Текст
                    INTEGRALS OF
BESSEL FUNCTIONS
YUDELL L LUKE
Midwest Research Institute
Kansas City, Missouri
McGRAW-HILL BOOK COMPANY, INC.
New York Toronto London


INTEGRALS OF BESSEL FUNCTIONS Copyright © 1962 by the McGraw-Hill Book Company, Inc. Printed in the United States of America. All rights reserved. This book, or parts thereof, may not be reproduced in any form without permission of the publishers. Library of Congress Catalog Card Number: 62-19765 Dedicated to the Memory of My Father 39075
PREFACE INTEGRALS OF BESSEL FUNCTIONS deals with definite and indefinite integrals involving Bessel functions. In numerous applied problems, evaluation of such integrals is necessary, and this compendium is de- designed to provide the research worker with the basic information in this field. There exists a considerable body of information on the subject of Bessel functions. G.N. Watson's book A TREATISE ON THE THEORY OF BESSEL FUNCTIONS (Cambridge University Press, 1923) is classic, and a survey of material since introduced may be found in the books HIGHER TRANSCENDENTAL FUNCTIONS, Vol. 2, Chapter VII, 1953, and TABLES OF INTEGRAL TRANSFORMS, Vols. 1 and 2, 1954, by A. Erdelyi, W. Magnus, F. Oberhettinger and F G. Tricomi, all published by the McGrav-Hill Book Company, Inc. These and other vorks contain much material on integrals which involve Bessel functions. However, for the most part, the integrals in these volumes are definite and, although definite integrals are also treated in this took, I have placed special emphasis on indefinite_integrals. Except for original sources there is little in the literature on indefinite integrals. The aim of the present book is to fill this gap. This volume actually covers a much wider territory than its title suggests. Bessel functions are a special case of transcendents known, as generalized hypergeometric series or generalized hypergeometric functions. Further, many integrals involving Bessel functions are also functions of hypergeometric type, or may be expressed in terms of such functions. A valuable feature of the book is the treatment given to generalized hyper- hypergeometric functions in Chapter I. With these results at hand, many useful representations of Bessel functions and their integrals follow at once by specialization of parameters. Further, these results are useful to delin- delineate properties of other hypergeometric functions and their integrals. Some short tables of Bessel functions of fractional and integral order and some tables of integrals of Bessel functions are also provided. These tables enhance the usefulness of the compendium since numerous math- mathematical functions can be expressed in series of Bessel functions. vii
viii PREFACE CONTENTS In a vork of this kind, special precautions have to Ъе taken to insure accuracy of the formulas. It is a pleasure to acknowledge vith thanks the valuable assistance rendered by Mrs. Wanda Chinnery, Mrs. Geraldine Coombs, Mrs. Betty Kaon, Mrs. Marilyn Kemp, Mrs. Betty Ruhlman, Mrs. Anna Lee Samuels, and Mrs. Carolann Winslow. I am particularly grateful to Mrs. Chinnery and Mrs. Kahn for their help in proofreading and in preparing the bibliography and indices. In spite of all checks imposed to insure accuracy, it is probably unreasonable to believe that the text is error-free. I vould appreciate receiving any criticisms of the material and the identifi- identification of any errors that may exist. To acknowledge all sources to which some debt is due is virtually im- impossible. The bibliography is extensive. I appreciate the useful advice and valuable suggestions given by Professor Arthur Erdelyi. For a critical reading of the entire manuscript and numerous suggestions leading to improve- improvement of the text, I am indebted to my colleagues, Mr. Jerry Fields and Mr. Jet Wimp. Many results given in this book are based on my government-supported research vork. In particular, I am indebted to the Aeronautical Research Laboratory, Aeronautical Systems Division, Air Force Office of Scientific Research, David Taylor Model Basin and the National Bureau of Standards. I should also like to thank the administration of the Midwest Research Institute, especially Dr.-Charles N. Kimball, the President, and Dr. Sheldon L. Levy, Director of the Mathematics and Physics Division, for their encour- encouragement and generous support of my vork. Finally, it is a pleasure to thank the typist Mrs. Louise Weston for her expert preparation of the manuscript for photo-offset publication. Yudell L. Luke Kansas City, Missouri April, 1962 Preface Page No. vii 1.1. 1.2. 1.3. 1.3.1. 1.3.2. 1.3.3. 1.3.4. 1.3.5. 1.3.6. 1.4. 1.4.1. 1.4.2. 1.4.3. 1.4.4. 1.4.5. 1.4.6. 1.4.7. 1.4.8. 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. Chapter I BASIC FORMULAS Introduction The Gamma Function and Related Functions Generalized Hypergeometric Series Definition and Basic Properties Integral Representations Asymptotic Expansions The Form of Lp q(z) for Special Values of the Parameters Special Values of Hypergeometric Functions Expansion of Hypergeometric Functions in Series of Hypergeometric Functions 3essel Functions Power Series Expansions and Connecting Formulae . . . Expansions in Series of Bessel Functions Difference-Differential Properties Wronskians Integral Representations Asymptotic Expansions for Large z Polynomial Approximations Description of Mathematical Tables Chapter II INTEGRALS OF THE TYPE Г tM?u(t)dt Definitions and Connecting Formulae Differential-Difference Properties Power Series Expansions Expansions in Series of Bessel Functions Asymptotic Expansions for Large z Infinite Integrals Circular Representations of Jn(z) and I Jn(t)dt Jo ix 1 2 4 4 5 7 14 18 19 22 22 25 27 29 30 31 33 40 42 44 44 51 53 56 57
INTEGRALS OF BESSEL FUNCTIONS 2.8. 2.9. Polynomial Approximations Description of Mathematical Tables 60 69 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. 3.10. 3.11. 3.12. 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9. 4.10. 4.11. 4.12. Chapter III pZ REPRESENTATIONS OF tH^(t)dt IN TERMS OF LOMMEL FUNCTIONS A Theorem on Indefinite Integrals Involving a Bessel Function Lommel Functions . . : Recurrence Relations Formulae for S p(z) When s v(z) Is Not Defined . . . Integral Representations Expansions in Series of Bessel Functions Lommel Functions and Struve Functions Anger-Weber Functions nZ J t|JVu(t)dt and Formulae for Tabulated Functions . . . . Fourier-Bessel Coefficients Polynomial Approximations Description of Mathematical Tables 73 74 75 76 77 79 80 83 85 89 92 94 Chapter IV I e'ttMTCp(t)dt AND AN ASSOCIATED BESSEL FUNCTION Introduction 95 Power Series Expansions and Connecting Formulae 95 Expansions in Series of Bessel Functions 100 Asymptotic Expansions for Large z 101 Infinite Integrals 106 An Associated Bessel Function 107 Recurrence Relations 110 Integral Representations 110 Formulae for H^u(z) When h v(z) Is Not Defined 102 Expansions of h v(z) and H w(z) in Series of Bessel Functions ' 115 nZ Associated Bessel Function Representations for J e" t|1Ku(t)dt and4-Kelated Integrals 117 Description of Mathematical Tables 119 CONTENTS XI 5.1. 5.2. 6.1. 6.2. 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5. 6.2.6. 6.2.7. 6.3. 6.3.1. 6.3.2. 6.3.3. 6.3.4. 6.3.5. 6.4. 6.5. 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. Chapter V REDUCTION FORMULAS FOR nz J e-ptt%(n)dt n Z Evaluation of J е"рЧ^(и )dt for Special Values General Development r>z of the Parameters Chapter VI AIRY FUNCTIONS Introduction Airy Integrals Definitions Derivatives Interrelations Differential Equation and Wronskian Power Series Asymptotic Expansions Integral Representations Integrals of Airy Integrals Relations to Other Functions and Interrelations . . Power Series Expansions Convergent Expansions in Terms of Lommel Functions Expansions in Series of Bessel Functions Asymptotic Expansions The Integrals of Gi(z) and Hi(-z) Description of Mathematical Tables Chapter VII INCOMPLETE GAMMA FUNCTION AND RELATED FUNCTIONS Introduction Elementary Properties Integral Representations Asymptotic Expansions for Large z Infinite Integrals . Expansions in Series of Bessel Functions . . . . , 120 121 127 127 127 127 128 128 129 129 131 132 132 133 133 135 136 140 141 144 145 146 146 147 148
xii INTEGRALS OF BESSEL FUNCTIONS CONTENTS xiii 7.7. 7.9. 7.1С. 7.11. 7.12. 7.13. 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 9.1. 9.2. 9.3. 9.4. 9.5. 9.6. 9.7: Rational Approximations, Continued Fractions, Inequalities The Exponential Integral Sine and Cosine Integrals Error Functions Fresnel Integrals Indefinite and Definite Integrals Associated vith the Incomplete Gamma Function and Related Functions . . Description of Mathematical Tables Chapter VIII REHEATED INTEGRALS OF BESSEL FUNCTIONS Introduction Power Series Expansions and Differential Equations . Recurrence Equations Asymptotic Expansions for Large z Infinite Integrals Further Representations Asymptotic Expansions for Large Parameters Exponential Series Representations for Ka v(z) . . . Chapter DC INTEGRALS INVOLVING STRUVE FUNCTIONS Introduction Power Series Expansions Asymptotic Expansions for Large z Infinite Integrals Reduction Formulas The Complete Cicala Function Description of Mathematical Tables Chapter X SCHWARZ FUNCTIONS AND GENERALIZATIONS 152 163 168 172 179 182 187 195 199 211 212 216 217 219 221 223 223 224 226 227 231 232 10.1. 10.2. Introduction Power Series Expansions 234 234 10.3. Expansions in Series of Bessel Functions 10.4. Representation in Series of Circular Functions 10.5. Asymptotic Expansions for Large z 10.6. Infinite Integrals 10.7. Description of Mathematical Tables Chapter XI INTEGRALS INVOLVING PRODUCTS OF BESSEL FUNCTIONS AND STRUVE FUNCTIONS 11.1. A General Theorem for the Evaluation of Indefinite Integrals 11.2. Integrals Involving the Product of Two Bessel Functions 11.3. Integrals Involving the Product of a Bessel Function and a Struve Function 11.4. Integrals Involving the Product of Two Struve Functions 11.5. Integrals Deduced from Wronskians 11.6. An Integral Involving the Product of Three Bessel Functions Chapter XII MISCELLANEOUS INDEFINITE INTEGRALS INVOLVING BESSEL FUNCTIONS 12.1. The Integral J(x,y) 12.1.1. Introduction 12.1.2. Partial Differential Equations 12.1.3. Power Series Expansions and Expansions in Series of Bessel Functions 12.1.4. Laplace Transform and Integral Representations 12.1.5. Asymptotic Expansions 12.1.6. Integrals Related to j(x,y) 12.1.7. Description of Mathematical Tables and Approximations 12.2. A General Theorem for Representing an Indefinite Integral Involving Bessel Functions in Series of Bessel Functions 12.3. Other Indefinite Integrals 238 241 243 246 251 254 264 266 268 269 271 271 272 275 276 278 280 282 283 289
xiv INTEGRALS OF BESSEL FUNCTIONS Chapter XIII DEFINITE INTEGRALS 13.1. Introduction 13.2. Orthogonality Properties of Bessel Functions 13.3. Finite Integrals 13.3.1. Convolution Integrals 13.3.2. Integrals Involving Bessel Functions vith Trigonometric Argument 13.3.3. Lommel's Functions of Two Variables 13.4. Infinite Integrals 13.4.1. Integrals vith Exponential Functions 13.4.2. Weber-Schafheitlin Type Integrals 13.4.3. Sonine-Gegeribauer Type Integrals 13.4.4. Hankel-Nicholson Type Integrals 13.4.5. Integrals Involving the Products of Three or More Bessel Functions 13.4.6. Miscellaneous Integrals 13.4.7. Integrals vith Respect to the Order 13.4.8. Dual and Triple Integral Equations Chapter XIV TABLES OF BESSEL FUNCTIONS AND INTEGRALS OF BESSEL FUNCTIONS Introduction Table I. Jn(x) , Yn(x) , n = 0,1 Table II. e"xIn(x) , eXjCjx) , n = 0,1 , ex Table III. Jn(x) , n = 2(lN Table IV. e"xIn(x) , n = 2(lN Table V. (TT/2xJJn_i(x) , n = 0(lL Table VI. Jy(x) , v = ±1/4 , +3/4 Table VII. Jv(x) , v = +l/3 , +2/3 Table VIII. x"^n+?^In+i(x) , e"XIn+i(x) , n = 0(lL Table IX. Iu(x) , v = +1/4 , +3/4 Table X. Iu(x) , v = +l/3 , ±2/3 290 290 292 292 293 308 312 312 324 327 330 331 335 340 342 349 350 353 356 359 362 365 368 371 374 377 CONTENTS xv Table XI. Integrals of JQ(x) and Yo(x) 380 Table XII. Integrals of IQ(x) and KQ(x) 383 Bibliography 336 Index of Notations 404 Author Index 4^0 Subject Index 4^4
CHAPTER I BASIC FORMULAS 1.1. Introduction The purpose of this chapter is to collect numerous formulas needed to establish results of subsequent chapters, and to aid in the evaluation of these and other expressions. Some general sources for this material are Erde'lyi et al. A953, 1954), Kratzer and Franz (i960), Rainville (i960), Watson A945) and Whittaker and Watson A927). Also, for tables of inte- integrals and related data, see Grobner and Hofreiter A949, 1950), Magnus and Oberhettinger A948, 1954), Meyer zur Capellen A950) and Ryshik and Gradstein A957). For further material on Bessel functions and integrals of Bessel functions, see Bowman A958), Gray, Mathevs and MacRobert A952), McLachlan A955), Petiau A955), Relton A946), Rey Pastor and Castro Brzezicki A958), Weyrich A937), Wheelon and Robacker A954). Description of numerical mathematical tables of integrals involving Bessel functions is usually given at the end of the chapter where the per- pertinent material is discussed. In some instances, especially in Chapter XIII, this information is integrated with a discussion of the tabulated functions. We have attempted to give thorough coverage of tables since 1945 approximately. Some, but not all prior data are also referenced. For the sake of completeness, some references for tables of Bessel func- functions are presented in 1.4.8. As most of these items are standard and well known, usually only an abbreviated description of the contents of each reference is provided. For description of numerical mathematical tables, not only of integrals involving Bessel functions, but also of the entire spectrum of transcendental functions, see Bateman and Archibald A944), Fletcher, Miller and Rosenhead A946), Lebedev and Feodorova A956), Burunova A959), the journal Mathematical Tables and Other Aids to Computation (now Mathematics of Computation) A943-present), National Bureau of Standards A962) and Schiitte A955). Collections of analytical descriptions and numerical tables of trans- transcendental functions are provided in Jahnke and Emde A945), Jahnke, Emde and Losch (i960) and National Bureau of Standards A962).
INTEGRALS OF BESSEL FUNCTIONS 1.2 1.2 BASIC FORMULAS m-1 1.2. The Gamma Function and Related Functions T(z+1) = zr(z) Г(п+1) = n.' (a)k = Г(а+к)/Г(а) . (*) = *•' = (.)k ("П)к V k.'(n-k): ^ ; k.' T(z)r(l-z) = тт esc ttz rD+z)r(|-z) = тт sec ttz i, .. , m-1 r(mz)-= Bп)*{1-т)тШ-* fT r(z+r/m) . r=O T(z) = Btt)* [exp |-z+(z4)ln z+ ^jj [1+0G 3)J > lar« z'< п ^-т^^-тШ ¦ ф(г+1) = + (z) + l/z ф(п+1) = X к + t|r(l) к=1 ¦ (z) - К12) = -тт с0* TTZ A) B) C) D) E) F) G) (8) О) (Ю) A1) C2) y(mz) = m 2! ¦(z+5s/ni) + In m k=0 [\a-\x.tf-ht - 2 f/2 (sm e^-'Ccos eJ^1, i/Q ^0 A3) = IS^J R(a)>0'R(p)>0 ¦ A4) е^1иттГ О 2-Г Bl? +1) Г (?Ё2 +1) f Vve(ein efd6 = n^rfan) Jo 2°^ rs^i +1") Г CSES2. , R(a)>-1 . A5) tt/2 cos u9(cos e)ade = i в"*1"" / e1Ue(sin 9)ade , R(a)>-1 . A6) ivQ, .a cos Q) cL9 = ^i(u-a>rT R(a)>-1 For F. , see 1.3. Some useful constants are as follows. тт = 3.14159 26536 ; T(l/2) = тт^ = 1.77245 38509 Bтт)^ = 2.50662 82746 ; Bтт) = 0.39894 22804 (тт/а)* = 1.25331 41373 ; (а/тт)* = 0.79788 45608 A7) Y = -t(l) = 0.57721 56649 A8) A9) B0) B1)
INTEGRALS OF BESSEL FUNCTIONS 1.3.1 фA/2) = -Y-21n2 = - 1.96351 00260 УA/3) + уB/3) = - 2Y - 3 In 3 = - 4.45026 81958 f'(l) = тт2/6 = 1-64493 40668 B2) B3) B4) 1.3. Generalized Hypergecmetric Series 1.3.1. Definition and Basic Properties We consider the series pF*C*^+b2Z,i+4lz) =A(V1+V2) ЙЬ-A+Ъ1)кA+ъ2)к- • • d+\)kk' A) (a)Q = 1 , (a^ = a(a+l)...(a+k-l) = r(a+k)/r(a) . B) Where no confusion will result, ve notate the above series as F- is often convenient to employ a contracted notation and write pFq(ap;l+bq;z)=Zo(i+-Vkk; It C) Thus Г(ар+к) is interpreted as |~[ Г(аг+к) ; and (ap)k , as r-1 P ГТ (ar)k > etc- ^ emP'fcy term is interpreted as unity. For example, r=l if p = 2 , (ар)к = 1 for p>2 . 1.3.2 BASIC FORMULAS pFq is not defined if any Ъ- is a negative integer. It terminates if any ap is a negative integer or zero. If pFq does not terminate, it converges for all finite z if p s q , converges for |z| < 1 if p = q+1 , 1 q+1 converges for z = 1 if p = q+1 and Re ^ У (l+b>) - У av |> > 0 , and С q q+j- ] = q+1 and ReJy_ (l+bk) - У_ ak I > 0 lk=l k=l J diverges for all z ^ 0 if p > q+1 . If 6 is the operator zD , D = d/dz , then u = pFq is a solution of the differential equation [6F+b1)F+b2)...F+bq) - zF+a1)F+a2)...F+ap)] u = 0 . D) If p s q+1 , then ui(z) = z" Уа(аР"Ъ1Д+?Ъ1;^ i = 0,1, ...,q, Ъо = 0 , i ^ q in 1+1^-1^ , E) are the (q+l) linearly independent solutions of D) provided that no two of the bi's differ Ъу a negative integer or zero. In the singular cases just mentioned, solutions can Ъе constructed as in the case of Gauss' series, Bessel functions, etc. We omit further details, but see Erdelyi et al. A953, Vol. I, Chs. 2,6 and 7) and the references quoted there. See also Chapter VIII where a study is made of a particular 3^3 - If p й q+1 , t.here are p formal solutions proportional to Ьр„ , t = l,2,...,p, see 1.3.3(8). .3.2. Integral Representations .^Vj.CP'V»1».^) " Xw"//'1'""'''''''"'"* ' A)
INTEGRALS OF HESSEL FUNCTIONS 1.3.2 p+lFq+l(p^ap^P+<T^qAz) _ 2Г(р-Кг) ,"/2 Ц^-J (em efP-Vs ej^-^apip^jxz sin2e)de , (з) ,V2 = |g^yJ (cos efP'^sin в^-^Ор^Э^Хг cos2e)d8 , D) p s q+1 , R(p)>0 , R(a)>0 ; |Xz|< 1 if p = q+1 p+lF4(ff,apiPq;X/z) = * / e-^t0 F (a^fi„;Xt)dt , 1 ^CTJ J Q p s q , R(ct)>0 ; R(z)>0 if p < q. ; R(z )> R(\) if p = q.E) 2ст p+fiFa(a,a+V2,apipqj4X2/z2) = ^y J e-^t^-^F^Cap^jX2^)^ p<a , R(ff)> 0 j R(z)>0 if p<q-l ; R(z)> |R(X)| if p = q-l . F) n*j x 1-Г(.*)Г(а+г)(-г)* гТэ^Т pF*(VfV2) = 2^г/_1оо г(фъ) G) dt where |arg(-z)|< n and the poles of T(-t) lie to the right of the contour while those of r(op+t) lie to the left of the contour. 1.3.3 BASIC FORMULAS 1.3.3. Asymptotic Expansions Consider the divergent series k=0 -k A) and denote the sum of the first (n+l) terms Ъу Sn(z) . With certain re- restrictions on arg z j (l) is an asymptotic expansion of f(z) if for n fixed, 111 2%(г) = lim zn (f(z) - Sn(z)} = B) z —* <= That is, we can make lznRn(z)|<e with e arbitrarily small and |z| sufficiently large. The notation f(z)~ Z akz k=0 -k C) means that (l) is the asymptotic expansion of f(z) notation is An alternative f(z) = Sn(z) + OOz-11!) D) We now present asymptotic expansions of pFq for Izl—> => and 0 s p s q . We follow the work of Meijer A946) which should Ъе consulted for further details. Assume that no ap is a negative integer or zero. Let К^Ы - [exp {u"V}] zvBTT)*^-^u* ? Nkz^ , NQ = 1 , k=0 E)
INTEGRALS OF HESSEL FUNCTIONS 1.3.3 )" > v = u < P 4 u = (q-p+l)"X , v = u \ (q-p)/a + Z ak - Z A+Ък) f1 > F) t k=l k=l and for the determination of the N^'s , see the discussion surrounding A9)-C8) ahead. Define t=l G) "at Oz>= * T(at) TT r(aj-at) ,1=1,,1/t TTrd+bj-a,.) ч+1гр .VlK>4-V1+at-V^ z~ )> (8) .^^-P,-1^ where aj-at is not an integer or zero for all j ? t . This restriction may Ъе removed, but further discussion is deferred to 1.3.4. Let P , 4 MP,q= TT r(aj)/TT rd+bj! J=l ' j=l (9) The asymptotic representations are divided into two cases. First Case. 0 ? p <: q-1 . (Mp,q) pVVl+Vz^K^z) , Izl—»°» , larg z|< tt A0) 1.3.3 BASIC FORMULAS If 0 s. p < q-1 , then (Mp,a) pF^fapjl+^j-z)- Kp>q(ze1TT) + Kp^(ze"iTT) , 0< Z^a> (ID In the latter two equations, only the dominant expressions are recorded. There are (q. - p+1) terms of exponential type, i.e., of the form 1С ,. , and the omitted ones are of lower order than those given above. To com- complete this case, we need the result where p = q-1 . In this instance, we give a single expression which includes both the dominant and subdominant parts. Thus ^P+iVWv^Vi^-^^P+i^117)+ ^p+i^17) + Lp,P+i(z)^ |z|—><» , larg z|< атт A2) For numerous applications, it is convenient to replace z Ъу z2/4 and write ^p+iVp+i^p^+vi'-^/^^^p+iCf*2^1"]2) + wiG*26"*117]2)+ ^p+i(z2/4) - |z| —»<= , larg z|< tt A3)
10 INTEGRAIS OF BESSEL FUNCTIONS 1.3.3 1.3.3 BASIC FORMULAS 11 Also О |Z|- , -(a+e)TT/2<arg z<B-s)tt/2 , e = *1 A4) The apparent discrepancy in A4) when z has a value such that larg zl< tt/2 is a case of Stoke's phenomenon. See Watson A945, p.201). Second Case, p = qal . Again we give the complete representation. (MP,p)pFP(ap;1+bP;-z)~Icp,p(ze"iTT) + Wz) |2|_^.o> , - тт/2 < arg z< Зтт/2 (MpjP)pFp(ap;l+bp;-z)~Kp^p(zeiTT) + LpjP(z) I z| —> => , arg z = - tt/2 A5) A6) Also ien-ч (Mp,p)pFp(apJl+bp;z)~Kp)P(z) + I^p(ze ) lz|- .a, , -B+e)TT/2<arg z<B-e)n/2 , e = ±1 A7) If larg z|< tt/2 , the apparent discrepancy in A7) is again a case of Stoke's phenomenon. The following is an important corollary of the above expansions. If p = qai or if q-1 = p^O , then lim ГЫ) ГТ r(aj-am) xampFq(apJl+bq;-x) = ?Ы& (Mp^TTrU+VaJ j=l R(am+v)<0 ; R(am-at) <; 0 for all t = 1,2,... ,pj (aj-am) is not an integer or zero for all j ^ m . A8) Evaluation of the coefficients Nk is next of interest. In this connection note that in the Kpq(z) term associated with the asymptotic representation of Uj_(z) , see 1.3.1E), the coefficients Nk are inde- independent of i . The Njj's are conveniently found by constructing a formal series solution of 1.3.1D) using E) and A0). For later use, we record in complete detail the expansions 1С, (z) for the cases q = p+1 where p = 0,1 and 2 ; and p = q. , where p = 1 and 2 . These are as follows. Case I. q. = p+1 . From E) and (б), with z replaced Ъу z /4 , we have w(M2) ¦ Ms I ' co с„ = 1 v = -^i+ ? ak- Z (^k)j =h k=l k=l J A9) B0)
12 INTEGRALS OP BESSEL FUNCTIONS 1.3.3 Case I.I, p = 0 , q = 1 If Ъд_ = v , ck (^v)k(i-v)k 2kk.' B1) and this leads to the asymptotic expansions of Bessel functions. See 1.4.6A-6). Case 1.2. p=l,5=2 ¦ 2(k+l)ck+1 = fkck + gkCj,.! , d = 0 , co = 1 , B2) fk - 3k2 + k(9-6p-4gl) + 3p2 - 9p + 3 + 2Э!Bр-1) + 4(Э2 , B3) Sk = : -(к-р-1)(к-р-1-2Ъ1)(к-р-1-2Ъ2) , B4) 'Pi = Ъ1 + Ъ2 + 3 > Э2 = A+Ъх)A+Ъ2) , p = a-L - &-,_ + 3/2 . B5) If a-j_ = 1 and Ъ2 - Ъд_ = v , then' ck is given by Bl). Case 1.5. p = 2 , q = 3 . 2(k+l)ck+1 = fkck + gkck_i + hkck_2 , C-2 = c_i = 0 , co = 1 , B6) fk = 5k2 + 2k(l2-5p-3e1+a1+a2) + 5p2 - 22p + 15 + 6Вд_(р-1) + 4g2 - 2p(l+a1+a2) - 4аха2 , B7) 1.3.3 BASIC FORMULAS 13 - gk = 4k3 + 6k2C-2p-g1) + 2к(бр2-18р+6рЭ1-ЗЭ1+4Э2+4) - 4p3 + 6p2C-31) - 2рD-ЗЭ1+4Э2) + 6p! - 4g2 - 8З3 - 15 , B8) hk = (к-р-2)(к-р-2-2Ъ1)(к-р-2-2Ъ2)(к-р-2-2Ъ3) , B9) Эх = 6 + Ъх + Ъ2 + Ъ3 , Э2 = ЗЭд_ - 11 + ЪдЪз + ЪХЪ3 + Ъ2Ъ3 , C0) Э3 = A+Ъ1)A+Ъ2)A+Ъ3) , р = а1 + аз - Эх + 7/2 C1) Case II. р = q . Replace 2 Ъу 2z . Then E) and F) yield _2z,n_,v -k Kp;pBz) = e^Bz)v Z ck^"K , co = 1 , k=0 C2) v = Z (ак-1-Ък) • k=l C3) Case II. 1. p = q. = 1 . A+Ъ1-а1)кA-а1)к с = } 2Kk.' C4) nnii this also leads to asymptotic expansions for Bessel functions. See the • uii'luding remarks of 1.4.6.
