Памфлет был повторно издан в 1518, 1522 и 1557 г., но он также появляется в справочном аппарате Pomponius Mela . De orbis situ (1518, 1522, 1530, 1540, 1557), иногда переплетенный отдельно и указанный как отдельная публикация. См.: Randles . Classical Models of World Geography (1994) (перепечатан в Randles . Geography, Cartography and Nautical Science in the Renaissance (2000). 66, 67 (обратите внимание, что ключевая цитата из Вадиана отличается в разных изданиях – сравните Agricola & Vadianus . Habes lector (1515). sig. B iii(r) with Mela. De orbis situ libri tres. Adiecta sunt praeterea loca aliquot ex Vadiani commentariis (1530). sig. X5v.
вблизи Азии). Тремя годами позже, снова в Вене, Георг Танстеттер (известный также как Георг Коллимиций), который тесно сотрудничал с Вадианом, выпустил издание «Трактата о сфере» Сакробоско, содержащее первую иллюстрацию «современного» представления земного шара как состоящего из перемежающихся участков суши и воды431. В 1531 г. Якоб Циглер выпустил в Базеле подробные комментарии к книге II «Естественной истории» Плиния. В ней он истолковывал представления Плиния о том, что вода располагается выше земли с точки зрения средневековой теории двух сфер и приходил к однозначному выводу, что новейшие географические открытия доказали ошибочность этих представлений, поскольку суша не ограничена одной полусферой земного шара 432. В том же году, что и книга Циглера, в Виттенберге появилось издание трактата Сакробоско с введением, которое написал Меланхтон, ведущий лютеранский богослов и преподаватель 433. Введение Меланхтона восхваляло астрономию как науку, изучающую деяния Бога, но также приводило изящные аргументы в пользу астрологии. Это издание многократно перепечатывалось, в том числе пиратским образом (в католических странах введение зачастую печаталось без имени автора, поскольку тексты протестантских авторов были запрещены; в более ранних экземплярах имя Меланхтона на титульном листе просто закрашивалось). Ключевая новая иллюстрация, изображающая шар из земли и воды, была скопирована из издания «Трактата о сфере», выпущенного Петером Апианом в 1526 г., и под влиянием виттенбергского издания она стала новым стандартом; ее даже скопировали для чрезвычайно популярных комментариев к Сакробоско, выпущенных Христофором Клавием, первое издание которых увидело свет в 1570 г.434 431 Mela. De orbis situ libri tres. Adiecta sunt praeterea loca aliquot ex Vadiani commentariis (1530). V2v, V3r, V4r, X2r, X6r, Y3v. О роли Танстеттера как редактора издания Сакробоско 1518 г. см.: Hayton. Instruments and Demonstrations (2010). 129. Об иллюстрации 1524 г. см.: Margolis . Patterns, Thinking and Cognition (1987). 236. Oronce Fine . La Theorique des cielz, 1528 г., не являющаяся комментариями к Сакробоско, также содержит новое представление о земном шаре: Cosgrove. Images of Renaissance Cosmography (2007). 62, 63. 432 Похожие взгляды уже были изложены Фернандесом де Энсико, Магелланом (1520) и Фернелем (1528): Randles . Classical Models of World Geography (1994). 65–69. 433 Gingerich . Sacrobosco as a Textbook (1988). 434 Hamel . Studien zur Sphaera (2014). 42–50.
Первое изображение земли и воды, составляющих единую сферу, где два элемента
переплетаются. Из «Трактата о сфере» Иоанна Сакробоско в издании 1518 г. под редакцией Танстеттера. Подлунных сфер теперь три, а не четыре Представления Клавия из его комментариев к Сакробоско (1570, здесь из издания 1581) о соотношении между землей, водой, воздухом и огнем. Земля и вода составляют одну сферу, окруженную тремя слоями атмосферы (на погоду влияет средний слой) – только внешний слой представляет собой идеальную сферу, за которой располагается сфера огня В 1538 г. в типографии Виттенберга была отпечатана новая, дополненная версия издания Меланхтона, которая содержала volvelles – бумажные инструменты, или иллюстрации с круговыми движущимися частями 435. В этом издании (которое также часто перепечатывалось и копировалось) были исправлены привычные названия глав в тексте Сакробоско. Если в предыдущих изданиях была отдельная глава, в которой доказывалось, что Земля имеет сферическую форму, и отдельная глава для обоснования сферической формы воды, то теперь они были объединены в один раздел о едином шаре, состоящем из воды и земли. Сам текст остался прежним (как, например, в издании для школ, отпечатанном в Лейдене в 1639), однако новое название Terram cum aqua globum constituere 435 Gingerich . Sacrobosco Illustrated (1999). 213, 214.
изменило его смысл 436. С 1538 г. новое представление о том, что земля и вода составляют единую сферу, не оспаривалось ни протестантскими, ни католическими астрономами. Новая иллюстрация Петера Апиана, на которой Земля изображена круглой; впоследствии скопирована Меланхтоном и Клавием. Из «Трактата о сфере» Сакробоско (Sphaera… per Petrum Apianum… recognita ac emendata), 1526 В 1475 г. теорию двух сфер поддерживали и философы, и астрономы; к 1550 г. от нее отказались все437. Однако это не означало, что в новой теории не могут сохраниться некоторые аспекты старой. Можно подумать, что принятие теории земного шара автоматически ведет к признанию, что моря располагаются ниже суши, однако противоположной точки зрения придерживалась и Библия, и многочисленные авторитеты. Поэтому иезуит Марио Беттини (1582–1657) утверждал, что, когда Бог превратил отдельные сферы земли и воды в одну, открыв пустоты в земле, чтобы принять воду, потребовалась некоторая компенсация – существовала опасность (поскольку вода по определению легче земли), что центр тяжести нового земного шара не будет совпадать с центром мира. Потому вода выступила наружу, чтобы ее вес был равен весу земли, который она вытеснила. Каспар Шотт (1608–1666, также иезуит) принял этот аргумент как объясняющий происхождение большинства рек. Их истоки (что должен был продемонстрировать рисунок), полагал он, находятся ниже наивысшей точки моря (высокий уровень моря: F), но выше береговой линии (низкий уровень моря: BC). По его мнению, открытым оставался вопрос о том, 436 Я видел более позднюю перепечатку: Sacrobosco . Sphaera… in usum scholarum (1647). 437 См., например, Beyer . Quaestiones novae (1551) и Sacrobosco . Sphaera (1552) (я использовал издание 1601). В Piccolomini . La Prima parte delle theoriche (1558) считается новым и шокирующим, но автор явно писал для несведущей публики, и он с презрением отзывается о современнике, придерживающемся старых взглядов.
существуют ли реки, исток которых находится выше высокого уровня моря (E). Таким образом, представление о том, что моря находятся выше суши, благополучно дожило до второй половины XVII в.438439. Разумеется, идея измерять высоту горы относительно уровня моря могла появиться только после отказа от этих представлений. Тем не менее это уже не была старая теория двух сфер, и теперь считалось аксиомой, что земля и вода имеют один центр, который одновременно является геометрическим и гравитационным центром земного шара. Я смог найти только двух человек, которые после публикации карты Вальдземюллера пытались защитить старую теорию от ее противников: новая реальность была несовместима со старыми представлениями. Однажды утром, в августе 1578 г., за завтраком у герцога Савойского, Эммануила Филиберта, разгорелся спор о том, почему реки текут в море. Философ Антонио Берга, сторонник Аверроэса, настаивал, что этого не может быть – просто потому, что море выше, чем суша, а вода естественным образом течет вниз. Берга придерживался традиционных взглядов, сложившихся еще в древности: сфера воды в десять раз больше сферы земли, у двух сфер разные геометрические центры, а океаны расположены выше, чем суша. Ему возражал Джованни Баттиста Бенедетти, который занимал официальную должность математика и философа при герцоге, и, поскольку теперь на карту была поставлена честь двух ученых мужей, спор продолжился и после завтрака. Бенедетти посоветовал Берге прочесть Пикколомини, а также изложил свои соображения в записке герцогу; Берга опубликовал опровержение работы Пикколомини, а следовательно, и Бенедетти, который ответил тем, что язвительно высмеял Бергу (который показал свою неосведомленность, спутав Антарктику с Арктикой) и назвал его «наполовину гугенотом» из-за его философии (в отместку за то, что Берга отвергал новые теории, называя их философскими ересями) 440. Следует отметить, что Берга не пытался утверждать, что его устаревшие взгляды пользуются поддержкой современных философов: если другие и думали так же, как он, то проявляли осторожность и не публиковали своих аргументов в печатном виде. Для сохранения традиционных взглядов требовалось не отступать от тезиса, что вся суша сосредоточена в одном полушарии 441. Берга обошел этот вопрос молчанием и, насколько я могу судить, оказался единственным, кто был настолько глуп, чтобы обнародовать свои взгляды 442. 438 В 1618 г. Кеплер говорил, что убеждение, что моря располагаются выше суши, является следствием зрительной иллюзии: Kepler. Epitome astronomiae Copernicanae (1635). 26, 27 (это же мнение высказывается в Froidmont. Meteorologicorum libri sex, 1627). 439 Schott. Anatomia physicohydrostatica (1663). Похожие вопросы обсуждаются в Carpenter . Geographie Delineated (1635). 440 Berga & Piccolomini . Discorso (1579); и Benedetti . Consideratione (1579); два текста затем были опубликованы вместе, на латыни (текст Берги был переведен кем-то другим, поскольку сам Берга уже умер или умирал): Berga & Benedetti . Disputatio (1580). (У текстов разные титульные листы, но сквозная нумерация.) 441 Мадлен Альковер утверждает (Cyrano de Bergerac . Les États et empires de la lune et du soleil, 2004. 27), на основании статьи Мориса Логаа, что в 1634 г. Венсан Леблан отрицал существование второго полушария. Я не видел статью Логаа, но текст Леблана, по крайней мере в переводе, не содержит ничего подобного: Leblanc . The World Surveyed (1660). 171–173. 442 Эта точка зрения высказана в Agostino Michele . Trattato della grandezza dell’acqua et della terra (1583). 13. Микеле был самоучкой, и его не стоит принимать всерьез. Возможно, он был введен в заблуждение тем фактом, что наши антиподы видят часть тех же звезд, что и мы (потому что за ночь мы видим больше звездной полусферы); единственные места, где картина звездного неба различается полностью, – это Северный и Южный полюса. Кроме того, его явно сбило с толку то обстоятельство, что Веспуччи прямо заявлял, что не посетил антипода Западной Европы: из этого не следует отсутствие антиподов новых земель в других частях Старого Света. Убедительность аргументов, представленных географией, см.: Benedetti. Consideratione (1579). 14.
Иллюстрация Шотта из Anatomia physico-hydrostatica fontium ac fluminum, демонстрирующая, как поверхность океана изгибается вверх и как вода из океана попадает под землю через трещины, чтобы снова выйти на поверхность в виде родников и рек. Тот факт, что океан выше, чем суша, объясняет, почему вода может бить из-под земли на уровне морского берега, хотя Шотт признает, что относительная высота гор и океана пока неизвестна, 1663
Тем не менее вполне логично предположить, что выдвигались и другие теории, объяснявшие новые данные. Например, утверждали, что в океане плавает не одна сфера земли, а две. Эта точка зрения была представлена теми, кто описывал Новый Свет как altera orbis terrarum , то есть другую сферу (или круг) земли. Ее на полном серьезе выдвинул Овьедо (Гонсало Фернандес де Овьедо-и-Вальдес), когда писал официальную испанскую историю открытия Нового Света 443. Но для Коперника это была всего лишь фигура речи, поскольку совершенно очевидно, что невозможно иметь две сферы земли и одновременно поместить элемент земля в центр мироздания. Вселенная, в которой две сферы земли содержатся в одной сфере воды, больше не является Вселенной Аристотеля. Altera orbis terrarum – это всего лишь красивая фраза, которую невозможно превратить в жизнеспособную теорию. Таким образом, теорию двух сфер пришлось отбросить даже несмотря на то, что некоторые консервативные мыслители продолжали настаивать, что моря расположены выше, чем суша. Но один автор не сдавался. В 1596 г. Жан Боден в своем труде «Всеобъемлющий театр природы» (Universae naturae theatrum) утверждал, что новые континенты – это просто громадные плиты, плавающие в бездонном океане. Он считал, что элемент земля тяжелее элемента вода, но (согласно неоспариваемому мнению Аристотеля) тяжелые объекты могут плавать на поверхности легких, если они имеют соответствующую форму. Плавающие континенты будут вытеснять воду своим весом (согласно закону Архимеда), но далее делался нелогичный вывод, что под водой окажется только седьмая их часть. Еще больше запутывая дело, Боден настаивал на традиционной точке зрения, что океан вспучивается над землей, возвышаясь над самыми высокими горными пиками, хотя это противоречило его утверждению, что континенты плавают в его волнах. Боден был убежден в существовании плавучих участков суши; он не сомневался в достоверности рассказов об островах, меняющих местоположение, – но большие континенты, полагал он, остаются на месте. Таким образом, Боден предлагал не «земноводный», а «водноземной» шар, в котором (как один комментатор отметил на полях текста) terram aquis supernatare , то есть земля плавает на поверхности вод 444. Мотивы Бодена для такой странной аргументации достаточно сложны. Во-первых, он недвусмысленно заявлял, что Земля не ограничена одним полушарием, и поэтому о старой теории двух сфер не могло быть и речи. Во-вторых, он читал у Коперника, что если сфера земли в десять раз меньше сферы воды, то для того, чтобы захватывать центр сферы воды, она должна быть полностью погружена в воду. Поэтому он решил, что единственным решением, сохраняющим соотношение между водой и землей, является разбиение земли и рассеяние ее по поверхности воды. При этом он полностью отказался от двух принципов, на которых основана теория Аристотеля: элемент земля представляет собой сферу и элемент земля находится в центре мира. Тем не менее Боден был убежден, что приблизился к ветхозаветной версии о Сотворении мира. Теория Бодена была такой странной, что Каспар Шотт, писавший свои труды по прошествии двух поколений, просто не мог ее понять 445. Он неверно истолковал ее, 443 Bataillon . L’Idée de la découverte de l’Amérique (1953). 31. Фраза была написана Питером Мартиром в 1493 г.: O’Gorman . The Invention of America (1961). 84, 85. Сам Колумб утверждал, что в третьем путешествии открыл новые земли, тогда как в первых двух – часть Азии: O’Gorman . The Invention of America (1961). 94–104. Новые земли также иногда называли extra orbem , вне сферы земли: Randles . Le Nouveau Monde (2000). 31. 444 Bodin . Universæ naturæ theatrum (1596). 183–193; Bodin . Le Théatre de la nature universelle (1597). 252–265; Blair . Annotations in a Copy of Jean Bodin, Universae naturae theatrum (1990). 445 Schott. Anatomia physico-hydrostatica (1663). 245–248.
посчитав, что очень большая сфера земли плавает в сфере воды, что позволяет сохранить главные принципы Аристотелевой модели. Шотт нарисовал сложную схему, объясняющую, как ему казалось, теорию Бодена, хотя его рисунок был совсем не похож на рисунок Бодена. Полное непонимание со стороны Шотта указывает, как трудно было Бодену убедить других ученых мужей, что его взгляды имеют смысл. Любой, кто тщательно изучит ее, будет вынужден признать, что объяснение, как плавают объекты тяжелее воды, полно противоречий, потому что Архимед и Аристотель попросту несовместимы, и очень трудно понять, как на основе гипотезы Бодена о плавающих континентах может получиться серьезная теория. Иллюстрация Жана Бодена, призванная продемонстрировать его новую теорию соотношения между водой и землей. Из трактата «Всеобъемлющий театр природы», 1596. Средний рисунок изображает стандартное для позднего Средневековья представление о сфере земли в десять раз меньшей, чем сфера воды. Верхний рисунок демонстрирует, что
такая сфера не пересекает центр мира. Нижний рисунок иллюстрирует теорию самого Бодена – ряд плоских плит земли, плавающих в океанах В таком случае какой вывод мы должны сделать из почти безмолвной кончины теории двух сфер? Серьезные аргументы против нее существовали еще задолго до того, как Веспуччи добрался до Нового Света. Эгидий Римский и Данте указывали, что если теория верна, то выступающая из воды суша должна иметь форму круга, что не соответствовало действительности. Как вполне разумно отмечал Данте, сначала нужно установить, что явление имеет место (an sit ), а уже затем выяснять его причину (propter quid ); по его мнению, факты опровергали теорию двух сфер, хотя эта теория была изящным новым толкованием Аристотеля 446. Более того, первые подвергавшиеся критике сторонники теории, которая впоследствии получит название теории земного шара, Андало ди Негро и Фемо Джудеи, указывали на круглую форму земной тени во время затмений Луны (явление, уже известное Аристотелю) как на доказательство существования единственной сферы из земли и воды, а не двух перекрывающихся сфер. Вода, утверждали они, не просто прозрачна: сфера воды будет должна отбрасывать тень, но такой тени не наблюдалось 447. Коперник повторно использовал этот аргумент в своей книге «О вращении небесных сфер» (1543). 446 Сравните с современником Данте, Леви бен Гершомом, который утверждал, что наблюдения противоречат теории эпициклов Птолемея: «Никакие аргументы не могут отменить реальности, которая дается нам в чувствах; истинное мнение должно следовать за реальностью, а реальности нет нужды подчиняться мнению». (Goldstein. Theory and Observation, 1972. 47). Такие утверждения могут оправдать взгляды меньшинства; до 1492 г. их приверженцы не решались вступать в интеллектуальный спор. 447 Cesari . Il trattato della sfera (1982). 144–147.
Версия Майкла Скота новой теории Бодена о соотношении земли и воды. Из Anatomia physico-hydrostatica, 1663 В XIV в. уже были представлены свидетельства, причем убедительные, против теории двух сфер, однако от них отмахнулись. В начале XVI в. путешествия Веспуччи дали дополнительные аргументы против этой теории, и они оказались решающими. Отличалось ли качество этих свидетельств? Да, отличалось. У путешествий Веспуччи имелись две важные особенности (независимо от того, что современные ученые спорят, сколько экспедиций он совершил и он ли писал рассказы о путешествиях, опубликованные от его имени). Во-первых, никто не отрицал огромного значения его открытий в Новом Свете – по той простой причине, что они стали делами государственной важности, заботой королевских особ. Могли ли ученые игнорировать то, к чему власти относились серьезно? Во-вторых, и это еще важнее, эти открытия были новыми . Когда Андало ди Негро ссылался
на тень Земли во время лунных затмений, а Данте говорил о форме суши в известной части мира, они обращались к информации, которая была известна уже давно. Было легко предположить, что эти аргументы когда-то и где-то уже принимались в расчет сторонниками теории двух сфер, поскольку в эпоху рукописных книг никто не мог рассчитывать на доступ ко всем работам на данную тему. Но совершенно очевидно, что информация Веспуччи была просто беспрецедентной: ее следовало учесть здесь и сейчас. Появление понятия открытия и наличие печатного станка изменили соотношение между теорией и фактами, сместив его от истолкования старых аргументов к принятию и интерпретации новых фактов. Путешествия Веспуччи нанесли смертельный удар теории двух сфер. Новые факты опровергли ее. Фактически это был первый – с момента появления университетов в XIII в. – случай, когда теория была уничтожена фактом 448. Это может показаться удивительным, но никогда прежде эмпирические данные не определяли результат давнего спора между философами. Например, Аристотель полагал, что все нервы соединяются с сердцем; Гален показал, что нервы ведут в головной мозг, но философы из числа последователей Аристотеля, древние и средневековые, продолжали настаивать на своем, словно Галена вовсе не существовало449. В 1507 г. взаимоотношения между теорией и фактами изменились, причем навсегда. §3 В 1543 г. Коперник опубликовал трактат «О вращении небесных сфер», в котором утверждал, что Земля не покоится в центре Вселенной, а вращается вокруг Солнца, делая один оборот за год, а также вращается вокруг своей оси с периодом в двадцать четыре часа450. Коперник был каноником собора в Фромборке, в польской Пруссии, но образование получил в Италии (учился астрономии в Болонье и медицине в Падуе). Свою великую работу он начинает с обзора традиционных представлений, как они изложены у Сакробоско: небо имеет форму сферы, земля имеет форму сферы, вода имеет форму сферы. В последнем предложении главы 2 книги I Коперник опровергает довод (взятый из Плиния и Библии), что вода располагается выше земли. Затем, в главе 3, он подчеркивает значение открытия Америки: земля и вода составляют единую сферу, у которой центр тяжести совпадает с геометрическим центром. Объем воды не может, как утверждали многие средневековые философы, в десять раз превышать объем земли, поскольку в таком случае круглая и возвышающаяся над поверхностью воды земля окажется за пределами центра мира – это элементарная геометрия. Антиподы и антихтоны действительно существуют. «Геометрические расчеты заставляют думать, что сама Америка по своему положению диаметрально противоположна Гангской Индии» (расчеты, существенно отличавшиеся от расчетов Вадиана, который считал Индию и Африку антиподами). Таким образом, Коперник считал Землю сферой – форма тени, которую Земля отбрасывает на Луну во время затмений, неопровержимо доказывает, что Земля является идеальной сферой, несмотря на существующие на ней горы и долины, – и это был первый важный шаг в доказательстве ее вращения вокруг оси север – юг. В 1543 г. общие положения аргументации Коперника в пользу Земли как единого шара 448 Как мы уже видели (см. выше, гл. 3) примерно в то же время факты опровергли распространенное убеждение в том, что тропики необитаемы. 449 Аналогичным образом еще Птолемей продемонстрировал, что никакая гомоцентрическая планетарная система не может объяснить наблюдаемые явления, но философы вплоть до XVI в. упорно пытались построить такую систему. 450 Copernicus . On the Revolutions (1978).
уже считались общепринятыми. Но нам известно, что Коперник впервые изложил свои взгляды в 1514 г., поскольку именно к этому времени относится как минимум один экземпляр его предварительных набросков, или «Малый комментарий» (Commentariolus) 451. Коперник оставил нам два варианта, описывающие ход его мыслей, один в начале «Малого комментария», а другой в начале трактата «О вращении небесных сфер». Из них мы узнаем, что его уже давно не удовлетворяли общепринятые астрономические теории, и он приступил к систематическому чтению, пытаясь найти альтернативы; поначалу мысль о том, что Земля движется, показалась ему абсурдной, однако он не отбросил ее, твердо решив проверить, способна ли она стать основой для новой теории движения небесных тел. Те немногие комментаторы, кто понял относительную новизну идеи Коперника о том, что земля и вода образуют единую сферу, совершенно справедливо заключили, что Копернику пришлось преодолеть одно существенное препятствие, прежде чем говорить о вращении Земли: он должен был представить Землю сферической (как максимум симметричной относительно оси север – юг, или как минимум с центром тяжести, расположенном на оси север – юг)452. Эдвард Розен утверждал, что географическая информация в главе 3 книги I «О вращении небесных сфер» (например, что Америка является антиподом «Гангской Индии») основана на карте Вальдземюллера 1507 г. и сопутствовавшей ей книге, а также на другой карте, Иоганна Рюйша, опубликованной в этом же году453. В таком случае взгляды Коперника на Землю как на сферу сформировались в период с 1507 по 1543 г. Но когда именно? Здесь «Маленький комментарий» нам ничем не поможет. Он начинается с ряда аксиом. Вторая из них гласит: «Centrum terrae non esse centrum mundi, sed tantum gravitatis et orbis Lunaris» («Центр Земли не является центром мира [поскольку в центре мира находится Солнце, а не Земля], но только центром тяготения и центром лунной орбиты»). Как мы уже видели в главе 3, в позднем Средневековье господствовала точка зрения, что земля перекрывает центр мира, но что существуют по меньшей мере три центра тяжести: центр земли, в направлении которого падают все предметы, центр сферы воды, к которому устремляется вся вода, и общий центр тяжести (то есть точка равновесия) двух сфер. Один из этих трех центров считался центром мира. Фраза «Centrum terrae esse centrum gravitatis» решительно разрешает этот спор, используя минимальное количество слов; она опровергает аргументы парижской школы и показывает, что в 1514 г. Коперник уже согласился с аргументами, которые впервые были опубликованы Вадианом (в 1515) и которые повторил Коперник в трактате «О вращении небесных сфер»: геометрический центр Земли совпадает с ее центром тяжести. Затем Коперник следующим образом описывает вращение Земли: «Alius telluris motus est quotidianae revolutionis et hic sibi maxime proprius in polis suis secundum ordinem signorum hoc est ad orientem labilis, per quem totus mundus praecipiti voragine circumagi videtur, sic quidem terra cum circumfluis aqua et vicino aere volvitur». В переводе это выглядит так: «Вторым движением Земли будет суточное ее вращение; это ее наиболее собственное движение совершается вокруг ее полюсов по направлению последовательности знаков, то есть к востоку; вследствие этого движения весь мир кажется вращающимся в головокружительном вихре. Конечно, Земля так вращается вместе с обтекающей ее кругом водой и прилегающим воздухом». То есть, по мнению Коперника, Земля «вращается вместе с обтекающей ее кругом 451 Rosen (ed.). Three Copernican Treatises (1959). 452 Goldstein . The Renaissance Concept of the Earth (1972), ключевой текст, нашедший отражение в Grant . In Defense of the Earth’s Centrality and Immobility (1984). 27 n. 90 и в Grant . Planets, Stars and Orbs (1994). 636 n. 66. 453 Rosen . Copernicus and the Discovery of America (1943).
водой и прилегающим воздухом» (terra cum circumfluis aqua et vicino aere volvitur )454. Согласно традиционной точке зрения (решительно отвергнутой Коперником в трактате «О вращении небесных сфер»), земля плавает, подобно яблоку, в большей по размерам сфере воды455. Но в данном случае вода сравнивается с прилегающим воздухом – оба элемента лежат на поверхности земли и обтекают ее. Таким образом, здесь предваряется вывод, сделанный ниже: «…на основании всего этого, я думаю, очевидно, что земля и вода вместе стремятся к одному и тому же центру тяжести, а если земля и является более тяжелой, то все же нет у нее другого центра объема. Разверстые ее части заполнены водой, и количество воды весьма умеренно по сравнению с землей, хотя по площади вода, может быть, и казалась более обширной». Таким образом, если мы внимательно посмотрим на текст «Маленького комментария», то в сокращенном виде найдем там аргументы, составляющие основу трактата «О вращении небесных сфер»456. Из этого следуют три вывода. Во-первых, «Маленький комментарий» не мог быть написан раньше 1507 г. Независимые свидетельства подтверждают эту точку зрения, поскольку в 1508 г. Лоуренс Корвин написал стихотворение, в котором намекал, что в то время Коперник не сомневался в движении Солнца по небу; другими словами, он еще не пришел к гелиоцентризму, хотя уже сформулировал «удивительные новые принципы» 457. Во-вторых, Коперник был одним из первых (с XIV в.), кто отверг теорию двух сфер с несколькими центрами, и это помогает объяснить тот факт, что в своем трактате «О вращении небесных сфер» он уделяет столько места этой дискуссии, хотя в 1543 г. он, если можно так выразиться, ломится в открытую дверь. И действительно, его последователи, должно быть, не понимали, почему этой теории уделено такое внимание – так быстро она утратила актуальность. Томас Диггес, переводивший основные положения книги I на английский, вообще опустил дискуссию о форме Земли, поскольку считал само собой разумеющимся, что Земля представляет собой «шар из земли и воды»458. Помня об этой хронологии, мы теперь можем попробовать ответить на важный вопрос: было ли принятие Коперником теории шара из земли и воды поворотным событием, которое привело к переходу от геоцентризма к гелиоцентризму? Высказывались предположения, что изначально Коперник рассматривал геогелиоцентрическую теорию, согласно которой Солнце вращается вокруг Земли, а планеты вокруг Солнца, – ее сторонником впоследствии 454 Сравните с переводом Swerdlow . The Derivation and First Draft of Copernicus’s Planetary Theory (1973). 444. 455 О яблоке см.: Mela. De orbis situ libri tres. Adiecta sunt praeterea loca aliquot ex Vadiani commentariis (1530). X5(v); Gaspar Peucer . Elementa doctrinae (1551), цит. в Besse . Les Grandeurs de la Terre (2003). 110; Hooykaas . G. J. Rheticus’s Treatise on Holy Scripture and the Motion of the Earth (1984). 86, 128–131. Следует также обратить внимание, что глагол circumfluere был использован в данном контексте Вадианом. Очевидно, Ретик читал Вадиана, причем, возможно, узнал о его труде от Коперника: Hooykaas . G. J. Rheticus’s Treatise on Holy Scripture and the Motion of the Earth (1984). 87. 456 Если это действительно так, то комментарии Свердлоу в некоторых аспектах вводят в заблуждение. Так, например, второй постулат Коперника нельзя считать просто следствием постулатов 3 и 6, а выражение Коперника centrum gravitates означает не просто «центр, к которому стремятся тяжелые тела» (Swerdlow . The Derivation and First Draft of Copernicus’s Planetary Theory (1973). 437–438). Точно так же не может быть верным утверждение, что для того, «чтобы понять работу Коперника должным образом, как понимает ее он, необходимо полностью отделить ее от натурфилософии… и физики земли» (440). 457 Свердлоу берет самую раннюю из возможных дат, 1500 г. Ряд убедительных аргументов в пользу 1508 г. (но без упоминания ключевого свидетельства, которое обсуждается здесь) см. в: Goddu . Reflections on the Origin of Copernicus’s Cosmology (2006). Годду (37, 38, вслед за Розеном) анализирует стихотворение Корвина. 458 Digges & Digges . A Prognostication Everlasting (1576). M2r.
был Тихо Браге459. Я сомневаюсь, поскольку Коперник предполагал, что правильная теория уже сформулирована: он изучал литературу, чтобы найти ее. Он искал не совершенно новую теорию, потому что еще не воспринимал знание как поступательное движение. Тем не менее если Коперник действительно рассматривал геогелиоцентризм, то быстро отказался от него – предположительно после того, как понял, что подобная теория несовместима с верой в материальные сферы, на которых находятся планеты, поскольку орбита Марса, вращающегося вокруг Солнца, должна пересекаться с орбитой Солнца, вращающегося вокруг Земли. Как только он обратился к более радикальной теории, гелиоцентрической (более радикальной, поскольку Земля в ней двигалась, но более консервативной в том смысле, что она была совместима с верой в существование материальных сфер, а также что ее уже сформулировали философы древности), стала очевидна необходимость определить форму агрегата из земли и воды, чтобы Земля могла вращаться вокруг своей оси и лететь в пространстве. Теория Сакробоско, в которой вода была вытеснена из центра земли, никуда не годилась – как могла вода равномерно вращаться вокруг центра земли, если он не совпадал с центром воды? Утверждение парижской школы, что центр тяжести земли совпадает с центром сферы воды, на первый взгляд казалось приемлемым. Но Коперник был хорошим математиком. Он быстро понял – на что указывал в трактате «О вращении небесных сфер», – что если сфера воды в десять раз больше сферы земли, как было принято считать, то сфера земли вообще не будет захватывать центр сферы воды, и поэтому центры тяжести земли и воды не могут совпадать. Даже если существенно уменьшить сферу воды, будет трудно совместить два центра тяжести, сферы земли и сферы воды, если только не предположить, что суша радикально отличается от элемента земля – и бо́льшая часть сферы земли не состоит из теоретически «сухой» земли, хотя и находится под водой. Петр д’Альи, а вслед за ним и Грегор Рейш (1496) пытались преодолеть эту трудность, рассматривая землю и воду как некий агрегат, когда определяли центр тяжести, который мог совпадать с центром мира: результатом стала теория, утверждавшая, что для одних целей «Землю» можно рассматривать как состоящую из двух сфер, а для других – из одной сферы460. В любом случае допускалось существование антиподов, но только вдоль границы двух сфер. 459 Swerdlow . The Derivation and First Draft of Copernicus’s Planetary Theory (1973). 425–429. 460 Besse . Les Grandeurs de la Terre (2003). 91–96.
Экземпляр первого издания Коперника (из Лихайского университета) с примечанием современника. Читатель разбирал логику утверждения Коперника, что традиционное соотношение между землей и водой содержит внутреннее противоречие, потому что объем воды не может в десять раз превышать объем земли, если сфера земли захватывает центр сферы воды – необходимое условие для того, чтобы Земля по-прежнему находилась в центре мира, хотя ее центр не совпадал с ним. Именно на это рассуждение обратил внимание Боден в своем «Театре». (Я в долгу перед Ноэлем Малкольмом, который кропотливо переводил это примечание.) Коперник сообщает нам, что систематически изучал литературу, когда трудился над
созданием своей новой астрономии 461. Майкл Шенк предположил, что в процессе работы Коперник получил экземпляр сборника текстов по астрономии, изданный Джунти в Венеции в 1508 г. Там он нашел бы краткое изложение Гроссетеста теории одной сферы. Но тот же сборник содержал комментарии к Сакробоско, автором которых был Джамбаттиста Капуано (первая публикация в 1499), первую докоперниковскую работу, где обсуждалась возможность разработки астрономической теории, основой которой была бы движущаяся Земля 462. Очень важно, что Капуано обсуждает не только знакомую идею (развитую Орезмским), что суточное вращение присуще Земле, а не небу, но также возможность, что Земля движется по небу в ежегодном цикле, сравнимом с тем, что приписывают Солнцу. Если этот текст действительно попал в руки Коперника (а Коперник учился в Падуе с 1501 по 1503 г., когда Капуано читал там курс астрономии, и поэтому он мог уже слышать эти идеи на лекциях или читать в более раннем издании), то можно не сомневаться, что он внимательно прочел эту работу. Капуано сформулировал ряд возражений против теории движущейся Земли, которые стали классическими, – например, если вы подбросите предмет вертикально вверх, находясь в движущейся лодке, то он упадет в воду позади лодки 463. Если Земля вращается, говорил он, то мы все бы уже утонули, поскольку каждый день небольшая часть земли скрывалась бы под водой – так должно было произойти согласно теории двух сфер. Если, как утверждали некоторые, земля, вода и воздух вращались все вместе, то откуда берутся свирепые ветры, дующие на вершинах гор? Капуано был убежден, что эти ветры вызваны движением сфер, которое передается в верхние слои атмосферы. Аккуратная формулировка Коперника в «Маленьком комментарии», что Земля вращается вместе с прилегающим воздухом, словно оставляет возможность верхнему слою атмосферы не следовать за Землей, что дает основу для альтернативного объяснения ветра на горных вершинах. Чтение работ Капуано должно было укрепить Коперника в желании выяснить, какова форма Земли и что происходит с телами, которые падают на движущуюся Землю. (Теория Коперника объясняет, что падающие тела движутся вместе с Землей, однако он не обобщает это утверждение и не говорит, что падающее тело на движущемся корабле движется вместе с кораблем.) Если мы представим, что Коперник в своих рассуждениях дошел до этого пункта вскоре после 1508 г., то географические открытия Америго Веспуччи, а также карты и комментарии к ним Вальдземюллера и Рингманна были очень важны для разработки его гелиоцентрической теории, поскольку предлагали окончательное решение вопроса о форме Земли. Из текста трактата «О вращении небесных сфер» совершенно очевидно, что идея шара из земли и воды была для Коперника ключевой – последним кирпичиком в здании новой теории 464. Без Веспуччи не было бы и учения Коперника, поскольку этому учению требовалась новая теория Земли. Можем ли мы проверить утверждение, что необходимым условием для теории Коперника была теория Земли? На первый взгляд это кажется невозможным: все, что у нас есть, – это два текста Коперника. Однако существуют три других, более ранних изложения теории движущейся Земли: «Первое повествование» (Narratio prima, 1540) Ретика, ученика 461 Copernicus . On the Revolutions (1978). 4. 462 Shank . Setting up Copernicus? (2009). 463 Собрание аргументов против теории движущейся Земли уже можно было найти у Альберта Саксонского, который отвечал Орезмскому: Sarnowsky . The Defence of the Ptolemaic System (2007). 35–38. 464 Swerdlow . The Derivation and First Draft of Copernicus’s Planetary Theory (1973). 425, 442, 474, 477. Недавнюю дискуссию по этим вопросам (в которой как минимум признается работа Марголиса) см.: CluttonBrock . Copernicus’s Path to His osmology (2005). 209 and n. 27 (нашла отражение в Goddu . Reflections on the Origin of Copernicus’s Cosmology, 2006. N. 55).
Коперника, представлявшее собой первое печатное изложение коперниканской теории; небольшой трактат Челио Кальканьини, в котором утверждалось, что Земля вращается вокруг своей оси (до 1541 г., до Коперника) и текст Ретика (1542/43), посвященный библейским аргументам против вращения Земли. Хотя все они появились слишком поздно, когда уже не было нужды подробно доказывать, что Земля представляет собой единую сферу, в каждой из них мы находим, как и предполагалось, ссылки на современную теорию Земли. В каждой из них автор считает своим долгом подчеркнуть, что Земля представляет собой идеально круглый шар, или сферу 465. §4 Каковы же последствия объявления Земли планетой? Коперник не обсуждал этот вопрос, но это пришлось делать его преемникам. Летом 1583 г. в Оксфорде читал курс лекций маленький эксцентричный итальянец 466. Мы знаем его как Джордано Бруно, но он любил придумывать себе длинные имена и титулы – как говорили, длиннее, чем его тело. Первые строки его рекомендательного письма вызывали смех: Филотей Иордан Бруно Ноланский, доктор наиболее глубокой теологии, профессор чистейшей и безвредной мудрости, известный в главных академиях Европы, признанный и с почетом принятый философ, чужеземец только среди варваров и бесчестных людей, пробудитель спящих душ, смиритель горделивого и лягающегося невежества; тот, который во всем проповедует общую филантропию, предпочитает общество не британца или итальянца, мужчины или женщины, епископа или короля, одетого в мантию или доспехи, а лишь тех, с речами более миролюбивыми, более культурными, более точными и более полезными, который уважает не умащенные волосы, отмеченный печатью лоб, чистые руки или обрезанный пенис, а дух и культуру ума (что можно прочесть по лицу человека), которого ненавидят распространители глупости и любят честные ученые и которого привечают самые благородные умы, от всего сердца приветствует превосходнейшего и прославленного вице-канцлера Университета Оксфорда467. Поднимаясь на кафедру, он закатывал рукава, как фокусник, собирающийся продемонстрировать трюк. Во время лекции он подскакивал и приседал, как птица поганка. Как и все преподаватели, он читал лекции на латыни, но его латынь была с неаполитанским акцентом; преподаватели Оксфорда (считавшие свою латынь цивилизованной и утонченной) смеялись, когда он произносил chentrum, chirculus и circumferenchia (что в наши дни стало одним из вариантов нормы). Но больше всего их раздражала его приверженность идеям Коперника. По прошествии двадцати лет Джордж Эббот, который в конечном итоге стал архиепископом Кентерберийским, вспоминал, словно это было вчера: «помимо всего прочего он распространял мнение Коперника, что Земля вращается, а небо неподвижно; хотя 465 Rheticus . Narratio prima (1540). D3v, D4v; Rosen (ed.). Three Copernican Treatises (1959). 14 («как шар на токарном станке»). 149; Calcagnini . Opera aliquot (1544). 389 (где окружающие элементы служат для превращения Земли в идеальную сферу, pilae absolutae rotunditatis ); Hooykaas . G. J. Rheticus’s Treatise on Holy Scripture and the Motion of the Earth (1984). 49 (totum globum ex terrâ et aquâ, cum adiacentibus elementis). 54, 55. 466 О Бруно в Англии см.: Massa. Giordano Bruno’s Ideas in Seventeenth-century England (1977); Giordano Bruno at Oxford’ (1986); Ciliberto & Mann (eds.). Giordano Bruno. 1583–1585 (1997); Feingold. Giordano Bruno in England. Revisited (2004); Rowland . Giordano Bruno (2008). 139–187. 467 Rowland . Giordano Bruno (2008). 145, 146.