14 INTEGRALS OF HESSEL FUNCTIONS 1.3.4 Case II.2. p = q. = 2 4(k+l)Ck+1 = fkck + gtfb.! > c-l = 0 , co - 1 > C5) fk = 2 [2k2 - kBv+a1+a2-l) + v(a1+a2-l) - aft + A+Ъ1)A+Ъ2)] ,C6) Sk = - (к-1-т)(к-1-т-Ъ1)(к-1-т-Ъ2) C7) If = 1 , 1 + Ъ1 = ax + v + 1/2 , 1 + Ъ2 = ax - v + l/2 , C8) then ск is given Ъу B1). 1.3.4. The Form of Lp ^(.z) for Special Values of the Parameters The definition of L_ „(z) Ъу 1.3.3G-8) conveniently supposes that a--a.j. is not an integer or zero for all j f t . If this is not so, Ll „(z) still has meaning and its representation must Ъе found Ъу a limit- limiting process. We now ottain the representation in a special case. Assume first that no pair of a. values differ Ъу an integer or zero except a^ and &2 ¦ Let ag = lim (a^+m+e) where m is a positive integer or zero. е-н»О Before stating and proving the main result, it is helpful to introduce fur- further notation. Let ХР,Ч н1 (- )k(m-l-k).'r(a1+k)r(ap-ai-k) k=0 к.'ГA+ЪA-а1-к)гк (а1'и)(о - z-ai ~tч-/ ч --1—p (i) 1.3.4 BASIC FORMULAS к 15 rFs (*p iiYr ii г\ - т ^w L ,t(Yr+k)-^(Yr)-1((l+3a+k)+t(l+Pa)> , B) where it is understood that the notation is compact as in 1.3.1C), and r further that ф(уг) is short for ^1 t(Yj) > etc- Then j=l т f , 4" t* f ^ (al'm)/ n (-)m+1^"a2r(a )r(a -a ) v Ч+lpP f a2'a2 II a2^a2-\ ¦X q+i p-i V^m+1, l+a2-a II I,m+l,l+a2-a )Q.-P z ) (-Л'^ГСа )Г(а -a ) f + _ ? |щ 2-t(a2)+t(ap-a2)+t(l)-t(l+ba-a2)+t(m+l)J т.ТA+Ъ -a2) Г a2^a2-\ K-^-P- XF ( ^ I ' ' l q+1 p-lVm+l,i+ap-a_l z У '2"ap' C) where m = a2-a^ is a positive integer or zero. Here it is understood that p fi 1 , p ^ 2 in the compact notation T(ap-a2 ) , etc. In the applications, it happens often that ag = Ъ„ for some particular value of q. . In particular, suppose 4 = 1. Then
16 INTEC1AIS OF HESSEL FUNCTIONS 1.3.4 1.3.4 BASIC FCEMULAS 17 P z t=3 (a^m) bp,a(O- Z 4,a(') + Tp* (O ) (. fz'I'a2r(a2+l)r(ap-a2-l) , 1,1,1+82, l+«2-\ (-)^p + (m+D-TCV^; a+2FP^2,iB+2,2+a2-ap (-Г2-а2Г(а2)Г(ар-а2) , ^^^ ИЦ+Ъ.-а^(m+l)} - D) m.Tfl+K-ao) I Again the q. = 2,3,...q. i.T(l+ba-a2) notation is compact and in ^l+b.-ag) , фA+Ъ -a2) , etc.. To prove C), we write [г"а1Г(а»с)Г(а1)Г(ар-а1) / аРа1Л (-)Ч"^Л X q+1 P-14l-m-e,l+a1-a z ^ -ai-ia-sr(_m_e)r(a^+m+e)r(ap.al-m-e) ГA+Ъ,1-а1-п1-е) Caj_+ni+*,aj_+nH-e-bq^ 1+m+e, И-а^т+в-а^ -Д-Р ) E) Now m-1 fa \ zk + -bkz* l,a_+m Y X'V (l+ЪAm.' P+l 4+lVm+i,t +m •) G) Apply this to the first q+iFp_i in F)- Then with the aid of the reflec- reflection formula for gamma functions, we find (a^m) 1 О (8,T .111 ] h,^z) + 4^z) = Tv,l (z) + llm A(e) ' (8) e—>0 where <->-^«=^te^^p Ч.1-е,пм-1, 1+а2-ар Ч-Р ^ z'er(l-e)r(a2+e)r(a -a2-e) , ag+s^g+s-b^ Г(ш+1+е )ГA+Ъ„-а2-е) 4+1 P Vm+i+e,i+a2+e-a N4-P 0) Use L'Hospital's theorem to evaluate A@) . Then this result together with A), B) and E)-F) readily leads to the assertion C). F) Put (а2-Ъ1) = 6 in the third expression of C). Note that F)k = 1 ! if к = 0 and lim F )k = 0 if k>0 . Also aF) = F )k [tF+k)-i|tF)] = 0 if к = 0 and Un а(б) = Г(к) , k>0 . Thus the a+1^_x readily sim- 6—>0 plifies and D) follows. Alternatively, we can put (а-^+т-Ъ^) = (ад-Ъ^) = О in (9). Then the n+2Fp is unity and application of L'Hospital's theorem, etc., gives D).
18 INTEB1A1S OP HESSEL FUNCTIONS 1.3.5 1.3.6 BASIC FORMULAS 19 If another pair of a, 's differ by a positive integer or zero, say a4-a3 = m1 , but (a4-a1) is not an integer or zero, then the above limiting analysis can Ъе applied to evaluate I^q(z) + Lp,q.(z) > and further like extensions for other pairs of aj's are apparent. If a2-a-j_ and a3-a2 are positive integers or zero, but no ap-Sj > j = 1,2,3, p j* j is a positive integer or zero, then as before we can de- 3 termine ^1 *v q(z) bye. limiting process, and so obtain a representation t=l for Lp q(z) . The approach for more general situations where ap-aj is an integer or zero is obvious. Results of this type hold no immediate interest and no further representations have been obtained. 1.3.5. Special Values of Hypergeometric Functions (-^(b-c+l^ 2F1(-n,n+b;c;l) j-y- / -n,a,b | \ = 3 2kc,a+b+l-c-nl J (c)n(c-a-b)n (=-а)п(=-ъ)п rn,n+a,b . (c-b)n(a-c+l)n 3*2(чс,а+Ъ+1-с1 J (c)n(a+b+l-c)n a.UU1)-1 lf П = 0 ' A) C) f D) а(а-Ъ)пп-' (a-b)(a)n(b+l)n , n> 0 E) In the above, none of the o^i or 3^2 denominator parameters are negative integers or zero. Also n is a positive integer or zero. For Я other special values, see Erdelyi et al.(l953, v. 1; Ch. 2, pp. 104-105; Ch. 4, pp. 188-191). 1.3.6. Expansion of Hypergeometric Functions in Series of Hypergeometric Functions . a_ ,c p+r v.(b:;/k)=s ' s (ap)k(ot)k(-Z)k ?b "(ъа)к(Ри)к^+к)кк.' \/ F ( k+ap^k+at ,Л -k,k+y,cr,pu| X r+u+2Fs+tQ dg,^ -) • а„,с„ м+БЧл' ^= k?01№" k+ap,k+at| A p+tJ!q+ulvk+bA,k+guIV X r+u+1 s+t ( -k,cr,0u ds'°1: ') A) B) (l) is a generalization of many known expansion formulae and has been proved by Fields and Wimp A961). B) is a confluent form of (l) and follows from the latter upon replacing z by yz у w Ъу w/y and letting Y-*co . Meijer A952, 1953, p. 355, A13)) has studied expansion theorems for the G-function and B) is a special case of his results. For some special cases of B) as well as other expansion formulas for hypergeometric functions, see also Meijer A954, 1955, 1956) and the references given there.
20 INTEGRALS OF BESSEL FUNCTIONS 1.3.6 1.3.6 BASIC FORMULAS 21 Some special cases of (l) and B) follow. -api An » (c).Bk+c) p<;;i-?)-*>^>\?0-^-j- (*) с;г» • рЧъа 2яЛ = ? Р+2Ч^ Ъ ,2 с (V2)CB^)C 2^(l)c(l/2)cIc(z) + 2 Z к=1 (-f(k+c)(k) -к,к+2с,а к ? W*WFq+1(l/2+c^ P|w -к. а C) D) а<?-1- ?)¦r(c)B/zrl к?0 ^ wi(-w,C ЧР1v>E) Неге J\j(z) and Iv(z) are Bessel functions, see 1.4. For special values of the parameters and variable v , the hypergeometric polynomials in C)-E) can be expressed as a product of gamma functions, see 1.3.5. In this manner we get 2F2(a^|2z) = е^|Г!ЬсA)сA/2)с1сB) \ъ1,ъ21 у (V2)c L k+cv " (-)K(k+c)(kJe(bra1)kBa2-b1)k 1 a2 - l/2 , aj_ + 2a2 = bj_ + b2 , (8) 2^2 ( ^ I 2^ 2 2Vl+a,2bl J = eZB/z)Cr(c+l)|lc(z)f The expansion (-)>c)Bc-al Bc-a) ^ с = Ъ - 1/2 A+ak ^fcC2) 0) (-)kBa-D, A(^h2)= (^f^rWric) Z ? ^Jk+b-l(z)Jk+c-l(O k=0 с = 2a+l-b A0) (d)kBk+d)(b-a)k(c-a)k ACM"'8'4) " F(d)B/Z)d ? k:(b)k(Ok J2-(z) d = b + c-a-l , (Ь-а)„ F) 1Р2(ъ!с|-22/4) = Г(с)B/2Г1 ? kT(blJ(z/2)kj^c-i(z) ' G) follows from A) and 1.4.1A8). For a discussion of D) when p = q. = 1 and z is replaced by z/2 , see 7.2C) and 7.6B). Some other expansions in series of Bessel functions are given in 1.4.2. See 7.6A,3) for two further special cases of (l). Elsewhere in this volume we give representations of transcendental functions under discussion in series of Bessel functions. These expansions are advantageous since excellent tables of Bessel functions are available for desk computation, while for automatic computation they are easy to gen- generate. In this connection, see Stegun and Abramowitz A957), Goldstein and Thaler A959), Corbato' and Uretsky A959) and Gautschi A961 a,b).
22 INTEGRAIS OF BESSEL FUNCTIONS 1.4 1.4.1 BASIC FORMULAS 23 1.4. Bessel Functions 1.4.1. Power Series Expansions and Connecting Formulae where A and В are constants, independent of z though they may depend on i» , is called a cylinder function. It can represent any of the Bessel functions of the first, second or third kinds. '¦<»> ¦ (z/2)\i Ш^ - Ш? o*i(—2л) (i) k=0 n-1 TTYn(z) - 2{у«л z/2} Jn(z) - Z (n-k-l)J^/2) ч-п+2к k=0 is the Bessel function of the first kind; z is called the variable, v the order. J"(z) = e"r(^)V A^^+i^iz) . B) ?Г0 k.'(n+k): V. 2 к 2 n+ky1 Iu(z) = e'2lUTTJ1,(ze^1TT) , -TT<arg z ? тт/2 О) ^(гештт) = eiml'TTJl;(z) , m an integer . C) * Yu(z) = (esc im)[(cos im) Ju(z) - J_u(z)] D) = e^lmJv(ze'i5±TJ) , тт/2 < arg z ? тт . ^„(z) = (n/2)(csc utt) [l_u(z) - Iu(z)] . A0) (H) is the Bessel function of ^he second kind. raj (z) 9j (z)i \ыЫ)] :n(z) . [_|__ . (.)n _^_^ , (TT/2)Yo(z) . ^!__ju=o . E) ttX Yu(zeinirT) = e"lml'TTY1,(z)+2i(sin m\m)(cot utt)Ju(z), m an integer . F) hJ^Cz) = Ju(z) fiYv(z) ; 42)(z) = Ju(z) - iYu(z) . G) Ну (z) and Ну (z) are known as Bessel functions of the third kind. They are also called the first and second Hankel functions, respectively. Iy(z) and Ku(z). are called the modified Bessel functions of the first and second kind, respectively. "dl (z) Э1 (z) 2I^(z) = (-)П ' ~V Эи Эи 1 lblv^} ^(z) = ^ie^^^dz) . A3) / imrr4 -imWTT / \ irr(sin iqutt ) T / \ . , /,, \ Ku(ze Ш|) = e Ku(z) Ц —<¦ Iu(z) , ш an integer . A4) sin utt Cv(z) = AJu(z) + BYv(z) , (8)
24 IHTEGRAIS OF HESSEL FUNCTIONS 1.4.1 2K^(z) =2(-)n+1{Y+l^ 2/2}ln(z)+ n-1 z k=O (-)Ук-1).'(г/2)-П+2к k.' A5) ±z, o л-п 2n-l Kn(z) - 8 fciV Z Bn-l-k).T(i-n+k)(±2z)li 1 ^; k=O + (-)П+1Aл 2z)In(z) ^'Уц^ Z r(^ffz)k{t(^i)-t(n+^H(an+k+i)} . A6) The last follows from (a), -A0), and A2). In all the above formulae -TT < arg z s тт . ^+u+l ц+ц+2 /./P^+U Z' 2 ' 2 1Ъ/а| < 1 A7) A8) ,2 v j2(z) = (z/2) Р2(^«+1,2и+1;-22) . [r(i>+i)J2 A9) 1.4.2 BASIC FORMULAS v2u J.u(Oiv(Z) = ^sllt)TT) оР3(л+^,1-*»,*;-г4/б4) 25 B0) 2 (sin im)(z/2)': ., ЛЗ+и 3-и 3 . 4/ A .(i-,2) °4--'-'2-'-z/64; B1) 1.4.2. Expansions In Series of Bessel Functions z sin 9 CO 00 = Iq^)*2 21 (-)\^)^°B 2k9f2 Z (-)\k+i(z)sinBk+l)e . A) k=l k=0 z cos 9 I0(z) + 2 Z Ik(z) cos k9 k=l B) (z/2)^+1 = X {^^У^1) Ju+2k+1(z), „ not a negative integer . C) k=0 "Jj d ц+2к+1 1 = Jo(z) + 2 Z J2k(z) = ^) + 2 Z Jfc(z) • k=l k=l D) 00 / \k -2, /ox|i+l Г(ц+1) ^- (-)д-(и+к+1)гBц+к+2) (z/2) = ш^1 z k; ^Iu+k+i(z) > k=0 ji not a negative integer E)
26 IMEGBAIS OF BESSEL FUNCTIONS 1.4.2 ^3 BASIC FCKMUMS 27 e"z = Io(*) + 2 Z (-^@ ¦ F) a2lw(z) k=l a^ v=0 = -2(Y+ln z/2)KQ(z> - [тт2/б+(у+Ш z/2J]lQ(z) l k k For tables of A1) to 5d and A2) to 4d for z = 1AI9 , , , , , , r ,i , , ' " (z/2) Jk(z) Jl (-) J2k^z) u = (z-l)(O.l)(z+l), see Airey A935). Lee and Radosevich (i960) have (rr/2)To(z)- (Y+ln z/2] Jo(z) = X ?~— = -2 Z f— ¦ (8) tabulated A1) to 4d for z = 1@.5I5; v = 1/4AI7/4 , 1/3AI3/3 , k l k -1 2/3AI4/3 , 3/4AI9/4 . If v = ±l/2 , aJu(z)/9u can be expressed in terms of sine and cosine integrals, see 7.9A8,19). K0(z)+ [Yrta z/2} io(z) - - ? <-*¦***<¦>. 2 ? ЦП . (9) , ^ ^ С^) = ^?й-!Й^Си+кB),|1-Х2|<1 . A4) k=0 ^(z) = -(-f {-t(n+l)+ln z/2} In(zHn.4i.r 2? ^(n^^ If Cu(z) = Jp(z) , the restriction on X can be dropped. + (.f ? (°^?w(') . A0) B sin 3) (z cos 6) _ ? (t, B^r2aIT w(O , k=1 k(n+k) , k=0 k.T(u+k+l) 1.4.3. Difference-Differential Properties " ^.Л2/ j- 2 2i Throughout this volume, we let Ww(z) represent any of the Bessel = n(Y+ln z/2)Yo(z) - [n /6 + (yfln z/2) JjQ(z) functions of the first three kinds or the modified Bessel functions. Ir auc v=0 functions of the first three kinds or the modified Bessel functions. In formulae involving Wy(z) there appear two parameters a and b which , . .ъ. > are linked with the particular type of Bessel function as delineated in _ 2 — { ' ' ^ ' /12^ the table below. k=l k.'k2
28 INTECSAIS OF BESSEL FUNCTIONS 1.4.3 1.4.4 BASIC FORMULAS 29 VZ> Ju(z), Yv(z), H^z), 42)(z) 1 1 Iv(z) -1 1 Mz) ! -1 We have the following formulae. aWu+i(z) + Wj.-^z) = Bo/z)W1,(z) . -aWu+1(z) + bWp.1(z) = 2WJ(z) zVj(z) + uWv(z) = bzWu.1(z) . zVJ(z) - Wv(z) = - azWu+1(z) . (z'Vazf (z\(z)} = bV-'Vjz) . (z-Vdzf {z-%(z)} = (-afz-v-mW1,+m(Z) (m). . -m -— . .k/mx к m-k . . w; '(z) =2 I(-)(k)»b W,,.m+2k(z) k=0 In F)-(8), m is a positive integer or zero. [z2!J + zD + (аЪг2-и2)] Wu(z) = 0 Clearly Cv(z) can replace Wu(z) in B)-(9) if a = Ъ = 1 A) B) C) D) E) F) G) (8) О) A general solution of the differential equation [z2D2+z {(l-2a)+2e6ze} ^2Y2z2^e262z2e+e6(e-2a)ze+a2-P2V2] у = 0 A0) is y=exp {-6ze} zaCu(YzP) (H) where a, p, Y> 5 and e are constants, Py / 0 . If p ¦ 0 , and if у = 0 , у = exp |-6zel za(c^+C2 In z) ; у = expl-ezejza-^tc^z2^) A2) A3) unless pu = 0 . In A2)-A3), C]_ and c2 are constants of integration. For other results- of this type, see Watson A945, pp. 95-99), and Rey Pastor and Castro Brzezicki A958, pp. 205-222). See also the compendiums of solutions of ordinary differential equations by Kamke A948) and Murphy A960). 1.4.4. Wronskians Define W (u(z),v(z)} = u(z)v'(z)-u'(Ov(z) We then have the following relations. W {ju(z),J.u(z)} = " C2/™) sin u A) B)
30 INTEGRALS OF BESSEL FUNCTIONS W {ju(z)Jyv(z)j = 2/ttz . W{4l)(z),42)(z)}= - 41/ttz . w{lu(z),I_v(z)j = - B/ttz) sin m w{lu(z),K,,(z)} = - 1/z . 1.4.5. Integral Representations -l f2n Jn(z) = Bтг) / cos(n9-z sin 6)d6 Jo tt/2 J2n(z) = (-)пB/тг) / cos 2n9 cos(z cos Jo , tt/2 J2n+1(z) = (-)ПB/тг) / cosBn+l)e sin(z cos 8 )d8 J 0 tt/2 . Г ' ix sec 9 Jo(x) + ilo(x) = -Bi/rr) / eXX Sec sec 9de , x>0 с e-z cosh tcQsh vt dt ^ R(z)>0 . 1.4.5 C) D) E) F) I A) B) C) J/z) = r^ivV^ f cos^z cos 9)sin2V9cLe , R(v)>-i . D) E) F) 1.4.6 BASIC FORMULAS /^ TT со cos(z sin e-ve)ae-(sin vtt) f e"(z slnh t+vt) о Jo dt , R(z)>0 ttIv(z) = / sin(z sin e-ve)u9- / (eVt+e'Vtcos VTr)e"z slnh *й , v/ 0 Jo R(z)>0 1.4.6. Asymptotic Expansions for Large z Ну y(z)— B/тгг)^е ^ ^ 4 ^Fq (j5+v,t-v; — J , Izl —>co , -rr<arg z < 2тг 42)(z) -(a/™)».^-*^^ (^^w>-ife) ' Ju(z)~ B/ttz)» |z|—><» ,-2тг < arg z < it cos(z-^-^) Z 2k ov 2k k=0 Bk).'BzJk + sin(z-^UTr-^rr) 2! (-)k(^Jk+1(i-uJk+1 2k+l k=0 Bk+l).'Bz)' |z|—»co } |arg z| < it 31 G) (S) A) B) C)
32 INTEGRAIS OF BESSEL FUNCTIONS 1.4.6 (-)k(^Jk(*-Jk *иЫ~ B/-f sin(Z-i--^) Zq Bk),Bzfk ^/i - cos(z-iuiT-5TT) кГ0 Bk+l).'BzJk+1 |zl—>=> , larg z| < тт -z-e(u+i)iri D) Bttz): Bttz)* |Z|_»<» } _B+e)Tr/2<arg z<B-s)tt/2 , e •= ±1 Ku(z)-(rr/2z)*e-Z2FoD+u'i-^- Д) ' |z|—»•=> , larg z|< Зтт/2 E) F) If и is an odd multiple of J, each series in (l)-F) terminates. In this event, we can replace asymptotic equality Ъу equality and omit the restrictions on arg z . In particular, we have J i(z) = B/ttz)*cos z j J|(z) = B/TTz)*sin z I_i(z) = B/TTz)*cosh z ; I|(z) = B/ttz )*sinh z K|(z) = (tt/2z)VZ G) (8) 0) 1.4.7 BASIC FORMULAS 33 Equations (l)-F) readily follow from 1.4.1A), the connecting formulae given in 1.4.1 and the appropriate asymptotic expansions in 1.3.3. Alter- Alternatively, we can start with 1.4.1B), use the connecting formulae of 1.4.1 and the pertinent asymptotic formulas of 1.3.3. For a discussion of the remainders in the asymptotic expansions, see Watson A945, Ch. VII). 1.4.7. Polynomial Approximations *'4(x) = Z (-^(х/ЗJ1^ + sn(x) , n = 0,1, k=0 |«o(x)| ? 1-10 , |Sl(x)| ? 5-10"9 , -3 <. x <. 3 A) ako kl 0 1 2 3 4 5 6 1.00000 2.24999 1.26562 0.31638 0. 04444 0. 00394 0.00021 00 97 08 66 79 44 00 0.50000 0.56249 0.21093 0.03954 0.00443 0.00031 0.00001 000 985 573 289 319 761 109 кп (уп(х)-B/тт)Aл x/2)Jn(x)} = Z Ъкп(х/3Jк+71п(х) , n = 0,1, k=0 •4-8 -8 |71o(x)| <. 2-10"a , \\(x)\ ? 5.10"a , 0 ? x ? 3 . B)
34 INTEGRALS OF BESSEL FUNCTIONS 1.4.7 1.4.7 BASIC FORMULAS 35 Jko Jkl uko ukl 0 1 2 3 4 5 6 0. 0. -0. 0. -0. 0. -0. 36746 60559 74350 25300 04261 00427 00024 691 366 384 117 214 916 846 -0. 0. 2. -1. 0. -0. 0. 63661 22120 16827 31648 31239 04=009 00278 98 91 09 27 51 76 73 ч2к ¦nJnW = Z (-)Чп<*Л) + «nM ' n = O'1' k=0 0 1 2 3 4 5 6 7 8 0.36746 1.07661 -2.34985 1.42164 -0.42617 0.07729 -0.00948 0.00085 -0.00005 69052 15157 19931 21221 37419 75809 55882 99770 67433 -0.63661 0.39325 6.85292 -7.39802 3.12613 -0.72689 0.10765 -0.01081 0.00065 97726 62018 36342 41381 99273 45577 76060 75626 35773 ^(xW^xW-^Vx)/^^ -10 |eo(x)| s 10-100 , |в1(х)| ? 3-10-iu , -4 s x s 4 C) Vх) = Z =kn(x/3) k=0 -k en(x) ako akl 0 1 2 3 4 5 6 7 1- 00000 3.99999 3.99999 1.77775 0.44435 0.07092 0.00767 0.00050 00000 98721 73021 60599 84263 53492 71855 14415 1.99999 3.99999 2.66666 0.88888 0.17775 0.02366 0.00220 0.00012 99998 99710 60544 39649 82922 16773 69155 89769 Xn {хп(х)-B/П)(Лл x/2)Jn(x)} = Z 4n(x/4Jk + ^nW > n = 0'1' k=0 -10 |T)o(x)|s4-100 , ITIiOOI^-IO" ,0 s x s 4 . 6 Фп(х) = Z <Wx/3)-k + Tln(x) , k=O И = 0,1, 3 S ]? S в , |«o(x)|sl.l0"8, |Tlo(x)| SS-IO"8; |Sl(x)| S3.10'8, |TI(x)| S8-10" E) "ко \o (*) 0 1 2 3 4 5 6 0.79788 -0.00000 -0.00552 -0.00009 0.00137 -0.00072 0. 00014 456 077 74 0 512 237 805 476 0.78539 0.04166 0.00003 -0.00262 0. 00054 0.00029 -0.00013 816 397 954 573 125 333 558