поистине это его голова шла кругом, а его мозги не знали покоя»468. Это было через сорок лет после того, как Коперник опубликовал свой трактат «О вращении небесных сфер». Его новая астрономия обладала очевидными преимуществами перед общепризнанной астрономией Птолемея. Платон и Аристотель считали, что все движения в небе должны быть круговыми и неизменными, и, как мы уже видели, в эпоху Возрождения некоторые философы (например, Джироламо Фракасторо (1477–1553), который впервые серьезно задумался о заразных болезнях) по-прежнему пытались построить простую модель мира, состоящую из сфер, вложенных друг в друга и имеющих общий центр. Но, несмотря на все старания, им не удавалось получить модели, согласующиеся с тем, что происходило в небе. Птолемей смог создать систему, которая точно предсказывала движение небесных тел. В его системе – так же, как у Платона и Аристотеля, – Луна, Солнце и все остальные планеты вращались вокруг Земли, но для точного описания движения этих небесных тел использовалась сложная система деферентов (кругов), эпициклов (кругов, движущихся по кругу), эксцентриситетов (кругов, вращающихся вокруг смещенного центра) и эквантов. Эквант был способом ускорить и замедлить движение небесного тела, измеряя его движения не из центра круга, а из другой точки. Из этой точки движение можно было описать (ошибочно) как равномерное; это был способ обхитрить фундаментальный принцип философии, заключающийся в том, что движения в небе должны быть круговыми и неизменными. (Для тех, кто строго придерживался теории Аристотеля, даже эпицикл был обманом, поскольку они хотели, чтобы все круговые движения имели общий центр.) Коперник предложил отказаться от эквантов и убрать эпициклы для всех планет, расположенных от Солнца дальше, чем Земля, продемонстрировав, как движение Земли создает кажущееся движение небесного тела, эквивалентное эпициклу. Коперник также утверждал, что его теория предпочтительнее, потому что более строго определяет характеристики системы в целом. Последователи Птолемея, например, не могли точно сказать, что ближе к Земле, Венера или Солнце (правильный ответ, в наших терминах, – иногда Солнце, иногда Венера, – но для системы Птолемея это было неприемлемо), тогда как система Коперника устанавливала строгий порядок среди небесных тел 469. Раньше я думал, что Коперник инициировал интеллектуальную революцию – недаром Томас Кун назвал свою первую книгу «Коперниканская революция» (The Copernican Revolution, 1957). Но в этом отношении Кун ошибался. Астрономы всей Европы с большим интересом отнеслись к идеям Коперника, но почти все, за редким исключением, считали очевидным, что теория движущейся Земли неверна. Если бы Земля двигалась, мы бы это чувствовали; мы же чувствуем ветер, дующий в лицо. Предмет, падающий с высокой башни, отклонялся бы к западу. Ядро, выпущенное из пушки на запад, пролетело бы дальше, чем выпущенное на восток. Поскольку ничего такого не наблюдалось, ведущие астрономы – Эразм Рейнгольд (1511–1553), Михаэль Местлин (1550–1631), Тихо Браге (1546–1601), Христофор Клавий (1538–1612) и Джованни Маджини (1555–1617) – были уверены, что Коперник ошибается. Тем не менее они восхищались простотой его метода вычислений и вдохновлялись мыслью о возможности отказа от эквантов. Все сохранившиеся экземпляры первого (1543) и второго (1566) изданий трактата «О вращении небесных сфер» в настоящее время тщательно изучены, чтобы выявить все комментарии на полях, оставленные первыми читателями. В результате мы с большой достоверностью можем сказать, что им нравилось, 468 McNulty. Bruno at Oxford (1960). 302, 303. 469 Goldstein . Theory and Observation (1972). 43. Вопрос о изначальной мотивации Коперника в принятии гелиоцентризма – чтобы отказаться от эквантов или установить строго определенный порядок планет – вызывает споры: см.: Westman . The Copernican Question Revisited (2013). По моему мнению, в пользу предположения, что причиной были экванты, говорят факты, рассматриваемые в следующем параграфе.
а что нет, что они считали правдоподобным, а что невероятным470. Им нравился математический аппарат Коперника, но они не рассматривали его в качестве научной истины. Они читали трактат, следуя рекомендациям вступительного письма (теперь мы знаем, что оно было написано Озиандером и включено в книгу без разрешения Коперника), то есть как чисто гипотетическую конструкцию. Насколько нам известно, в 1583 г. во всей Европе нашлось только три прославленных астронома, которые согласились с утверждением Коперника, что Земля вращается вокруг Солнца: в Германии Христоф Ротман (он не публиковал своих работ и в конечном итоге отказался от теории Коперника), в Италии Джованни Бенедетти (в 1585 г. он опубликовал несколько фраз, посвященных этому вопросу), а в Англии Томас Диггес (который в 1576 г. опубликовал работу, поддерживавшую теорию Коперника) 471. Таким образом, преподаватели Оксфорда должны были испытать шок, услышав речи этого странного итальянца, который подскакивал, приседал, хихикал и тараторил, защищая систему Коперника как буквальную истину. Мы не знаем, насколько далеко Бруно зашел в изложении гелиоцентрической системы. Его остановили после трех лекций, обвинив в том, что он цитирует фрагменты из работ Фичино, философа эпохи Возрождения, последователя Платона (который обожествлял Солнце), выдавая их за свои. Это было вполне возможно – Бруно точно так же поступает и в печатных трудах, а понятие плагиата в те годы было еще новым 472. Но мы знаем, что хотел сказать Бруно; после изгнания из Оксфорда он нашел прибежище у французского посла в Лондоне и там написал несколько работ в защиту своих взглядов; самая известная из них – «Пир на пепле» (La cena de le Ceneri) 473. За полтора года, проведенных в Лондоне, Бруно опубликовал шесть книг, и все они были написаны на итальянском 474. До и после поездки в Англию Бруно публиковал свои работы только на латыни (за одним-единственным исключением, пьесы «Подсвечник» (Il candelaio), опубликованной в Париже в 1582), и поэтому выбор итальянского языка для книг, которые должны продаваться в основном англичанам (хотя некоторые из них привезут на большую книжную ярмарку во Франкфурт), кажется странным. Но итальянский был языком Данте и Петрарки. Образованный англичанин мог прочесть эти книги; выбирая итальянский, Бруно подавал сигнал, что обращается к поэтам и придворным, а не к профессорам математики или философии. Англичане отличались враждебностью к иностранцам и католикам. Тех, кто выглядел чужеземцем, как Бруно, могли избить на улице. Бруно практически не решался выходить из дома. В сочиненных им диалогах он дает понять, что общается с английской элитой, 470 Gingerich . An Annotated Census (2002); см. также: Gingerich & Westman . The Wittich Connection (1988) и Gingerich . The Book Nobody Read (2005). 471 Через двадцать пять лет, когда все они уже умерли, число сторонников системы Коперника оставалось таким же: в 1608 г. мы можем назвать Кеплера, Галилея, Хэрриота и Стевина. Примечательно, что до появления сверхновой звезды в 1572 г. у Коперника было только один безусловный сторонник – Ретик. 472 Лекции Генри Савиля по астрономии, прочитанные в Оксфорде в начале 1570-х гг., содержали «длинные отрывки… дословно скопированные у Рамуса» (Goulding . Henry Savile and the Tychonic World-system, 1995. 153). 473 Bruno. The Ash Wednesday Supper (1995). Английский мир Бруно прекрасно описан в Bossy. Giordano Bruno and the Embassy Affair (1991), но главное утверждение, что Бруно был шпионом, нуждается в корректировке в свете Bossy . Under the Molehill (2001). 474 La Cena de le Ceneri (1584); De la causa, principio, et uno (1584); De l’infinito universo et mondi (1584); Spaccio de la Bestia Trionfante (1584); Cabala del cavallo Pegaseo – Asino Cillenico (1585); De gli heroici furori (1585).
однако позднее он признался, что это выдумка, а не факт475. Тем не менее его книги, вероятно, продавались – в противном случае их перестали бы печатать. У самого Бруно не было ни гроша за душой, и он был потрясен, увидев у преподавателей Оксфорда массивные перстни, украшенные драгоценными камнями, – можно не сомневаться, что на его пальцах таких не было. Поэтому он не мог платить за издание своих книг. Эти книги были по-настоящему революционными. Коперник описал сферическую Вселенную с Солнцем в центре. Он признавал возможность существования бесконечной Вселенной, но отказывался от дальнейших рассуждений на эту тему, заявляя: «Поэтому пусть вопрос о конечности или бесконечности Вселенной обсуждают натурфилософы» (сам Коперник был математиком, а не философом) 476. Бруно ухватился за теорию Коперника как за аргумент в пользу бесконечной и вечной Вселенной. Звезды, утверждал он, представляют собой солнца, а Солнце – это звезда: здесь он был последователем не Коперника, а Аристарха Самосского (310–230 до н. э.). Поэтому во Вселенной могут существовать и другие обитаемые планеты; жизнь возможна даже на Солнце и звездах, поскольку они могут быть не полностью горячими или на них могут жить существа, совсем не похожие на нас и хорошо переносящие жару. Более того, нет никаких оснований считать, что другие планеты отличаются от Земли. Бруно утверждал, что у Луны и планет могут иметься континенты и океаны, причем они не светятся сами (такова была общепринятая точка зрения; даже Луну считали в крайнем случае прозрачной), а отражают свет477. Таким образом, если смотреть с Луны, то Земля будет казаться гигантской луной, а с гораздо большего расстояния она будет выглядеть как яркая звезда на небосводе. Земля, думал Бруно, должна ярко сиять, потому что моря лучше отражают свет, чем суша. (В этом отношении он ошибался, как впоследствии показал Галилей, – поэтому, когда после изобретения телескопа астрономы начали составлять карты Луны, морями они называли темные участки, а не светлые.) Таким образом, Бруно описывал бесконечную Вселенную с бесчисленными звездами и планетами, возможно, населенными неземными формами жизни478. Поскольку Бруно не верил, что Христос был спасителем человечества (он исповедовал своего рода пантеизм), то ему не нужно было беспокоиться о том, как христианская драма о грехе и искуплении разыгрывалась в этих бесчисленных мирах. Бруно был не первым, кто представлял бесконечную Вселенную и внеземную жизнь. Николай Кузанский в своем трактате «Об ученом незнании» (De docta ignorantia, 1440) утверждал, что бесконечному Богу подходит только бесконечная Вселенная. Он считал Землю небесным телом, которое с большого расстояния выглядит как звезда – эта идея привлекла внимание Монтеня 479. Однако Николай Кузанский предполагал, что Земля и Солнце похожи. По его мнению, обитаемый мир скрыт под видимой сияющей оболочкой Солнца; что касается Земли, то она, подобно Солнцу, окружена невидимой для нас огненной мантией, которую можно увидеть только при взгляде на Землю из открытого космоса. Таким образом, в представлении Николая Кузанского Земля была небесным телом, а Солнце – земным 480. В отличие от него Бруно первым отделил звезды от планет, как мы это делаем 475 Rowland . Giordano Bruno (2008). 149–159. 476 Copernicus . On the Revolutions (1978). 16. 477 Grant . Planets, Stars and Orbs (1994). 395–403. 478 Singer & Bruno . Giordano Bruno (1950); Gatti. Bruno and the Gilbert Circle (1999). 479 Koyré. From the Closed World to the Infinite Universe (1957). 6–23; Montaigne. The Complete Essays (1991). 505 и Montaigne. Œuvres complètes (1962). 429. 480 Эту точку зрения после 1616 г. разделял Исаак Бекман, который имеет полное право называться
теперь, – Солнце у него звезда, а планеты, в том числе Земля, темные тела, светящиеся отраженным светом. Бруно пытался опровергнуть стандартные аргументы противников системы Коперника, используя принципы относительности местоположения и движения; в его Вселенной (в отличие от Вселенной Аристотеля и Птолемея) не было верха или низа, центра или периферии, лева или права, а движение можно было определить только путем сравнения с другими объектами 481. Николай Орезмский и Коперник признали принцип относительности движения, рассматривая два тела, Солнце и Землю, – наблюдаемое движение Солнца может быть обусловлено как тем, что оно действительно движется, так и вращением Земли, – однако они не распространяли этот принцип на более сложные случаи, как Бруно. Так, например, писал Бруно, если вы сидите в каюте корабля, плывущего по спокойному морю, то у вас нет никакого способа определить, движетесь вы или находитесь в покое; если же вы подбросите предмет вертикально вверх, он упадет вам в руку, а не сместится к корме плывущего корабля 482. У Вселенной Коперника имелся центр; он не мог представить (или, по крайней мере, признать возможность существования) Вселенной, в которой местоположение полностью относительно. Бруно также внес радикальные и неудачные изменения в систему Коперника, отчасти предназначенные для того, чтобы опровергнуть основные аргументы против нее (например, что видимые размеры Марса и Венеры должны существенно меняться, если эти планеты то удаляются от Земли, то приближаются к ней) 483. В 1585 г. французский посол, приютивший Бруно, был отозван из Англии, и Бруно пришлось уехать вместе с ним. Он скитался по Европе (не расставаясь с книгой Коперника, которая теперь хранится в библиотеке Казанатенсе в Риме), и в 1592 г. его арестовали в Венеции и передали в руки инквизиции. После восьми лет в одиночном заключении, а затем долгих пыток 17 февраля 1600 г. его заживо сожгли на одной из главных площадей Рима, Кампо-деи-Фьори. Он отказался раскаяться в своей ереси, в том числе в вере в другие обитаемые миры 484. Его книги были запрещены во всей католической Европе. Бруно важен для нашего рассказа не только из-за своей смелости (что несомненно) и блестящего ума (что тоже несомненно), а потому, что во многом он оказался прав. Его основателем механической философии: Berkel. Isaac Beeckman (2013). 98, 99. 481 Подробное обсуждение вопросов верха и низа, лева и права во Вселенной см.: Oresme. Le Livre du ciel et du monde (1968). 315–355, сочинение 1377 г. Николай Орезмский считал, что одно из главных преимуществ вращающейся Земли перед вращающимся небом (если верно, что вращение происходит против часовой стрелки и правая рука проходит над левой) состоит в том, что «верх» становится севером, а не югом, как в случае вращения неба. Это помещает нас в более «достойное» Северное полушарие. Этот аргумент отсутствовал в более поздних спорах относительно теории Коперника (хотя он был по-прежнему важен для Кальканьини: Calcagnini . Opera aliquot, 1544. 391), предположительно потому, что к середине XVI в. картографы уже не располагали юг сверху, как Аристотель и арабы. 482 Redondi. La nave di Bruno e la pallottola di Galileo (2001); Granada. Aristotle, Copernicus, Bruno (2004). 483 McMullin . Bruno and Copernicus (1987), где критикуется Yates . Giordano Bruno and the Hermetic Tradition (1991); см. также: Westman & McGuire . Hermeticism and the Scientific Revolution (1977); Gatti . Essays on Giordano Bruno (2011). Ch. 2. 484 Вера в гелиоцентрическую Вселенную еще не была объявлена ересью: запрет появился только в 1616 г. и продержался до 1758 г., когда из списка запрещенных книг исключили теорию гелиоцентризма; труды самого Коперника были запрещены вплоть до 1882 г. К сожалению, мы точно не знаем, какие обвинения были выдвинуты против Бруно, поскольку документы о суде над ним (вместе с документами о суде над Галилеем и другими бумагами инквизиции) были вывезены в Париж после завоевания Рима Наполеоном. После поражения Наполеона папские власти потребовали вернуть документы, но многие из них исчезли на обратном пути – скорее всего, их продали, чтобы окупить расходы.
поправки к теории Коперника и ее ошибочная интерпретация были неправильно поняты. В последние полвека на смену представлениям о бесконечной и вечной Вселенной пришла теория Большого взрыва (настолько новая, что свое название она получила только в 1949)485. Но нам теперь известно, что Солнце – звезда, что у других звезд есть планеты и что у нас есть основания верить в наличие жизни в других местах Вселенной. Мы находимся не в центре мира; скорее Земля – обычная планета, одна из многих. В современном мире Бруно чувствовал бы себя комфортнее, чем кардинал Беллармин, человек, игравший ключевую роль как в суде над ним, так и в запрещении католической церковью учения Коперника в 1616 г. В главном Бруно был прав: он первым заявил в печати о том, что предисловие к трактату «О вращении небесных сфер» написано не Коперником, и он был первым из современных людей, кто утверждал, что планеты сияют отраженным светом 486. §5 Взгляды Бруно стоит сравнить со взглядами Томаса Диггеса. В 1576 г., за несколько лет до лекций Бруно в Оксфорде, Диггес опубликовал шестое издание альманаха своего отца «Вечные знамения» (A Prognostication Everlasting). (Книга впервые была издана в 1555 г. и выдержала, насколько нам известно, тринадцать изданий, последнее из которых датируется 1619)487. Главная цель «Знамений» – дать читателю инструмент для прогноза погоды с использованием астрологии (положения планет) и метеорологии (атмосферные явления, такие как радуга или облачность). Однако книга также подсказывала подходящее время для кровопусканий, очищения организма (в том числе слабительными) и принятия ванны (современному читателю покажется странным упоминание о ванне как о лечебной процедуре; Диггесы, отец и сын, рекомендовали не принимать ванну, когда Луна находится в созвездии Тельца, Девы или Козерога: это земные знаки, и поэтому они враждебны воде), помогала определять время по восходящей Луне или звезде, а также для любой даты вычислить время восхода и захода Солнца, прилива и отлива, долготу дня. Это было выдающееся практическое пособие – например, в альманахе имелась шкала компаса, которую можно было скопировать в увеличенном масштабе, и конструкция для определения местоположения планет в небе, которую можно было использовать в качестве чертежа или (дополнив отвесом и магнитным компасом) превратить в бумажный инструмент. Леонард Диггес также предлагал информацию, не имевшую практического применения: он указывал относительные размеры Солнца, планет, Земли и Луны, объяснял причину лунных затмений и приводил размеры небес. Расстояние от Земли (которую он, конечно, считал центром мира) до сферы неподвижных звезд составляет 358 463 мили – с половиной. Эту популярную книгу Томас дополнил переводом (с некоторыми дополнениями и исправлениями, сделанными им самим) главных, по его мнению, разделов трактата Коперника «О вращении небесных сфер». До наших дней дошло несколько экземпляров «Знамений». Это было дешевое издание, рассчитанное на мелкопоместных дворян и фермеров, – такие книги обычно шли на растопку, когда явно устаревали. Большинство альманахов были рассчитаны на год, и даже «вечный» альманах вскоре становился потрепанным. Если какие-то экземпляры и дожили до 1640-х гг., шрифт и оформление большинства из них выглядели безнадежно устаревшими: первые восемь изданий были напечатаны старинным английским готическим 485 Впервые это название прозвучало в радиопередаче и только в следующем году появилось в печати. 486 До Бруно подобные взгляды высказывали аль-Баттани (858–929) и Витело (ок. 1230 – ок. 1290): Horrocks . Venus Seen on the Sun (2012). 73. 487 Digges & Digges . A Prognostication Everlasting (1576).