36 INTEGRALS OF BESSEL FUNCTIONS 1.4.7 4a \l 0 1 2 3 4 5 6 0. 0. 0. 0. -0. 0. -0. 79788 00000 01659 00017 00249 00113 00020 456 156 667 105 511 653 033 0.78539 -0.12499 -0.00005 0.00637 -0. 00074 -0.00079 0.00029 816 612 650 879 348 824 166 Jn(x) + iYn(x) = B/mc)*eie [pn(x) + iQjx)] 8 = x - птт/2 - тт/4 k=0 -2k en(x) k=0 n = 0,1, 4 ? x ? ~-9 |«0(x)| .3.10-9, |.!(x)| ^6.10"9,|71o(x)! .4.10-9, l^x)! se-lCf . (б) cko ^ko ckl ukl о 1 2 3 4 5 0.99999 -0.00439 0. 00043 -0.00012 0.00004 -0.00000 9997 4275 4725 2226 3506 9285 -0.03124 0.00114 -0.00021 0. 00008 -0.00003 0.00000 9995 4106 8024 5844 5614 8099 1. 0. -0. 0. -0. 0. 00000 00732 00055 00014 00005 00001 0004 3931 9487 5575 0363 0632 0.09374 -0.00160 0.00026 -0.00009 0.00004 -0.00000 9994 1836 6891 9941 0658 9173 1.4.7 BASIC FORMULAS 37 If all four of the above quantities are needed, the evaluation of either P0(x) or P]_(x) may be accomplished using the fact that for all Р0(х)Рх(х) + ^(xjQ^x) = 1 , thus saving the evaluation of one series. x"nln(x) = X. ekn(x/aJk + en(x) > n = °>1> Osxsa k=0 G) a = 2 , m = 6 , |eo(x)| s 1-Kf9, |ei(x)| s l-lO"9 "ко "kl 0 1 2 3 4 5 6 1.00000 1.00000 0.25000 0.02777 0.00173 0.00006 0. 00000 0000 0000 0008 7730 6247 9246 2072 0.50000 0.25000 0. 04166 0.00347 0.00017 0. 00000 0. 00000 0000 0013 6563 2576 3024 6251 0001 a = 5 , m = 8 , |eQ(x)| s Lio"a , |e1(x)| s 2-10 v-9 (8) "ко ckl 0 1 2 3 4 5 6 7 8 1.00000 6.24999 9.76562 6.78163 2.64934 0.66155 0.11618 0. 01350 0.00202 0000 9820 9849 4474 8275 0732 5994 1925 0755 0.50000 1.56249 1.62760 0.84770 0.26492 0. 05514 0. 00828 0.00085 0.00011 0000 9971 4720 6080 8565 1522 5410 1785 0375
38 INTEGRALS OF BESSEL FUNCTIONS 1.4.7 х'П1п(х) = Z ekn(x/3-75Jk + en(x) , n = 0,1, k=0 -7 |eo(x)| ^ 1.Ю"' , |в1(х)| ^ l-10-a , -3.75 s i s 3.75 O) =ko ckl 0 1 2 3 4 5 6 1.00000 3.51562 3.08994 1.20674 0.26597 0.03607 0. 00458 00 29 24 92 32 68 13 - 0.50000 0.87890 0.51498 0.15084 0.02658 0.00301 0. 00032 000 594 869 934 733 532 411 xn {^(x) -к (-)пAл x/2)ln(x)} = ? {1т(х/г)а + 71n(x) , n = 0,1, k=0 -9 ho(x)| ^ 1-107 > hi(x)l ? 4>1° , о s x s 2 . A0) Lko Lkl 0 1 2 3 4 5 6 -0.57721 0.42278 0.23069 0. 03488 0. 00262 0. 00010 0.00000 566 420 756 590 698 750 740 1.00000 0.15443 -0.67278 -0.18156 -0.01919 -0.00110 -0.00004 000 144 579 897 402 404 686 1.4.7 BASIC FORMULAS 39 x*e-xIn(x) = ? glm(x/3.75)-k + en(x) , n = 0,1, k=0 .-9 -9 eo(x)| ? ll-10'a , |e1(x)| ? 11-10 , 3.75 й x s <= A1) Ski 0 1 2 3 4 5 6 7 8 0.39894 0.01328 0.00225 -0.00157 0.00916 -0.02057 0. 02635 -0.01647 0.00392 2280 5917 3187 5649 2808 7063 5372 6329 3767 0.39894 -0.03988 -0.00362 0.00163 -0.01031 0. 02282 -0.02895 0. 01787 -0.00420 2280 0242 0183 8014 5550 9673 3121 6535 0587 x*exKn(x) = X bkn(x/2)-k + Tln(x) , n = 0,1, k=0 ho(x)| ? 7-10-8 , |Th(x)| <; 10-10" 2 < X ? со A2) \c \l 0 1 2 3 4 5 6 1.25331 -0.07832 0. 02189 -0.01062 0. 00587 -0.00251 0. 00053 414 358 568 446 872 540 208 1.25331 0.23498 -0.03655 0. 01504 -0.00780 0.00325 -0.00068 414 619 620 268 353 614 245 Equations A), B), E) and (9-12) are due to Allen A954) and Allen A956 ), respectively. In (9-12) we give maximum absolute errors, whereas the original source quotes relative errors. Equations C), D) and F)
40 INTEGRALS OF BESSEL FUNCTIONS 1.4.8 come from Hitchcock A957) who also gives approximations for K^x) and Ki(x) valid for 1 <. x <. => . Formulas G) and (8) follow by rearranging the truncated expansion of Io(x) in series of Chebyshev polynomials of the first kind. In this connection, see Wimp (i960, 1961). Further approximations for the functions of this section can be obtained from the work of Luke A955, 1960, 1961a). 1.4.8. Description of Mathematical Tables In addition to the following, see the discussion in 1.1. For those tables below which are well known, only an abbreviated description is pro- provided. Bessel Functions of Integral Order British Association for the Advancement of Science A950): Functions of order zero and unity. British Association for the Advancement of Science A952): Functions of positive integer order. Cambi A948): Eleven- and fifteen-place tables of Jn(x) to all signifi- significant orders. Faddeeva and Gavurin A950): Jn(x) , n = 0AI20. Fox A954): Bessel functions of integer order and large arguments. Harvard Computation Laboratory A947-1951): Jn(x) , n = 0AI35. National Bureau of Standards A947a): Jo(z) , J^z) for complex z . National Bureau of Standards A950): Yo(z) , Yj_(z) for complex z . Olver (Editor)(l960): Zeros and associated values of Bessel functions. Vinogradov and Cetaev A950): In(x) , B/тг)Кп(х) , n = 0,1 . Watson A945): See 2.9. 1.4.f BASIC FORMULAS 41 Bessel Functions of Fractional Order Cerillo and Kautz A951): f = З^/За^З/^) f | f | } arg f (in radians), \ 3/3[Ai(-3";L/3B) ± Bi(-3/3B)], В = iBle1^ , |B| = 0@.2L , 0 = 0G.5°I8O° , 7d. See Ch. VI. Fox A960): R(z) = 2A^e§Ai(x) , z = Г1 = 3/2 x/2 = 0 @.001H.050 , lOd. Similar listings for functions related to Ai(-x) , Ai'(±x) , Bi(±x) , Bi'(+x) . Harvard Computation Laboratory A945): These are essentially tables of J+./_(z) for complex z . See Ch. VI. -1/3 C.W. Jones A956): Essentially IQ+i(x) , Kn+i(x) > n = 0(l)l0,x=0@.l)l0. J.C.P. Miller A946): Ai(±x) , Bi(±x) . See Ch. VI. National Bureau of Standards (I947t>): (rr/2xJJu(x) , ±2u = 0(lL3 . National Bureau of Standards A948, 1949): Jv(x) , Iv(x) , ±v = 1/4, 1/3, 2/3, 3/4 . Olver (Editor)(i960): Zeros and associated values of Bessel functions. Smirnov A955): U^s^) = Bи)"И (^g) s*J.iv(vsu) , U2(s,a) = BuJvr(^|)sEJiv(vsu) } u = i(a+2) , uv = 1 , and their first derivatives, a = 1 , s = - 6@.01I0 , 4d,5d . a = ±l/4 , ±l/3 , ±1/2 , ±2/3 , ±3/4 , 5/4, 4/3, 3/2,^5/3, 7/4. 2, s = 0@.0lN, 4d . vl(s>Po) = s*r(p)Jp.1Bsl) , V2 = s*rB-p)J1_pBs4) and first derivatives, p = 0.1@.1I , s = 0@.01I0, 4d . Watson A945): See 2.9. Woodward and Woodward (with the assistance of Hensman, Davies and Gamble) A946): Ai(z) , Ai'(z) , Bi(z) , Bi'(z) , z = x + iy , x = -2.4@.2J.4 , -у в 0@.2J.4, 4d . See Ch. VI.
CHAPTER II 1ИТЕ(ЖА1? OF THE TYPE J tMWB(t)d.t 2.1. Definitions and Cormecting Formulae Let Wi (z) = / t%(t)dt A) where Ww(t) represents any of the Bessel functions of the first three kinds or the modified Bessel functions, see 1.4.3A). If Ww(z) = J,,(z) , we write Ji w(z) in place of Wi^ u(z) . Similarly, if Ww(z)= Kw(z) , we write Ki w(z) in place of Wiu „(z) , etc. To ensure the existence of A), R(p,+u)> -1 for Bessel functions of the first kind while R(p,±u)> -1 for Bessel functions of the second and third kinds. Recurrence formulae for (l) are given in Chapter V. If p, = 1 ± » , (l) can be simply evaluated, and this too is considered in the latter chapter. The following connecting formulae are simple consequences of the anal- analogous formulae for Bessel functions. See 1.4.1. , „ -4±(р,+»+1)тг , iirr. , Ii^w(z) = e * ^ ; Л^„Bее ) , -TT<arg z ? тг/2 , = е|1(^1+иK^. (ze-43i") } n/2<arg Z?n . B) n z Jo R(|i±u)> -1 42 C) 2.1 IHTEGRAI? OF THE TXFE Ki, \J t%(t)dt Hi^(z) = f t^)(t)dt = Ji^w(z) + iYi^w(z) , J 0 R(p,t»)>-1 . Hi^(-±n)=ei^-")V^(z) . /i z t%(t)dt = n/2(csc utt) [li^.B(z)-Ii (z)] 0 R(p.-»)>-l -¦j^iTT ^(•¦^„(l)/ In all the above relations, -rr<arg z ? тг . By contour integration, n°° p<*> exp(i6) / t%(t)dt = / t%(t)d.t , J z J z 6 real , I6Ktt/2 ; 161 = тг/2 , R(p,)<i . 43 E) F) G) (8) 0) Here the path of integration lies in the branch of the cut plane determined by I arg z| < тг , and is the ray p exp(i6) , p—><*> except for an initial finite path. The origin is usually excluded from the path of integration, hut may be included if the further condition R(p,±u)>-1 is imposed. It follows that
44 IHTEGRAIS OF BESSEL FUNCTIONS 2.2 /. z ехр(--|1тт) t%(t)dt = in**1^"^ /"Vl^Wt , R(,)<i . A0) 2.2. Differential-Difference Properties We have the differential equation [ z2D3 + (l-2p,)zl? + (|i2-u2+abz2)D] Wi „(z) = 0 . (l) The special recurrence relation nZ „Z / Ju+I(t)dt = / Ju.iCtJdt - 2JB(z) , R(u)>0 , JO J 0 B) follows from 1.4.3C). For general recurrence formulae pertinent to the integrals of this chapter, "see Chapter V. 2.3. Power Series Expansions Series representations for 2.1A) and related integrals are given below. These follow directly from power series expansions of Wy(z) . See 1.4.1. I 0tJ"(tLt ^к!(^№1)Г(№1) zM-1 ,+u+l 1*2 C1 i+u+1 ц+и+3 2и(р,+и+1)Г(и+1) R(p.+ »)>-l ,u+l ;-2/4) , A) 2.3 IMTECKALS OF THE TYPE/ t^W,,(t)dt 45 /V» {".(.)} ,3-L dt = (-)k(z/2Jk 8 k=o Гк+ bi) {(k+1)-'} 2 3"" 2^3 (i, ^ ;2,2, ^ ;-«2/*) , z Цз^ R(n)<3 B) ,.z - / t^Yn 2Jn П t- - ^ F (n-k-l).-(z/2)-^2k 2 ^0 k.'(-n+p,+2k+l) (t)dt= - ^— x ^;1;;4Z^\^ ' -^+1 i; (-)k(z/2)a+2k k^O k.' (n+k).' (п+р,+2к+1 )c ,^1 ^ (-)k(z/2r2k + ^? ГТ ^ k.'(n+k);(n+p,+2k+i) (in z/2-^(k+l)-^(n+k+l)} C) u+1 n~1 и - V-1. (ak-(-n:^D +<^ 8/2^n(B,-/ *-1П^п(*,« 7.H+1 sk/ /„чп+2к 2 k=0 k.'(n+k)!(n+p,+2k+l) V к n+k У n ^ 0 , R(p,)> n-1 D)
46 INTEGRALS OF BESSEL FUNCTIONS H /ZYo(L)dL J± f Jy(t)dt] z ? {-)%/^( z/2. _1N kt0 (k:JBk+l)V 2k+l^ k=l (k.1 JBk+l) V k/ where = z(Y+ln z/2)fQ(z) - zf1(z) nz zfo(z) = / J0(t)dt , f (z) = l- ?_ + _2_- O4 ' то адп z2 . z4 - z6 + z« ,10 12 320 16128 13 27104 1622 01600 Д2 2 76037 63200 f,(z) = 1- 79z 156 7 z 10 z2 + 17z4 _ 83z6 9 3200 " 6 77376 ' 477 75744 " 10 70530 56000 73z 12 79 74420 48000 2.3 E) F) G) (8) 2.3 INTEGRALS OF THE TYPE Г t^JWu(t)dt 47 [\%1(Ь)ЛЬ = 2^ "у (-)k(n-k-l).4z/2) Jq 2 k=Q k.'(-n+p,+2k+l) -n+2k 1 + (_)nzM.+l ^ (z/2) n+2k k=0 к.' (n+k)! (n+p,+2k+l J . (-)V+1 f (z/2)n+2k 2 k=Q k.'(n+k).'(n+p,+2k+l) X {2 In г/2-ф(к+1)-ф(п+к+1) j 0) u,+l ^1 , Nk T (-) (n-k-l).'(z/2) 2 k=Q к.'(-п+м,+2к+1) -n+2k - (-)n(Y+ln z/2)li^n(z)+(-)n ^t^Ii (t)dt J0 . (-)V+1 ? (z/2)n+2k 2 k=Q k.'(n+k).'(n+p,+2k+l) XCi^-.i^...^) , n й 0 , R(p,)>n-1 A0)
48 INTEGRALS OF BESSEL FUNCTIONS 2.3 do (.""«'О J u=O r,2r2k+iU2k+1 J k=0 (k.'JBk+l) + z ? (^Jk л^ k=i (k.'JBk+l)^ = -z(y+1h z/2)fo(iz) + zf1(iz) , k^ A1) where fQ(z) and f]_(z) are given by G) and (8), respectively. Equations (l), C) and (9) are obviously related in view of 2.1G). Indeed the first two formulas with v = n follow from the third. An appeal to the continuity argument produces (l) for general v . We next establish the following formulae. /z *Ч(^ = kffi^i) {-^ z/2 + ^(m+1) + ^(u+ffl+1)} - 2 _,-, °° / чк, /оч2к-2т ц+1 у (-) (z/2) ?Г0 Bк-2т)к.'Г(и+к+1) ' R((i)<-^ ; (i+u = -2т-1 , т a positive integer or zero . A2) Ут00 Г z tJo(t)dt = / t-1 (l-Jo(t)} dt - (у+1п z/2) . A3) z ^ 0 2.3 nZ IUTEGRALS OF THE TYPE / t%(t)dt 49 I /^%W* ¦ гЩг [т "* Z -=-2-i Z° ^-2 k=l k=l - |ln z/2--|i|r(m+l)--ii|r(n+m+l)j + z^+1 ^ (n-k-l).'(z/2) -n+2k 2 ^¦0k.'(-n+2k+M,+l) ,H+1 z^ (-)k(z/2)n+2k ?rQ k.'(n+k).IBk-2m) jln z/2-^(k+l)-^(n+k+l) - ^Л |iS-l i p,+n я -2m-l , m a positive integer or zero . A4) t-^tjdt = g + (y+1h z/2) [-i(Y4-ln z/2)+go(z)J -gl(z) , A5) 7. go(-)=(/zfi{i. jo(t)} dt «o(Z) = #-4+ z' ,8 ,10 8 256 13824 11 79648 1474 56000 gl(z) = 5|i.-L+ *6 53 z 8 143 z 10 16 1024 6912 283 11552 88473 60000 A6) A7) A8)
50 IHTEGRAIS OF BESSEL FUNCTIONS 2.3 />-«?•*? m m+n — ГТ* ГТ TT ^X / & M / -2 k=l {in г/2--^(т+1)-^(п+шН-1)| 21 z^l n- (-)k(n-k-l).'(z/2)-n*2k 2 "t: к.'(-п+ц+2к+1) iC—U M.+1 T (z/g)' (-fz^+1 Z ,n+2k k70 к.'(п+к).'Bк-2т) k^m {1л z/2-^(k+l)-M(n+k+l) - ^ J ^,+n = -2m-l , m a positive integer or zero A9) 00 О F t-^CtJdt = g + (v+ln z/2) [|(Y+ln z/2)-go(iz)] +gl(iz) , B0) where go(z) and gx(z) are given Ъу A7) and A8), respectively. It is sufficient to prove A9), for with v = n , A2) and A4) follow with the aid of 2.1A0). Application of the continuity principle gives A2) for general v . From (9) and 2.6F), n-1 . .k. Г ^ ,+ w и ^ i ^+1 V (-)(n-k-i).'(z/2) / t4(*)dt - A(e) - ^ Z 'k^.^k+l) ^  1С— U ,-n+2k (-)nz'+1 ,^„ k.4^L2.) (^ »/*-it(*">-4t(n*n> - i^ } B1) k=0 k^m 2.4 INTEGRAI5 OF THE TYPE z Г ttJWu(t)dt 51 where A(e) = Azl^ !L_ m.' (n+m).' _ (z/2)ef sin2 en ш-'М.-в^т Iflm+l+Ortn+m+T^T ^^ (z/2)esin2eTT n2e2 f = 2 1л z/2 - ф(т+1) - ф(п+т+1) , е = -?(ц+п+2т+1) B2) To compute A@) = A , use L'Hospital's theorem. Then A= m:(n+m).' 1 ^~ -Ф'(^1)-Ф'(п^1+1)+4 |щ z/2-^(m+l)-^(n+m+l)j J , B3) and A9) readily follows. Alternative proofs of A2) and A4) can Ъе obtained by a similar procedure. See Lowan, Blanch and Abramowitz A943) for an alternative proof of A2). Equations A4) and A9) are generaliza- generalizations of results given by Oberhettinger A957a). Л. Expansions in Series of Bessel Functions 2# ^ (U+2k+l) (r^h / t^Ju(t)dt = -^—r Z ^ Jo v ^+u+1) kfo С^а^.) V 2 / J u+2k+l (z) , R(n+u)> -1 A)
52 INTEGRALS OF HESSEL FUNCTIONS 2.4 /c ' tHj (t)dt - ^+1 у (^/2)к j (z) t Jw(t)dt (^+u+l) ^ Ju+k(Z) V 2 У 5- 1г Д1/ J т , , R(n+")>-1 B) See also 5.2B4-27). / Ju(t)dt = 2 X Ju+2k+i(z) ^ R(v)>-1 0 k=0 C) y,Z „Z П-1 J2n(t)dt = / Jo(t)dt - 2 ~Z J2k+1( 0 J0 k=0 z) . D) / J2n+l(t)dt = 1 " Jo(z) " 2 Z J2k(z) • 0 k=l E) /. t'1 (l-Jo(t)} dt = 2Z X Bk+3) [ф(к+2)-фA)] J2k+3(z) 0 k=0 l-2z" J1(z)+2z-1 Z Bk+5)[t(k+3)-t(l)-l]j2k+5(z) . k=0 F) 2.5 IMEEGRAIS OF TBE TTCPE J t%(t)dt 53 ; f t'1 ho(t)-l\ to =2z-X Z (-)kBk+3)[t(k+2H(l)]e-ZI2k+3(z) JO k=0 e"z [az'^fz).!] -2Z X (-)kBk+5)[t(k+3H(l)-l]e-ZI2k+5(z) . G) k=O /"t-1 {i-Jo(t)} dt = * i (^f^)-t(i?] Jk(z) . ^0 k=l (8) /Zt-l(lo(t)-l) dt = -i ^ (-)к(г/2)кЬ(к+1)-*AK e-Zl (z) . (g) JQ L ^ к=1 к.' Equations (l) and B) arise from 2.3(l), and 1.3.6F-7), respectively. Equations D) and E) derive from 2.2B). Equation C) is a special case of (l) and may also Ъе proved from 2.2B) since for z fixed, lim Ju(z) = 0 . The first of (б) is a consequence of (l) and 1.4.2C) V —> oo with p, = 0; (8), of B) and 1.4.2A4) with Сц(г) = J^(z) and v = X = 0 . 2.5. Asymptotic Expansions for Large z Consider the right-hand side of 2.1(9). Replace Ky(t) Ъу its asymptotic expansion and integrate Ъу parts. Then г,™ exp(i6) Г XP1 t%(t)dt~e-WJL)* ? (-) J z Kdzy k=0 к -к Izl—>oo , larg z| s tt/2 , |arg 61 < тт/2 ; |arg 61 = tt/2 , R(n)<5 , A)
54 where INTEGRALS OF BESSEL FUNCTIONS 2.5 ii-^U^) 2kk.' i кък , ък = sF2(-k,i,n-Jct?ji+i;-k,?-i;-kj2) , B) C) ъ = 1 + 2(к+1Нц-к4) ъ k+1 (v-k4)(W+|) k The aks can also Ъе found Ъу substituting the series expansion on the right of (l) into 2.2A) and equating like powers of z . In this fashion, we get the recurrence formula 2(k+l)ak+1 = [3(k4)(k+5/6)-2M,(k+l)-u2] ah.-(k+|+i>)C5:4-i;)Cs-i-M,)a]5._1 , ao = 1 , ax = 5/8 - м, - v*/2 D) If \i, ~ u+1 , the asymptotic representation of 5.2C1) shows that ak - <±W"*± . E) 2kk.' Asymptotic expansions for other integrals of the type / t'JWu(t)dt J z follow from (l) and the connecting formulas in 2.1. For an alternative approach, we start with 2.3A), and use the connecting formulas in 2.1, and the asymptotic expansions in 1.3.3. We then find the following representa- representations. z 2M.r fv+y.+l\ / t^J,,(t)dt = JL_2 C- - B/-rrz)^z^(f cos 8+g sin 8 ) , 2 У R(n+U)>-1 > Izl—»oo , |arg z|<tt F) 2.5 z IHTEGRAIS OF THE ТХРЕ Г t^W (t)dt 55 /Q4(t)dt = t. Г(^) r(^)sin(,.u)TT/2 - B/TTz)*z^(f sin 9-g cos e) , Н(ц±1>)>-1, |z|—»oo ; |arg z| <тт G) Here 9 = z - im/2 + tt/4 , (8) *~Z (-)ka2kz-2k,g,-Z (ОЧк.!^-1 k=0 k=0 (9) 'uid the a^s are as in (l). f t%(t)dt ezz^ ^- _ ,.k e-zzM.e-1(u+i)eTT » k _k 2_ 1-; akz l_ akz-- Bnz)*k=0 BrlzJ 4^) k=0 R(m,+u)>-1, |z|-»», -B + e)n/2<arg z<B-e)n/2, e = +1 A0)
56 IMTEGRAIS OF BESSEL FUNCTIONS 2.6 JO 4 2 У Ч 2 У k=Q R(n±u)>-1 , |z|-»« , |arg z|<3tt/2 . (ll) In (Ю) and (ll), the a?s are again as in (l). Values of the coefficients a^ for p, = v = 0 and p, » -1 , v = 0 , each for к = 0A)8 are listed in the table below. a for p,=u*O 1 5/2^ 2 129/27 3 2655/210 4 3 01035/2 ^ 5 108 96795/218 6 9613 19205/222 7 5 00465 71575/225 8 2403 53982 61875/231 a, for ц«=-1,и«0 1 13/23 529/27 14887/210 21 47403/215 945 45267/218 98351 09013/222 59 01645 13695/225 32106 25393 55955/231 2.6. Infinite Integrals / t%(t)dt = v ; л , r(^+v)> -i, н(ц)<* о r(^—) V 2 ^ r00 / Jy(t)dt = 1 , R(v)>-1 Jo C2) A) B) 2.7 IMTEGRAIS OF THE TYPE / t^,,(t)cLt J ri-jo't)J,-r(?)r(?) « 0 0 t^ \zJ ^ 2 J , 1<R(^)<3 2,{r(^l)}2 57 C) / +LJ,V f+ \a+ 211 т-Л^+и+А tVI-I-U+A . TT / v R(m,±v)>-1 , R(n)<i • D) /; Yu(t)dt = - tan — , |R(u)Kl E) J t^%(t)dt B gH-lr^-t-v-H^r^-w-lj , н(ц±1»)>-1 . F) /„ Ky(t)dt = I sec H , IH(«)|<1 . G) K.iuations (l), D) and F) come from 2.5F, 7 and ll), respectively. ibf combination 2.3B) and 1.3.3A8) yields C). • <¦ ¦ Circular Representations of Jn(z) and / Jn(t )dt ^0 m-1 J2n(z) = - Z c°s(z c°s ^k)cos 2n^k + rm,2n(z) k=0 A)
58 Here INTEGRALS OF BESSEL FUWCTIORS Ш J2n(z) = - X ekcos(z cos iuk)cos 2пшк + Um,2n(z) 2.7 B) k=0 m-1 J2n+1(z) = i Y sin(z cos Xk)sinBn+l)Xk + гт^2п+1(?) . C) k=0 Ш J2 +1(z) = i Z eksin(z sin «)k)sinBn+l)iuk + u^2n+l(z) • (*) k=0 \k = Bк+1)тт/4т , oojj. = ктт/2т E) ,n(z) = -2 ? (-)Гвг,п(*> > %» =  Zer,n(O > F) r=l r r,n(z) = * [(-)nj4mr-n(z) + J4mr+n(z)] > ^k=* if к = 0,m; ek = 1 if к = 1,2,...,m-1 . G) (8) nz m-± / J2n(*)d* =\ ^ Jq k=0 m-1 sin(z cos X )cos 2n^k pz cos Xk / rm,2n(t)dt • О) r,wl№.i|b*^^.^). • <«, Two other formulas readily follow Ъу integration of B) and D). 2.7 INTEGRALS OF THE ТГРЕ / tMwv(t)dt 59 In the above rm n(z) and i^ n(z) are remainder terms. Integrals of the latter can also be expressed as a series of Bessel functions in view of 2.4A,2). To appraise the error, one can use available tables. However, this is convenient only when z is pure real or pure imaginary. The ensuing discussion gives an approximate but simple and very effective means to estimate the remainder without use of tables of Bessel functions. Fix z and n . Choose m> z and m> n . Since Jq(z) decreases rapidly as q increases, to approximate the series defining the error, it is usually sufficient to consider only the first term of the series. Thus VnW^-V'2' ' A1) and unless n = 0 , gl,n(z)~-^-J4m-n(z) {12) 11 nee |Ja(z)| * Kz/g) 1еУ , z =x + iy , yS 0 , A3) A4) A5) ! m.i Lar analysis yields / r (t)dt u n ,4[B/2Lт+1|еУ Dm+l).' A6)
60 INTEGRALS OF EESSEL FUNCTIONS <J 0 g|(z/gLm-n+l|ey ^ n>Q Dm-n+l).' 2.8 A7) The results of this section are based on trapezoidal integration rules. For further discussion, see Fettis A955) and Luke A956). Exponential series (trapezoidal rule) representations of Ку(г) and its repeated inte- integrals are given in 8.8. 2.8. Polynomial Approximations /, Jo(t)dt = Z (-L(xAJk+1 + «to , 0 k=0 |e(x)| <; 6 • НГ9 , 0 s x s 4 A) f Yo(t)dt = B/тг)(иГх/2) Г Jo^)^ " Z (-)kbk(x/*Jk+1+Tl(x) > J 0 Jo k=0 |Tl(x)| <1 • 10"9 , 0 <: x s 4 B) 0 1 2 3 4 5 6 7 я 4.00000 5.33333 3.19999 1.01586 0.19749 0.02579 0.00236 0.00013 _ 0000 3161 7842 0606 2634 1036 2211 3718 1.07661 2.56725 2.28731 0.90475 0.20338 0.02960 0.00303 0.00023 0. 00001 1469 0468 7974 5062 0298 0855 4322 5002 3351 2.8 INTEGRALS OF THE TYPE Pz J t%(t)dt r[jo(t)+iYo(t)]dt =x-*ei^-TT/4)[x (ОЧ^АГ2*-1 Jx L k=0 + i z (-)Ч(*Л)-2к1+ «oo , k=0 J |e(x)| <: 2 • 10"8 , 4 ? x <; 61 C) 0 1 2 3 4 5 6 0.12461 0.03128 0.02364 0.02200 0.01623 0.00739 0.00149 1058 0848 4978 7499 6617 0830 6119 0.79784 0. 04963 0.02366 0.01825 0.01242 0.00543 0. 00107 8790 5633 4841 5209 2640 4851 6103 f [jo(t)+iYo(t)]dt =x-*ei(x-"A)[ ? (_)kak(x/8)-2k-l « x L k=0 7 "I + i 2 (-L(x/8)k + e(x) , k=0 J |e(x)| s 6 • 100 , 8 ?x S oo D)
62 INTEGRAIS OF BESSEL FUNCTIONS 2.8 2.8 IMTEGRAIS OF THE TYPE / t^Ct )dt 63 0 1 2 3 4 5 6 7 0.06233 0.00404 0.00100 0. 00053 0.00039 0.00027 0.00012 0. 00002 47304 03539 89872 66169 92825 55037 70039 68482 0.79788 0.01256 0.00178 0.00067 0.00041 0. 00025 0.00011 0.00002 45600 42405 70944 40148 00676 43955 07299 26238 00 See 3.11A) for another approximation to / [<Jo(t )+iYo(t )]dt J x fV^l-Jott^at = Z (-)Ч(*ЛJк+2 + e(x) , w 0 k*0 .-9 |e(x)| ? 3 • 10"э , 0 ^ x s 4 E) f f^ltjtt = n/6-(Y+ln х/2J/п+B/п)(у+Ш x/2) J f1 (l-Jo(t)} dt Jx 0 - Z (-L(xAJk+2 + n(*) , k=0 |T](x)| ? 6 • 10"9 , 0 ? X ? 4 F) 0 1 2 3 4 5 6 7 1.99999 0.99999 0.29629 0. 05554 0.00709 0.00063 0. 00003 _ 9936 9326 2677 4803 2535 9765 5817 1.90985 1.11408 0.37725 0.07810 0.01078 0. 00105 0. 00007 0.00000 9297 4491 5736 2710 7555 9499 6217 3546 /; ^[jJtKTjtjjdt =x/2ei(W4)[|- (_)*ак(х/4Г2к Lk=o - i X (-)\(x/4)-2k-ll + e(x) , b=0 J |e(x)| s 1.4 • 10 , 4 ^ x 0 1 2 3 4 5 6 0.79775 0.20215 0.16088 0.16477 0.13415 0.06662 0.01453 06 47 74 97 51 97 69 0.32358 0.17027 0.17974 0.19601 0.15761 0. 07593 0.01606 19 78 57 54 16 39 72 CO J t[jo(t)+iYo(t)]dt x-wmoFJ: fk(x/8)-k-i|: gk(x/8)-k] + L k=0 k=l J |e(x)| s 1.5 • 10 , 8 s x s cc e(x) , G) (8)
64 INTEGRAIS OF BESSEL FUNCTIONS «k 0 1 2 3 4 5 6 0.79788 -0.00000 -0.05144 -0.00093 0.01703 -0.00919 0.00181 46 11 50 94 30 09 18 0. 0. -0. 0. 0. -0. - 16206 00005 02331 00244 00598 00237 95 95 78 37 42 31 n °° See 3.11B) for another approximation to / t" [Jo(t )+iYo(t )Jdt / %2k+l Io(t)dt = X ck(x/2fK^+ e(x) , 0 k=0 -9 |e(x)| ? 1 • 10"э , 0 <; x ? 2 X X b Г Ko(t)dt = -Aл x/2) I Io(t)dt+ X dk(x/2Jk+1+n(x) Jo * 0 k=0 |Т](х)| s 2 • Ю'И , 0 ? x s 2 ck 0 1 2 3 4 5 6 2.00000 0.66666. 0.10000 0.00793 0.00038 0. 00001 0. 00000 0000 6667 0003 6494 5833 2590 0319 0.84556 0.50407 0.11227 0.01110 0.00062 0.00002 0.00000 868 836 902 118 664 069 116 2.8 Si 2.8 (9) A0) INTEGRALS OF THE TYPE J t%(t)dt ГХ 8 / Io(t)dt = X ck(x/5Jk+1 + e(x) , |e(x)| s 5 • 10"9 , 0 s x s 5 ck 0 1 2 3 4 5 6 7 8 5.00000 10.41666 9.76562 4.84402 1.47186 0.30070 0.04468 0.00450 0.00059 0000 6367 9849 4624 0153 4878 6921 0642 4340 nX 4 :*e"x / Io(t)dt = X ak(x/5)"k+ e(x) , J0 k=0 |e(x)| <. 2.4 • 10 , 5 s x rx 6 x*e"x / Io(t)dt = X Ък(х/8)"к + П(х) , «0 k=0 |T)(x)| s 2 • 10 , 8 s x <; 65 A1) A2) A3)
66 INTEGRALS OF BESSEL FUNCTIONS О 1 2 3 4 5 6 0.41612 24 -0.03029 12 0.12941 22 -0.02022 92 -0.01516 60 0.39894 23 0.03117 34 0.00591 91 0.00559 56 -0.01148 58 0.01774 40 -0.00739 95 /,00 4 ' K0(t)dt = Z (-)kak(V2)-k+ c(x) , x k=0 .-6 xze |e(x)| <; 1.2 • 10'b , 2 <; x <; 4 f\{t)at = X (-)Ч(х/*Гк + iW > Jx k=0 |T)(x)| <; 1.3 • lO"b , 4 <; x <; » Jx k=0 -7 |6(x)| <; 2 • io"' , 7 s x <; » 0 1 2 3 4 5 6 1.24949 0.35846 0.18598 0.07817 0.01603 - 34 41 40 15 95 1.25331 0.19582 0. 07872 0.04814 0.03205 0.01584 0.00371 41 73 84 55 04 49 28 1.25331 0.11190 0. 02576 0.00933 0.00417 0.00163 0.00033 414 289 646 994 454 271 934 2.8 A4) A5) A6) 2.8 INTEGRALS OF THE TYPE / tMwu(t)dt ^f 1[l0(t)-l]dt = Z =k(*/2Jk+2 + e(x) , k=0 |e(x)| <; 1 • 10"a , 0 <; x <; 2 / t-1Ko(t)dt = n2/24+i(Y+ln x/2J +(Y+ln x/2) / t-1 {lQ(t )-l} dt ^x J0 Z dk(x/2Jk+2 + Tl(x) , |T)(x)| <; 8 • 10"8 , 0 s; x s 2 . k=0 / 0 1 2 3 4 5 iX .-lr. 0.50000 0.06250 0.00462 0.00021 0. 00000 0. 00000 000 000 962 703 692 017 7 0.74999 0.10937 0. 00925 0. 00048 0.00001 0.00000 , /_ ч2к+2 993 537 821 077 544 077 -8 |e(x)| s 1 • 10"a , 0 <; x <; 5 67 A7) A8) A9)
68 INTEGRALS OF BESSEL FUNCTIONS 2.8 0 1 2 3 4 5 6 7 3.12499 2.44140 1.13027 0.33116 0. 06615 0.00968 0. 00096 0. 00012 991 746 241 853 507 217 442 S30 10 x3/2e-x / t-l[Io(t)_i]dt = ? ek(x/5)'k + e(x)  k=0 |e(x)| <; 1.1 • 10 , 5 s x <; » B0) 2.9 IHTEQIALS OF THE TYPE J t%(t)dt X3/2eX f t-\(b)ib = X (-)Ч(х/4)"к + П(х) , J x k=0 .-6 |T)(x)| <; s • lo" , 4 <; x <; » 0 1 2 3 4 5 6 1.234684 0.850013 0.590944 0.280367 0.060840 - 1.25331 0.50913 0.32191 0. 26214 0.20601 0.11103 0.02724 41 39 84 46 26 96 00 69 B2) 0 1. 2 3 4 5 6 7 8 9 10 0.39893 14 0.13320 55 -0.04938 43 1.47800 44 -8.65560 13 28.12214 78 -48.05241 15 40.39473 40 -11.90943 95 -3.51Э50 09 2.19454 64 3/2 x x ' e Г -l 4 / t ^(iOat = 2 Jx k=0 (-)kak(x/2)-k+ e(x) , Except as noted 'below, the equations of this section follow by inte- integration of appropriate formulas in 1.4.7. Equations C), G), (l2)j A4) and B1) are curve fits of known tabular data. Equation D) is due to rx Hitchcock A957) who also gives an approximation for / KQ(t )dt valid J0 for 1 s x <. o> . I am indebted to the late Dr. Milton Abramowitz for B0). Equations (8), A3), A5), A6) and B2) were derived using methods discussed Ъу Luke A961a). 2.9. Description of Mathematical Tables In the following, we list for the most part tables relating to the integrals of this chapter. See also 3.12. For tables of Bessel functions of integral and fractional order, see National Bureau of Standards A962, Chs. 9 and 10) and the references given there. |e(x)| <; 9 • 10 , 2 <; x <; 4 B1)
70 INTEGRALS OF BESSEL FUNCTIONS 2.9 Cistova pZ „Z . Integrals of the Form I t^J^t^t , I t^CtJdt A958): / t'^^dt , / t^Y^t^t , n = 0,1, x = 0@.001I5 «x Jx @.01I00, 7d. Also tabulated are auxiliary expressions to facilitate interpolation near the origin. This volume also gives tables of Jn(x) and Yn(x) for same range as above. „со „со „со „X Note:/ tJ1(t)dt = / JQ(t )dt + Jx(x) J t"xyl(t)dt=Y1(x)- / YQ(t)dt. Jx Jx x ^x Jo Ferentz and Harrison A957): x I J0(t)dt , x = 0@.01K1, 4d. J0 nx nx Horton A950Ъ): / tnJn(t)dt , / tnHn(t)dt , n = l(lL, x = 0@.1I0 , 4d. «Jo "o Here Нц(х) is Struve's function, see 3.7- nx Knudsen A953): / Jn(t)dt , n = 0(l)8, x = o@.01I0, 5d. J0 CO Longman A959): i t"mJn(t)dt , n = 0,1, m= 0AJ2, 6d. Jx ЛХ лХ Lowan and Abramowitz A943): I JQ(t)dt , / YQ(t)dt , x = 0@.01I0, lOd. J0 J0 '0 °0 See also National Bureau of Standards A954Ъ). Lcwan, Blanch and Abramowitz A943): Г tJQ(t )dt , x = 0@.1I0AJ2, lOd; Г™ С 1 F(x) = / t" J0(t)dt + ln(x/2) , x = 0@.1K, lOd; Fkn;(x)/n: , V X n = 0AI3, x = 10AJ2, 12d. See also National Bureau of Standards A954Ъ). nX nX National Bureau of Standards A962):/ JQ(t)dt , / YQ(t)dt , x = 0@.1I0, Jo Jo nx nx lOd. / t (l-J0(t)j dt , / t" YQ(t)dt , x = 0@.1M, 8d. Jo Jq INTEGRALS OF THE TYPE f t%u(t)dt У^х nx J0(t)dt , / Y0(t)dt , 0  0@.5M0, lOd. ЛХ nX Osterberg and Walker A955): / ^^(tjdt = / J0(t )dt - Jx(x) , Jo Jo 71 National x = 0@.5M0, lOd. f 0 JO x = 0.01@.01K.85, 4AJ5, 5s or 6s accuracy. Schmidt A955): / JQ(t)dt , x = 10@.2L0, 6d. '0 «x -x A945): i / J0(t)dt , i / Y0(t)dt , x = 0.02@.02 )l , 7d. Jo u О a px Watson '0 ^0 The first 16 maxima and minima of these integrals are tabulated to 7d. The following are also tabulated. Jn(x) , Yn(x) , e"xIn(x) , e\(x) , ex , Hn(x) , n = 0,1 , x = 0@.02I6 , 7d; ^/3(х) , Y-^x) , ехКф(х) , x = 0@.02I6, 7d; Jn(x) > Yn(x) > e"Xln(x) > Kn(x) > J+(n+^)(x) for various x and integer n Integrals of the Form / tM'lu(t)dt , / t^Ky(t)dt hursian and Fock A931): / KQ(t )dt , x = 0@.1I2 , 7d; ex / K^,(t)dt , Jx ^x Px x Px x = 0@.1I6, 7d; / I0(t)dt , x = 0@.1N , 7d; e / I0(t)dt , Jn Jo x = 0@.1I6 , 7d.
72 INTEGRALS OF BESSEL FUNCTIONS 2.9 Harvard Computation Laboratory (l952t>): S(x) = | J I0(t)dt - Ii(x)j , nX F (x) = . Я - x + Kx(x) I K0(t)dt , x = 0@.01I0, 8d. There are 2 Jo Ko(t)dt , also other tables. See 9.6, 9.7. Karmazina and Cistova A958): e"x I IQ(t)dt , ex /  "x x = 0@.00lM@.005)l5@.0l)l00 , 74. This volume also gives tables of e"xIn(x) , ехКц(х) and ex , n = 0.1 for same range as above, except that ex is given to 7s. ЛХ Luke and Ufford A951a): I KQ(t)dt = - [у+1п(х/2)] A-^x) + AgCx) , Jo x = 0@.01H.5@.05I , 8d. Luke and Ufford A953): See 9.6, 9.7. PX nco Mack and Castle A953): I I0(t)dt , / ^(tjdt , x = 0@.02 J@.lL , 94. ^0 Jx ГХ Muller A939): / KQ(t)dt,-x = 0.02, 0.04, 0.l@.lJ.6@.2)l3.S@.4)l6, 6-9s. 0 рх Muller A954): x"n I tnKQ(t)dt , n = 0(lK0 , x = 0@.01J@.02M , 8s. Jo OX pco National Bureau of Standards A962): e'X I IQ(t)dt , ex / KQ(t)dt , J0 Jx x = 0@.1I0 , 74. e'X Г t {lQ(t)-l] dt, 8d; xeX / tKQ(t)dt , J0 Jx Sdj x = 0@.1M . Pearson, Stouffer and David A932): Tables computed Ъу F.N. David and Г 1-1 ГХ E.C. Fieller. Sm(x) = тт2т(Ш t%(t )dt , m= 0@.5I1.5 , J0 x = 0@.1L@.5I8 , 64. px Rothman A949): IQ(t)dt , x = 0@.1J0AJ5 , 8-9s. CHAPTER III REPRESENTATIOMS OF Лч (tLt IN TERMS OF LOMMEL FUNCTIONS 3.1. A Theorem on In4efinite Integrals Involving a Bessel Function Let v(z) be a particular solution of [z2D2+zD+(z2-u2)Jv(z) = f(z) . A) Then / t-l. t"±f(t)Cu(tLt = zCu(z)v-(z)-zv(z)C^(z) , B) where Cv(z) is a cylinder function, see 1.4.1(8). v(z) шау Ъе called an associated Bessel function. An equivalent statement is J tu+1{E"(t)+t-1Bu+l)E'(t)+E(t)} Ctf(t)dt = zu+1{e'(z)Cu(z) + E(z)Cu+1(z)} C) It is helpful to give a brief survey of the material in the balance "Г this chapter. Sections 3.2-3.6 delineate properties of Lommel functions. For particular values of the parameters, Lcmmel functions are essentially fil.ruve functions. Properties of the latter are consi4ere4 in 3.7. Anger- Weber functions are also particular Lommel functions, an4 are treate4 in '.M. Section 3.9 is 4evoted to representations of / t^Wv(t)dt with • ¦xplicit formulae for tabulated functions. In 3.10 previous results are •i|.j>lie4 to evaluate a certain class of Fourier-Bessel coefficients. Same I" .lyriamial approximations are given in 3.11 ,an4 3.12 4escribes some i*wtinent mathematical tables. 73
74 3.2. Lommel Functions INTEGRALS OF BESSEL FUNCTIONS 3.2 I 3.3 REPRESENTATIONS OF / t^v(t)dt IN TERMS OF LOMMEL FUNCTIONS 75 **,*& - ^Ч1" {(^-lJ-2} *-2+ {(."IJ-2} {(.-3J-»2} z'*- ...] If f(z) = zM>+1 , a solution of 3.l(l) is ("A1 к u,+l+2k (z) = у l-J z" k=O [(ц+lJ-»2] [(ц+3J-»2].. . [(^+2к+1J-»2] ,+1 . (.)k(z/2J-rC^)rC^) Й, г(й=§?*)г(ь ^+k)r(^+k) .M.+1 (M,-u+l)(M,+u+l) 1F2 (^ J.-U+3 Ll+U+3 . ;-z2/4) , A) provided neither of the nunibers utu is an odd negative integer. Another particular integral of 3.l(l) with f(z) = z^+1 is ^u(O " ^uB) + [2^r(^|ti) Г(И1|11) esc m] X [cos[(M,-u)TT/2]j.u(z)-cos[(M,+1;)n/2]jl;(z)J X|sin[(n-u)n/2]ju(z)-cos[(M,-u)n/2]Yl;(z)j . B) If either of the numbers ц,±и is an odd positive integer, S v(z) has the following finite series representation. Mo»4 = «^V o^ -f~ > -f— ;-*/г ; • C) If either of the numbers ц±1> is an odd negative integer, s (z) is not defined, but S^ v(z) approaches a limit. See 3.4. ' If C) does not terminate, it is an asymptotic representation of S^ u(z) valid for lz|—>« and |arg z|< тт . This readily follows from (l), B) and the pertinent asymptotic expansions given in 1.3.3. 3.3. Recurrence Relations Both s^}V(z) and SpijU(z) satisfy the following recurrence formulae. s;,u(z) + (VZ)S^,U(Z) = (^-DVl,»-l(z) • %,»(*) - (VOS^v(z) = (^-DS^u+1(z) . Bu/z)S^v(z) = (^u-DSll_1>l;.1(z)-(li.u.l)Sll_1^+1(z) S^,,;(z) = Wz) • A) B) C) D) E) F)
76 IMECSALS OF BESSEL FUNCTIONS 3.4 3.4. Formulae for S^ v(z) When s „(z) Is Not Defined If either of the numbers ц,1и is an odd negative integer, s v(z) is not defined. The same is true for S v(z) as given Ъу 3.2B). However, S y(z) has a limit when s „(z) is not defined. Now S^ v(z) is an even function in и , and it is sufficient to consider Su_2p-l, u(z) where p, = v-2p-l , p a positive integer or zero. From 3.3(l), 22Pp.T(p+l-u) u-2p P Z (iO (р-к-1)!Г'(р-к-и) , A) 4p.T(p-i>+l) j^r0 and so knowledge of Sv_2p-i(z) depends on that of Sv_1}V(z) . Using 3.3A) and 3.2B), u—*-u-i L (m,-u+1)(m,+u+1) J и-2 = 2U-±r(u)(lni2)Ju(z)-2i;-%r(U)Yu(z) - / ^О,ч2Ы.» -2U-2F(u) Z ('jr SL) {¦(»»*»1H(*1)} . k=0 и is not a negative integer or zero B) If v is a negative integer, use S-n-l,-n(z) = S-n-l,n(z) C) 3.5 REPRESENTATIONS OF / tHwv(t)dt IN TERMS OF LCMMEL FUNCniONS and B). If и = 0 , S.ljO(z) = lim Z^1"V,O(Z) m.-»-i (m,+iJ 3.5. Integral Representations вц,1;(*0 = ?tt(csc m)L(z) f t*J_v(t)a.t-J_v{z) f t%(t)dt , L Jo J о J и not an integer, R(p,±u)> -1 s^(z) = П ["Yu(z) P t^J^tJdt-J^z) P t%(t)at] , 2 L i/q " 0 J K(h±i>)> -1 For results concerning the above integrals, see Chapter II. 77 - If J0(zL Z IllifeL-/^.^!,]2^.^,] . D) k=0 k.1 L J A) B) I I „u(Z)=2M^)(Z/2)*(^+1)/2(cos e)^+u(sin e)*<^+1^_u+1)(z sin e)de, R(m.+v)>-1 C)
78 IUTEGRAIS OF BESSEL FUNCTIONS ,tt/2 ^1 "/ z- cos2ue sin(z sin e)a.e , k(i>)>-4 • о S^(z) = Ц,1иB) J VYu(t)dt-Yu(z) ? t4(t)dtj , ВЫ<-? • 8,,u(«)-^/V»VlC^ '?ИЙ ' R(z)>0 uS Sv „(z) = zv fe-z Sinh ^osh^tdt , R(z)>0 . So „(z) = / e"z slnh ^osh utdt , R(z)>0 . 5 u(z) = z / e'Z Slnh ^inh ut cosh tdt , R(z)>0 -co Sx „(z) = z / e'Z Sinh ЬсовЪ. vt cosh tdt , R(z)>0 3.5 D) E) F) G) (8) (9) A0) 3.6 REPRESENTATIONS OF J tWw(t)dt IN TERMS OF LOMMEL FUNCTIONS 79 3.6. Expemsions in Series of Bessel Functions - z^hu^) sn r(z) в 2 Цц*2) ,т f.to^ly Bк+и4-1)Г(ц^к+1) т ,. ^ (n+u+D^-u+1) ^ ; ktl k.'Bk+ju+l)Bk^-u+i) J^^l(z) > |j,±u is not a negative odd integer . A) (z) = 2*(^-3) i(^-wl) Л+u+lN " (z/2)k ^U ^2 JL(^+k) ^"+1)(Z) ' |j,+u is not a negative odd integer . B) Since s u(z) is an even function in v , v can Ъе replaced Ъу -и in the right-hand side of B). - ^Yu(z) + iJv(z) {t(»+l) - Kl)}] , и is not a negative integer or zero . 3-i,o('z^ - 2 2. 5- + г 1 T 1_^- d»c Л2 u=0 + TJo(Z) C) D) Kquations (l) and B) derive from 3.2A) and 1.3.6F-7), respectively. Use (l), 3.2B) and limit processes to get C) and D) . For expansion of the [jartial derivatives in C) and D) in series of Bessel functions, see 1 .4.2A1-12).