шрифтом; в следующих трех для основного материала использовалась гарнитура эпохи Возрождения, но перевод Коперника был по-прежнему набран готическим шрифтом, вероятно, чтобы подчеркнуть его интеллектуальную серьезность; современный вид весь текст получил только в 1605 г. По мере того как морские компасы становились дешевле и доступнее, инструкции по изготовлению компаса своими руками теряли смысл. К XVIII в. устаревшей считалась уже и сама астрология. Листы с таблицами и чертежами инструментов чаще всего вырывали для удобства использования, в результате чего оставались изуродованные книги. Большинство экземпляров просто выбросили, прежде чем кому-то пришло в голову, что книгу стоит сохранить – просто как старую и редкую. Тщательный анализ издания 1576 г. появился только в 1934 г.488 А затем это издание в мгновение ока сделалось не только чрезвычайно редким (существует множество редких, недолговечных брошюр), но и чрезвычайно ценным. За ним охотились все – и аукционисты, и библиотекари. Выяснилось, что Томас Диггес включил в книгу не только первое выступление английского автора и на английском языке в защиту системы Коперника 489, но также рисунок космоса, на котором звезды не составляли сферу, а тянулись до границ страницы и даже дальше – первое изображение предположительно бесконечной Вселенной. Эта иллюстрация занимает две страницы и, по всей видимости, была добавлена уже после того, как книгу напечатали. Переплетчики не знали, что с ней делать – то ли сделать страницу раскладной, то ли просто размещать иллюстрацию на развороте. Ее могли повредить, порвать, оставить в виде вкладыша или вообще пропустить. Из первого издания книги сохранились только семь экземпляров, и ни один из них не появился на рынке после того, как была установлена необыкновенная ценность книги. Самым богатым коллекционерам пришлось довольствоваться экземплярами более поздних изданий. Издание «Знамений» 1576 г. – это маленькая загадка, в которой, как в зеркале, отразилась вся проблема современной истории науки. В ней мы сталкиваемся с интеллектуальным прорывом: Диггес был первым авторитетным астрономом, открыто заявившим о бесконечности Вселенной. (Николай Кузанский утверждал, что всемогущий Бог должен был создать бесконечную Вселенную, но это был философский, а не астрономический аргумент) 490. Более того, Диггес был видной фигурой в новой астрономии. В 1573 г. он опубликовал исследование сверхновой звезды, появившейся годом ранее491. В то же самое время он с готовностью применял новую астрономию для предсказания погоды и определения времени, когда врачи должны делать кровопускание пациентам. Свою новую, коперниканскую теорию мира Диггес поместил вместе со старым, отцовским описанием системы Птолемея. Он понимал, что система Коперника может быть верной только в том случае, если космос гораздо больше, чем представлял Птолемей, но не стал исправлять отцовские цифры о размерах Вселенной. Его отец снабдил книгу иллюстрацией птолемеевского космоса, где на самой внешней сфере имелась надпись: «Сюда мудрецы помещают Бога и Избранных». Иллюстрация Томаса, основой для которой послужила отцовская, тоже смешивает астрономию и богословие: внешняя зона (теперь бесконечное пространство, а не сфера) обозначена как «обитель избранных». Каким образом 488 Johnson & Larkey . Thomas Digges, the Copernican System (1934). 489 Это уже было очевидно Дрейеру, хотя он видел только издание 1592 г.: Dreyer. History of the Planetary Systems (1906). 347. 490 Duhem . Le Système du monde. Vol. 10 (1959). 247–347; Koyré. From the Closed World to the Infinite Universe (1957). 6–24. 491 Digges . Alae (1573); Pumfrey . Your Astronomers and Ours Differ Exceedingly (2011).
тут уживались, не испытывая неудобств, старое и новое, прошлое и будущее, наука и суеверия? Тому есть множество причин. Во-первых, сам Коперник был вовсе не таким революционером, как принято считать. Ни в одной из своих опубликованных работ Коперник не упоминает об астрологии – однако он нигде не оспаривает общепринятое мнение: астрономия существует, чтобы сделать возможной астрологию 492. Вселенная Коперника отличается от Вселенной Птолемея тем, что в ее центре (а если точнее, то очень близко к центру) находится Солнце, а не Земля, но в остальном она очень похожа на Вселенную Птолемея: ряд сфер, вложенных одна в другую. Она имеет конечный размер 493. Все движения в ней (за исключением непосредственной близости к Земле) определяются главным принципом: движения небесных тел являются круговыми и, следовательно, неизменными. По мнению Коперника, Птолемей отступил от этого принципа, не добавив к деферентам эпициклы, чтобы объяснить, почему планеты иногда начинают перемещаться в обратном направлении, а введя понятие экванта, чтобы замедлять и ускорять их движение. Сам Коперник добился этого другими средствами. Специалисты по истории астрономии спорят, были у Коперника экванты или нет; эквантов у него не было, однако он применил другие методы, предназначенные для имитации эквантов 494. Те, кто изучает арабскую астрономию, указывают, что использованные Коперником механизмы уже были изобретены арабами, и утверждают, что Коперник позаимствовал их, не указывая источник, а не придумал сам, хотя еще никому не удалось найти книгу или рукопись с описанием главного метода, с которой он мог быть знаком 495. Для двух первых поколений астрономов, читавших книгу Коперника, главным в ней была не защита гелиоцентризма, а более серьезный и систематический, чем у Птолемея, подход к принципу кругового движения. Одно из следствий математической модели Коперника заключалось в том, что она облегчала вычисления по сравнению с системой Птолемея, и многие астрономы публиковали таблицы движения планет Коперника, даже если считали его систему неправдоподобной. (Точно так же мы пользуемся схемой метро, хотя она искажает расстояние между станциями; ее преимущество заключается в том, что 492 Westman . The Copernican Question (2011). 493 Несомненно, Коперник полагал, что его читатели верят в сферы и конечную Вселенную (эти два вопроса взаимосвязаны, поскольку Вселенная, состоящая из сфер, обязана быть конечной), и современники полагали, что он сам придерживается такого же мнения. Но так ли это? Коперник явно обходил вопрос о конечности Вселенной, и его ученик Ретик зачеркнул слова orbium coelestium («небесных сфер») на титульной странице дарственных экземпляров (Gingerich . An Annotated Census, 2002. xvi, 32, 135, 153, 209; информация, отсутствующая у Розена в его примечании к этому вопросу (Copernicus. On the Revolutions, 1978. 333, 334). Розен считает, что Коперник верил в материальные сферы, поскольку использовал слова sphaera и orbis; однако Кеплер использовал эти же слова в «Коперниканской астрономии» (Epitome astronomiae Copernicanae, первые три книги названы De doctrina sphaerica), и он точно не верил в материальные сферы, а просто использовал привычные термины, когда хотел, чтобы его поняли. В Barker . Copernicus, the Orbs and the Equant (1990), указано, что у Коперника сферы плохо «вложены» друг в друга и между ними есть зазор, однако в остальном Коперник не отступал от общепринятой теории. Чтобы совместить теорию Коперника со сферами, необходимо указать, как система из Земли и Луны прикреплена к сфере, но такое описание отсутствует. Я подозреваю, что Коперник намеренно оставил место для сомнений по обоим вопросам. 494 Swerdlow . Copernicus and Astrology (2012). 373. Как ни странно, Свердлоу одновременно считает, что в системе Коперника были экванты и что главным мотивом перехода к гелиоцентризму было избавление от эквантов (Westman . The Copernican Question Revisited, 2013. 104–115). 495 Copernicus and His Islamic Predecessors (2007); Saliba. Islamic Science and the Making of the European Renaissance (2007). 193–232. Следует отметить, что Николай Орезмский мог независимо от арабских источников сформулировать главный принцип: сочетание круговых движений может создать видимость прямолинейного движения (Kren . The Rolling Device, 1971).
она позволяет легко проложить маршрут и определить места пересадок, тогда как ориентироваться по более точной карте гораздо труднее.) Однако Диггес не был рядовым читателем Коперника, поскольку понимал, что Коперник, описывая Землю движущейся, а Солнце неподвижным, не хотел, чтобы его понимали буквально. В его варианте книги I трактата «О вращении небесных сфер» аргументам против движения Земли уделено особое внимание. Леонард Диггес приводит размеры Земли, которые в то время считались общепризнанными, – ее окружность составляет 21 600 миль, и это значит, что если Коперник прав и наша планета делает один оборот вокруг своей оси за сутки, то скорость только от вращения составляет 900 миль в час, не говоря уже о дополнительном движении вокруг Солнца с периодичностью в один год. Утверждалось, что если бы мы летели со скоростью 900 миль в час (не забывайте, что те, кто выдвигал подобные аргументы, не передвигались со скоростью, превышавшей 30 миль в час, как у скачущей галопом лошади), то не могли бы не чувствовать этого движения; наши волосы развевались бы на ветру. Птиц, взлетающих с деревьев, сносило бы на запад. А предмет, брошенный с вершины башни, падал бы к западу от ее основания. Диггес утверждает, что эти аргументы ошибочны (вполне возможно, именно он повлиял на Бруно, говорившего об относительности движения). Если взобраться на мачту движущегося корабля, отмечает Диггес, и спустить отвес, то он повиснет вертикально и груз окажется у основания мачты; отвес отклонится назад только в том случае, если коснется воды за кормой корабля. Этот мысленный эксперимент несколько отличается от того, что предложил Галилей (и менее убедителен): брошенный с верхушки мачты предмет доказывает относительность понятия вертикали. Линия отвеса или траектория падающего предмета вертикальны по отношению к палубе движущегося корабля, но не вертикальны по отношению к неподвижной точке на поверхности Земли. Галилей также продемонстрировал, что если на движущемся корабле подбросить предмет вертикально вверх, он не упадет за вашей спиной, а вернется прямо вам в руку: это опровергает утверждение Джамбаттисты Капуано, который вполне мог быть источником всех опытов на движущемся корабле, как мысленных, так и реальных. Таким образом, Диггес не просто перевел Коперника, но усилил его аргументацию там, где она была наиболее уязвимой 496. 496 Николай Орезмский уже довольно подробно разработал такую теорию: Oresme . The Questiones de Spera (1966). Q. 8, и Oresme . Le Livre du ciel et du monde (1968). 518–539. Возможно, на его работах основывались и Диггес, и Бруно.
Рисунок самого Коперника с изображением гелиоцентрического космоса. Из оригинальной рукописи трактата «О вращении небесных сфер», 1543. Луна не показана, но упоминается в тексте. Сфера неподвижных звезд – это внешнее кольцо После обнаружения рисунка космоса Диггеса стали считать первым, кто не изобразил звезды на поверхности сферы, а распределил их по всей странице и даже за ее пределами; он явно считал, что они простираются в бесконечность. Но у Вселенной Диггеса имелся центр, и поэтому ее нельзя считать бесконечной – у бесконечной Вселенной не может быть центра. Диггес полагал, что каждая звезда размерами превышает Солнечную систему; все они должны находиться очень далеко – в противном случае их местоположение на небе изменялось бы по мере движения Земли по огромной орбите вокруг Солнца – и иметь гигантские размеры, чтобы мы могли их видеть 497. Из этого следует, что Диггес не считал Солнце звездой, а звезды – Солнцами. Более того, его конструкция Вселенной определяется богословием. Пространство, которое занимают звезды, – это рай, обитель Бога, ангелов и избранных. Солнечная система – зона греха и вечных мук. Этот греховный мир, говорит Диггес, есть темная звезда – «маленькая темная звезда, где мы живем» 498. Таким образом, представление Диггеса о Вселенной – безграничность, отождествление звезд с раем, а Земли с адом (возможно, отсюда знаменитые слова Мефистофеля из «Доктора Фауста» (1592) Марло: «Мой ад везде, и я навеки в нем»499), описание Земли как темной звезды – совпадает с картиной, изображенной в поэме Марчелло Палиндженио Стеллато «Зодиак жизни» (1536, на латыни), которую в то время читали все английские школьники 500. Диггес знал одиннадцатую главу поэмы наизусть и «и часто с удовольствием декламировал ее»501. Однако Диггес поставил в центр Вселенной Стеллато не Землю, а Солнце. Стеллато был посмертно осужден инквизицией за отрицание божественности Христа (еретические работы нашли среди других документов после его смерти), а его тело выкопали и сожгли, но протестантская Европа ничего не знала о его неприятии христианства (хотя множество намеков на это можно найти в «Зодиаке), а антиклерикализм и детерминизм если и не делали его протестантом, то, по крайней мере, позволяли причислить 502 к сочувствующим . На самом деле включение «Зодиака» в список запрещенных книг лишь усилило популярность поэмы. Для английских издателей и, вероятно, для Диггеса он был 497 Этот аргумент считался серьезным вплоть до середины XVII в.; Риччоли полагал, что это главный аргумент против теории Коперника: Graney . The Work of the Best and Greatest Artist (2012); Graney. Science Rather than God (2012). Его подкреплял тот факт, что линзы телескопов превращали звезды в диски, и поэтому если теория Коперника утверждала, что звезды находятся очень далеко, то телескопы указывали на еще большие их размеры. Например, Флемстид полагал, что некоторые звезды настолько больше Солнца (которое теперь само относили к звездам), насколько Солнце больше Земли: Science and Astrology (1995). 280. 498 Johnson & Larkey . Thomas Digges, the Copernican System (1934). 102 и (ссылки на раннего Алаи) 111; Digges & Digges . A Prognostication Everlasting (1576). M2r, N4r. 499 Перевод Н. Амосовой. 500 Palingenius . The Zodiake of Life (1565); в Koyré. From the Closed World to the Infinite Universe (1957), подчеркивается значение Диггеса (35–39), но признается его сильная зависимость от Палингенио (24–27, 38, 39). Темная звезда уже присутствует у Николая Орезмского: Oresme . Le Livre du ciel et du monde (1968). 515. 501 Harvey . Gabriel Harvey’s Marginalia (1913). 502 Bacchelli . Palingenio (1999); см. также: Palingenius. The Zodiake of Life (1947); Granada . Bruno, Digges, Palingenio (1992).
«самым христианским поэтом» (1561), «благочестивым и усердным поэтом» (1565), «превосходным и христианским поэтом», хотя проницательный Бруно считал его родственной душой. Диггесу никогда не приходило в голову, что Земля может сиять подобно звезде или что другие планеты похожи на Землю. Он полагал, что Солнце и Земля уникальны, а у Вселенной есть центр. Стеллато и Диггес были не единственными, кто считал Землю темной звездой 503. В 1585 г. Джованни Баттиста Бенедетти опубликовал сборник эссе, в которых, помимо всего прочего, рассматривал вопросы современной космологии. Как и Диггес, Бенедетти был коперниканцем-реалистом, хотя и более радикальным. Обратив внимание на то, что Луна фактически движется по эпициклу вокруг Земли, а орбиты планет также представляют собой эпициклы, он выдвинул удивительную гипотезу: тела, которые мы считаем планетами, в действительности являются сияющими лунами, которые вращаются вокруг темных планет. Эти невидимые планеты похожи на Землю и по всей видимости обитаемы. В основе гипотезы Бенедетти лежало предположение, что Земля и Луна состоят из разного вещества и Луна гораздо лучше отражает свет, хотя и неравномерно – на темных участках свет поглощается сильнее, чем отражается. Бенедетти считал мир сферическим, но окруженным бесконечным пустым пространством 504. Диггес и Бенедетти не читали работ Бруно и поэтому не были знакомы с его теорией, что с большого расстояния Земля будет неотличима от звезды. Однако великий Уильям Гильберт (1544–1603), положивший начало современным исследованиям магнетизма и электричества, читал Бруно и был полностью согласен с его аргументами. Гильберт скопировал из книги Диггеса рисунок с безграничной Вселенной. Но Гильберт понимал, что с Луны Земля будет казаться светящейся, как огромная Луна, а издалека – как звезда (здесь он явно возражал Бенедетти). На Луне, по его мнению, есть континенты и океаны, как на Земле. Подобно Бруно, он считал, что океаны должны быть более яркими, чем суша. Он не видел причин, почему другие планеты не должны быть похожи на Землю505. 503 В Ariew . The Phases of Venus before 1610 (1987) предполагается, что небесные тела бывают трех типов: а) светящиеся, б) прозрачные или в) отражающие свет. Четвертый вариант, что они могут быть «темными», не обсуждался. 504 Benedetti . Diversarum speculationum (1585). 195. Дрейер в своей работе History of the Planetary Systems (1906), 350, не до конца понимает этот отрывок. Я не видел, чтобы он обсуждался где-то еще (например, о нем не упоминается в работе Di Bono . L’astronomia Copernicana nell’opera di Giovan Battista Benedetti (1987), где ошибочно утверждается, что Бенедетти считал Луну и Землю похожими небесными телами; цитируемый отрывок не противоречит представленной здесь интерпретации «если бы Земля сияла, как Солнце…» – но она не сияет). 505 Gatti. Bruno and the Gilbert Circle (1999). Gilbert. De mundo nostro sublunari philosophia nova (1651). 173.
Представление Диггеса о космосе Коперника, со звездами, выходящими за край страницы, которые символизируют Вселенную без границ. Из «Знамений» – в данном случае из издания 1596 г., хранящегося в библиотеке Линды Холл, но впервые иллюстрация появилась в 1576 г. Еще до изобретения телескопа Гильберт нарисовал первую карту Луны и в результате открыл либрацию спутника, который как будто слегка колеблется вверх-вниз и вправо-влево. Это усилило его убежденность в том, что планеты свободно перемещаются в пространстве. Более того, Гильберт был первым, кто полностью отказался от идеи обязательности
кругового движения для всех небесных тел: планеты у него летят в пустоте по сложным траекториям, и такая траектория объясняет видимые колебания Луны. Работа Гильберта «О Вселенной» (On the Universe) осталась неоконченной (он умер в 1603 г., но раздел, посвященный космологии, по всей видимости, датируется началом 1590-х) и была опубликована в 1651 г. Бэкон читал рукопись книги, но не стал тратить на нее время: увлеченность Гильберта магнетизмом казалась ему иррациональной одержимостью, результатом которой стал «корабль из скорлупки»506. §6 Диггес, Бруно, Бенедетти и Гильберт принадлежали к небольшой группе коперниканцев-реалистов. Они были смелыми первооткрывателями новой философии. Тем не менее нет никаких оснований считать, что они разделяли общие взгляды на то, что такое естественная наука и как ей следует заниматься. Диггес был хорошим математиком. Он преподавал геодезию, навигацию, картографию и военно-инженерное дело. Он экспериментировал с зеркалами и линзами; говорят, что у него даже был тайный телескоп. Он пытался измерить расстояние от Земли до сверхновой звезды 1572 г. и установил, что она находится на небе, – то есть опроверг фундаментальный тезис философии Аристотеля о неизменности небес. (Диггес считал это событие чудом и давал советы английским властям относительно того, что оно может предвещать) 507. Бенедетти был фигурой, сравнимой с Диггесом: советник герцога Эммануэля Филиберто Туринского в вопросах математики и инженерного дела, он публиковал работы о законах перспективы, о конструкции солнечных часов (что тоже связано с перспективой, поскольку движение Солнца должно отображаться на плоской поверхности), о реформе календаря, о физике падающих тел, о проблеме соотношения земли и воды. Однако его космологические аргументы были чисто умозрительными и философскими. Гильберт был врачом (совсем недолго он был личным лекарем сначала Елизаветы I, затем Якова I), решившим заняться экспериментальным изучением магнитов; очевидно, он был тесно связан со специалистами по изготовлению компасов и преподавателями искусства навигации. Его исследование либрации Луны показывает, что он искал новые факты, которые помогли бы разрешить вопросы космологии. Старый способ описания истории современной науки на ее первом этапе представляет Коперника, Диггеса, Бенедетти и Гильберта как ученых, хотя никто из них сам не употреблял этого термина. Предполагается, что их деятельность созвучна современной науке; действительно, все они были коперниканцами, и публикация трактата «О вращении небесных сфер» зачастую принимается (ошибочно) за начало современной науки. Правда, это не относится к Бруно, несмотря на его приверженность гелиоцентрической теории. Бруно был знаком с трудом Коперника, читал лекции и писал о его теории, зачастую оказываясь прав в том, в чем ошибался Коперник. Однако он не интересовался измерениями и экспериментами и считал, что Коперник излишне увлечен математическими задачами. Коперник, Диггес и Бенедетти называли себя математиками, Бруно и Гильберт – философами. Коперник и Диггес писали книги по астрономии, Бенедетти по физике (естественным наукам), Гильберт по физиологии (изучении природы). Никто из них не был ученым, потому что наука в современном понимании еще не существовала. Однако Ньютон уже имел полное право называться ученым – в этом нет никаких сомнений. Наука возникла в период с 1600-х по 1680-е гг. 506 Pumfrey . The Selenographia of William Gilbert (2011); Bacon. Works (1857). Vol. 2. 80. 507 Pumfrey . Your Astronomers and Ours Differ Exceedingly (2011).