80 INTEGRALS OF BESSEL FUNCTIONS 3.7 3.7. Lommel Functions and Struve Functions When |j, = v , Lommel functions and Struve functions are identical ex- except for a multiplicative constant. We present, below, a partial list of results which follow Ъу specializing previous equations of this chapter. H»(Z) " a»-^rL) = г(з/Щ/1) г^^/^^М • CD Lu(z) -_ e-^+14(ze^) . ^'¦'¦'¦'¦'%-w.) >v-l B) C) (*) E) Hu(z) - Y^z)--M?-T3F0(l,ii-u;-4/z2) , izl-*- , larg z|<n .F) f(Sr(^u) If m terms of the hypergeometric series F) are used to approximate Hv(z) - Yy(z) , then the remainder is of the same sign and numerically less than the first term neglected provided v is real, z > 0 and m-t-^-v a 0 . I.u(z)-Ll;(z)^ r[|fr^) 3*О(^-»;Ф2) > 14-*-, largz|<n/2 . G) 3.7 EETRESEMTATIOKS OF / tMvv(t)dt IN TERMS OF LOMMEL FUNCTIONS 81 Hn+*(z) = \ф) + Щ^1 3f0(-^i;-4/z2) , n2n: , 3*0^ n a positive integer or zero . (8) H.n-i(z) = (-)njn+i(z) ; L_n.i(z) = In+iC") , n an integer . (9) H_i(z) = B/TTzJsin z ; ^.(z) = B/ttz J(i_COs z) л4„ L_i(z) = B/nzJsinh z ; L^(z) = B/nzJ(cosh z-1) W'W'l-fwJfe; Hy_!(z) - Hu+1(z) = 2Hj(z) - -Tj- ГD)Г(и+3/2) zH^(z) + ^(z) = zH^z) . zH-(z) - uHu(Z) - г(^^5/2) - ^+1B) Ь {¦¦"*•'¦'} "??й^;---^" (ю) (ii) A2) A3) A4) A5) A6) A7) d-{z4(z)} = zV1(Z) • A8)
82 d_ dz IHTEGRAIS OF BBSSEL FUNCTIONS 1 J 2ur(i)r(v+3/2) H ( 1 = 4 5" Bk+v-KL)r(v+k+l) , . v r(i)r(u+f) ^To k.'Bk+2v+l)Bk+l) dv+2k+l^ ' • °()="^ 2k+l Hl(z),2-2Jo(z) + iZ ^ 11 " " k=l 4k2-! к—и к—и чк 2 H0(z) =2 Z (") Jk+i(z/2) • k=O H (z) = B/тт)-B/ттг)Б1п z+2Z (-) Jk+i(z/2)Jk+3/2(z/2 ) k=O 3.7 A9) B0) B1) B2) B3) B4) B5) Equation B4) follows from A) and 1.3.6A0). Differentiate B4) to get B5). 3.8 REPRESENTATIONS OF J t'Vl;(t)dt IN TERMS OF LCMMEL FUNCTIONS 83 3.8. Anger-Weber Functions Anger's function Jv(z) and Weber's function Bv(z) are defined Ъу the equation Jo ei(i>e-z sin e)dQ (i) and in view of 1.4.5G-8), n^(z) - Jv(z)] = (sin vtt) / e Jo -z sinh t-vt dt , R(z)>0 , B) п[ЕиB) + Yv(z)] = - f e"z slnh *(еУЧе-^соЕ vn)dt , R(z)>0 . C) From B) we have Jn(z) = Jn(z) , n = 0,±l,±2,. (*) If we expand the integrand.of (l) in powers of z and integrate term by term, then with the aid of 1.2A5), we can derive power series expansions for the Anger-Weter functions, and indeed show that they are essentially Lommel functions. We have ttJv(z) = (sin vtt)[so^(z) - VB_lfV(z)] , E) ttEv(z) = -(l+cos vtt)s0 v(z) - v(l-cos vtt)s_-l v(z) F)
84 INTEGRALS OF HESSEL FUNCTIONS 3.8 Since s „(z) is an even function in v , the Anger-Weber functions are connected by the relations (sin imty^z) = (cos итт)Еи(г) - E_v(z) (sin utt)Ev(z) = J_v(z) - (cos utt)Jv(z) G) (8) Difference-differential properties follow from those of Lcramel func- functions. We omit details, but see Watson A945, p. 311). The combination of E-6) with 3.2B) yields "|») " Ju(z)] = (sin ™)[So,i;(z) - uS-l,u(z)] > <9> tt[bv(z) + Yv(z)] = -A+cos utt)S0^(z) - u(l-cos utt)S.1j1;(z) , A0) and asymptotic expansions for the Anger-Weber functions follow from the concluding remarks of 3.2. When n is a positive integer or zero, we de- deduce from A0) and 3.7E,6) <J» »h,w * t«] ¦ i Tj^m Nn-2k-l k=0 Г(п+#-к) .^^¦¦„W]M-,-|^^j— A1) A2) I 3.9 REPRESENTATIONS OF J t*Vt)at IN TERMS OF LOMMEL FUNCTIONS 85 3.9. / t|JWl;(t)dt and Formulae for Tabulated Functions J t%(t)ut = (h+»-1)zCu(z)b11.1j1;_1(z)-zCu.1(z)b11jI;(z) . A) e^^J t^(t)dt = (^-I)z3l;(z)s^1;l;.1(ze^) + ize,,.1(z)B^l;(ze*lTT) , iUTT 3v(z) = А1и(г) + Be Ky(z) , A and В are constants In A) and B), s „(z) can Ъе replaced Ъу S v(z) . J tUCv(t)dt = 2V-1r^)T(^v)z [cu(z)Hu.1(z)-Cl;_1(z)Hl;(z)} , R(u)>-i . B) C) f CQ(t)dt = zC0(z)+(ttz/2) (c1(z)Ho(z)-Co(z)H1(z)} . D) Jo J t\(t)dt = 2V-XT(hn?v)z {3u(z)Li;.1(z)-3i;_1(z)L0(z)} , R(u)>-| . E)
86 INTEGRALS OF BESSEL FUNCTIOHS 3.9 / Bo(t)dt = zBo(z)+(ttz/2)/L1(z)Bo(z)-Lo(z)B1(z)} . (б) Jo L Let S u(z) denote the sum of the first m terms of the series 3.2C). Then repeated integration Ъу parts yields / t\(t)dt = zCu.1(z)S^u(z)-z(^-l)Cu(z)S™.ljU.1(z)+Rm , G) d z u z larg z|<tt , R(n)<-5 (8) If p, , и and z are real and M = max 10-^A;) | , then t>z /"-1-H+vN A-H-v^ ] Mfm X+\i.-v\ ii,., ^2m-l V 2 /Л 2 Л[ V 2 У К|< i^B/z)' V 2 J (' 2 у О) and except possibly for sign the part in curly brackets is the last term of the series which appears as the coefficient of С,,(г) in G). The con- conditions on \i , и and z can be relaxed but we emit details. If ц, = -1 , и = 0 , the above result was derived by Smith A943). 3.9 REEKESIMTATIONS OF / t^(t)dt IN TERMS OF LCMMEL FUNCTIONS 87 /Vh^W = ^е^^)"г(^=|^)г(^) + (n+v-l)z4l)(z)8ll.1<v.1(z)-zHjy(z)Sli^(z) , R(n±u)>-1 . A0) f H0X)(t)dt = l+z41)(z)8 (z)-zhJ1)(z)8_1 ,(z) , A1) Jo во,оЫ = / S.1A(t)dt J z A2) z2S.iA(z)-3F0(l,i3/2;-4/z2) j zS0^0(z) ^ 3F0(l,i,i;-4/z2) , |Z|—>m , |arg Z|<TT A3) / f^^OOdt =2zS.2A(z)Hol)(z)-zS.lj0(z)Hil)(z) , A4) S-l,o(z) = 2J S-2,l00ctt , A5) z°S.2A(z)-3F0(l,l,2;-4/zd) j z^S_^0(z) - 3F0(l,l,l;-4/z2) , |z|—>co ) |arg z| <тт A6)
88 IHTEGRAIS OF BESSEL FUHCTIOUS 3.9 /Zt%(t)dt = 2^-ir(Hz|li)r(H^) - (,+.-l)ze-*1^-2\.1^.1(ze*ln)Ku(z) - ze-4i^-1\,u(zei1")Kw.1(z) . A7) / Jn(t)dt = (n-lJzs.-L _1(z)Jn(z)-zs0 пЫЛп.-^г) , A8) s^n(z) = _S_ ^Q.; 3|S , ?|5 ;-z2/4=) , n even or zero , A9) J-l,n-l<z) = Т^ l^C1' ? ' ^ ;"z2/4) ' П 6Ven OT Zer° • B°) f Jn(t)dt = l+^-lJzS.! ^(zJjJzJ-zS0,n(z)Jn_1(z) , B1) zSo,n(z) = 3*0 (^ ^f1 * ^f1 J-4/z2) , n odd , B2) 2S-l,n-l(*) = 3^0 (l, ^ ^ i-4/^2) , n odd . B3) If n is odd, B2-23) are exact. If n is even or zero, these equations axe an asymptotic representation valid for |z|>n , |z|—» oo and |arg z|<tt . 3.10 RETEEBSENTATIONS OF / t^v(t)dt IN TERMS OF LOMMEL FUNCTIONS 89 m+2 (m+l): K^z^F^l; 5|3, 5|3 ;z2/4) B4) J\\(t)at = 2m-1[rB|i)}2 -(m-Dz-^Jz^Fo^l, ^f , ^1 ^4/z2) - znK1(zKF0(l, ^S, —^^A2) , m odd . B5) If m is even, B5) is an asymptotic expansion valid for |z|>m , | z | —> m and | arg z | < тт . 3.10. Fourier-Bessel Coefficients Let Yr ^e ^^e r-th. positive zero of J0(z) , i.e., J0(yr) = 0 . Suppose we consider the Fourier-Bessel expansion f(x) = Z Vo<?) k=l A) In view of 13.2E), / xJ0(Ymx)J0(Ynx)dx = 0 if m ^ n , = iJx(Yn) , m = n , B)
90 and so IHTEGRAIS OF BESSEL FUNCTIONS 3.10 - 2 f1 Jl(Yk)^O t f(t)J0(Ykt)dt C) The latter may Ъе called a Fourier-Bessel coefficient. For a discussion of Fourier-Bessel series, see Watson A945, Ch. XVIII). In the following,formulas are presented to facilitate the evaluation of a^. when f(t) has a power series representation. Some related items are also considered. Most of the expressions are in a report Ъу Butler and Pohlhausen A954) where tables are also available. All formulas are immedi- immediate consequences of results in this and previous chapters. / t%(Yrt)dt = Yr^[(^+n-l)Jn(Yr)s x _1(Yr)-Jn.1(Yr)s (Yr)] , ^0 R(li)>-n-l . D) JPn(Y.) = -2, 2nVIr 4F1(l-n,l-n,n+l,n+l;3/2;-Y;c:) . E) J2n+l(Yr) = (-)nJi(Yr) 4F1(-n,-n,n+l,n+l;|;-Yr ) . F) fV^Y^dt = ^> lF2(l, ^ , S» ;.Щ . G) J n (m+l Y v d d ' f tX(Yrt)dt - Ъ^1 ^Q.. Tf , Ш. ..Щ , m>0 , = Yr > m = ° (8) z 3.10 REPRESENTATIONS OF j t^W,,(t)dt IN TERMS OF LOMMEL FUHCTIONS 91 The latter two formulae are convenient if m»Yr Г Jo Ло(у^)« = Jl^r) Bm_iJ P1 Pm.2 Yr Y? if Г % Jo t"m-"jo(Yrt)dt Jl(Yr) L ^ (-)kBm-lJBm-3J...Bm-2k,lJ 1+ 2 Yr k»i Yf 42,^ ^N2 „2 л1 + (-)mBm-lJBm-3J...32 Г ^^ )ft # m>0 Yr ^0 O) Jn(Yvt)dt = ^- Z J2k+l(Yr) • rr k=0 A0) / Lt2m+1J0(Yrt)dt = J-±?- 3F0(-m,-m,l;-4/Y2) A1) z1 ^^(Yrt^t = ^- 3F0(l-m,l-m,l;-4/Y2) , m>0 . A2) vf Г\**\{УТ* Lt = ^^ f VmJo(Yrt )dt . Jq Yr J о A3) Kor integrals of the a"bove type involving the product of two Bessel functions, see 11.2C0-44).
92 INTEGRALS OF EESSEL FUNCTIONS 3.11 3.11 REPRESENTATIONS OF J t%(t)dt IN TERMS OF LOMMEL FUNCTIONS 93 3.11. Polynomial Approximations / [jo(t)+iYo(t)]dt = xS.1A(x)[jo(x)+iYo(x)]-xSo^o(x)[j1(x)+iY1(x)] , J x xS0>0(x) = (ttx/2)[H0(x)-Y0(x)] , х23.1Л(х) = (пх2/2) [Hl(x)-Y1(x)-2/n] , So,o(x) = / e_i l(t)dt > J x 9 9 xSO,o(x)= X (") ak(x/5)-2k+e0(x), x2S_1A(x)= ? (-)kbk(x/5)-2k+e1(x) k=O k=O |eo(x)|<l • 1O, |ei(x)|<0.5 • 1O, 5 <; x <; » . (l) See 3.9A2,13). ak 0 1 2 3 4 5 6 7 8 9 1. OOOOO 0.03999 0. 01434 0. 01329 0.01768 0.02206 0.02063 0.01279 0. 00462 0.00073 0000 9434 4735 5944 5262 0880 3981 8010 7212 4559 1.00000 0.11999 0. 07172 0.09307 0.15916 0.24266 0.26824 0.19197 0. 07866 0.01395 0000 8301 3673 1607 7356 9680 1758 0155 2606 6617 See 2.8C,4) for seme other approximations to / [jQ(t)+iY0(t)] dt J x 00 , J t[jo(t)+iYo(t)]dt=2xS.2jl(x)[jo(x)+iYo(x)]-xS.1^o(x)[j1(x)+iY1(x)] , J x S-l,o(x) = 2 / S-2,l№ > « x 9 9 \k_ /__/,_^2k, _ /._^ __3_ /„\_ ^- / \k. ,-2k. «8.1,o= Z (") ck(x/5) +^0(x), x°S.2>1(x)= X (-L(x/5) ^i(x) , k=0 k=0 n-7 -7 |eo(x)| <2 • 10"', |ei(x)|<2 • 10"', 5 <; x s » . B) See 3.9A4,15). ck dk 0 1 2 3 4 5 6 7 8 9 1.00000 0.15999 0.10161 0.13081 0.20740 0.28330 0.27902 0.17891 0.06622 0. 01070 0000 2815 9385 1585 4022 0508 9488 5710 8328 2234 1.00000 0.31998 0.30485 0.52324 1.03702 1.69980 1.95320 1.43132 0.59605 0.10702 0000 5629 8155 6341 0112 3050 6413 5684 4956 2336 л ^ See 2.8G,8) for some other approximations to / t" [jQ(t )+iYQ(t)] dt . "x The procedure for deriving the approximations to x S_-j_ ]_(x) and x3S_2 ]_(x) are given in Luke A955). See also Luke (I960).' The approxi- approximations for xS0 0(x) and x S_]_ 0(x) follow Ъу integration. Using the approximation to xSQ 0(x) , we can readily derive an approximation for the Integral of H0(x) . 'see 9.3C). We have
94 INTEGRALS OF BESSEL FUNCTIONS 3.12 «i 8 (и/2)/ [^(t^Yjt^dt = (Y+ln2x)+(x/5)-2 Z (-)Ч(х/5)'2к+е(х) > Jo k=O fk = |ak+1/(k+l), |e(x)|<0.5 • 10"', 5 <. x <; a. C) 0 1 2 3 4 5 6 7 8 0.01999 0.00358 0. 00221 0. 00221 0. 00220 0. 00171 0. 00091 0. 00028 0. 00004 9717 6184 5991 0658 6088 9498 4144 9201 0809 3.12. Description of Mathematical Tables For tables relating to / tl-V^t )dt , see 2.9. For tables of Struve functions and their integrals, see national Bureau of Standards A962). See also 9.7. The following are pertinent to the material of this chapter. Butler and Polhausen A954) ^0 (Vb)cLt , n = 0,1, r = 1AI0 , m = 0AI0 , 5d where yr is the r-th zero of J0(x) , i.e., J0(Yr) = 0 . Also given to 5d are the following: yr, J]_(yr) > r = 1AI0 ; Jn(Yr) , r = 1AI0, all n such that Jn(Yr) ^ 0.5 10 ,-5 National Bureau of Standards A946): Hn(x) , L^x) , n = 0,-1,-2, x = 0@.1I0 , 7 or 8d. Watson A945): Hn(x) , n = 0,1, x = 0@.02I6 , 7d. CHAPTER IV / e"ttMTCu(t)dt AND AN ASSOCIATED BESSEL FUNCTION 4.1. Introducti on / In the first part of the chapter, we use 1.4. lB) as a starting point to develop convergent and asymptotic expansions for the evaluation of z e t^Kp(t)dt and related integrals. Here the material is analogous to that of Chapter II. The latter part of the chapter is devoted to repre- representations of the above integral in terms of an associated Bessel function, see Luke A952), and so is analogous to the contents of Chapter III. Reduction formulae for a more general form of the above integral are presented in Chapter V. If p, = +i> , the above integral can be simply evaluated, and this too is considered in Chapter V. 4.2. Power Series Expansions and Connecting Formulae f eiVju(t)dt = **)&? Z Г&2?} Jo " T(i) kt ГBи+1+к)к! k)Bizf (ц+и+1+к) ' ^+1(z/2)" (l^l)r(Ll) 2*2(^^2-^-2;2iz) R(|i+u)>-l A) 95
96 INTEGRALS OF BESSEL FUNCTIONS 4.2 tt Г it+HY (f)df _ (-f+1Bz)-nz^+1 2|I1 r^-n+k)Bn-l-k).'(-2iz)k 2j0 * V ] ' T(i) J-Q (ц+1+к-п) z + (In 2z) / e^t^J (t)dt Bz)V+1 ? r(n-Hj+k)Biz)k ~ТШ ^ Bn+k).1k.1(ti+l+n+k) X |t(k+l)+tBn+k+l)-t(n+k+i)+ ^+1^k I , E(ti±n)>-1 . B) ze?iiTT ^0 ' О R(n+u)>-l • C) J e4^u(tLt = (^fcffii) 2F2(^^+l;2.+l^+.+2;±2z) , В(ц+»)>-1 . D) ze-^n . z / B-\\(t)it = Ane^(l;^)n Г e^t^^t)^ , B(n±u)>-1 . E) Jo Jo f|Z 4.2 / е-Ч^Ку^)^ AND AN ASSOCIATED BESSEL FUNCTION 97 in -1(ц+1)п Р e-\^(t)dt = e-ivn /« e\^(t)dt.in[Vt\(t)dt , Е(ц+1>)>-1 . F) _5in / e\%(t)dt -ine^1^1')" f e"t^2)(t)clt , В (цЪ)>-1 . G) X >t4(tLt = (-)n^j"V+1 2i"X r(b+k)Bn-l-k).4;2z)k ^ T(i) kt (ц+1+к-п) J0 ЛП^о^П^+1 - F(i) kf0 Bn+k).'k.4^1+k+n) |_tCk+l)+tC2n+k+l) -*(n+k+i)+^lfe^} ^R^)>-1 • (S) Additional connecting formulae for the above integrals may be written after the manner of those in 2.1. We next establish the following relations.
98 /. INTEGRALS OF BESSEL FUNCTIONS 4.2 e tJv^'aX r(i)m'rBu+l+m) Jt— \) R(n)<-i > n+w+l = -m , m a positive integer or zero . (9) - |ф(т+1)+фBп+т+1)-ф(]§+п+т)-1п 2z| + (-)nz-2n-m ^T1 r(jr-n+k)Bn-l-k).'(-2iz)k 2nr(i) И) (k-2n-m) + -L. - in 2zl , k-m J R(^)<-i > ц+n+l = -m , m a positive integer or zero . A0) 4.2 Г е~Н^(Ь)д± AND AN ASSOCIATED BESSEL FUNCTION 99 /. ,16 — . / ,im(l-e)+n n+m-1 ., . eet ну ,. ча+ _ (-J 2 Г(^п+т) e t^(t)dt - ГAК.Bп+т).' X [(e+l/3Зт^/г-ф ' (т+1)-ф ' Bп+т+1)+ф ' (n+m+^) + fф(т+1)+фBп+т+1)-ф(п+т+^)-1п 2z] 1 . (-)nz'2n'm 2-|"X rfWkKgn-l-kllf-aez)'' 2nr(i) k=0 (k-2n-m) (-)n2nz-m у r(n+j+k)Bez)* ТЩ j^0 Bn+k).'k.4k-m) k^i X Гф(к+1)+фBп+к+1)-ф(п+к+^) + — - In 2zl , L k-m J ц+n+l = -m , m a positive integer or zero A1) Here e = il and the path of integration is as in 2.l(9). For conditions of validity, К(ц)<-? if e = 1 . If € = -1 , |б| <п/2 and |6| ^ n/2 provided R(n)<--2 • The proof is similar to 2.3B1-23), and it is sufficient to prove A1) for e ~ 1 and 6 = 0. Using (8) and 4.5E), we have f "eVXOOdt " BOO- ^V2n"m T r^)^-l-k)-4-2Z)k К ^ 2ПГ(*) Sb (k=2n^ " ^F |0 g^SS^j^iW^^D-t^^?. ^ -^ 2я],(л2, k=0 kAi
100 INTEBtALS OF BESSEL FUNCTIONS 4.3 where R(n)<-i and B(a) = (-^n+m'a Г п2а2Г(п+т+|-а) ГD)а2 L (sin2na )Г(т+1-а )ГBп+т+1-а) + lM=ti2^?(eln2z.eg-l)l , m.'Bn+m).' J Use L'Hospital's theorem to evaluate B@) and A1) readily follows for e = 1 and 6 = 0. 4.3. Expansions in Series of Bessel Functions \»+\ (z) (и+к+1)(и-ц)к /i z e z1^ 1 iz) ,. - \u-r&.Tj.)\v-y>,b I,,+v+1(z) ' L e"%(t)dt = R(n+u)>-l • szl(z) 2e"zzl,_(z) A) I,,xvxo@ .-t-г /j.^4. - _H + lli +2ue zz 2^ u+1 u+2 R(u)>-1 • k-Q (u+k+l)(i;+k+3) ' B) Equation (l) comes from 4.2D) and 1.3.6(9). In connection vith (l) and B), see also 5.2G-9), 10.3 and 12.2. 4.4 J e%(t)dt AND AN ASSOCIATED BESSEL FUNCTION Let u+1 " (") (v+2k+l)(v-^) a " 2Z" ^ —T^Tl Jv+2k+l(^) , k=0 (^"+lJk+2 z^+1 H+u+1 J^z^z^1 Z r—tt — W(^) I=1 (^+u+lJk+l g = ф(т+1-а) + фBп+т+1-а) - ф(п+т+^а) , ^+п+1+т = а . A3) I ^^ (see ^^ 5_2(м_21)) nz / (cos t)t^Jy(t)dt = a sin z+p cos z , / (sin t)t^Jv(t)dt = - a cos z+Э sin z , ^0 nZ n Z / cos(z-t)ttiju(t)dt = p , / sin (z-t)t^Jy(t)dt = а Jo J о 101 C) D) E) F) G) In C-7), R(n+v)>-l , If |i= -3/2 , а = (/-^-^(z) , p = (v-i)-1z-%u(z)-(U24)z*Ji;+1(z) . (8) 4.4. Asymptotic Expansions for Large z The results of this section follow from 4.2, the connecting formulae for Bessel functions and the pertinent asymptotic expansions in 1.3.3 and 1 ..'». 4.
102 IHTEGRAIS OF EESSEL FUNCTIONS f VVl^tJdf- Г(ц+р+1)Г(ц-1»1)вШтт(ц.-10 <J 0 2^C/2) TT COS UTT 4.4 #+1 Bnz)*(n+i) 3F1(^+u,i-u,-i-ti>2-M.; ^) ,e-2ze-ic(^)n - k z^e e 2Bttz)? k=0 Z <-)' -ka > R(n+U)>-1 > H+i? is not a positive integer or zero , |z|—»» , -B+€)TT/2<arg z<B-c)n/2 , e = ±1 , A) where the coefficients notated ck are used throughout this section and are given by the following relations. 4(k+l)ck+1 = fkck + gfcCt.-L , c.-l = 0 , cQ = 1 , fk = 2[2k2 - к(ц-5/2) - u2 - p, + I] , gk = -(k+|+i;)(k4-i;)(k-n-|) B) C) D) (i+O.Clr-u), k^2 "^k 2kk.' dk , dk = 3F2(-k,l,n-k+|;2+u-k,i-u-k;l) , E) dk+1 = 1 + (k+lK^-k-i) d F) 4.4 f e^t^^Jdt AND AM ASSOCIATED BESSEL FUNCTION 103 Equations B-4) come from 4.2D) and 1.3.3C5-37). Equation E) is most easily found Ъу inserting the asymptotic expansion of Iy(z) in n m / e"tt^u(t )dt and integrating Ъу parts. J z / If (ц+i) is a positive integer, say m , then e"ttm"%(t)dt'-'-i ?i S Гщ 2z+t(BH)-t(m4n)) BттJ2тт.' - ф(т+-|--и) - тт tan iml m-l /1 z- i ^ (^)k(i-")k (J-^)C/2^)mC/2-,)m BttJ k=0 k.'(m-k)Bz)k Bz )Bтг)г2т(т+1).' v ^1,1^3/2+и-На,3/2-и+т J^N A42V 2,m+2 2z)~ m-l -2zo-ie(u+i)n » zee к -к 2Btt)' Z (-rv k=0 R(u+m+|-)>0 ^ m a positive integer or zero , |г|->ш } -B+e)TT/2<arg z<B-c)tt/2 , e = ±1 G) rZe-VK,(t)dt^ Г(И+и+1)Г(,-и+1) .i(n/2z)»z^e-2z J- (.}k -к ^ J0 2^C/2) k=0 M1 R(p,±i;)>-1, |z|—»«. , |arg z|< Зтт/2 . (S)
(эт) (II) 901 '@l) ptre (z)S"f ihojj 'Лх^1ТШ]< ug>z Э^в>д- ' co<—|Z| < i-<(n+ii)a 0=4 g(zug) (s/S^S ^/^3 u n Or ээлхЗ (8) рте (s)g-f jo uo-fq-BUTqinao эти; g/u? > |z Sjb| ' ш<—|z| ' 0<(«+f+ra)a < С— -\ г+Ж'г ^)^af V I 1та+л-г/?'та+п+г/?'х'х7 A ш, _ 4(zg)(^-ra);5i 0=4 ,-(l+ra)TIIg(zg) s/sn'+s/sjtjo^s/u),!-) 4/ ?чЧ/ ^,s -^ ш2г(гЛ) + Г(л-|+ш)ф-(Л+|+ш)Ф- # л ^ ^ \# i f^ л / . л ~т L '(«-f)^(«+!),(-) т-ш (l+m)/|i+zg щ] — •I (a-. .'V ¦(«-f) (л^Ыг/")™(-) -w(^%.rav j шномая lassiHH aawioossv kv ohv *7 V @1) g/n? >|z SjbI ' ш<—|z| ' - J° sidT^xtim ¦в osib sf n sssitm -| jo ат<3:тч.1тш в q.ou sf т1 'о <A+л+т|)Я г+Ti (T -fTi-ffTi-f-^-f 'л+|) V ^(g/zu) + utI soo ^C/2)^3 un soo(x+«-Ti)J(i+n+Ti)j •WD- Of Li4s J UT+SZ F) jCq pso^idsj z qq-ТЛ (a) ss^ 'ojsz jo Ja3sq.uf sAxq.fsod: в sx (f+fi) JI 1+ = э < g/uC-g)>z SJB>g/uC+s)- ' ш<—|z| oJaz jo л:аЭач.ит SAxq.fsod: ¦s q.ou sf S+tI « Т-<(л+т1)д (L. -<ч\-г<т\-г-<л-г<а^у? X (S+Ti)s(zug) uTi soo ^C/2)^3 0=4 3(znsK 4- ^ ^zzsa On • ч-р(ч-)п1н^а J ft snoiiomm lassaH до етудаядм! тот
106 INTEGRALS OF BESSEL FUNCTIONS 1 Г2 •5 I 4.6 / e-4l%,(t)e.t cos vn J0 П 2^C/2 )^cos ид R(m±u)>-1 , p, is not a multiple of \ unless v is also a multiple of \ , |z|—><x> , -2n<arg z<n A3) The sum and difference of A2) and A3) gives asymptotic representations eittM'Jy(t)dt and / elttMYu(t)dt , respectively. 0 ^0 4.5. Infinite Integrals /; 2^1r(|)r(v-^) R(ti.+w)>-l ^ R(n)<-i • A) е^(^1>ТГ(^^1)Г(ц-^1) /* e"t\(t)dt = " 0 тт • 2^C/2 )^cos цд ^ < »2 cos p,n cos vn + i sin(p,+u)nj , R(M±V)>-1 , -KE(n)<4 B) AND AN ASS0CIA3ED BESSEL FUNCTION 107 f eMlu(t)dt = r(tvHH-l?r(-ti-»? , J 0 2^+lr(i)r(v-M,) R(ti.+w)>-l , R(m.)<4 • C) D) Г e-4%(t)dt = Г(и*р»1?Г(^-^1) ^ r(^±u)>.1 . Jq 2^C/2)^ / ettM'Ku(t)dt = - Г(ц+У»1)Г(ц-«+1)еов vn ^0 2^C/2 )^cos ^n R(M±»)>-1 , -KR(m,)<4 • E) 4.6. An Associated Bessel Function With appropriate change of notation, a representation for the evalua- nz tion of / e^Ky(t)dt and related integrals follows from 3.1B"). Thus, for example, nZ J e"tt%(t)dt = z[(M,-U)(M,+U+l)-1Ku(z)h^u+1(z)+Ku+1(z)h^u(z)] + (^+l)-1e-zz^1Ku(z) . A) Further formulae of this type are given in 4.11. For the present, ve delineate properties of h y(z) and a related function notated H „(z) Here
108 \,v^ м» INTEGRALS OF EESSEL FUNCTIONS e'Z у 2^кН-1B^1)Bцн-5). . . Bn+gfcfl) <2^) k=0 [(^lJ-»2] [(,+2J-U2]...[(,+k+lJ.,2] ег^1Г(и.-''+1)Г(м.+1'+1) J" Bz)kr(tx>k-f3/2) Г(ц+3/2 ) k=0 Г(р,-У+к+2)Г(р,+1Я-к+2) 2F2 A, p,+3/2;p,-v+2, p,+v+2 ;2z ) 4.6 (m,-u+i)(m,+"+i) B) satisfies the differential equation [z2l? + zD - (z2+v2)]w(z) = e"zz^+1 . C) The series B) is finite if p, is a positive odd multiple of -\ (except -\) provided that both the numbers p+v are not negative integers. If p, is not a positive odd multiple of -\ (except -\), the expansion is not defined if either of the" numbers p+u is a negative integer. In (l), h y(z) maybe replaced by another particular integral of C) defined as* И tz) - h (zi Г(*)Г(ц-1>+1)Г(ц+»+1) L / y, ^()'V()" 2^Г(.+3/2) Г( 0 Ku(z)sin(i;-M,)n TT COS (j,TT D) If either of the numbers p+u is a positive integer or zero, H „(z) may be represented by the terminating series * Formulae in Iuke A952) corresponding to D) above and B), (8) and A0) of 4.9 contain typographical errors. 4.6 / e~tt^Ku(t)dt AND AN ASSOCIATED BESSEL FUNCTION 109 Г \l^\ (,2-/j {(,-D2-v2} 1 + ¦? -Г- + А iJe + [ C2^1)* B^-l)B^3)z2 ~^r 3Fi(^-M.+^-M.-«;i-M.;-i/2z) . (,2р,+1; E) The latter is not defined if p, = -\ . The same is true if p, is an odd multiple of 5 , unless both the numbers p+v are positive integers or zero. If E) is defined but does not terminate, it is an asymptotic repre- representation of Нц „(z) valid for |z|—»¦» and |arg z|<3tt/2 . To prove this use B), D; and the pertinent asymptotic expansions in 1.3.3. If p, = m--g where m is a positive integer or zero, we construct the asymptotic expansion of hm_i y(z) using results in 1.3.3 and 1.3.4. It is convenient to change the argument and write „m+1 ./ \ -iiim 1. , . 2 m (cos ш)е 2 . 4in> j_ H(l)f 4 mm-i(z-mTT/2+un/2+TT/4) m-1 , ..>.,_. ,-k k=0 r(m+4+u-k )r(m+i- и -к ) Bz) e ч v x x y 5- (m-l-k).'Biz) П+i- U - BnzJ . . -i(z+un/2+Tr/4) » (-)kE+u) (i-u) + (cos ц")е у v к42 у: nBnz)" z k=0 к.'B1г)К X f-ln 2z+in/2+t(|+i;+k)+i)r(|-i;+k)-t(k+l)"[ , |z|—>« , I arg z| < n F)
110 INTEGBAU3 OF EESSEL FUNCTIONS 4.7 If m = 0 , the left-hand side of F) is a representation for Whittaker's integral and is notated Ъу Watson A945, p. 339) as Wv(z) . In Watson's asymptotic expansion, there is a typographical error since the term following -In 2z should read +in/2 . In those situations vhere h „(z) is not defined, ve can show that IL „(z) approaches a limit. See 4.9. 4.7. Recurrence Relations Both h y(z) and Н„ „(z) satisfy the following recurrence formulae. V^ + iV^-^^VW'** 2Ц.+1 2ц+1 -z u e zp B) *^z> - \ \,^) ¦ W^ Vi,~i<">+ fcg1 • C) ^f^ н^/z) = (^^(^-DH^^^CzbC-^C-^DH^^Cz) . D) 2BM,+l)H^u(z)=(M,+i;)(M,+1;-l)HM|.1^_1(z)+(i;-M,)A;-M,+l)HM|.1^+1(z)+2e-zz^ . E) \,^z)=^,-^z) F) 4.8. Integral Representations Pz r>z h „(a) = Iw(a) / e-tt%(t)dt-Ku(z) / e-4%(t)dt , H+u is not a negative integer A) 2 4.8 / e"ttM'Ku(t)dt AND AN ASSOCIATED EESSEL FUNCTION 111 e"zz^+1 M-j" M>-u+l / (l-t)^" F1(M,+3/2jM,-u+2;2zt)dt J0 B) R(n+u+l)> 0 , p,-u is not a negative integer "*•<•>" ^S^nU)!^1-^'^^-^^ ¦ R(p,)>-3/2 , R(u)>-i , p+u is not a negative integer . C) Л nl = П. BnJe2 W];(z) , ±u is not an odd multiple of \ , D) where Р„(г) is Legendre's function. Also Wy(z) is Whittaker's integral. See the remarks following 4.6F). "¦\k,v e-4*lv(t)aA-lv(z) I e-4%(t)dt , R(n)<4 • E) Ha,v(z) = - % !1 / e-Zt2Fl(-^-^;i-^-t/2)dt , p, ^ n-J , n a positive integer or zero, R(z)>0 . F)
112 INTEGRALS OF BESSEL FUNCTIONS 4.9 4.9 / e^tM-KyCtJdt AND AN ASSOCIATED BESSEL ПЖСЯПШ 113 H^z> =' ТЩШЬТ) //zV^-Vi(x,-,-;i-^-t/2)dt , Ц ^ п~Ь > n a positive integer or zero, R(v-p,)> 0 , R(z)>0 . (?) sufficient to consider Ни__ „(z) vhere p = u-p, is a positive integer. Employing 4.7(l), H (z) - gPr(p+7-v)rBv-p) д (¦„•> n °° HQ u(z) = -e'Z-u / e"Z COSh tsinh utdt , R(z)>0 ' ^0 (8) - e z -z u-1 rCp+j-iQrCgv-p)^-1 k.'Bz) \-k ^ Г(к+з/2-и)ГBи-к) ' A) ,2,.., -z2/2 z2/2 -1 P™ -t2,. -z2/2 z2/2 -1 _ . ,n» fiQ l(z /2) = -e ' -e ' z / e dt = -e ' -e ' z Erf с z . (9) Jz a.^y(z) = и Г e"z COSh гв1пЬ utdt , R(z)>0 . te"z coshtdt , R(z)>0 . A0) A1) H_3/2^(z) = e"Zz2 /' e"ztln(l+t/2)dt = -eZz'2Ei(-2z) , R(z)>0 . A2) See also 4.9E-10). 4.9. Formulae for Hn y(z) When п„ y(z) Is Not Defined п„ „(z) is not defined if ц is not an odd multiple of -¦§¦ (except -¦§¦) and either of the numbers ц+и is a negative integer; likewise for H ^(z) as given Ъу 4.6D). However, H y(z) has a limit when h (z) %u ¦\i,,^ is not defined. Since HL u(z) ^s an even function in в , it is M... and so the left-hand side can Ъе found once Hu_1 y(z) is known. Using 4.7(l) and 4.6D), B^+l)H rz)+e-Zz^ = 2U'1r(i;)lu(z) 1л 2z + cos un + 2"-1r( '(")e"Z T (gz)"^^^) /t(UH.k4)-t(k4.i)-.BUH.kH.i) "I , T) tTrs k.TBi;+k+l) I J ТЩ кГ0 k.TBU+k+l) v is not a negative integer or zero, tv is not an odd multiple of -g . B) H-n-l,-n(z) = H_n.i,n(z) C)
114 INTEGRALS OF EESSEL FUNCTIONS 4.9 Bц+1)Н 0(z)+e-zzH H.^z^lim tt|2 p,->0 H = 4lo(z)(ln 2zJ - К0(г)Aл 2z) 2T(i) j Bг) T(kH-g) L.(k+i).2^(k+l)+rKk+i)-2Kk+l)l [ :=O (k!J I L J D) For an integral representation of the latter, see 4.8A1). To evaluate H v(z) for ±v an odd multiple of \, ve consider ЯГ1_Х n+i(z) or H_n_3/2 n-i^(z) where n is a positive integer or zero. The former cannot Ъе defined Ъу 4.6D) or B). The latter cannot Ъе de- defined Ъу B) and 4.7F), but 4.6E) yields the asymptotic expansion -z -n-3/2 ^ , N H ,/o nii(z)~LJ F.( l,l,2n+2;n+2;- A) , -n-3/2,n+2V ' 2(n+l) 3 1Ч- 2z^ |z|—>=> , |arg z| < Зтг/2 E) From 4.7A) and 4.7D), ^4,n+3/2(z) = - ^~ \-hn^W^K-3/2,n-i^ -Z П-i -Z П+5 e z г е z 2n 2(n+l) F) and so Ну_д_ y(z) for ±u an odd multiple of ¦§¦ can Ъе found Ъу recursion vith the aid of the following formulae. H X l(z) = ^_ Г-e-zin z+eZEi(-2z)l -2^2 1 L J 2z2 G) 115 4.10 / e"tt^Ku(t)dt AND AN ASSOCIATED BESSEL FUNCTION 1 [e'ZBz2+3Z-l)-2e"Z(z+l)ln z-2eZ(z-l)Ei(-2z)] . (8) HI,3/2(Z) 4z 3/2 H-3/2,i(z) = - \Ei(-2z) 2 H-5/2,3/2(z) = -372 [e-ZH-2ez(z-l)Ei(-2z)] 6z ' (9) A0) Here Ei(-z) is the exponential integral, see 7.8. To prove these ex- expressions use the Bessel function representations for v half an odd integer (see 1.4.6(8-9)),and 4.8E) in the form H^(z) = lim L(z) Г e-tt^(t)dt-Iu(z) Г e-4%(t)dtl . (ll) d—>mL J z v z -I 4.10. Expansions of ^„(z) and Н^„(г) in Series of Bessel Functions h (Z) - gM'H'1r(^l) 4г (-)к(ц+к+1)ГBм,+к+2) V"vK ' ГBр,+2) kt-Q к.'(м.+"+к+1)(ц-и+к+1) XM.+k+l1'z> ' litu is not a negative integer, ц ^ -1,-2,-3,... A) i_L,u(z) = -U~2IO(Z)+2 21 -^— xk(z) > ±v is not ^ integer or zero. B) k=l k2-u2
116 IHTEGRAIS OF BESSEL FUNCTIONS 2m-1 4.10 b^,,<«W-sJ-<an>W'f b:BMy.{J+;l2]^-i-2^) Vk-^) 2®-+1B/Ti)?(m-l): V (-)kBm-l-2k) K_ k i(a) W ^ ^ Ak.1Bm-l-k)!Bm-l-2k+2U)Bm-l-2k-2U) ^-k-2' m>0 , ±2u ^ 1,3,. ..,2m-l C) hiv(O 4z ± sinh Z+2Bn)* Z , HV+l) (z) Й. Bk+l+2u)Bk+l-2u) K^ 4u2-l *2v is not an odd integer . |^ 9u cos vtt + iijz) [¦(»+iM(wi)-t(i)-t(i)] > ^ и is not a negative integer or zero, tu is not an odd multiple of s • D) H-l,o(*) =2 Z - (-)Ч(О , АД2) k=l u=0 6 + =-IoU) • E) F) 4.11 JZe%( t )dt AND AN ASSOCIATED HBSSEL ПШСП0К 117 To prove (l> and B) use 4.6B) and 1.3.6(8). An alternative proof follows from 4.6C), 1.4.2E,6) and recursive properties of Iv(z) . Use (l) and B), 4.7A), and limit processes to get E) and (б), respectively. Finally, (з) and D) follow directly from (l). For expansions in series of Bessel functions of the partial derivatives in E) and (б), see 1.4.2A1-13). 4.11. Associated Bessel Function Representations for / e~"tt^Kv(t)dt and Related Integrals y>Vitt%(t)dt = Ze±^n[(^-U)(^+l)-1Cu(Z)h^u+1(Ze;^ln) ± icWOV^e**1")] +Avfu+l)-1etlazti+1Cu(8) , R(n,±u)>-1 A) e ^ / e 'o J e^2e-1)tthRu(t)dt = z [(^-,)(^U+l)-\(z)h^u+1(Zeien) з1ем,тт Г oBe-l)t 6Bc-l)Ru+1(Z)h^u(zeie")] +(li+u+l)-1e1«M"eB«-1)a^+\(z) , R(m,±u)>-1 , e = 0,1, Rv(z) = 1„(г) if 6 = 1 , Ru(z) = К„(г) if 6 = -1 . B) If R(p,±u)> -1 , then
118 INTEGRALS OF BESSEL FUNCTIONS 4.11 /"X^W - fx(z) * 2~ ^(^-")ПГ(^^1)Г(,-^1) f E) Jo П 2^C/2 V Jo " 2' " 2^C/2) cos атг COS VTT , D) where fm(z) = ze*i^[(^U)(^+l)-1H(m)(Z)H^u+1(ze-^) + ±4^l(z)^>v(ze-^)] * (^Hl)-1eiZZ"+1HW(J) , m = 1,2 . E) zeis") а1«мд Г eB«-i)tt^(t)dt = zr(ti.u)(^+1)-1Iu(z)H^u+1( Jo . L + Bс-1Iи+1B)Н^иBе1ет)] ¦(^v+D-V^e^-^S^^z) + e-ic(u+l)TT r(p.-|-"-|-l)r(M.-»-|-l)sin(p.-»)TT 2^C/2) n cos р,п € = 0,1, R(p,+u)> -1 F) 4-12 «i e"ttMKu(t)dt AMD AN ASSOCIATED BESSEL FUUCTION 119 eie^ Г eBc-l)tt4Ct)dt w гГи,)(^1Г1^(г) ^(ze1-) J0 L ^^ - Bc-l)Ku+1(z)H^u(zeiOT)] +(^U+l)-1eie^eBe-1)Zz^1Ku(z) + е1€м,тт Г_е_ е cos vtt r(p,+w+l)r(p,-w+l) L =os Ц.ТТ J 2^C/2)^ 6 = 0,1, R(p,+u)> -1 G) In C)-G), p, is not an odd multiple of \ unless v also is an odd multiple of \ . 4.12. Description of Mathematical Tables Howarth A950): Column 2 of Table I, p. 137, tabulates tt~5+Btt)//2A(R) , A(R) = / t~ e"VKi(v)dt , v = t2/8 , for R = 0.01, 0.05, 0.1, 0.2 Jr @.2J.0@.5L.0, 00, 3d. For the same range, the third column gives Btt)/2 ( A(t)dt . Jo oee also 10.7.
CHAPTER V REDUCTION 5.1. General Development Let FORMULAS FOR J e'^t^CXt^t {»Mz)=J e'ptt4(^>tt vhere Wy(z) is defined by 1.4.3A). Then pf^(z) = -е"Р\\(\2)+(ц+и)^.1?иB)-аХ^и+1B) pf^»+l(z) = -e"P8zlVu+1(Xa)+(^«-l)f(i.1)U+1(a>lAf(iI,(O LMo" A) B) C) a(u-M,)\f^u+1(z) =--2Ue-pZzX(^z)-2ypfM,,u(z)+'b(M.+")^M,jl,.i(z) , D=) (p2+X2ab)f „(a) = a\e-pzzX+l(^)+^-«-l)e"PZz^4(^) - pe"PaaMWi;(Xa)+pB|t.i)f(i_1^(z>[i;a.(li-lJ]f^2,u(z) • E) To prove B) integrate (l) by parts and use 1.4.3E). Integrate (l) by parts vith v replaced by u+1 , use 1.4.3D) and obtain C). If in C) и is replaced Ъу v-1 and this is combined with B), then D) results. Finally, use B) as is and also vith p, replaced Ъу ц-1 , and combine with C) to get E). The above is based on a paper by Luke A950a). 120 5.2 REDUCTION FORMULAS FOR Г e"Ptt^y(Xt)dt 5.2. Evaluation of / e"pttMWu(Xt)dt for Special Values 121 of the Parameters Case I. Let p2+X2ab = 0 and и = ±(ц-1) . Then 5.1E) yields -pz u+1 r -1 f^z> = ?I^T— |>^) - f wu+1(xz)J , f-^u(z) = ¦ elZiv+1[Vv{xz) + ~ w^-i^z)] We now take X = 1 . X u ' 2u+l eltt"l;Ju(t)dt = eizz"u+1 ifT- ^(z)+iJ^(z)] + ^I7Z 2и-хBи-1)Г(и) f eltt-4ji.(t)dt = B/пL Г e^sin t dt = Bn)'2 fsiBz)+i {y+ln 2z-CiBz)Jl A) B) [^(а)-и„+1(г)] , R(u)>-i . C) D) E) J>*X№-4^й- [mzmwz)]-^ЛГ^-R(u)>4• F)
122 IHTEGRAIS OF BESSEL FUNCTIONS 5.2 [VHvtjdt = '\±t+»T ,+ W = egg^ [lu(z)*Iu+1(O] , B(u)>4 /|Ze-tIn(t)dt = ze-^I^zJ+I^z)] +n[e-zIo(z)-l] JO n-1 + 2e"z 2 (n-k)lk(z) k=l G) = ze-z[ln(z)+In+1(z)]+n[e-zIo(z)-l]+2ne-z J Ik(z) . (8) k=l The latter follows from G), 5.1D) and 1.4.3B). For an expansion of „z integrals like / e-t cos 6Iu(t)dt in series of Bessel functions, see 10.3. I >t"%(t)dt = - ^^[l^I^z)] , *n + 2и-ХB1;-1)Г(и) (9) fZettt-ili(t)dt = B/tt)* fZ e±tsinh г dt J0 2 J0 * = Btt) [±Ei(±2z);(Y+ln 2z)] . A0) 5.2 REDUCTION FORMULAS FOB Г e"P4^u(Xt )dt 123 ±z u+1 JoeiVKu(t)dt=^|r-[Ku(z)±Ku+1(z)],^±l ,R(,)>-i . A1) King's A914) integral is f etKQ(t)dt = zez [Ko(z) + Kx(z)] -1 . «0 A2) f e*f \(t)dt = ^ [^^(z)] , B(u»i . A3) о z do f t" cos(z-t)jy(t)dt = - z-"+1J>) sin z 2u-l 2"-1Bи-1)Г(и) t"usin(z-t)Ju(t)dt = _ z"u+4.i(z) COS Z 2u-l 2и-1Bи-1)Г(и) , « ?4 • A4) , » ^ i • (is) /o t"cos(z-t)Ju(t)dt = z^ , R(u)> 4 . t"sin(z-t)Ju(t)dt = Z Zvll*l{Z) , B(u)>-i • A6) A7) filiations A4)-A7)аге convolution integrals and follow from C)-D). For Pz .•valuation of / t^e1^ )ju(t )dt , see 4.3G). The convolution integrals ^O I..'low can be deduced from (8). For other convolution integrals, see 13.3.1.