Часть II Увидеть – значит поверить Они обманываются, соглашаясь с тем, что услышали, и не веря тому, что видели. Томас Бартолин. Historiarum anatomicarum rariorum… (1653)508 Часть II книги начинается с XV столетия, и в ней рассматриваются вопросы, остававшиеся актуальными вплоть до XVIII в. Начнем мы в главе 5 с изобретения перспективы в живописи, то есть применения принципов геометрии к построению изображения. Эти же принципы стали причиной активного интереса астрономов к измерению расстояний, чтобы точно определить положение на небе конкретных объектов – новых звезд. Постепенно крепла уверенность в том, что математика является мощным средством для понимания природы, и данная глава отслеживает этот процесс вплоть до Галилея. Глава 6 рассказывает о влиянии телескопов и микроскопов на восприятие масштаба: на огромных пространствах, которые открыл телескоп, человеческие существа внезапно стали незначительными, а микроскоп позволил заглянуть в мир, где сложными оказались даже самые крошечные существа, какие только можно вообразить, и стало привычным представление, что на блохах могут жить блохи – и так до бесконечности. 5. Математизация мира Философия написана в величественной книге (я имею в виду Вселенную), которая постоянно открыта нашему взору, но понять ее может лишь тот, кто сначала научится постигать ее язык и толковать знаки, которыми она написана. Написана же она на языке математики, и знаки ее – треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречен блуждать в потемках по лабиринту509. Галилей. Пробирных дел мастер (1623)510 §1 Система двойной записи в бухгалтерском учете появилась еще в XIII в. Принцип двойной записи прост: каждая операция отражается дважды – как дебет и как кредит. Так, например, если я покупаю слиток золота стоимостью £500, то эта сумма отражается как кредит моего текущего счета и как дебет в списке пассивов. В эпоху Возрождения для ведения бухгалтерии использовали три книги. В первой, «учетной», подробно записывалось все происходящее: к ней можно было обратиться в будущем для разрешения споров или недоразумений. Второй была кассовая книга, в которой записи велись в виде списка операций. Третья – собственно бухгалтерская книга с разделами дебета и кредита. Сверяя бухгалтерскую книгу с кассовой, а дебет с кредитом, можно удостовериться в отсутствии 508 Bartholin. The Anatomical History (1653). 127. 509 Перевод Ю. Данилова. 510 Galilei. Le opere (1890). Vol. 6, 232; translation from Sharratt. Galileo: Decisive Innovator (1994). 140.
ошибок; подводя баланс, вы каждый раз получаете информацию, получили ли вы прибыль или остались в убытке. Таким образом, бухгалтерское дело стало основой для рациональных инвестиций и обеспечило возможность разделения прибыли между партнерами 511. Обучение бухгалтерскому делу было одним из главных источников дохода итальянских математиков: именно этому обучали в scuola d’abaco , начальной школе, где с помощью абака учили складывать столбцы цифр. Система двойной записи, подобно любому математическому методу, основана на абстракции. Бухгалтерский учет превращает все в условную денежную стоимость, даже если вы не знаете, будете ли продавать этот товар и сколько сможете за него выручить. Когда партнеры по бизнесу делят полученную прибыль, то присваивают наличному товару условную учетную стоимость. На первый взгляд, между бухгалтерией и наукой нет никакой связи. Но Галилей, вероятно, преподавал бухгалтерское дело, когда после окончания университета был вынужден искать источники дохода до получения должности преподавателя (1585–1589). Когда Галилею указывали, что его закон падения тел не соответствует реальному миру, поскольку из-за сопротивления воздуха падающие тела не движутся с постоянным ускорением, он отвечал, что между теорией и реальным миром нет никакого противоречия. Так что то, что происходит конкретно, имеет место и в абстракции. Было бы большой неожиданностью, если бы вычисления и действия, производимые абстрактно над числами, не соответствовали затем конкретно серебряным и золотым монетам и товарам. Но… как для выполнения подсчетов сахара, шелка и полотна необходимо скинуть вес ящиков, обертки и иной тары, так и философгеометр, желая проверить конкретно результаты, полученные путем абстрактных доказательств, должен сбросить помеху материи, и если он сумеет это сделать, то, уверяю вас, все сойдется не менее точно, чем при арифметических подсчетах. Итак, ошибки заключаются не в абстрактном, не в конкретном, не в геометрии, не в физике, но в вычислителе, который не умеет правильно вычислять512513. Таким образом, система двойной записи в бухгалтерии представляет собой попытку перевести материальный мир – рулоны шелка и полотна, мешки сахара – на язык математики. Процесс абстрагирования, которому учит эта система, является чрезвычайно важной предпосылкой для новой науки. §2 Другим источником дохода для математиков в эпоху Галилея было обучение геометрическим принципам перспективного изображения 514. Учитель математики самого Галилея, Остилио Риччи, преподавал перспективу художникам. Перспективное изображение было изобретено гораздо позже, чем система двойной записи в бухгалтерии. Оно появилось в период с 1401 по 1413 г., когда Филиппо Брунеллески создал в высшей степени необычное произведение искусства 515. Само оно не сохранилось до наших дней, а последнее 511 Gleeson-White . Double Entry (2011). 512 Здесь и далее «Диалог о двух системах мира» Галилея цитируется в переводе А. Долгова. 513 Galilei. Dialogue Concerning the Two Chief World Systems (1967). 207, 208. 514 Историографический обзор см. в: Baldasso . The Role of Visual Representation (2006). 515 О датировке см.: Kemp. The Science of Art (1990). 9; Camerota. La prospettiva del Rinascimento (2006). 60; Tanturli . Rapporti del Brunelleschi con gli ambienti letterari fiorentini (1980). 125.
упоминание о нем, в списке имущества покойного Лоренцо Великолепного, правителя Флоренции из семейства Медичи, относится к 1494 г.516 Не слишком надежное описание составил в 1480 г. Антонио Манетти, которому было двадцать три года, когда умер Брунеллески 517. Описание Манетти туманное и неудовлетворительное, но другого у нас нет. Было предпринято бесчисленное количество попыток в точности реконструировать то, что создал Брунеллески, поскольку его современники не сомневались, что этот маленький объект символизировал перспективу в живописи 518. Каждая такая попытка реконструкции сталкивалась с многочисленными трудностями, но Брунеллески не оставил после себя никаких записей, которые могли бы нам помочь. Тем не менее мы попытаемся. Объект представлял собой картину на квадратной доске размером около сорока сантиметров. На ней был изображен восьмиугольный флорентийский баптистерий, а также фрагменты зданий по обе стороны от него. Верхняя часть картины, в том месте, где должно быть небо, была покрыта отполированным серебром. (Брунеллески учился на ювелира, поэтому изготовление плоской отполированной поверхности для него не составляло труда.) На центральной оси картины, в нижней части, Брунеллески сделал отверстие, и зрителям предлагалось смотреть через него, повернув к себе картину задней стороной. Если стоять в том месте, где вид на баптистерий совпадает с изображением на картине, держать перед собой зеркало и смотреть сзади сквозь отверстие, то изображение в зеркале будет накладываться на реальность; опуская и поднимая зеркало, можно добиться ощущения, что картина не отличается от реального здания. Поскольку зритель смотрел и на картину, и на реальность одним глазом, то плоское изображение становилось больше похоже на объемное, а реальный мир начинал походить на двумерный – то есть они сближались 519. В отполированном серебре верхней части картины отражались небо и облака (если таковые были); отраженные от серебра, а затем еще раз от зеркала, они совпадали с реальностью. Будет справедливым сказать, что картина Брунеллески стремится продемонстрировать то, что философы называют корреспондентной теорией истины, в которой утверждение или представление считается истинным, если оно соответствует внешней реальности 520. Совершенно очевидно, что это необычное представление было устроено так, чтобы зритель смотрел и на картину, и на баптистерий одним глазом – геометрическая перспектива зависит от единой точки обзора. Но зачем нужно зеркало? 521. Почему бы не смотреть 516 White. The Birth and Rebirth of Pictorial Space (1987). 119; (и в качестве предупреждения) Raynaud. L’Hypothèse d’Oxford (1998). 517 Manetti. Vita di Filippo Brunelleschi (1992). (Описание почти полностью приведено в: White. The Birth and Rebirth of Pictorial Space (1987). 113–117.) 518 Основные тексты: Edgerton. The Renaissance Rediscovery of Linear Perspective (1975); Arnheim. Brunelleschi’s Peepshow (1978); Kemp. Science, Non-Science and Nonsense (1978); Kubovy. The Psychology of Perspective and Renaissance Art (1986). 519 Сравните Леонардо: «Картина не может выглядеть такой же полной, как изображение в зеркале… если только не смотреть на них одним глазом». Цит. по: Gombrich. Art and Illusion (1960). 83. 520 В искусстве «реализм» и «натурализм» принимают самые разные формы (см., например, Smith . Art, Science and Visual Culture in Early Modern Europe (2006); Smith . The Body of the Artisan (2006); Ackerman. Early Renaissance ‘Naturalism’ and Scientific Illustration (1991). Особенно важным мне представляется то, что Айвинс назвал «жесткие двунаправленные, или взаимные, метрические взаимоотношения между формами объектов, определенным образом расположенных в пространстве, и их изображением на рисунке» (Ivins . On the Rationalization of Sight, 1975. 9. Корреспондентная теория истины уже встречается у Аквинского (De veritate. Q.1. A. 1–3; cf. Summa theologiae. Q.16); ссылки на его древних предшественников я нахожу неубедительными. К вопросу о «внешней» реальности мы еще вернемся. 521 См.: Yiu . The Mirror and Painting (2005). В работе Schechner . Between Knowing and Doing (2005) автор,
на картину просто через маленькое отверстие в доске? Очевидно, Брунеллески, посеребрившему верхнюю часть картины, требовалось поместить ее в такое место, где она могла отражать небо, а затем с помощью зеркала снова перевернуть изображение, так чтобы небо полностью совпадало с небом над реальным баптистерием. Неясно только, ставилась ли такая цель изначально или художник просто решил использовать получившийся эффект. Мне бы хотелось подчеркнуть необычность этой процедуры. Если вы опустите не зеркало, а картину, то увидите себя. Даже глядя на отражение картины в зеркале, вы увидите зрачок своего глаза – то есть на картине имеется точка, которая соответствует глазу художника (или отражает его). Впоследствии ее назовут центральной точкой; это место, где расположена точка схода в перспективе. Зрителю, которому предназначена важная роль в этом спектакле, постоянно напоминают об этой роли: он то заставляет реальность появляться и исчезать, то становится объектом собственного анализа. Оригинальная конструкция Брунеллески имеет двойную функцию: она демонстрирует, что искусство способно успешно подражать природе, так что они становятся практически неразличимыми, и что даже в том случае, когда искусство максимально объективно (или, скорее, особенно когда искусство максимально объективно), именно мы создаем его и находим себя в нем. Это опыт одновременно новой объективности и новой субъективности. После этой картины Брунеллески создал еще одну, о которой мы тоже знаем от Манетти, – на ней была изображена ратуша Флоренции и окружающая ее площадь. В этот раз художник обрезал доску по линии наблюдаемого горизонта, так чтобы зритель видел настоящее небо (во многих отношениях более изящное решение, чем полированное серебро). Зеркало также отсутствовало. Совершенно очевидно, что и это устройство было привязано к конкретному месту: необходимо стать в той же точке, где стоял Брунеллески, когда писал картину. Поднимая изображение, вы заменяете им реальные здания, а опуская, видите их. Повторяя это действие, вы можете убедиться в точном соответствии между реальностью и изображением, создавая и разрушая собственный мир. Несомненно, в обеих картинах не использовался очевидный метод передачи глубины в двумерном изображении, когда при изображении перпендикуляров параллельные линии подходят под прямым углом к плоскости картины и пересекаются в точке схода. Самый яркий пример такого изображения – выложенный плиткой пол 522. В данном случае в обеих картинах использована перспектива с двумя точками схода, в которой линии, не параллельные плоскости картины и не перпендикулярные ей, сходятся в удаленных точках слева и справа от самой плоскости картины. Если Брунеллески хотел поэкспериментировать с глубиной изображения, почему он не использовал точку схода перспективы, которая была ему понятна и знакома? Например, в картине «Благовещение» Амброджо Лоренцетти, написанной в 1344 г., для создания видимости глубины используется выложенный плиткой пол и сходящиеся параллельные линии 523. Лоренцетти не справился со всеми сложностями построения перспективы – обратите внимание, что передняя часть трона Марии выше задней, а левая ступня ангела находится на одном уровне с его правым коленом. Однако он знал, как сделать сходящимся выложенный плиткой пол. Если Брунеллески просто пытался создать ощущение глубины, он мог изобразить интерьер с выложенным плиткой полом. Каковы же были намерения Брунеллески? Считается (и аргументы в пользу этой точки исследовавший сохранившиеся зеркала, высказывает чрезмерный пессимизм относительно качества зеркал, о которых говорит Йю. 522 На некоторых иллюстрациях с картинами Брунеллески на площади на заднем плане помещают узоры в виде шахматной доски, чтобы подчеркнуть объемность изображения, но эти узоры не соотносятся с реальными объектами, а значит, и с самими картинами. 523 См. цветную иллюстрацию 11.
зрения можно найти в книге Вазари «Жизнеописания наиболее знаменитых живописцев, ваятелей и зодчих» (1550), хотя она была написана гораздо позже), что Брунеллески иллюстрировал геометрические принципы перспективы в живописи, которые были кодифицированы Альберти двадцать лет спустя, в 1435 г. – в трактате «О живописи», который заложил традицию сочинения текстов о геометрической перспективе 524. У нас есть все основания предполагать, что Брунеллески хорошо знал геометрию. Известно, что он получил скромное образование: отец позаботился об обучении сына основам латыни, вероятно, рассчитывая, что тот пойдет по его стопам и станет нотариусом, но Брунеллески решил наняться подмастерьем к ювелиру. Затем он увлекся архитектурой (славу ему принесло сооружение в 1418 г. купола собора во Флоренции, который был построен по классическим образцам и не имел аналогов в средневековой архитектуре). Однако если Брунеллески знал геометрию перспективы еще в 1413 г., то трудно объяснить, почему не сохранилось воплощающих эти принципы произведений, написанных до 1425 г. И действительно, принято считать, что Брунеллески создал свои демонстрационные картины приблизительно в 1425 г. – просто потому, что ученые хотели видеть их непосредственными источниками нового искусства и новых теорий. Тем не менее недавно обнаруженные документы (как и текст Манетти) позволяют предположить, что эти картины были созданы раньше. Это обязывает нас пересмотреть вопрос о реальных достижениях Брунеллески 525. Утверждалось, что и Брунеллески, и Альберти применили к живописи принципы средневековой оптики, основой которых служили работы арабского ученого XI в. Ибн альХайсама, известного на Западе под именем Альхазен. Его труды были доступны в переводе на латынь и на итальянский. Эти работы по оптике были посвящены «перспективе» – данный термин буквально переводился как «наука зрения». Альхазен показал, что свет распространяется по прямой и зрение определяется конусом из прямых линий от глаза к объекту. Таким образом, глубина поля зрения не воспринимается непосредственно, а является результатом бинокулярного зрения и нашей способности интерпретировать тот факт, что близкие предметы кажутся больше, а далекие меньше; для оценки расстояния нам нужен ориентир – объект, для которого известны либо расстояние до него, либо его размеры. Совершенно очевидно, что Альхазена интересовал лишь вопрос о том, как мы видим, а не как передать увиденное с помощью рисунка: фигуративное искусство в исламе запрещено. Труднее понять, почему его средневековые последователи не развили эти теории, чтобы показать, как они могут быть использованы художниками 526. Высказывается мнение, что даже если университетские преподаватели открыто не обсуждали живопись, художники знали об их теориях. Свои наиболее значительные работы Джотто (1266–1337) создавал во францисканских церквях, а в монастырских библиотеках, соседствовавших с этими церквями, хранились ключевые работы о перспективе. Монахи, заказывавшие работы художнику, будучи последователями святого Франциска, отличались любовью к природе и стремлением к новому реализму в искусстве. Они хотели, чтобы он создал ощущение глубины, поскольку из теории зрения знали, что мы анализируем окружающий мир, превращая двумерное восприятие (лучи света, попадающие в глаз) в трехмерный образ. Предполагают, что работы Джотто, использующие trompel’œil (оптическую иллюзию) для создания несуществующих колонн, были результатом диалога с работодателями527. Вполне вероятно, но с одной существенной оговоркой: средневековая 524 Vasari . Lives of the Artists (1965); Alberti . On Painting and On Sculpture (1972) (на латыни и английском); Alberti . On Painting (1991) (на английском). 525 Tanturli. Rapporti del Brunelleschi con gli ambienti letterari fiorentini (1980). 526 Belting . Florence and Baghdad (2011). 527 Raynaud. L’Hypothèse d’Oxford (1998).