124 INTEGRALS OF EESSEL FUNCTIONS 5.2 5.2 ,z г n-1 -i / cos(Z-t)J2n(t)dt = zJ2n(z)-2n(-)n sin г-21 (-)J2k+l(z) ¦ A8) Jo L k=o J z Г n 1 f sin(z-t)J2n(t)dt = zJ2n+1(Z)+2n(-)n cos z-Jo(z)-2 ]T (-)kJ2k(z 1A9) Jo L b=l J Г cos(z-t)J2n+1(t)dt = zJ2n+1(z)-Bn+l)(-)n Jo(z)-cos z + 2 Z (-)kJ2k(z)l ¦ k=l -1 Г sin(z-t)J2n+1(t)dt = zJ2n+2(z)+Bn+l)(-)n sin z - 2 Z (-)kJ2k+l(z)l k=0 J Case II. Let p = O, p, = tv and X = 1 . Then from 5.lD) , B0) B1) bf^u.1(z) = zX(z) , af-v,v+l(z) = ~z~ Wu(z) nz / t%.1(t)dt = z"jy(z) , R(u)>0 J0 B2) B3) B4) 2 REDUCTION FORMULAS FOR Г e"vtt^yv(\t )dt z / f uJu+1(t)dt = —-i z-%(z) . Jo 2ur(v+l) z n ¦» 2n / t'1J2n(t)dt=l-2z'1 Y. Bk-l)J2k_1(z)=2z Z Bk-l)J2k.1(z) 0 0 k=l k=n+l l+Jo(z)+J2n(z)-2 ? J2k(z) = J2n(z)+2 ? J2k(z) , n>0 . k=0 k=n+l rz rz n Bn+l) / t-XJ2n+1(t)dt = / Jo(t)dt-J1(z)-4z'1 X kJ2k(z) U0 J0 k=l 125 B5) B6) ¦I, z n Jo(t)dt+J1(z)-2J2n+1(z)+4 X J2k+l^z) ' B7) 0 k=0 Equations B6) and B7) follow from 5.1C-4), 1.4.2C-4) and 1.4.3B). An alternative proof for the first equation of B6) has Ъееп given Ъу Abtiott A949). He also gives another expansion for the left-hand side of B6) in series of Bessel functions. In connection vith B6)-B7),see 2.4(l). Г t"Yu.1(t)dt = *"*„(*) + S!Ki) , к(и)>0 .  " J t%.1(t)dt = zulv(z) , R(u)>0 . B8) B9)
126 INTEGRALS OF BESSEL FUNCTIONS 5.2 CHAPTER VI [ f»Iwl(t)dt = z-%(z) - i Jo 2vr(u+l) nco / f vKu+1(t)dt = z"%(z) . C0) f t\ x(t)dt = a^rOO-zVz) , r(v)>o . Ci) C2) AIRY FUNCTIONS 6.1. Introduction In this chapter we consider Airy integrals, their integrals and associated Airy integrals. Virtually all the material can be readily deduced from the results given in Chapters I-III. 6.2. Airy Integrals 6.2.1. Definitions Let § = B/3)z3/2 } Ai(z) = (z*/3)(l_l/3(S)-Il/3(§)} =n(z/3)%l/3(§) , Bi(z) = U/3)*{i_l/3(S)+il/3(S)} , Ai(-z) = (z*/3)|j.l/3(§)+Jl/3(§)| Bi(-z) = (z/3)*[j_l/3(§)-Jl/3(§)} . )',.;>.2. Derivatives Ai'(z)=-(z/3){l_2/3(§)-I2/3(§)} =|- l^/3(S) A) B) C) D) E) A) 127
128 INTEGRALS OF BESSEL FUNCTIONS Bi'(z) = 3-*z {1.2/з(§)+12/з(§)} Ai'(-z) = -(a/5){j.2/3E)-J2/3E>} Bi'(-z) = 3'*z {j.2/3(§)+J2/3E)} 6.2.3. Interrelations Ai(z)+e2iTr/3 Ai(ze2lTT/3) + e-21"/3 A^ze1"/3) = 0 Bi(Z)+e2iTr/3Bi(ze21"/3) + e-2i"/3Bi(ze-2i"/3) = 0 Bi(z) = eiTr/6Ai(ze2i"/3) + e-^Ai^e1^3) . Bi(z) = 2etl^6A±(zet2i^5) - е*1"/2^) . 6.2.4. Differential Equation and Wronsklan Ai(±z) and Bi(tz) are independent solutions of ddy = +, zy dz^ and Ai(z)Bi'(z) - Ai'(z)Bi(z) = l/тт 6.2.3 B) C) D) A) B) C) D) A) B) 6.2.5 6.2.5. Power Series AIRY FUNCTIONS Ai(±z) = а Л(^2/3;±§2/4)+Ъ2 0?1(;4/3;±?2/4 ) . Bi(tz) = 3*a Л(;2/з;±?2/4)±3*Ь2 ^(-^/Sit^/i) Ai'(±z) = -Ъ 0F1(;l/3J±?2/4Laz20F1(;5/3j±?2/4) . Bir(±z) = 3*b ^(A/Sjt^AHs^^CjS/SjtS2^) 3-2/3 -1/3 a = ¦— = 0.35502 80539 , Ъ = °. = 0.25881 94038 ГB/3) 6.2.6. Asymptotic Expansions ГA/3) нЫ~Ъ«*г*0(±,1;-±) , Izl —> со } | arg zl < тт «•с,--*,М-«Л(.1, i ,.i) , Izl—»» , I arg z| < я Bi(z)^K-*z-Ve§2F0(l , 5 . 1_\ .ja.en-h-h%Y0(l , 5 ;. ±\ , \6 6 2fy Vr e or У -6 6 2§ 6 6 2§/ 029 A) B) C) D) E) A) B) I z|—5»oo > -B+e)n/3<arg z<B-e)n/3 , e = +1 C)
130 INTEGRALS OF BESSEL FUNCTIONS Bi( |z|-»o> , -B+e)rr/3<arg z<B-s)tt/3 , e = ±1 6.2.6 L'(z)- тЛЦ*0 (- i , 1 ; ^^cTT-^e-VoO \>l >' 2?) > D) [CO cos(§-?n) Z k=0 Ц. (-)k(l/6JkE/6Jk Bk).'B§): ,2k + sin(§-irr) X (-)k(l/6Jk+1E/6Jk+1 k=0 Bk+l).'B§) |z|—»« , larg z|< 2tt/3 2k+l Г Ai'(-z)^TTz^ sin(§-Jn) Z L . k=0 - (.)k(-l/6M.G/6). '2кч ' У2к Bk).'B§Jk . , . " (-)k(-V6Jk+1G/6Jk+1 - cos(§-4tt) 21 ,2k+l k=0 Bk+l).'B§) |Z|__»a. , larg zl< 2tt/3 E) F) 6.2.7 AIRY FUNCTIONS 131 Bi(-z)~ тт2"^ -81п(§-?тг) Y. L k=f - С-П1/бJкE/бJк k=0 Bk).1 B§> 2k k=0 Bk+l)!B§rk+1 |z|—»•« , |arg z|< 2tt/3 G) L k=0 Bk).'B§Jk + sin(§-irr) 2; (-)K(-l/6)p^G/6)g Тгк+Г ;2к+1н/°;2к+1 k=0 Bk+l):B§f |zl—»oo , |arg z| < 2tt/3 (8) 0.2.7. Integral Representations TiAi(x) = / cos(t3/3+xt)dt A) 3i(x) = Г в"*' -t3/3+xtdt + TiBiCx) = / e " /""¦"¦"dt + / sin(t /3 'O  i+xt )dt B)
132 IMEGRAIS OF BESSEL FUNCTIONS 6.3. Integrals of Airy Integrals 6.3.1. Relations to Other Functions and Interrelations 3'i f Ai(t)dt = i/3 [Ио^х/з^ИЧ^Я =irV/3(§) f Ai(-t)dt = 1/3 [J1O1/3(S)*J41/3^5] •  [ Bi(t)dt = 3"i [lio,-i/3^)+I1o,l/3(§)] • fZBi(-t)dt = 3-* [jiQj _l/3(§ )-Jio,l/3(S)] • etiTT/3 ,. etin/3 Я*/* -| Г Bi(t)dt = (±i) / Ai(t)dt+2j Ai(t)dt| ±iTi/3 r zetiTT/3 u „ ze ' oU Г n ze ли f / Bi(t)dtdu = (±1) / / Ai(t)dtdu J0 J0 LJ0 J0 +iTi/3 n zeT ' „u + 2e±2in/3 / / Ai(t)dtdi J0 J0 6.3 6.3.2 A) B) C) D) E) F) AIRY FUHCTIONS 133 6.3.2. Power Series Expansions /ЛоиМ(«)№.^Л(^|,|я|!) t/jBi(«)«.t3J.Iir2(I;|,i;l|!) f [ Bi(+t)dtdu = !3*az2 F2(J ; t ,| ;+ Si) + X 'i--3 1Л^Л^|Л|,|,;Е) ilrre a and Ъ are given Ъу 6.2.5E). ¦ ' • 3. Convergent Expansions in Terms of Lommel Functions / Ai(t)dt = тт [Ai(z)Ti'(z)-Ai'(z)ali(z)] J0 = 1/3 + тт [Al'(z)Gi(z)-Al(z)Gi(z)] C) D) A)
134 Here Also INTEGRAIfi OF BESSEL FUNCTIONS nZ / Ai(-t)dt = тт [Ai'(-z)Ti(-z)-Ai(-z)Ti'(-z)] ^0 = 2/3 + тт [Ai'(-z)Hi(-z)-Ai(-z)Hi'(-z)] nZ / Bi(t)dt = тт [Bi(z)Ti'(z)-Bl'(z)Ti(z)] J0 = тт [Bi'(z)Gi(z)-Bi(z)Gi'(z)] / Bi(-t)dt = 17 [Bi'(-z)Ti(-z)-Bi(-z)Ti'(-z)] J0 [Bi'(-z)Hi(-z)-Bi(-z)Hi'(-z)] = TT nTi(-z) - h\?2 (l; I , § >- t) - I Ao,l/3(§) Hi(-z) = 2 Bi(-z)+Ti(-z) = (§/ttz)S^1^3(§) , Gi(z) = 1/3 Bi(z)-Ti(z) = Bi(z)-Hi(z) 6.3.3 B) C) (O E) F) G) Gi(ze±iTT/3>et2iTT/3Hi(-z) = ie±iTT/6 [m(-z )tlBi(-z)J EzJ „(m). . , -. where m is 1 or 2 according as the sign is - or + , respectively. 6.3.4 AIRY FUNCTIONS Gi(z) is a particular integral of #3.. dz2 zy = -тт -1 and we have the integral representations TTHi(z) = fVt3/^tdt ; n со TTGi(x) = / sin(t3/3+xt)dt 6.3.4. Expansions in Series of Bessel Functions /Z г со со -1 Ai(-t)dt = B/3) Z J2k+2/3(§)+ Z J2k+4/3(§) 0 Lk=o k=o J [ Bi(t)dt =3*B/3)[z (-)W3(§> T (O^kWsC?)! Jo Lk=o ' k=o -I Г Bi(-t)dt = 3^B/3) Г Z J2k+2/3(§)- 21 J2k+4/3(§)l Jo Lk=o k=o J .i-t.hcr expansions for (l)-D) follow from 6.3.1A-4) and 2.4B). 135 0) A0) A1) />ZAi(t)dt = B/3) [i (-)\к+2/5(г)- ? (-)kI2k+4/3(§)l • A) Jo Lk=o k=o ' -I B) • C) D)
136 nTi(z INTEGRALS OF BESSEL FUNCTIONS n Jy (-)kBk+l) T ,*) kt Ck+l)Ck+2) Tffii'(z) = zi°(g)+2z|oCJ)()L)i2^(§) • ^(-Z) = ^zoEJ^+2)J2k+1(g) . rrTi'(-z) = -zJQ(§)+2z Z k=0 Ck+2)Ck+4) J2k+2(?) 6.3.5 E) F) G) (8) Further expansions for E)-(8) follow from 6.3.3E) and 3.6B). 6.3.5. Asymptotic Ехрапэ-ions X 7 -F °° JAi(t)dt-l/3 - -Z—r Z ("L?"k Ftt§J k=0 |z| —>t° , I arg z| < тт , A) where the a^'s follow from 2.5B-4) with p, = 0 and и = 1/3 and are given below for к = 0A)8 . 6.3.5 AIRY FUNCTIONS 137 0 1 1 41/23 • 32 2 9241/27 • 34 3 50 75225/210 • 37 4 51530 08945/2^ • 39 5 167 49663 09205/218 • 311 6 3 98556 96316 33205/222 • 314 7 1038 30537 66658 Э8275/224 • 316 8 25 69132 94549 69752 11365/229 • 318 B) /; 2e^ -s Bi(t)dt-^_^ X акГк + i^x Z (-L§"k-iS , Ftt§J k=0 .-k , iee Ftt§ J k=0 Izl^oo , -B+e)Tr/3<arg z<B-e)n/3 , e = ±1 C) J Ai(-t)dt-| - Ctt§)"^ [(ui+uajcos S-^-UgJeln g] (O / Bi(-t)dt ~ CTT§)[(u1+u2)sin g+(u1-u2)cos g 1 , E) whure |z|—>oo } | arg z|< 2тт/3 . Also ui = Z (-Г*2Ь5 , «2 = Z (")ka2k+l§ k=0 k=0 -2k-l F) i\nd the eu's are as in B).
138 IHTEGRALS OF BESSEL FUNCTIONS 6.3.5 Another set of asymptotic expansions follows from the representations in terms of Lommel functions, see 6.3.3. It is sufficient to quote the following expressions. Hi(-z)^(nz)3F0(^l, з ; з ;- ~) [z|—><= , | arg zl< 2tt/3 Hi'(-zwV23F0(i, §, f ;-У , |z|—>« , |arg z| <2tt/3 ,z|-»« , -B+e)n/3<arg z<B-e)n/3 , e = +1 • л ? /^ 2 4 4 \ _,_ iez^e"? /¦ 1 7 1\ Qi-(z)--и-^-VoC1' I' з; ^-) ^f~2 °v~ e' 6 ^ 2§; ' z|—»•« , -B+e>T/3<arg z<B-e)n/3 , e = +1 For the repeated integrals of Ai(±t) and Bi(tt) , we have G) (8) (9) A0) nz />u 3. 1 e'gz/4 ^- ( vk -k / Ai(t)dtdu-i z. __ + r- 2. (-) =k§ '0 u0 k=0 |z|—>« , larg z|<n , A1) 6.3.5 AIRY FUNCTIONS 139 where 2(k+l)ck+1 = fkck + gkck_-L , c.-l = 0 , co = 1 fk = 3k2 + 6k + 101/36 , gk = -(k+7/6)(k+l/2)(k-l/6) A2) The coefficients ck are tabulated below for к = 0(l)8 0 1 2 3 4 5 6 7 8 101/23 • 32 35905/27 • 34 270 49085/210 • 37 3 50151 98785/215 • 39 1386 02554 86385/218 • 311 .22 . ^14 38 91341 34573 23405/222 • 3 21011 91371 80388 18575/225 • 316 1028 71658 49974 61731 12075/231 • 318 A3) rz Ги 2 1 / / Ai(-t)dtdu~| z- Jo Jo ,-5A 3 31/3ГA/з) Bтт)? [(vi-v2)cos g + Cv-L+VgJsin §] , |z|—>« , |arg z|< 2tt/3 , A4) Z, -.k _-2k -sr- / \k _-2k-l (-) =2k? > V2 = A (-) =2k+l5 A5) k=0 k=0 urnl the ck's are defined by A2).
140 INTECSAIS OF EESSEL FUNCTIONS 6.4 -k l*e±_ ? ^^-k J> P e* sr- г-к lee Jo Jo z5/ tt2 k=0 2z ' n2 k=0 3V6 - iez + ——r—r > ГA/3) |z|- , -B+e)n/3<arg z <B-е)тт/3 > e ¦= ±1 • A6) ,z ftu f " [V^dtdu- ^ * ^[(v^sin |-(v1+v2)=os S] '0  r(i/3) BTT)f |Z|_>a> , |arg z|<2n/3 A7) In A6)-A7), the ck's are as in A2), and v± and v2 are defined by A5). 6.4. The Integrals of Gi(z) and Hi(-z) /W^t = 1/3 /W)dt - ЩМ 8^Q;y^) • (i) / Vt)at - 2/з /V(-t)dt + ^/±1 2^С2%5}5/Ъ\Щ • B) Г Hi(t)dt = f Bi(t)dt - Г Gi(t)dt . Jo Jo Jo C) tin/3 Г fz rz rz Gi(t)dt = Hi(-t)dt - i / Bi(-t)dt + |i / Ai(- J0 J0 Jq J0 t)dt . D) 6.5 AIRY FUNCTIONS 141 tt f Gi(t)dt-ln В+A/3)Aл 3+2Y) -—i-^/1'1'4/3'5/3^/?2') Jo 27§2 42 ' ^ iTTee -§ Ftt§ J k=0 Z/ \k _-k (-) ak? * |z|^= , -B+e)TT/3<arg z<B-e)rr/3 , e - ±1 , E) where ak is defined by 6.3.5B ). tt [ZHi(-t)dt ~m z+(i/3)(m 3+2Y) + -§- ^г^>Ф>Ф _4/?2N ^ JO 27§2 V2 У |z|—»oo , |arg z|<2tt/3 F) i". .5. Description of Mathematical Tables For tables of Airy integrals and related functions, see 1.4.7 and National Bureau of Standards A962, (Six. 10). See also the following. Hay A948) f 2 : Let F(z) = / e-ztAl(t-o1)dt , where i± = -2.3381 is the first zero of Ai(x). F(z),F'(z),z= x+iy , x = 0( 0.2L , у = 0@.2K.2 , 5d. w I.In A945): let 3(z) = [l-F(z)] = w [ai'(-w)]'1[l/3+ j Ai(-t)dt] , w = zelTT/6 . 3'(z) = z3(z) + weiTT/6[Ai'(-w)]Ai(-w)[l-3(z)] . Here 3(z) and F(z) are tabulated to 5d for z = 1.0@.2L.8. In Ldn A955, p. 42) the 3(z) table is repeated. In addition, 3'(z) is given, mostly to 4s, for z = 1.2@.1L.4. The real part of 3'(z) is also given to 4d for z = 4.5@.1L.8 .
142 INTEGRALS OF BESSEL FUNCTIONS 6.5 Miles (i960): Tables computed Ъу D. Giedt. For notation, see the Lin item above. 3(z) , 3'(z) > F(z) , z times the imaginary part of F(z) , z = -6@.1I0 , 4s. Aside from a few differences of one or two units in the last figure, the tables of Lin and Miles agree, except that entries for z =4.6 and 4.8 are in serious disagreement. The need for 3(z) arises in problems of hydrodynamic stability. See Lin and Miles and the references quoted there. National Bureau of Standards A958b): All tables are to 8d. f(x) = / Ai(-t)dt , F(x) = / f(t)dt , x = -2@.01M . J0 d0 A0(x) = nHi(-x) , -A^(x) , x = 0@.01I0@.05I1. x = 0.01@.01).1. «x G(x) = / Ao(t)dt , x = 0@.5I1 . ^0 Riley and Billings A959): Let A = Ai , В = Bi , F2 = A^B2 , CD (F1J = (A'J+(B'J . / xV2 (a,A2,AB or b) dx , ^0 pen / x^(F') (а'ДА'^А'В' or B1} dx , X = 0(lJ0 , 5s. J0 L Rothman A954a): All tables are to 7d. / Ai(t)dt , x = 0@.1O.5 . Jo / Bi(t)dt , x = 0@.1J . / Ai(-t)dt , / Bi(-t)dt , Jo ^0 ^0 x = 0@.1I0 . The values for the last two items should read with opposite sign. Пх ЛХ Rothman A954b): / Gi(t)dt , Gi'(x) , / Hi(-t)dt , dHi(-x)/dx = -Hi'(-x) > «0 ^0 x = 0@.1I0 , 7d. 6.5 AIRY FUNCTIONS 143 u n nx Rothman A955a): / Ai(t)dt , / Ai(-t)dt , x = 0@.01J@.1I0 , 8d. '0 ^0 The values for the latter integral should read with opposite sign. nX nX Rothman A955b): / Bi(t)dt , x = 0@.01J , 8d. / Bi(-t)dt , J0 ^0 x = 0@.01J@.1I0 , 8d. The values for the latter integral should read with opposite sign. Rothman A955c): Gi(x) , Gi'(x) , x = 0@.1J5AO5 , 8d. Rothman (I955d): Hl(-x) , Hi'(-x) = -dHi(-x)/dx , x = 0@.1J5AO5 , 8d. The values for the latter function should read with opposite sign. Rothman (I955e): / Gi(t)dt , / Hi(-t)dt , x = 0@.1J0 , 8d. The d0 Jo values given for the former integral for x = 10.1@.1J0 are wrong. The source of the mistake is not completely known. However, the value „10.1 of / Gi(t)dt as deduced from the table is about ten times too «10 large. .Scorer A950): Gi(x) , Hi(-x) , x = 0@.1I0 , 7d. .¦inlrnov A955): V11(s) = j uf(s,l) - Г |2/5i ds , Jo L 2ns2 J Vl2(e) = / ^(8,1)^(8,1) i—r ds , J0 L 2CsJJ J0 L 2 • S-^tts2 ds . For the definitions of Uj 2(s,l) , see the Smirnov item in 1.4.8. s = 0@.01I0 , 5d. . ••!¦ und Christiano A952): Ai(x) , Ai'(x) , Bi(x) , Bi'(x) , nGi(x) , nGl'(x) , x = -10@.1M , 5d or 5s.
CHAPTER VII INCOMPLETE GAMMA FUNCTION AND RELATED FUNCTIONS 7.1. Introduction The incomplete gamma function may Ъе defined Ъу Y(a,z) = B/ttJ f ta-2Ki.(t)dt = f e'V^dt , R(a)>0 . (l) JO 2 JO Г(а,г) = / e-4a-1dt = Г(а) - Y(a,z) , J z I6K tt/2 , R(a)>0 ; |6I = tt/2 , 0<R(a)<l . B) For the path of integration, see 2.1(9). If z^O, 161 < tt/2 , the inte- integral in B) exists without the restriction on a . If a—>0 , we are led to the exponential integral, see 7.8(l). In this event exclude the origin in the path of integration. In view of (l), many properties of the incomplete gamma function follow from the material developed in the first four chapters. In addition to these, we give other important results. Unless stated otherwise, the reader may assume that the representations in this chapter are essentially direct consequences of Chapters I-IV, or are given in Erdelyi et al. A953, Vol. 2, Ch. IX). The incomplete gamma function is a special case of the confluent hypergeometric function. For the latter, see Erdelyi et al. A953, Vol. 1, Ch. VI), Buchholz A953), Kratzer and Franz (i960, Ch. VI), Tricomi A954) and Slater (i960). For references to mathematical tables of the important functions considered here, see 7.13. 144 7.2 INCOMPLETE GAMMA FUNCTION AND RELATED FUNCTIONS 145 7.2. Elementary Properties Partial integration of 7.1A,2) produces the recurrence equations y(a+l,z) = aY(a,z) - zae"z , Г(а+1, z) = аГ(а, z) + zae"z The connection to the confluent hypergeometric function is given by y(a,z) = azae"z$(l,l+ajz) = aza$(a, l+a;-z) , $(a,c,z) = -^(ujCjZ) , Г(а, z) = zae"zf(l,l+a;z) = e"zf (l-a,l-ajz ) The power series representation / \ -z a. ^~ Y(a, z) = e z 2. *k _ za ' (-)kzk kt0 (a)k+l >=nk;(a+k) k=0 is the statement C). The functions Ci(z,a)+iSi(z,a) ^0 -«.«** = »iA-a)i\(l-a,ze-iin) bdt = e2 A) B) C) (O E) F) nnve been studied by Kreyszig A951, 1953) whom the reader should consult I'nr tables and an extensive bibliography.