теория зрения давала элементы теории, которую мы сегодня называем перспективой (в эпоху Возрождения ее называли «искусственной перспективой»), но не систематический метод создания иллюзии объема. В противном случае Джотто завершил бы революцию в области перспективы, картины Брунеллески были бы не нужны, а Альберти не сказал бы ничего нового. Современникам казалось, что «вещи, им сделанные, вводили в заблуждение чувство зрения людей»528, но мы вправе сомневаться, хотел ли Джотто создать изображения, точно соответствовавшие видимой реальности. Должен ли ангел, пролетающий сквозь стену на фреске «Благовещение святой Анне», быть точным изображением того, что видела Мария? Вопрос этот явно неуместен. Реальность, которую стремился передать Джотто, не только визуальная, тогда как единственная цель необычных картин Брунеллески – геометрическая точность. Нам известно, что в поисках новых архитектурных форм Брунеллески изучал сохранившиеся классические сооружения Древнего Рима, и эта работа предполагала разного рода измерения и составление чертежей. Таким образом, он не мог не знать базового принципа, что удаленные предметы кажутся меньше – этот принцип анализировался Евклидом, и с ним были знакомы в эпоху Средневековья 529. Он позволял вычислить высоту объекта, зная расстояние до него и угол между вершиной и основанием, измеренный из точки наблюдения. Брунеллески, вероятно, многократно использовал этот метод, когда измерял высоту сохранившихся классических сооружений в Риме в 1402–1404 гг.530 Однако в этом принципе не было ничего нового, и полученные в результате сведения могли использоваться для создания обычных чертежей, но не изображений с перспективой, и поэтому трудно понять, почему из них внезапно возник новый тип художественного отображения. Таким образом, у нас есть несколько разных элементов, которые помогают ответить на вопрос, что сделало возможным изобретение перспективы в живописи – применение геометрии, средневековая оптика, изучение древних сооружений, – однако всего этого явно недостаточно531. Отсутствующий ключевой элемент, на мой взгляд, предоставил флорентийский художник, известный как Филарете («любящий добродетель»), который написал трактат об архитектуре, законченный в 1461 г.; это наш самый ранний источник 532. Будучи на двадцать три года старше Манетти, Филарете, вероятно, лучше понимал мир Брунеллески. Филарете был убежден, что Брунеллески пришел к своему новому методу изображения перспективы (который он не описал во всех подробностях) в результате изучения зеркал. И действительно, зеркало является очевидным источником корреспондентной теории искусства (и истины). Оно не только отображает трехмерный мир на двумерной поверхности, но и позволяет ответить на вопрос: «Насколько больше выглядит баптистерий с этого места?» Попытка ответить на этот вопрос с помощью измерения углов 528 Бокаччо . Цит. по: Gombrich . Art and Illusion (1960). 53. 529 Hahn. Medieval Mensuration (1982). 530 См. приложение в: Kemp . The Science of Art (1990). 344, 345 и Camerota. La prospettiva del Rinascimento (2006). 63–67. 531 Дополнительные элементы – это отображение трех измерений в двух на астролябиях (Aiken. The Perspective Construction of Masaccio’s Trinity Fresco, 1995), солнечные часы (Lynes. Brunelleschi’s Perspectives Reconsidered, 1980) и третий метод Птолемея для изображения Земли на плоскости (Edgerton. The Heritage of Giotto’s Geometry, 1991. 152, 153). 532 Filarete. Trattato di sa.sns.it/TOCFilareteTrattatoDiArchitettura.php). architettura (1972) (the Web at http://fonti-
может оказаться сложнее, чем просто держать зеркало. Оно выступает в роли масштабирующего устройства благодаря тому, что отражает конус лучей, исходящих от объекта и проходящих через его плоскость. Это привлекает внимание к одной особенности работы Брунеллески, о которой я еще не упоминал: по свидетельству Манетти, Брунеллески стоял внутри портика собора, когда писал картину. Таким образом, расположенный перед ним баптистерий был обрамлен портиком; картина просто воспроизводила обрамленный вид, словно художник смотрел в окно. Из комментариев Филарете некоторые исследователи сделали вывод, что вся доска с картиной Брунеллески была покрыта отполированным серебром – то есть он рисовал на зеркале. Но Манетти, державший картину в руках, не мог бы этого не заметить. Скорее всего, доска и зеркало располагались на мольберте рядом друг с другом. Это объясняет необычно маленький размер первой картины Брунеллески: в начале XV в. качественные зеркала были необыкновенно редкими и дорогими (революция, которую произвели венецианские зеркала, произошла столетием позже) и поэтому небольшими по размеру533. Разумеется, при таком методе получалось зеркальное изображение – отсюда желание Брунеллески, чтобы на его картину смотрели в зеркале; к счастью, такое зеркало у него было. Конечно, здание баптистерия симметрично, и это значит, что зеркальное изображение практически не отличается от истинного, но Манетти сообщает, что на картине можно было увидеть площадь по обе стороны баптистерия; кроме того, даже у симметричных сооружений есть несимметричные детали (например, тени или мох). Работа с отображением в зеркале также обрекала Брунеллески на бесконечную борьбу: ему хотелось увидеть в зеркале неискаженное отображение баптистерия, но если бы он встал прямо перед зеркалом, то увидел бы себя (вот почему с помощью зеркала так удобно писать автопортреты). Особенность его необычного произведения, состоящая в том, что зритель смотрит одновременно и на себя, и на картину, просто обобщает это противоречие. Вероятно, именно при попытке взглянуть на свою картину в зеркале, чтобы увидеть верное изображение, Брунеллески понял, что можно использовать полированное серебро, которое будет отражать небо. И тогда же он должен был сделать неприятное открытие: изображение в зеркале имело вдвое меньшую высоту. Картина, которая должна была в точности воспроизводить вид на баптистерий из портика собора, получалась в четверть его размера – зеркало вдвое увеличивало кажущееся расстояние от наблюдателя 534 до баптистерия . Конечно, Брунеллески мог предвидеть эту проблему и просто масштабировать свою картину, но нам известно, что он этого не сделал, поскольку хотел, чтобы зритель стоял в том же месте, где и художник, внутри портика; нетрудно показать, что картина размером в один квадратный фут будет соответствовать видимому размеру баптистерия. Для второго отражения картина Брунеллески должна была иметь размер четыре квадратных фута, а не один. Что же выяснил Брунеллески, помимо трудностей работы с зеркалами? В первой картине он продемонстрировал, что рисунок, сделанный по законам перспективы, требует определения картинной плоскости, с которой рассматривается изображение. Это новое 533 MelchiorBonnet. The Mirror (2002). 18, 19. 534 Gombrich. Art and Illusion (1960). 5. Зачастую Гомбриха неверно интерпретируют: подробный анализ см. в: Bertamini & Parks . On What People Know about Images on Mirrors (2005). Некоторые авторы уже рассматривали эту проблему в данном контексте (например, Lynes . Brunelleschi’s Perspectives Reconsidered, 1980. 89), но только Ротман иллюстрирует этот эффект в своем описании: Rotman. Signifying Nothing (1993). 15. Странно, однако в симуляции Камероты, в которой, по всей видимости, использовалось зеркало, не демонстрируется этот эффект, а, судя по тексту, сам автор считает, что отображение в зеркале и оригинальное изображение имеют одинаковый размер: Camerota. La prospettiva del Rinascimento (2006). 62. Я могу лишь предположить, что его картинки – это не зеркальные отображения, а печатные репродукции и что они вводят в заблуждение.
понимание Брунеллески использовал во второй картине, с городской ратушей. Возможно, на этот раз он работал с отражениями в двух зеркалах (метод, рекомендованный Филарете). А возможно, смотрел через прозрачный пергамент и наносил контуры прямо на него. Альберти открыл (cuius ego usum nunc primum adinveni; «применение которого я недавно впервые открыл» – primum adinveni часто переводится как «открыть») метод взгляда сквозь сетку с использованием линий сетки как точки отсчета – по крайней мере, он заявлял об открытии этого метода в латинском тексте трактата «О живописи» (1435), хотя в итальянской версии это заявление отсутствует 535. Когда Альберти говорит, что не понимает, как можно добиться даже скромных успехов в изображении перспективы, не используя его метод, возникают подозрения, что Брунеллески превзошел его, и исправления в тексте могут служить подтверждением, что впоследствии Альберти в этом убедился 536. Позже данный метод использовали, например, Леонардо, Дюрер и Виньоль (см. цветную иллюстрацию 16). Если наша реконструкция верна – то есть Брунеллески начал изображать то, что видел в зеркале – значит, он пришел к пониманию, что рисунок, сделанный по законам перспективы, требует определения картинной плоскости, и задача художника состоит в том, чтобы создать такое изображение, как будто оно нарисовано на стекле, помещенном в этой плоскости. Именно об этом принципе говорил Альберти, когда сравнивал картину с окном, через которое вы смотрите на сцену за ним, и именно поэтому Дюрер впоследствии утверждал, что слово «перспектива» происходит от латинского perspicere в значении «видеть сквозь», тогда как на самом деле – в значении «видеть ясно» 537. Брунеллески не открыл точку схода или перспективу; он не выполнял сложных измерений или изощренных геометрических построений, даже если и обладал необходимыми для этого знаниями. Он научился думать о картине как о листе стекла, через которое смотрит зритель. Кроме того, он понял нечто очень важное: чтобы построенная перспектива была эффективной, художник и зритель должны смотреть из одной точки, и этой точке соответствует точка на картине прямо напротив глаза художника. Рисунок с использованием законов перспективы, по всей видимости, является абсолютно объективным отображением реальности, хотя и зависит от готовности зрителя посмотреть на него должным образом, однако в этом случае зритель может фактически определять свое местоположение по отношению к картине. Рисунки Брунеллески не имеют точек схода – их заменяют правильно расположенные зрители. §3 Первые опыты Брунеллески и знаменитую «Троицу» Мазаччо (ок. 1425) – первое большое изображение, в котором полностью использованы законы перспективы, – разделяют приблизительно два десятка лет 538. Мазаччо поместил распятого Христа в церковь 535 Принято считать, что латинский текст предшествовал итальянскому, и в этом случае Альберти, по всей видимости, изъял это утверждение из текста, который должен был прочесть Брунеллески (что подтверждает мою точку зрения). С другой стороны, недавно специалисты высказали предположение, что первым был текст на итальянском языке, и тогда Альберти мог добавить это заявление после дискуссий с Брунеллески (что противоречит моей точке зрения): см.: Alberti. On Painting (2011). 536 Alberti. De pictura §§ 31, 32: Latin in Alberti . On Painting and On Sculpture (1972); Italian in Alberti. De pictura (1980) (available on the Web). Это исправление не отмечено в Alberti. On Painting (2011), источником которого стал не итальянский текст (как можно было предположить), а Basle Latin editio princeps. 537 Panofsky. Perspective as Symbolic Form (1991). 75, 76 n. 3. 538 См. цветную иллюстрацию 12.
с цилиндрическим сводом – вероятно, этой церкви не существует; она – плод воображения художника. Здесь проявляется разница между опытами Брунеллески и живописью Мазаччо: Брунеллески изображал реальность, а Мазаччо – вымышленное пространство. Для отображения реальности можно использовать разные картинные плоскости, но если вы хотите нарисовать воображаемый мир, то должны понять, как сконструировать этот мир, чтобы он выглядел убедительным и доставлял эстетическое удовольствие 539. Вы должны решить, где будет располагаться точка или точки схода. Вы должны начертить сетку из сходящихся линий. Вы должны применить законы геометрии. И нам известно, что именно так поступал Мазаччо: на штукатурке, которую расписывал художник, остались видны линии сетки 540. Мы знаем, что Брунеллески обсуждал вопросы перспективы с Мазаччо541 и что Альберти вскоре написал учебник по геометрической перспективе. Таким образом, по всей видимости, именно Мазаччо сделал следующий шаг в использовании законов перспективы в живописи, и это был очень важный шаг, поскольку искусство эпохи Возрождения было в основном религиозным, а религиозное искусство почти никогда не является непосредственным отражением реального мира. Разумеется, у художников были модели. Заказчики Мазаччо, оплатившие его работу, изображены коленопреклоненными по краям фрески. Возможно также, что Мазаччо смотрел на реальную церковь с цилиндрическим сводом и копировал реальные колонны. Но для того, чтобы соединить эти элементы на стене, ему пришлось делать наброски, проводить сходящиеся линии, вычислять масштаб и уменьшение видимой длины в перспективе. Он должен был сконструировать теоретическое пространство, которое затем перенес на картину. То есть живопись с применением законов перспективы предполагает применение теории к конкретным обстоятельствам. Необходимо абстрактное представление о линиях в пространстве, проходящих от объекта через картинную плоскость к глазу, а также о том, как эти линии проявляются на самой картинной плоскости. Это приучает глаз воспринимать геометрические формы. Показательным примером может служить трактат Нисерона «Курьезная перспектива» (La Perspective curieuse), написанный в 1652 г.542 Нисерон объясняет, как создавать анаморфные формы, такие как череп на картине Гольбейна «Послы», который принимает форму черепа только в том случае, если смотреть на картину под острым углом. Но сначала он должен научить читателя пониманию и изображению различных форм. Рассмотрим его пример рисунка стула. Сначала автор показывает, как нарисовать простую прямоугольную коробку. Затем к ней добавляются спинка и ножки. Результат похож на стул в стиле Баухаус – по той причине, что он составлен из простейших геометрических форм. Он совсем не похож на стул XVII в., поскольку лишен изогнутых линий и украшений – достаточно посмотреть на причудливо изогнутую ленту внизу, чтобы получить представление об эстетике того периода. Это абстрактный или теоретический стул – не настоящий, а стул геометра. Для того чтобы увидеть его таким, требуется умение выделять математические формы в более сложных объектах. Естественно, художники, едва познакомившись с геометрическим методом построения перспективы в изображениях, попали под очарование математических форм и сложности их построения. Иллюстрации к трактату Луки Пачоли «О божественной пропорции» (1509) выполнил сам Леонардо. Их связывала крепкая дружба; оба работали для миланского 539 Camerota. La prospettiva del Rinascimento (2006). 66, 67. 540 Field. The Invention of Infinity (1997). 43–61. 541 Vasari. Lives of the Artists (1965). 136. 542 Niceron. La Perspective curieuse (1652). См.: Massey . Picturing Space (2007).
герцога Лодовико Сфорца и оба в 1499 г. бежали из города, когда Милан заняли французы, и перебрались во Флоренцию, где некоторое время даже вместе снимали жилье. На портрете Пачоли мы видим две такие формы: на книге стоит додекаэдр (правильный многогранник с двенадцатью сторонами, а стеклянный ромбододекаэдр (симметричный многогранник с двадцатью шестью сторонами), наполовину наполненный водой 543, висит на тонкой нити в пустом пространстве – декоративный объект, привлекающий внимание игрой света и своей геометрической формой 544. Пачоли изображен в тот момент, когда он объясняет задачу Евклида ученику: на столе раскрыт учебник Евклида, а Пачоли рисует на грифельной доске фигуру, необходимую для понимания задачи; на столе лежат инструменты для геометрических построений и цилиндрический футляр. В отличие от ученика Пачоли не смотрит на нас (он глубоко задумался), но мы смотрим на него, поскольку его глаза находятся в центральной точке, прямо напротив глаз художника и наших глаз (что подчеркивается стилусом в его руке). На художника – или на нас – направлен взгляд молодого человека аристократической внешности. Пачоли был математиком, и автор его портрета тоже математик, о чем свидетельствует его знание сложных геометрических форм 545. Изображая математика, художник изображал и себя: некоторые специалисты даже предполагают, что присутствующий на портрете молодой человек – это автопортрет, и тогда направленный на зрителя взгляд явно указывает на отражение в зеркале546. Я сомневаюсь в этой версии, а также в традиционной, которая приписывает портрет кисти Якопо де Барбари. На столе перед молодым человеком лежит листок бумаги, на котором сидит муха. На листке можно различить надпись: «Iaco. Bar. Vigennis. P. 1495». Считалось, что это подпись художника, и поэтому картину приписывали Якопо де Барбари, хотя она не похожа на его работы, а ему в 1495 г. было не двадцать лет (vigennis ), а гораздо больше547. И никто, по всей видимости, не предложил очевидного объяснения, что листок бумаги идентифицирует не художника, а молодого человека («P.» означает pictum , а не pincit ), которому могло быть двадцать лет. У многих итальянцев по имени Джакомо фамилия начинается на «Бар» (Барди, Бароцци, Бартолини, Бартолоцци и т. д.). Поскольку на картине имелось посвящение Гвидобальдо да Монтефельтро, герцогу Урбинскому (и ученику Пачоли), и она висела в гардеробной герцога, у нас есть основания предполагать, что Iaco. Bar. был его другом и смотрит он именно на герцога. Почему сокращенная запись – это имя 543 См. цветную иллюстрацию 18. 544 Mackinnon. The Portrait of Fra Luca Pacioli (1993). 545 Предположительно, по этой причине первый биограф Пачоли, Бернардино Бальди, живший в конце XVI в., называл автором портрета Пьеро делла Франчески, известного своим знанием правильных многогранников. По мнению Бальди, Пьеро был другом Пачоли; они происходили из одного города, СанСеполькро, и Пьеро мог быть учителем Пачоли. Однако Пьеро не мог быть автором картины – к моменту ее создания он уже умер. 546 Джейкоб Солл утверждает, что молодой человек – это сам герцог Урбинский Гвидобальдо да Монтефельтро, отмечая, что «счетовода никогда больше не изображали как в чем-то превосходящего знатного человека». Это выглядит невозможным, и в любом случае у нас есть прекрасный портрет Гвидобальдо, приписываемый Рафаэлю, и молодой человек на него не похож (Soll. The Reckoning, 2014. 50; цитата из подписи под иллюстрацией). 547 У нас нет прямых свидетельств, касающихся даты рождения де Барбари, но в 1512 г. его описывали как старого и больного; его первая работа с точной датировкой относится к 1500 г. Считалось, что он родился в период с 1440 по 1450 г.; в настоящее время высказывается предположение, что он родился в 1470-х, но аргументация основана на признании его авторства портрета Пачоли, хотя картина не похожа на другие его работы (Gilbert. When Did a Man in the Renaissance Grow Old? 1967); Levenson. Jacopo de’ Barbari, 2008).
молодого человека? Очевидное объяснение состоит в том, что картина написана в память о нем – возможно, он умер, а возможно, уехал. Из трактата Нисерона «Курьезная перспектива»: стул, низведенный до задачи
геометрического построения, 1652 Таким образом, на полотне отражена жизнь при дворе Урбино. Полидор Вергилий писал свой трактат «Об изобретателях» в библиотеке Гвидобальдо. Работа в этой прекрасной зале, не только содержавшей множество книг, но и украшенной золотом и серебром, настолько исказила представление Вергилия о мире, что он утверждал, что в его времена каждый ученый муж, даже самый бедный, может получить любую книгу, какую только пожелает548. Двор Гвидобальдо впоследствии прославил Кастильоне в своем трактате «Придворный» (Il Cortegiano, 1528), воспроизведя воображаемые диалоги, которые он записал в 1507 г. Сам Гвидобальдо не появляется на страницах книги Кастильоне: он лежит больной в постели, а бразды правления на это время переходят к его жене Елизавете. Портрет Пачоли иллюстрирует, что после открытия законов перспективы математика и искусство шли рука об руку. Пьеро делла Франческа написал несколько работ по математике (сохранились две: «Трактат об абаке» и «Книга о пяти правильных телах), в которых рассматриваются практические проблемы, например вычисление количества зерна в конической куче или объема вина в бочонке, а также книгу «О перспективе в живописи»549. Подобные задачи превращают реальные объекты – кучи зерна, бочонки с вином – в абстрактные формы, к которым можно применить законы математики. Публикации Пачоли воспроизводят материалы из книг Пьеро. Пачоли дружил не только с Леонардо, но и с Альберти, с которым в молодости несколько месяцев жил вместе. Сам он не был художником, но в трактате «О божественной пропорции» рассматривал золотое сечение, законы архитектуры и разновидности шрифтов. Нам Пачоли известен в основном объемным трудом, на котором на картине лежит додекаэдр: «Сумма арифметики, геометрии, отношений и пропорций» (Summa de arithmetica, geometria, proportioni et proportionalità, 1494). Это был учебник прикладной математики, и в нем впервые в письменном виде излагались принципы двойной записи в бухгалтерском учете – новой была не сама система, а ее публикация; Пачоли просто воспользовался очевидной возможностью 550. §4 Живопись с использованием законов перспективы требует необычной формы абстракции: построения точки схода. Следует отметить, что сам этот термин относительно новый: в английском языке он впервые появляется в 1715 г. Альберти называет ее центральной точкой (il punto del centro ), а во многих ранних текстах о ней упоминают как о горизонте551. Однако Альберти совершенно определенно указывает, что изображение в перспективе с одной точкой схода изменяется, «как бы уходя в бесконечность»552. Интеллектуала эпохи Возрождения это утверждение ставило в тупик. Вселенная Аристотеля конечна и имеет сферическую форму; более того, она не окружена бесконечным пространством, а пустого пространства вообще не существует. И действительно, Аристотель 548 Vergil. On Discovery (2002). 245. 549 Baxandall. Painting and Experience in Fifteenth-century Italy (1972). 550 Gleeson-White. Double Entry (2011). Я надеюсь еще вернуться к влиянию двойной записи в бухгалтерском деле на идеи рациональности в начале современного периода истории. 551 Panofsky. Perspective as Symbolic Form (1991). 143: переводя Палладио, Панофски отмечает, что «горизонт… в старой терминологии всегда означает «точку схода». 552 Alberti. On Painting (1991). 54 (§ 19).
не разделял пространство и заполняющие его объекты. Поэтому для него любое пространство конечно и ассоциируется с местом, а идея бесконечного продолжения концептуально противоречива, как и идея вакуума 553. Разумеется, это не верно в геометрии Евклида, где параллельные линии можно продолжать до бесконечности, и они никогда не пересекутся (следует добавить, что и в оптике Альхазена тоже). Однако на бесконечном расстоянии вы ничего не увидите. Таким образом, если вы хотите работать с точкой схода, то полезно определить такое понятие, как «ничто». У Евклида не было нуля, который появился в Европе в начале XIII в. вместе с арабскими цифрами (на самом деле только одна из десяти цифр является арабской; остальные индийские). Арабские цифры сделали возможными ведение документированной бухгалтерии с двойной записью. Ноль – чрезвычайно полезное, хотя и необыкновенно загадочное понятие; вероятно, только культура, использующая ноль, могла воспринять идею, что точка схода может быть одновременно точкой, где ничего невозможно увидеть, и ключом к интерпретации живописи 554. Появление понятия точки схода привело к тому, что художники обнаружили, что живут одновременно в двух несовместимых мирах. С одной стороны, они знали, что Вселенная конечна. С другой стороны, геометрия перспективы требовала от них представлять ее бесконечной. Ярким примером могут служить комментарии Чезаре Чезарьяно к Витрувию (1521). Чезарьяно приводит стандартное изображение Вселенной Аристотеля как череды конечных сфер. Но когда он объясняет принцип измерения расстояний, то представляет измерения расстояний до Солнца, планет и далее в бесконечность и открыто заявляет, что линии от наблюдателя через точки Т и М (см. рисунок ниже) уходят в бесконечность. Таким образом, перспектива вводила в конечную Вселенную аномальное понятие 555 бесконечности . 553 Hintikka. Aristotelian Infinity (1966); полезно прочесть работу Charleton. Physiologia Epicuro-GassendoCharletoniana (1654). 62–71, где делается попытка сформулировать понятие пространства. 554 Rotman. Signifying Nothing (1993). 555 Vitruvius Pollio . De architectura (1521). Койре считает концепцию бесконечности ключевым различием между физикой Аристотеля и современной физикой: Koyré . Études d’histoire de la pensée scientifique (1973). 165.
Измерение Вселенной. Из трактата Витрувия «Об архитектуре» с комментариями Чезаре Чезарьяно, 1521 Художникам было непросто справиться с этими проблемами. В первых работах с использованием законов перспективы точка схода зачастую спрятана за якобы случайно выбранным объектом, ногой или одеждой. В религиозном искусстве неявное присутствие бесконечности можно было выгодно использовать. Так, например, точка схода в «Троице» Мазаччо находится над гробницей в пустом, на первый взгляд, пространстве. Однако изначально перед фреской находился алтарь, и точка схода располагалась прямо за гостией, которую священник поднимает в кульминационный момент мессы, когда происходит пресуществление. Именно к этой точке прикованы глаза зрителя. (Фреска Мазаччо так удачно сочеталась с гостией, что вскоре ее стали копировать для конструкции табернаклей – деревянных шкафчиков для хранения гостий.) В фреске Мазаччо «Чудо
со статиром» точка схода находится позади головы Христа 556. Точка схода вызывала у художников особый интерес в связи с одним конкретным сюжетом – Благовещением. Лоно Марии сравнивали с запертым садом («Запертый сад – сестра моя, невеста, заключенный колодезь, запечатанный источник», говорится в Песни песней), и поэтому закрытую дверь, ведущую в сад, часто помещали в точку схода 557. Но вочеловечивание Христа восстанавливает для людей возможность спасения души, вновь открывая врата рая, которые закрылись за Адамом и Евой, то есть открывая для верующих путь к вечному блаженству. Таким образом, открытая дверь в сад может символизировать спасение души. И естественно, Бог бесконечен, и поэтому Благовещение воплощает в себе встречу конечного человека и бесконечного божественного начала: в «Благовещении» Пьеро делла Франчески точка схода, по всей видимости, используется для того, чтобы создать ощущение бесконечности, а завитки мрамора становятся символическим отображением Бога, которого нельзя увидеть или постигнуть 558. Однако в нерелигиозных сюжетах точку схода следовало держать под контролем, поскольку мир человека конечен и ограничен. Например, в изображении идеального города, датируемом 1480–1484 гг. и приписываемом Фра Карневале, линии зданий, расположенных по обе стороны площади, сходятся в дальней точке, но это место загораживает храм, полуоткрытая дверь которого намекает, что можно заглянуть и дальше, но только в замкнутом пространстве559. Если тут и присутствует бесконечность, то лишь в закрытом религиозном пространстве. В «Ночной охоте» Учелло мы видим тревожное умножение точек схода, причем все они ведут в темноту. Создается впечатление, что охотники могут потеряться, а олень убежать; картина обыгрывает идею исчезновения, поскольку взгляд зрителя теряется в темноте, а не в бесконечном пространстве. §5 В середине XV в. художники экспериментировали с идеей бесконечного, абстрактного и единообразного пространства. Они понимали, что эта идея трудна для понимания и необычна, но знали, что без нее невозможно отображение в соответствии с законами перспективы. Искусство сбежало – по крайней мере, отчасти – от Аристотеля и укрылось под крылом геометрии и оптики. Но перспектива также поощряла новый взгляд на мир в трех измерениях, с последующей его регистрацией, позволивший увидеть то, чего раньше не видели, и делать то, чего раньше не делали. До появления рисунков, выполненных по законам перспективы, если вы хотели сконструировать какой-либо механизм, приходилось изготавливать его – или его модель. Работу с объемными материалами заменить было нечем. Но после того как у инженеров появилась возможность изображать на бумаге трехмерные объекты, они могли разрабатывать свои конструкции с помощью ручки или карандаша (карандаш изобрели приблизительно в 1560). Леонардо (1452–1519) придумал разнообразные механизмы, которые не были построены, причем многие (например, летательные аппараты) не могут быть реализованы. На цветной иллюстрации 15 показана конструкция лебедки с трещоточным приводом. Сама лебедка изображена слева, а справа помещен ее рисунок в разобранном состоянии (или «по частям»), чтобы продемонстрировать конструкцию. 556 Moffitt. Painterly Perspective and Piety (2008); Parronchi. Un tabernacolo brunelleschiano (1980). 557 Песнь песней, 4: 12. 558 См. цветные иллюстрации 13 и 14. 559 См. цветную иллюстрацию 17.
Каждое колесо соединено с трещоточным механизмом. Если потянуть за рычаг с правой стороны лебедки, одно из колес входит в зацепление с валом, который поднимает груз. Если рычаг толкнуть, в зацепление входит другое колесо, однако конструкция лебедки такова, что вал вращается в ту же сторону, и груз продолжает подниматься. Поскольку тянуть и толкать рычаг легче, чем вращать ворот обычной лебедки, трещоточный механизм эффективнее поднимает грузы. Рисунок Леонардо достаточно понятен, чтобы по нему можно было построить модель лебедки и продемонстрировать ее работоспособность. От такого рисунка до современных чертежей всего один шаг. В наброске Леонардо используется масштабирование – детали трещоточного механизма показаны с большим увеличением 560. Разумеется, построить реальный механизм по рисунку – непростая задача. Какие инструменты вам потребуются, чтобы изготовить лебедку, сконструированную Леонардо? Если нужно поднимать тяжелые грузы, штырьки, приводящие в движение механизм, будут испытывать серьезные нагрузки. Из какого дерева их следует делать? Альбомы рисунков начала современной эпохи были предназначены в основном для демонстрации инженерного искусства и не содержали сведений, необходимых для самостоятельной работы. Даже подробные иллюстрации великой «Энциклопедии» (1751–1772) Дидро и Д’Аламбера, которая вроде бы информировала о том, что можно сделать, не рассказывали, как именно это сделать. Тем не менее существуют успешные примеры конструирования при посредстве книгопечатания. В 1602 г. большим тиражом вышел труд Тихо Браге «Механика обновленной астрономии» (Astronomiae Instauratae mechanica) с подробными иллюстрациями новых инструментов, изобретенных им для астрономических наблюдений. В 1670-х гг. в Пекине астроном из ордена иезуитов Фердинанд Вербист сумел изготовить инструменты на основе этих рисунков, не видя оригиналов Браге 561. Леонардо был не только художником, архитектором и инженером (общим для этих профессий было использование геометрии и законов перспективы), но также занимался анатомическими исследованиями, препарируя животных и людей. По всей видимости, он собирался опубликовать результаты своих исследований, но так этого и не сделал. Революцию в анатомии совершил труд Андреаса Везалия «О строении человеческого тела» (De corpore humani fabrica, 1543). Везалий (преподававший в университете Падуи) нанимал художников из мастерской Тициана в Венеции для выполнения иллюстраций самого высокого качества. Иллюстрации были снабжены буквенными обозначениями, которым соответствовал текст. Леонардо в своем рисунке лебедки уже использовал буквы в качестве обозначений, и эта практика основана на геометрических чертежах, но Везалий был первым, кто систематически применил ее в анатомии. Так Везалий мог показать читателю, что он увидел в человеческом теле. Пластины с гравировкой, изготовленные в Венеции, затем перевозились через Альпы в Базель, поскольку Везалий не доверял венецианским печатникам такую тонкую работу. 560 Edgerton. The Heritage of Giotto’s Geometry (1991). 108–147; Long. Power, Patronage and the Authorship of Ars (1997); Galluzzi. The Art of Invention (1999); Ackerman . Art and Science in the Drawings of Leonardo da Vinci (2002); Lefèvre. The Limits of Pictures (2003); Long . Picturing the Machine (2004). 561 Chapman. Tycho Brahe in China (1984).
Конструкция армиллярной сферы Браге. Из «Механики обновленной астрономии»,
1598 Императорская обсерватория в Пекине. Из книги Фердинанда Вербиста «Рисунки заново изготовленных инструментов», составлявшейся с 1668 по 1674 г., в которой были показаны инструменты, изготовленные миссионером-иезуитом на основе рисунков Браге. Главное в трактате Везалия «О строении человеческого тела» – утверждение, что свидетельства наших органов чувств должны быть важнее текста Галена. Средневековые анатомы на лекциях вслух зачитывали Галена, в то время как их ассистенты вскрывали труп: тело должно было проиллюстрировать слова Галена, а не исправлять его ошибки. Но даже когда средневековые анатомы сами препарировали тело, то находили (или думали, что находили) именно то, что говорил Гален. Например, Мондино де Луцци (1270–1326), автор первого средневекового учебника анатомии, имел огромный практический опыт, но тем не менее находил в основании человеческого мозга rete mirabile (чудесную сеть) кровеносных сосудов, о присутствии которых говорил Гален, хотя их там не было – такие сосуды есть только у копытных животных. Леонардо препарировал трупы, но считал, что находит канал, соединяющий мужской пенис со спинным, а значит, и с головным мозгом: он полагал, что по этому каналу поступает субстанция, которая является частью семенной жидкости и очень важна для произведения потомства. Первым анатомом, которые регулярно
не соглашался с Галеном, опираясь на непосредственный опыт, был Джакопо Беренгарио да Карпи, трактат которого «Анатомия» вышел в 1535 г., всего за несколько лет до труда Везалия562. Такой проект, как «О строении человеческого тела» Везалия, мог осуществиться только в культуре, где уже начал расшатываться авторитет великих классиков, в том числе Птолемея и Галена. В этом смысле совпадение по времени великих трудов Коперника и Везалия указывает на некую общность: оба жили в то время, когда новая культура инноваций окончательно подорвала уважение к Античности, по крайней мере у людей пытливого ума. Текст Галена никогда не сопровождался иллюстрациями – Гален открыто говорил об их бесполезности, – поскольку при отсутствии книгопечатания качество иллюстраций при каждой последующей переписке неизбежно ухудшалось 563564. Таким образом, описания Галена зачастую было очень трудно понять. У Везалия, наоборот, легко увидеть, о чем он говорит. Везалий утверждал, что обнаружил у Галена большое количество ошибок, и тем самым подрывал его авторитет – точно так же, как открытия Колумба подорвали авторитет Птолемея. Но для анатомов следующих поколений было важнее то, что, если на иллюстрациях Везалия отсутствовали или были неверно отображены какие-либо анатомические детали, появлялась возможность с уверенностью указать на его ошибку. Сложные печатные иллюстрации, выполненные с учетом законов перспективы, превратили анатомию в развивающуюся науку, где каждое следующее поколение анатомов мог ло выявить ошибки и оплошности предшественников. Открытия в анатомии начались не с Везалия: скорее он установил линию отсчета, позволявшую другим заявлять об открытии. Приемы, примененные Везалием в анатомии, в тот же период использовались и в ботанике, где авторы сталкивались с той же трудностью, что и сам Везалий: должны ли они описывать конкретные растения со всеми их недостатками и дефектами, точно отражая реальный мир, или давать идеализированное изображение представителя вида, как сделал Везалий с человеческим телом? Должны ли они показывать растение на определенной стадии развития или совмещать в одной иллюстрации цветок и плод? Точно так же, как иллюстрации Везалия позволяли надежно идентифицировать части человеческого тела, новая иллюстрированная ботаника сделала возможными достоверные знания о различных видах, а также способствовала прогрессу в их наименовании и идентификации. Но прогресс предполагает установление различий: Конрад Геснер, первым в век книгопечатания попытавшийся систематизировать знания в области зоологии (Historiae animalium, 1551– 1558), часто приводит изображения, которые он называет ошибочными. Даже Везалий в одном случае иллюстрирует неверное утверждение Галена. То, что мы считаем само собой разумеющимся – то есть что иллюстрации отображают реальность, – стало очевидным не сразу565. 562 Thorndike. A History of Magic and Experimental Science (1923). Vol. 5. 498–514. 563 Именно поэтому не сохранилось ни одного экземпляра «Географии» Птолемея с картами, которые описывает автор, и ни одного экземпляра великого труда Витрувия об архитектуре (написанного в эпоху императора Августа, 27 до н. э. – 14 н. э.) вместе с прилагавшимися чертежами. В любом случае чертежи, изначально сопровождавшие текст Витрувия, были немногочисленными и очень примитивными. Первое иллюстрированное издание появилось в 1511 г. 564 Carpo. Architecture in the Age of Printing (2001). 16–22. В Cunningham . The Anatomical Renaissance (1997), где утверждается, что анатомия эпохи Возрождения была продолжением классической анатомии, автор упускает из виду фундаментальные перемены, ставшие результатом механического копирования иллюстраций. Превосходный пример трудности передачи визуальной информации в рукописях см. в: Eagleton. Medieval Sundials and Manuscript Sources (2006). 565 Ogilvie. The Science of Describing (2008); Kusukawa. The Sources of Gessner’s Pictures for the Historia
Таким образом, к 1543 г. две революции сошлись вместе, открыв возможность для появления новой науки. Во-первых, были сформулированы законы перспективы в живописи, основанные на геометрической абстракции; во-вторых, печатные станки позволили размножать иллюстрации, сопровождавшиеся текстом. Живопись с использованием законов перспективы появилась в 1425 г., гравюры – не позже 1428 г., книгопечатание – в 1450 г. В 1453 г. пал Константинополь, и в результате на латинский Запад с Востока хлынул поток греческих рукописей и говорящих на греческом ученых (что улучшило понимание греческих оригиналов работ Галена) 566. Почему же потребовалось еще сто лет, чтобы завершить трансформацию, вызванную механическим воспроизведением изображений, созданных по законам перспективы? На этот вопрос есть два ответа. Во-первых, после изобретения книгопечатания первоочередной задачей издатели считали публикацию огромного количества религиозных, философских и литературных текстов – сначала на латыни, а затем, для более ограниченного круга читателей, на греческом. Первое серьезное издание Галена, с которым работал Везалий, появилось в Базеле в 1538 г.; Везалий настоял, чтобы его труд печатался именно в этом городе. Во-вторых, должна была произойти растянутая во времени культурная революция, чтобы книжные знания утратили приоритет над непосредственным опытом. Эта революция – о чем было сказано выше – началась с Колумба. Рядом с великими работами Коперника и Везалия мы можем поставить труд Леонарта Фукса «Описание растений» (De historia stirpium commentarii insignes), который был издан годом раньше (1542) и в котором содержалось 512 точных изображений растений. В предисловии Фукс пишет: animalium (2010). 566 Иногда говорят, что это и есть истинная дата начала эпохи Возрождения. Альтернативная, более ранняя дата, для тех, кому нравится думать, что трансформацию культуры можно уложить в четкие временные рамки, – повторное открытие Петраркой в 1345 г. писем Цицерона к Аттику. Это событие символизирует возвращение культурного наследия Древнего Рима, тогда как падение Константинополя служит знаком возвращения культурного наследия Древней Греции.
Первое изображение мускулатуры человека. Из трактата Везалия «О строении человеческого тела», 1543
Хотя на подготовку рисунков было затрачено много сил и труда, мы не знаем, не будут ли они названы бесполезными и не имеющими смысла и не вспомнит ли кто-либо слова такого скучнейшего авторитета, как Гален, утверждавшего, что для описания растений не нужны изображения. Но зачем тратить столько времени? Кто в здравом уме станет осуждать рисунки, которые могут передать сведения доходчивее, чем самый красноречивый из людей? То, что предстает перед нашими глазами, изображенное на доске или бумаге, гораздо прочнее удерживается в памяти, чем то, что лишь описывается словами567. Слова Фукса отражают две свершившиеся революции: развенчание авторитетов древности (Гален назван «скучнейшим авторитетом», и нам трудно представить, какими шокирующими выглядели в то время эти слова) и признание эффективности изображений в новый век механического копирования 568. Это две важнейшие предпосылки научной революции. §6 В 1464 г. немецкий астроном Йоганн Мюллер (1436–1476), известный как Региомонтан (по латинскому названию города, где он родился, Кенигсберга), прочел лекцию в Университете Падуи 569. Региомонтан недавно закончил описание астрономии Птолемея и комментарии к ней – работу, начатую его учителем, Георгом Пурбахом. Эта книга стала стандартным учебником по астрономии до конца XVI в., и в ней Пурбах и Региомонтан без стеснения критиковали ошибки Птолемея. В 1464 г. Региомонтан писал новаторскую работу по плоской и сферической тригонометрии («О всех видах треугольников»), которая заложила основы для всех астрономических вычислений. Он изучал греческий в Вене, чтобы читать Птолемея в оригинале, и в Италии смог прочесть работы Архимеда (в Средние века их перевели на латынь, но в печати они еще не появились) и Диофанта (он еще был недоступен на латыни; Диофант (ок. 210 – ок. 290) считается основателем алгебры). Региомонтан одним из первых ощутил пользу от появления в Италии греческих текстов после падения Константинополя. Когда он, меньше чем через десять лет после появления Библии Гутенберга, читал лекцию в Падуе, революция книгопечатания только начиналась: например, труды Евклида были изданы на латыни только в 1482 г., на греческом – в 1533 г., на итальянском – в 1543 г., на английском – в 1570 г. Таким образом, лекция Региомонтана отмечает поворотный пункт в повторном открытии греческой математики и указывает на амбициозную программу публикации математических текстов, разработанную Региомонтаном, хотя он и не дожил до ее осуществления. Региомонтан восхвалял математические науки, критикуя философию Аристотеля, которую преподавали в университетах. Будь Аристотель жив, утверждал Региомонтан, он не увидел бы смысла в том, что говорят его современные ученики. «Только безумец может приписать это [то есть невразумительность текстов] нашим [математическим] наукам, поскольку ни века, ни традиции не могут у них ничего отнять. Теоремы Евклида сегодня так же достоверны, как и тысячу лет назад. Открытия Архимеда будут вызывать не меньшее 567 Цит. по: Ackerman . Early Renaissance ‘Naturalism’ and Scientific Illustration (1991). 202. 568 Ivins. Prints and Visual Communication (1953), классическая работа. Не все соглашались с Фуксом и Везалием относительно ценности изображений: Kusukawa . Picturing the Book of Nature (2011). 124–131, возражения Фуксу, и 233–237, возражения Везалию. 569 Swerdlow . Montucla’s Legacy (1993). 299; Byrne . A Humanist History of Mathematics? (2006).
восхищение у людей через тысячу столетий, чем у нас, когда мы читаем о них»570. Однако похвала Региомонтана математическим наукам не означала некритичного восхищения современной математикой. Всего лишь за год до своей лекции он писал: «Я не могу не удивляться лености большинства астрономов нашего времени, которые, подобно легковерным женщинам, воспринимают как нечто священное и непреложное все, что читают в книгах… поскольку они верят авторам [таким, как Птолемей] и не прилагают усилий для поисков истины»571. Эта мысль – о том, что нужно перейти от изучения книг к изучению реальной жизни, – снова и снова повторялась сторонниками новых наук, которые восставали против старой философии. Например, она была одним из любимых риторических приемов Галилея: в 1620-х гг. подобное предложение выглядело таким же радикальным, как и в 1460х, поскольку в университетах старая система обучения не сдавала своих позиций. Галилей также разделял убежденность Региомонтана, что Евклид и Архимед («божественный Архимед», как он его называл) служат единственными примерами достоверного знания 572. В 1471 г. Региомонтан разработал метод измерения параллакса небесных тел, а значит, вычисления их удаленности от Земли573. Его метод предполагал использование эккера, инструмента, изобретенного рабби Леви бен Гершомом (1328) 574. Эккер – простейший инструмент, представляющий собой калиброванный стержень, вдоль которого скользит планка. Вы смотрите вдоль стержня и передвигаете планку вперед и назад, пока не совместите ее концы с двумя точками; получившийся угол считывается со шкалы на стержне. Эккер можно использовать, например, для измерения высоты солнца над горизонтом в полдень. Зная дату и имея под рукой соответствующие таблицы, по этому углу вы определите широту (разумеется, при этом придется, прищурившись, смотреть на солнце; квадрант был изобретен в 1594 г., и он позволял выполнять измерения, не глядя на солнце). Ночью можно определить широту, измерив угол между горизонтом и Полярной звездой. Эккер – это один из целого ряда инструментов, таких как квадрант и секстант, предназначенных для измерения углов визуальным наблюдением. До изобретения эккера для этого использовалась астролябия (в средневековой Европе ее скопировали с восточных образцов), а также метод измерения высоты солнца по длине тени. С появлением эккера появилась возможность определить широту, зная время, но гораздо важнее для большинства пользователей было другое – они могли определить время, зная широту и дату. Для топографии, астрономии и навигации были разработаны разные варианты этого инструмента, но во всех использовался один и тот же принцип измерения углов для вычисления расстояния или времени 575576. 570 Swerdlow . Montucla’s Legacy (1993). 299. 571 Swerdlow . Montucla’s Legacy (1993). 188 (перевод изменен). 572 Wootton. Galileo (2010). 22, 138, 165, 166, 210. Сравните с Boyle , ниже, 416. Таким образом, первая стадия научной революции заключается в повторном открытии греческой математической науки: Russo. The Forgotten Revolution (2004). 573 Оригинальный текст воспроизведен в: Jervis . Cometary Theory in Fifteenthcentury Europe (1985). 170–193, вместе с переводом, 96–112. 574 Jervis . Cometary Theory in Fifteenth-century Europe (1985). 108–110. 575 От них отличался пассажный инструмент: с его помощью по положению звезд в созвездии Большой Медведицы, которое вращается вокруг Полярной звезды, можно определить время ночью, если вы знаете дату. В нем не измеряется угол между наблюдателем и двумя удаленными объектами – своего рода стрелками часов служат сами звезды. 576 Bennett. The Divided Circle (1987).
Использование эккера в топографии и астрономии. Титульный лист «Введения
в географию» Петера Апиана, 1533 При геодезических работах теперь можно было без труда вычислить высоту здания, зная расстояние до него. Допустим, вам нужно оценить высоту стен крепости, расположенной на другом берегу реки. Вы можете выполнить два измерения на одной линии с крепостью, а затем по расстоянию между точками измерений и разнице углов вычислить высоту стен и изготовить лестницы соответствующей длины. Основные принципы необходимых вычислений описаны у Евклида, и в Средние века они были хорошо известны. Те же самые принципы использовались для построения перспективы в живописи. Но если перспектива в живописи превращает трехмерный мир в двумерный, то Региомонтан теперь пытался взять двумерное изображение – ночное небо – и превратить его в трехмерный мир. Для этого, по существу, необходимо перейти от монокулярного зрения к бинокулярному. Сделать это позволяет принцип параллакса. Он представляет собой вариант базового принципа: если известен угол и одна сторона равнобедренного или прямоугольного треугольника, то можно определить остальные углы и стороны треугольника. Для этого требуется не одно измерение, а два. Вытяните перед собой руку с поднятым пальцем, закройте левый глаз и отметьте положение пальца относительно окружающего фона. Затем посмотрите на палец другим глазом. Палец переместится вправо. Зная расстояние между глазами и измерив угол видимого смещения пальца, вы можете вычислить расстояние до него – хотя, конечно, никому это не нужно. В данном случае расстояние между глазами составляет значительную часть расстояния от глаз до пальца; если же вы пытаетесь измерить расстояние до удаленного объекта, то вам нужно разнести точки наблюдения как можно дальше – по крайней мере, так кажется на первый взгляд. Региомонтан понял, что астроному не обязательно путешествовать, чтобы получить две удаленные друг от друга точки наблюдения 577. Если небо вращается вокруг центра Вселенной и если ее центр совпадает с центром Земли или находится поблизости от него, то точка наблюдения для астронома, находящегося на поверхности Земли, меняет свое положение относительно движущегося неба просто потому, что астроном смотрит на небо не из центра Вселенной, а из точки, удаленной от центра. Представьте, что вы стоите в центре карусели, на которой лошади расставлены по трем концентрическим окружностям. В центре расположена неподвижная платформа, вокруг которой синхронно вращаются лошади, делая один оборот за одно и то же время. Если смотреть на вращающихся лошадей из центра платформы, то их относительное положение остается неизменным – если две лошади находятся на одной линии, то через четверть оборота они тоже будут находиться на одной линии. Но если вы сделаете несколько шагов к краю платформы, то относительное положение будет все время меняться. Более того, если вы знаете размер неподвижной платформы и расстояние до внешней окружности лошадей, то изменения в относительном положении лошадей на двух других окружностях позволят определить расстояния до них. Таким образом, Региомонтан понял, что можно измерить параллакс небесных тел, выполнив два измерения из одной точки, но в разное время, вместо двух измерений из разных точек одновременно. Согласно Аристотелю, кометы располагаются в верхней части атмосферы. Они должны находиться именно там, поскольку появляются и исчезают, тогда как небеса остаются неизменными. Таким образом, кометы принадлежат подлунному, а не надлунному миру: они летают ниже, а не выше Луны. Гипотеза Аристотеля состояла в том, что они представляют собой выбросы пламени из Земли, которая захватила огонь. Насколько нам известно, 577 В Barker & Goldstein . The Role of Comets in the Copernican Revolution (1988). 311, ошибочно предполагается, что Региомонтан обобщил метод Птолемея вычисления расстояния до Луны. Метод Птолемея требует одного измерения, а не двух: Van Helden . Measuring the Universe (1985). 16; Newton. The Authenticity of Ptolemy’s Parallax Data – Part 1 (1973). Возможно, они правы в том, что метод Региомонтана и идею применить его к кометам описывал Леви бен Гершом, но эта часть его работы не была известна в эпоху Возрождения.
до 1471 г. никто не пытался измерить параллакс кометы; теория Аристотеля просто считалась верной. Региомонтан разработал метод такого измерения в 1471 г., но полное описание процедуры опубликовал только в 1531 г. К сожалению, в 1548 г. был опубликован текст, предположительно принадлежавший Региомонтану, в котором сообщалось об измерении параллакса кометы, появившейся в 1472 г., и подтверждалась ее близость к Земле, поскольку параллакс составлял целых 6° – получалось, что комета гораздо ближе к Земле, чем Луна, суточный параллакс которой всего 1°. Тщательное расследование показало, что автором текста был не Региомонтан: должно быть, документ нашли после его смерти среди других бумаг, и почерк, вероятно, совпадал, однако в нем не использовались методы Региомонтана и он был опубликован при жизни астронома неким анонимным врачом из Цюриха (предположительно Эберхардом Шлезингером). В XVI в., в отличие от нас, никто этого не знал, что вызвало большую путаницу в исторической литературе 578. Астрономы XVI в. искренне верили якобы убедительным свидетельствам, что Региомонтан подтвердил традиционную оценку расстояния от Земли до комет; нам известно, что нет никаких оснований считать, что Региомонтан действительно применял систему измерений, описанную им в 1471 г., – в любом случае для этого требовалось учесть тот факт, что кометы представляют собой движущиеся, а не неподвижные объекты. Как бы то ни было, в 1532 г. Иоганн Фогелин измерил параллакс появившейся на небе кометы и подтвердил ошибочность результатов лже-Региомонтана. Затем, в 1572 г., в небе появилась сверхновая Браге. На какое-то время она стала самым ярким небесным объектом за исключением Солнца и Луны, даже ярче Венеры. Такие события происходят один раз приблизительно в тысячу лет. И, в отличие от кометы, новая звезда оставалась неподвижной, что значительно облегчало измерение ее параллакса. К ней было привлечено внимание всех европейских астрономов, и поскольку они были знакомы с методом Региомонтана для измерения параллакса, то, естественно, пытались его применить. Одни сумели найти доступный измерению параллакс, другие настаивали, что никакого параллакса нет и измерять попросту нечего. Точное определение параллакса было сопряжено со значительными трудностями, поскольку требовало гораздо более точного измерения времени, чем обеспечивали любые часы XVI в.; проще было показать отсутствие измеряемого параллакса. Достаточно расположить натянутый шнурок так, чтобы на одной линии со сверхновой оказались две звезды, одна ближе, а другая дальше ее, и, если по прошествии нескольких часов эти звезды по-прежнему остаются на одной линии со сверхновой, значит, измеряемого параллакса нет. Этот простой прием использовал Михаэль Местлин, учитель Кеплера 579. А если параллакса нет, то комета должна находиться на огромном расстоянии, гораздо дальше Луны, параллакс которой измерить легко; то есть комета должна принадлежать к надлунным, а не подлунным объектам. Как объяснить появление новой звезды в небе? Поскольку ее присутствие невозможно приписать естественным причинам, то это событие, вне всякого сомнения, является чудом, знаком, который послал Бог. Лучшие астрономы и астрологи – Томас Диггес в Англии, Франческо Мавролико в Италии, Тадеаш Гаек в Праге – ломали головы в попытке понять, что может предвещать этот знак, и торопились опубликовать свои противоречивые выводы580. За сверхновой звездой 1572 г. последовала комета 1577 г., и измеренный параллакс снова поместил ее дальше Луны. Но если сверхновую можно было признать чудом, 578 Jervis. Cometary Theory in Fifteenth-century Europe (1985). 114–120. 579 Jervis. Cometary Theory in Fifteenth-century Europe (1985). 125. 580 Gingerich. Tycho Brahe and the Nova of 1572 (2005).
то кометы были довольно распространенным явлением, и поэтому если кометы действительно являются надлунными объектами, то Аристотель ошибался 581. Браге также работал над еще одной задачей, которую можно было решить измерением параллакса: существенное различие между системой Птолемея и системами Коперника и Тихо Браге заключалось в том, что, согласно современным системам, Марс должен подходить к Земле ближе, чем предсказывал Птолемей. Поначалу Браге считал, что получил надежные результаты измерения параллакса Марса, опровергающие Птолемея, но затем понял, что все гораздо сложнее. В идеале метод Региомонтана для измерения параллакса требовал сравнения видимого положения небесного объекта вскоре после наступления темноты с его видимым положением незадолго до рассвета, что максимизировало измеряемый параллакс. Ни сверхновая 1572 г., ни комета 1577 г. не появлялись в ночном небе Северной Европы, и поэтому идеальная процедура была неприменима; в случае с Марсом астрономам приходилось выполнять измерения, когда планета практически двигалась синхронно с Солнцем и никогда не поднималась над горизонтом ночью. При измерении положения объекта поблизости от горизонта Браге приходилось учитывать рефракцию, обусловленную большей толщиной атмосферы, через которую проходят лучи, и в конечном итоге он обнаружил, что ошибся в расчете этой поправки, исказив измерения, которые, как он надеялся, стали бы ключевым аргументом против системы Птолемея. Однако его длинная серия измерений положения Марса стала бесценным материалом для Кеплера, когда тот вычислял «орбиту» (именно он изобрел этот термин, используемый в астрономии) Марса согласно предположениям Коперника и показал, что ее форма наиболее точно описывается как эллипс582. В 1588 г. Браге опубликовал второй том своего трактата «О недавних явлениях в небесном мире» (De mundi aetheri recentioribus phaenomenis) (первый том, о сверхновой 1572 г., вышел после его смерти, в 1602), подробное исследование кометы 1577 г., в котором он привел обзор многочисленной литературы об этом небесном явлении и показал, что надежными можно признать только те наблюдения, которые не выявили параллакса кометы, и следовательно, Аристотель ошибался, называя их подлунными явлениями 583. Но Браге на этом не остановился: вместо систем Птолемея и Коперника он предложил собственную геогелиоцентрическую систему, которая геометрически была эквивалентна системе Коперника, но предполагала движущееся Солнце и неподвижную Землю. Поскольку вычисления показывали, что кометы проходят через хрустальные сферы планет, а геогелиоцентрическая система требовала, чтобы Марс проходил через сферу Солнца, Браге полностью отбросил теорию твердых сфер и утверждал, что Солнце, Луна и планеты свободно плавают в небе, подобно рыбам в море. Вероятно, задержка публикации книги 581 В Barker & Goldstein . The Role of Comets in the Copernican Revolution (1988) утверждается, что это упрощение, и существовала альтернативная теория комет как линз, фокусирующих лучи Солнца, и в этой теории местоположение комет было несущественным. Но, во-первых, эта теория не дает адекватного объяснения изменениям в небе, а во-вторых, объяснение движения комет по небу несовместимо с теорией прозрачных сфер. Авторы правы в том, что теория комет не привела к появлению системы Коперника (как уже говорилось выше, ключевой предпосылкой было представление о Земле как об одной сфере), а также в том, что сама система Коперника сохранила многое из старой астрономии. Ошибка – признание возможности продолжать вносить коррективы в систему Аристотеля – Птолемея, чтобы учесть параллакс комет, и утверждение, что сама идея согласованной космологической системы принадлежит Кеплеру и Галилею. 582 Gingerich & Voelkel . Tycho Brahe’s Copernican Campaign (1998). 583 Французский перевод: Brahe . Sur des phénomènes plus récents du monde éthéré. Livre second (1984). О Браге: Thoren. Lord of Uraniborg (2007); Mosley. Bearing the Heavens (2007); Christianson . On Tycho’s Island (2000); о комете: Hellman. The Comet of 1577 (1971).
вызвана тем, что Браге не решался признаться в этом, то есть в отказе от небесных сфер584. В настоящее время принято считать, что вехой, от которой отсчитывается новая астрономия, стала публикация труда Коперника «О вращении небесных сфер» 585. §7 Эта история наглядно демонстрирует две главные характеристики научной революции. Во-первых, это зависимость от первоначально выбранного пути. После публикации надежного метода измерения параллакса, разработанного Региомонтаном, астрономы пошли по пути, который неизбежно – раньше или позже – приводил к убедительным свидетельствам, противоречащим главным положениям Аристотеля и Птолемея (хотя сам Региомонтан был бы потрясен, узнав об этом). Тот факт, что прошло много времени, не означает отрицания решающего вклада Региомонтана; он лишь указывает, во-первых, на задержку в публикации, а во-вторых, на то, что сверхновая звезда 1572 г. упростила и прояснила проблему, вызвав классический революционный кризис. Определенные характеристики системы Птолемея (например, геоцентризм) смогли пережить этот шок, о чем свидетельствует геогелиоцентрическая система Браге, но ключевые положения систем Птолемея и Коперника (неизменное небо, твердые сферы) были опровергнуты. К 1650 г. это признавали все; после подтверждения фаз Венеры, открытых Галилеем в 1611 г., ни один серьезный астроном не защищал систему Птолемея в том виде, как ее понимал Региомонтан586. Это утверждение – что новые наблюдения губительны для старых теорий – противоречит современной философии науки, которая утверждает, что и наблюдения, и теории обладают определенной гибкостью и, следовательно, всегда существуют способы сохранения явлений. Стандартный подход заключается в том, чтобы провести границу между данными (чистыми наблюдениями, например с помощью термометра, опущенного в кипящую воду) и явлением (интерпретацией данных, например, что на уровне моря вода закипает при 100 °C). Теории же объясняют явления, а не данные, и всегда возможно обнаружить несоответствие между данными и явлениями, а также между явлениями и теориями 587. Однако в случае геометрических наук XVII в. несоответствий между данными и явлениями, как и между явлениями и теориями, практически не существовало. Что касается наблюдений Браге за сверхновой и за кометой 1577 г., то данные о суточном параллаксе отсутствовали; явление, которое требовалось объяснить, заключалось в том, что эти тела принадлежат надлунному, а не подлунному миру, а непосредственный теоретический вывод – возможность изменений на небе. Данные, явление и теорию связывал геометрический аргумент (если наблюдаемый параллакс отсутствует, то новые небесные тела должны находиться гораздо дальше Луны), опровергнуть который было невозможно, если считать достоверными исходные наблюдения. При наблюдаемом параллаксе ситуация была другой; как мы видели, рефракция могла послужить причиной несоответствия между данными и явлениями, и даже если измерения параллакса Марса, выполненные Браге, были 584 Решающую роль, очевидно, сыграла работа Christoph Rothmann . Discourse on the Comet (1585), в которой прямо критиковалась теория сфер: Granada, Mosley & others . Christoph Rothmann’s Discourse (2014). 585 Donahue. The Dissolution of the Celestial Spheres (1981); Randles. The Unmaking of the Medieval Christian Cosmos (1999); Lerner. Le Monde des sphères (1997). 586 Я благодарен Кристоферу М. Грейни, который мне это подтвердил. О решающей роли телескопа в разрешении философских и астрономических споров см.: Aggiunti. Oratio de mathematicae laudibus (1627). 20; естественно, в 1616 г., когда осуждались идеи Коперника, он избегает подробностей. 587 Bogen & Woodward . Saving the Phenomena (1988).
верными, они не помогали сделать выбор между его космологией и системой Коперника. Но в случае со сверхновой звездой 1572 г. и кометой 1577 г. данные неизбежно влекли за собой явление, а явление опровергало общепризнанную теорию. Совершенно очевидно, что для доказательства неопровержимости своих аргументов Браге должен был дать объяснение тому факту, что не все наблюдения выявили полное отсутствие наблюдаемого параллакса. Соответственно, во втором томе трактата «О недавних явлениях в небесном мире» Браге тщательно анализирует наблюдения, результаты которых отличались от его результатов, но (очень удачно) соответствовали предсказаниям официальной астрономии, и указывает на допущенные ошибки: один астроном измерил расстояние между кометой и звездой, но при повторном измерении перепутал эту звезду с другой; еще один применил сложение там, где требовалось вычитание; третий выполнил два измерения с интервалом в один час, тогда как они должны были максимально совпадать по времени; четвертый перепутал две разные системы небесных координат. Браге выявляет элементарные ошибки, которые убедительно объясняют, почему результаты измерений отличаются от тех, что получились у него; наблюдения, настаивает он, должны быть не субъективными, а объективными и надежными, и тогда выводы из них неопровержимы. Конечно, сама разница в результатах мешала убедить астрономов в правоте Браге. Галилей в «Диалоге о двух главнейших системах мира», опубликованном в 1632 г., все еще обращается к измерению параллакса сверхновой звезды 1572 г. Он говорит, что нельзя просто брать то измерение, которое вам больше подходит (как делали оппоненты Браге), что точность инструментов может отличаться, а одинаковости наблюдений добиться невозможно, что резко отклоняющиеся от большинства результаты наверняка ошибочны и что результаты