146 INTEGRALS OF BESSEL FUNCTIONS 7.3 7.3. Integral Representations ¦y(a,z) = zacsc тга / е r gZ cos eoos(a9+z sln e)de a not an integer Y(a,z) = za/2 [VS^jjW]" , R(a)>0 . -za п"^ (a)<1 о z+t -*->-f^? ["e-4-^Ka[2(zt)*]dt , в(а)<1 • ^0 A) B) C) D) 7.4. Asymptotic Expansions for Large z r(a,z)-za-1e-z2F. ¦od^a;-.) = Ba"V» Z (-)*(!-)* ^, „v.z"k k=0 |z|- , larg z| <3n/2 A) m-1 r(a,z) = z^ie Z~ (-)k(l-a)kz-k + \KO k=0 ^(a.z) = (-f(l-a)m rt^V^t , larg z| < 3n/2 . B) 7.4 INCOMPLETE GAMMA. FUNCTION AND RELATED FUNCTIONS 147 If a and z are real, R^a, z) is less in absolute value than the first neglected term and of the same sign. Г. it, a-1,, a iz e t dt "-v z e со I Vе(л я \ со -z (")( Wl^z (-)k(l-a), '2k k=l ,2k k=0 ^2k+l |z|—>co , |arg z| <n C) If a and z are real and a finite aumber of terms is used in each series, then error for each series is less in magnitude than the first neglected term and is of the same sign. For an alternative discussion of the error, see 3.9G-9) with p, = a--| and v = t\ . 7.5. Infinite Integrals ,-tj.a-l. e-^'-Sit = Г(а) , R(a)>0 /; -t dt = ^ . / e^t^dt = е21ттаГ(а) , R(a)>0 J n /; e^t'^cLt = (l+i)(n/2)' A) B) C) (O
148 INTEGRALS OF BESSEL FUNCTIONS 7.6 7.6. It is convenient to follow Luke A959) and Luke and Coleman A961). We first record a multiplication formula for the Gaussian hypergeometric func- function. By confluence, we obtain an expansion for the confluent hypergeometric function in series of functions of the same kind. Specialization of a param- parameter leads to an expansion for the confluent function in series of Bessel functions. An expansion for y(a,z) then follows from 7.2C). We have k=0 A) Here it is assumed that the parameters and variables are restricted so that the resulting expressions are meaningful. In particular, the parameters a , fj and у are free save that у must not be a negative odd integer. Let b = p , replace z by z/b and let b—¦>¦» . Then $(a,c;Xz) = Zq fc,(^ зГгСУЮ ^а+к>^1+2к>2> ' B> Equation (l) generalizes a statement of Chaundy (Erdelyi et al., 1953, Vol. I, p. 187) and if a = a , B) is a multiplication theorem due to Erdelyi (Erdelyl et al., 1953, Vol. I, p. 285). If a = с , B) gives an expansion for e^z . A more general expression for the exponential can be derived from (l). Put Ъ = с , replace X by \/a and let a—*•<» . Then Xz _ Z- (-)k(a)k(g)kzk oFq (-Ъ,*У\Л Л(а+к,е+к;у+1+2к;2) . 1 "Jo k!(^+k)k ^ ^ ' J C) 7.6 INCCMPLETE GAMMA FUNCTION AND RELATED FUNCTIONS Set Y+1 = 2a ln B) ^^ use 1-4.1B). Then ,(a,c;X.)-?fe^ I6(z/2) 149 2e' &/ k=l П №№) ^л,0,6.АК?бЫг) , D) where 6 = a-J is arbitrary except that it must not be a negative odd multiple of ¦§", and Rk(a,c,a;X) = 3F2(-|;k^'a|x) E) We take X = 1 and write R^(a,c, 6;l) = Rk(a,c,6) . Some properties of t.he latter are as follows. Rk(a>°>6) = (-)\(c-e.,c,6); Rk(a,a,6) = (-)k . -1a(k+6)Rk(a+l, g+1,6) = -c[kRk.1(a, c,6)-2(k+6)Rk(a,c,6) F) tk + c:)(k+26)Rk+1(a,c,6) = 2(c-2a)(k+6)Rk(a,c,6)+k(k+26-c)Rk_1(a,c,6) . G) + (k+26)Rk+1(a,c,6)] , D)kF-a+i)k ^^(a^a^) = 0 ; 1^,2^6) = (^&) ^ (8) (9)
150 IHTEGRALS OF BESSEL FUNCTIONS (°-2a) (-)kBa-c) H k(a,c,a-i) = _ ? In D), put 6 = o-a-i and use A0). Now let с = a+1 and use 7.1C). Then 7.6 A0) A1) 7.6 Y(a,z)=a-122az*e-*Zr(a-|)Z(-): (k+a-|)Ba-l) (a-l). V ^'k k=0 k.'(a+l)k Iv+a-iC2/2) > J-k+a-2 R(a)>0 A2) Similarly^ 6=0 gives ¦*z jl+2 X Rk(a)lk(z/2)f ' L k=l J Y(a,z) = a-Ve-az]l+2 X Rk(a)lk(z/2) [ » R(a)>0 , A3) ¦where Rk(a)= Rk(a,a+l,0) / \K , o и _, ak(cos ап)ГBа)Г(к-а) "("(, С pF (l-2a,2jk-a+2;i) + ^ /s Гк-aVk-a+l) 2 1 ога±гъ+а.+1 } • A4) 2(k-a)(k-a+l) 2'::а"хГ(к+а+1) The expansions A5) and A9) below are due to Tricomi A954,P. 37-42). *(a,o,z) = T(c)ehZ ^ Ak(a,c,h)zkE0+k_1(-az) , h a 0 , A5) k=0 EU(O = s-*4Bz*) , Eu(-z) = z-*UIuBzi) , A6) INCCMPIETE GAMMA FUNCH?ION AMD RELATED FUNCTIONS 151 where the coefficients Aj^a,c,h) are defined Ъу the generating function X Ak(a,c,h)zk = e-az[l+(h-l)z]-a(l+hz)a-° , |z|< 1 , k=0 and satisfy the recurrence system (k+l)Ak+1 = [A-2Ь)к-Ьс]Ак+ [a(l-2h)-h(h-l)(c+k-l)]Ak_1-ah(h-l)Ali._2 , Ao = 1 , Ax = -he , Аз = |h2c(c+l)+a(|-h) . A7) A8) §(a,o,z) = Г(с)е^ X Bk(K^c/2)(z/2)kE0+li._1(Kz) , К = c/2-a , A9) k=0 Z ^(^0/2}zk = e2Kz(l-z)-a(l+z)a-° , |z|<l , k=0 B0) (k+1)^! = (k+c-l)^.! - 2^.2 , Bo = 1, BL = 0 , Bg = g/2 . B1) In A5), put a = 1 , replace с Ъу a+1 and set h = 0 . Then rn>m 7.2C) , Y(a,z) = r(a)e-Zz^ ? ^(-Dz^VaC2^) , ek(-l) = ? LL , k=0 m=0 R(a)>0 B2)
152 INTEGRALS OF BESSEL FUNCTIONS The combination 7.l(l), 3.9B) and 3.6A) gives ,(.„) - м*^ ? '-&?$??#' W" 7.7 k=0 ¦ ^w**- ? '-'irtfK^w*' ¦ *"»° ¦B5> k=0 k.'Bk+a+l)Bk+a) Alternative expansions follow in a similar manner from 3.6B). The formulas sin tut = ¦—г— 2- ,ъ±а n 2k+5/d Jo R(a)>-1 , B4) I Vcos tdt . <тт/а8)Уг(а/2 „ Bk+i)r^+k) rCf) kT0 r(^+k) 2k+*4 R(a)>0 B5) come from 2.4A) with ц = a--J and v = tj- , respectively. Further ex- expansions follow from 2.4B). 7.7. il Approximati sns, r.nntinued Fractions. Inequalities Most of the material in this section is based on a paper by Luke A958). See also the references quoted there. 7.7 INCOMPLETE GAMMA FUNCTION AND RELATED FUNCTIONS 153 ' У V-Vit - g^ + Rn(z) , Rn(z) = Vz) R(a)>0 , A) where n (-n) (n+a+1) An(z) = T ,k . . . . k z\T- kto (a+1)k^-' 3^1 /-n+k,n+a+l+k,l|.l/z-\ B) V 1+k I ' J ' K ' and B^z) is the к = 0 term in B) whence the 3Fi_ becomes a 2FQ . Also / <,U -Z pZ _ / ¦, (-) e / / ..n, n+a t,. za(a+l) / J0 mid / \n , -z 2n+l = " ( I'A Z 1F1(n+a+l;2n+a+2;z) , (.a+1>2n+l ^j . . (-)We-z(z/2)^ [l+0(l/n)] 2a(a+lJn L J Timi:, for z fixed, lim Rn(z) = 0 . П—»<» Both Ад(г) and Bn(z) satisfy the same recurrence relation. C) D)
154 INTEGRALS OF BESSEL FUNCTIONS 7.7 (n+a+l) (z)=ll+ a+l)Bn+a+2) VlU; |_X az Bn+a)Bn+a+2) VO nzc Bn+a)Bn+a+l) ViW E) We also have Bn+a)B^(z) - nBjz) + nzB^z) = 0 F) Bn+a)A1!1(z)+(n+a)An(z)+nzAI1_1(z)+Z-1aBn+a) |An(z)-Bn(z)j = 0 , G) [zD2 - (z+2n+a)D + n] Bn(z) = (8) The polynomials Bn(z) are known as Bessel polynomials. We have the following orthogonality relations. If С is the path of a circle in the complex plane with center at the origin, then x г ezBn(-2)dz / \n t (-) m- 2i7i J „n+m+a+2 (m-n).'r(m+n+a+2) ' 0 (9) 1 2ni e4("z)Bm(-Z)dz „n+m+a+2 = 0 if m fi n , = (-)V Bn+a+l)r(n+a+l) , if m = n , R(a)>-2 . A0) 7.7 INCCMPIETE GAMMA FUNCTION AND RELATED FUNCTIONS 155 Another representation for the left-hand side of (l) is az"VZ /•-^¦^¦M.».*.,.^ ' R(a)> 0 A1) where n-1 (-n) ,(n+a) ^ -n+l+r,n+a+l+r,l r+2 -1/^ • A2) and Dn(z) is zn times the 3F]_ in A2) with r+1 set to 0 . Thus, Dn(z) is Bn(z) if in the latter we replace a by a-1 . Also q^z) = (-)naz-ae-z rZ(z.t)ntn+a-letdt (a)n Jo / л , -z 2n _ (-) n.'e z (a+ ~-\, ^(n+a^n+a+ljz) ¦+J-'l9n J2n A3) and (z) = (-) (тт/пJе (z/2) Г1+0A/п)-1 2&(a+1Jn-l A4] whence for z fixed, lim Sn(z) = 0 . П—><x, Both Cn(z) and Dn(z) satisfy the recurrence relation E) if a is replaced by a-1 . Also, Dn(z) satisfies F) and (8) with a replaced by a-1 . The relation analogous to G) reads
156 INTEGRALS OF BESSEL FUNCTIONS If a->0 , the left-hand side of (l) becomes e"z and .-.3&!.v> - where Gn(z) Gn(z) = zn2F0(-n,n+l;-l/z) = (z/nFzne\+i(z/2) , Rn(z) = " е^ф/2) Some useful properties of G^z) follow. Gn+l(z) = 2Bn+l)Gn(z)+z2Gn.1(z) , 2Gn(z) = Gn(z) - zG^Cz) , [zD2 - (z+2n)D + n] Gn(z) = 0 7.7 Bn+a-l)C^(z)+(n+a-l)Cn(z)+nzCn_1(z)+z-1aBn+a-l) {cn(z)-Dn(z)} = 0 . A5) A6) A7) A8) i Rn(z) . . j-g^{n?a e-Z(z/2Jn+1 [l+0(l/n)] . A9) B0) B1) B2) 7.7 INCOMPLETE GAMMA FUNCTION AND RELATED FUNCTIONS We now consider rational approximations for Г(а,z) . 157 16 Z1-aezr(a,z) = z1-V/' t'-V*» - ^fi. + Tn(z) , Jz t^z) where the path of integration is described in 7.1B). Here B3) B4) and Fn(z) is the 2F2 ln ^24:) with к = 0 whence the 2F2 becomes a 1F1 , a generalized Laguerre polynomial. Also 16 Un(z) = -(l-aJz^V / (t-z)^ </ z = -(l-a)n.'t(n+l,a;z) ,a-n-2e-tdt ,.„-п-1 = -A-а)п.'г-п-х2Р0(п+1,п+2-а;-1/2) . B5) Define К = n+l-a/2 . If a is bounded, |z| = |KIP , 0 s p<l/3 , and ¦l is bounded away from zero, then Tn(z). 1-a z-4(Kz)' 2ttz- e ГA-а) , |K|-»od , |arg(Kz)|<n , lim Tn(z) = 0 . П-»а> B6)
158 INTEGRALS OF BESSEL FUNCTIONS Both En(z) and Fn(z) obey the same recurrence formula. (n+2-a)En+1(z) = (z+2n+2-a)En(z) - пЕд.^г) We also have zFn(z) = nFn(z) - nFn_i(z) , zE^(z) = (z+n+l-a^z) - nEn_1(z) - zFn(z) , [zD2 + (z+2-z)D - n] Fn(z) = A second rational approximation for Г(а,z) follows from ^7f15^vt-=|R+Vn(zbVn(z)=l wn(z) (O ' where Mn(z) = -z X n-1 (-n) k+1 k-Q (k+l).'(l-a+k) 7.7 B7) B8) B9) C0) C1) ^ ^ V2+k,2+k-a| J s ' and Nn(z) is the 2F2 in C2) with k+1 = 0 whence the 2F2 reduces to a -j^F-l . Nn(z) is Fn(z) of B3) with a replaced Ъу a+1 , and so Nn(z) also satisfies B7), B8) and C0) with a replaced Ъу a+1 . Again M^z) satisfies B7) with a replaced Ъу a+1 , while Мц(г) and Nn(z) can replace Еп(г) and Fn(z) , respectively, in B9) as it stands. Now 7.7 INCOMPLETE GAMMA FUNCTION AND RELATED FUNCTIONS 159 i6 ,. / v 1-a z / . Wn(z) = z e / (t- Jz %n.a-n-l -t,, z) t e dt = n.'zi|((n+l;a+l;z) = n.'z" 2F0(n+l,n+l-a;-l/z) C3) Define Kx = n+(l-a)/2 . Again if a is Ъounded, |z| = |KIP , 0 s. p < l/3 and z is Ъошк)^ away from the origin, then 1-a z-4(K2_zJ Vn(z)~ nZ r^_&) , IK^I-x», |arg(K1z)l<TT lim Vn(z) = 0 . C4) Continued fraction developments are as follows. whore -a -z az e [V-Vdt = i ^0 1 + u-j_z 1 + V-j^Z 1 + UgZ 1 + v2z 1 + . . , R(a)>0 , C5) (k+a-l) > vv = -k k Bk+a-2)Bk+a-l) ' к Bk+a-l)Bk+a) C6)
160 INTEGRALS OF BESSEL FUNCTIONS 7.7 If a = 0 , C5) is a continued fraction development for e"z . The odd part of C5) is 1 - u, z 1+{\1j+Vj)z - VjUgZ l+(ug+v2)z - v2u3z'1 l+(u3+v3)z - C7) and the n-th convergent of this expansion is An(z)/Btl(z) , see (l). The even part of C5) is 1+U-j^Z - U-jV-j^ 1+(V1+U2)Z " UgVVjZ l+(v2+u3)z - and its n-th convergent is Cn(z)/Dn(z) , see (ll). 16 zl-aez Г ta-le-tdt = ^_ Jz z + A-a) 1 + 1 z + B-a) 1+2 z + E-a) 1 + 3 z + . C8) . . C9) 7.7 INCOMPLETE GAMMA. FUNCTION AND RELATED FUNCTIONS 161 See B3) for conditions of validity. The odd part of C9) is 1- (±±1 z+B-a) - B-a) z+D-a) - 2E-a) z+F-a) - 5D-a) z+(8-a) - . D0) and the n-th convergent of D0) is En(z)/Fn(z) , see B3). The even part of C9) is z+(l-a) - A-a) z+C-a) - 2B-a) z+E-a) - 5E-a) z+G-a) - . D1) and its n-th convergent is Mn(z)/Nn(z) , see C1). Combination of the representations (l) and (ll) leads to some useful inequalities; likewise, for the union of B3) and C1). DnW «/o eudt \ -ii—- , x>0 , a>0 , D2) where > or < sign is chosen according as n is odd or even, respectively. Thus, for n = 1 , (a+l)(a+2)-x -& -: (a+l)(a+2+x) <ax e nx ¦x /> ta-let Jn a+1 dt<i7Tz: > x>° > a>° > («) a+l+x
162 INTEGRALS OF BESSEL FUNCTIONS — <e'X <-i- , x>0 , 2+x x+1 i^?<x-1e"x2 /1Vdt< 1 5+Kx2 J П 2х2+Ъ , x>0 In D3)-D5), we have equality if x = = 0 . \(x) sl-aex /> ta-l Ux E (x) "V^t < -Vt * 0<х<ш , a<l FnW 7.7 D4) D5) D6) 7.8 INCOMPLETE GAMMA FUNCTION AND RELATED FUNCTIONS x2 f e"t2dt :?^тт[(х2+4/тт)*-х] , <Jx x s 0 i [(xP^/P.x] < exp(xP) rexp(-tp)dt S ^[(x^c;1I7^] , "X = [r(l+p _1n1p/(p-D , p>l , 0 <. x < Using 7.1B) with 6 = 0, E2) can Ъе transformed into 163 E1) E2) Equality obtains if x-*«>. If n = l, i[(X+2)VP.xl/P] s exr(p-l^x) fi pOp[(x+c-l)l/P.xl/P] , x < x1"aex F t^^^dt < ^t^ , 0<x<co , a<l , x+l-a Jx x+2-a x x2 x <ехГ 2x2+l ^x 2 v2+1 dt < -i-Ii , 0<xO , xBx2+3) D7) D8) p> 0 , 0 <. x < od , and if p—*•¦» , i ln(l+2/x) <. eX / t e Jx E3) dt & ЗлA+1/х) , 0<х<ш . E4) CO -1- < eX / t^e^dt < ,X^. , 0<x<oo x+1 Jx x(x+2) D9) Equation E0) is due to Kcmatu A955), E1) to Pollak A956), and E2)- E4) to Gautschi A959a). We also have the following inequalities. Q A CO Q |[(x2+2)i-x] < ex / e"* dt < (x^lp-x , 0 s x < E0) 7.8. The Exponential Integral i6 Ex(z) = -Ei(-z) = / е"Ч" ^-dt = T@,z) = e"zy(l,l;z) , larg z|<tt A)
164 INTEGRALS OP BESSEL FUNCTIONS 7.8 For the path of integration, see the discussion surrounding 2.1(9) and 7.1B). Ei(x) = - (Г et = (Г e*f 4t , x>0 J-x "-<» B) li(x) = Ei(ln x) = ф (In t^dt , x>l ^0 C) In B) and C) the integral is a Cauchy principle value. f (l-e^t^dt = lim {a-1za-Y(a,z)} ^0 a—»0 D) -Ei(-z) + (Y+ln z) = / (l-e^"^ Уо чк к - Z ^r- = e"z Z (i+l+...+i/k)zk/k: . E) k=l K-K k=l Ei(z) - (Y+ln z) = / (e1-!^! J0 ¦dt = Z ^— = -ez Z (-)k(l+?+---+l/k)zk/k.1 k=l kik k=1 Ei(z) = Ei(-ze±lTT) J in . F) G) 7.8 INCOMPLETE GAMMA FUNCTION AND RELATED FUNCTIONS Ei(z) = \ [Bi(-zelTT) + Ei(-ze-lTT)] E1(z)^z-Ie-Z 21 i'^! , |z|^od , |arg z|< 3n/2 k=0 z 165 (8) (9) See 7.4B) with a = 0 . The combination of 7.6A2) and D) produces J^l-e-Ъt-1dtЧпz)*e-^(z/2)+(пz)*i^ki2l_ e-*zIk+3/2(z/2) , (l0) and also /o'(et.l)t-4t.(n.)^(^)-(m,4| {rfelfj e-Hk+3/2(z/2 ).(!!) Similarly, 7.6A3) and D) yield „z ш / (l-e^^^dt =2 Y. fkezIk(z/2) WO k=l = 2[l-e-*ZI0(z/2)]+4 X gk+2e"*2Ik+2(z/2) , A2) k=0 where
166 INTEGRALS OF BESSEL FUNCTIONS = ? fk - 1 , f0 = 0 , f-L = 2 (k+l)fk+1 = 2fk + (k-l)^.! + 4 , f2k = 4A+1/3+. . .+l/2k-l) , 7.8 f2k+l - f2k + gf+T ' f2k+2 f2k+l + 2^+1 Another expression for the left-hand side of A2) can Ъе deduced from 7.6B4,25). See 7.9(lO,ll). We now derive another expansion for the exponential integral as a series of Bessel functions. First, we show that A3) aru(O 3Ky(z) i_ = Bttz) [eZEi(-2z) ; e"ZEiBz)] Эи „*t? = + Bz/-n)ezEi(-2z) A4) A5) To prove A4), multiply both sides of 5.2(9) Ъу 2i>-l , differentiate partially with respect to и , set и = \ and use 5.2A0). Equation A5) then readily follows from 1.4.l(ll). For an alternative proof of A4) and A5), see Oberhettinger A958). Similarly, from 9.5A5,16), (nz/2)" ,^M') аи = -T](Y+ln z/2) + ? e~z (EiBz)-2Ei(z)| - bZ {Ei(-2z)-2Ei(-z)} 7] = 1 if v = ^ ; 7] = 0 if и = - A6) 7.8 INCOMPLETE GAMMA FUNCTION AMD RELATED FUNCTIONS 167 Now use 1.4.2G) to evaluate the left-hand side of A4). Then PZ i / t-1(l-e"t)dt = 2e-2ZC0Sh z/2 + zh-^z) - 2hg(z) , Jo A7) z Г t(et-l)dt = -2e-^zeosh z/2 + zh^z) + 2h2(z) , A8) Jo where k=0 к.'Bк+3-2т)г , m = 1,2 A9) Of all the expansions in series of Bessel functions for the exponential integral given, the latter converges the best. /.Z If 7.6B3) is used to form / ta(l-e"t )dt , and the limit of this ^0 as a->0 is evaluated using L'Hospital's theorem, then with the aid of A4), we get the duplication formula n2z _z / f1(l-e"t)dt - / t'1(l-e"t)dt = e"zsinh "V2 ) /4 (k+l).'(k+l)Bk+l) Х2к+3/2^; k=0 i(m^ f (-)k(^5)C/2)k o.Zt ^^"^ kt0 (k+l).'(k+l)Bk+3) ^+5/2lZ; • B0) Rational approximations, continued fractions and inequalities follow from the material in 7.7.
168 INTEGRALS OF BESSEL FUNCTIONS 7.9 The repeated integral <x>  B1) occurs in a wide variety of applied ргоЪ1ешй. Blanch (see National Bureau of Standards A954Ъ), р. 61) developed four terms of an asymptotic ex- expansion for lar.ge n which is uniform in x ? 0 . She also gives the re- remainder term. Her result has Ъееп generalized Ъу Gautschi A959Ъ) who proves that ^w^IAt^s^H ' (х+п)[_к=0 (x+nJk fk+1(x) = (n-2kx)fk(x)+x(n+x)fk(x) , f0 = 1 , °* - a^) * 4i+ ~i) B2) B3) B4) where the c^'s and Pj^'s are lower and upper Ъоип<3.8, respectively, of xFf (x)/(x+nJm in the interval x ? 0 . The first eight polynomials fk(x) and the corresponding values of ak and gk are listed in the reference cited. There hk(u) = п"т'к(х) , u = x/n . 7.9. Sine and Cosine Integrals si(z) = Tt^sintdt = Bi)-1[K1(Ze^)-E1(ze-i1")] = Bi)-1[Ei(-ze-4iTT)-Ei(-ZeiliT)] . (D 7.9 INCOMPLETE GAMMA FUNCTION AND RELATED FUNCTIONS 169 / 11 t^cos tut = -i[E1(ze2iTT)+E1(zelTT)] = i[Ei(-zeiliT)+Ei(-Ze-5liT)] Si(z) = / t" sin tut = tt/2 + si(z) . B) C) Ci(z)-(Y+ln z) = - / t'1(l-cos t)dt D) S1(Z) = JQ Bk+l).'Bk+l) ' E) F) Ci(z)+i si(z) = f eXtt-X<& ~-z'h1* |Z Jc= [k=0 (-)KBk^l).' „2k+l + 1 Y (-) (^); \. } |Z|_»oo , |arg z| <тт k=0 z^k G)
170 INTEGRALS OF BESSEL FUNCTIONS Jo "^dt = Y+ln z-d(z)+iSi(z) = (ttz ¦where fv is given Ъу 7.8A3). / Jn V2zV k=0 C/2^k 5 i °° (i)kDk+1) t'V-eoe t)dt = i(|rJ 2! ? k=l X {t(w)-tdW(^)-t(i)} J2k+i(z) " - (z/4)kJk(z/2) ^(а) = ?) k.'Bk+3-2mJ , m = 1,2 7.9 )^[^^Wl/8))'(e) Jo k=l A0) (П) fZt-l(l-e-")dt - 2e-^=os z/2 + e"^^ {iZgl(z)-2g2(z)} , C2) A3) Of all the e^sions given for the sine and cosine integrals in series of Bessel functions, A2) converges the best. 7.9 where Dk+3)(i) A(Z) = JQ (k+l)!(k+l)Bk+l) J2k+3/2(Z) « Dк+5)C/2)ъ B(Z) " Jn (k+l)!(k+l)Bk+S) J2k+5/2 (Z) • k=0 Results analogous to 7.8A4-16) are as follows. ajw(z)| ajw(z) Эи ^ = (ttz/2)'2 [sin z CiBz)-cos z SiBz)] 1 = (ttz/2) [cos z CiBz)+sin z SiBz)] 8Yv(z) SJy(z) v=5- Эи i - ttJi.(z) V=-2 2 Эи dJu(z) u=_i Эи U=5 - ttJ_\{z) ATZ/2)i^(o Эи 1 = (y+ln z/2)+cos z[ciBz)-2Ci(z)] + sin z [SiBz) - 2Si(z)] 171 INCOMPLETE GAMMA FUMCTION AND RELATED FUNCTIONS i SiBz) - Si(z) = i sin 2z + i^— >2 |sin zA(z)+cos zB(z)^ , A4) CiBz)-Ci(z) = In 2-sin2z+irH5^2 ^cos zA(z)-sin zB(z)) , A5) A6) A7) A8) A9) B0) B1) B2)
172 i ЭН (z) INTEStALS OF HESSEL FUNCTIONS v=_i = - sin г [ciBz)-2Ci(z)] + cos z [siBz)-2Si(z)] Rational approximations and continued fractions can Ъе deduced from 7.7. Some iterated sine and cosine integrals have Ъееп studied and tabu- tabulated Ъу Halle'n A947, 1955) and Bouwkamp A948),see 7.13. 7.10. Error Functions 7.10 B3) Erf(z) = ( e"* dt = Ыт>>^) = z$(| , | J-z2) = ze-z2§(l,3/2;z2) . (l) Erfc(z) = f e"* dt = in2 - Erf(z) = 4r(i,z2) J7. = Kz2*(i,i^2) The notation erf(z) = B/тт2)ЕгГ (z ) is often used. Erfi(z) = -i Erf(iz) = / e° dt iz) = f B) C) Erfc(z) = Btt)'2 / Ki.(t)dt , |arg z| ? тт/4 . и z D) 7.10 INCOMPLETE GAMMA FUNCTION AMD RELATED FUNCTIONS 173 i 2 2 n°° -at11 Erfc(az) = nae"a z / e dt , larg a|<n/2 , |arg z| <. n/4 J 0 t^+a^ E) 00 , -.к 2k+l 2 °° 2k+l kto k-'^2k+1) 2k+l t, C/2), k=0 '¦-'^•'k 2 °° / чк 2к+1 J«i(O-Z ^^T-e"" Z^^ Гп k!Bk+l) k=0 k=0 W^O (e) G) , л , Z2 - (-)k(i)k Erfc(z)~^e Z X k=0 z' 2k+l |z|—»-oo , jarg z|<3tt/4 (8) Erfi(z)~"=b z2 f (^ i kto z^+l " 2 |z|—>oo ^ -5-n/4<arg z<tt/4 (9) For the error term, see the discussion surrounding 7.4B). Erf(z) = -z X ' ' k k=0 (-)k€ke-^2Ik(z2/2) 4k2-l e = 1 ; efc = 2 , k>0 A0) &" Erfi(z) = -z 00 „ P-iz x / 2 у к4 -Z2_ , ^ вке-** I^/j,} k=0 4k2-! A1)
174 INTE(BALS OF BESSEL FUNCTIONS 7.10 Erf (z sin 6 ) = iz "Z. к у , ГвШBк*1)8 . Binigk-ll9L-b2T r,2/P^ . A2) — k I 2k+l 2k-1 [ K :=0 L J (_чк_ _-z% ,„2 Erf(z) = -z X о k=0 16k2-! \к,„,_., \_-z^_ ^ 2\ *iz 21 —(«икай) l-fv~ ht^ ^ i (-Л^>" W' » . (B) k=0 In A1)-A3), ek is given Ъу A0). Erf(z) = i(nz)*e-z2 Z ek(-l)Ak+iBz) . k=0 l l 2 °° Erf(z) = пге-52 X Ik+i(z2/2) Using k=0 i °° Гк/г! 2 Erf(z) = (tt/2J X ("Г Ik.i(^ ) k=l l °° fk/2l о Erfi(z)= (tt/2)' Z ("Г' JIk+i(Z ) k=0 D) and 8.8A) with a = 1 and v = b A4) A5) A6) A7) 7.10 INCOMPLETE GAMMA FUNCTION AND RELATED FUNCTIONS 175 Brfc(z) = h у e-z2cOshB^1)h/2coshBk+lW4 , fl,^z2> ^~jl k=0 coshBk+l)h/2 BttJ h у е Btt)* k=0 -z cosh kh cosh kh/2 . he'Z + gl,^z ^ ?Btt)* Btt) cosh kh |2 ('о„\2 larg z| й tt/4 , A8) where f,^2) ^k /2, -2 X (-fgk(z > ' 8X iLz ) =  Z gk(z ) k=l ' k=l gk(z2) = * Kiqi(Z2>K1;lqe(z2)] , q1 = p+i/2 , q^ = p-i/2 , p = 2iTk/h , A9) ¦w*-/ 00 -z2cosh t cos qt cosh t dt ,-i/2a2 sin e+ I- cos e+ -z- 4q 32^^ B4-z4)sine|j [l+0(l/q3)] , 9 = q In S3 - тт/4 - 13/l2q ez B0)
176 INTEGRALS OF EESSEL FUNCTIONS We also have where -a2z2 - -[Bk+l)hz/2]2 Erfc(az) = ahe± 2 2 + к tt2 k=o [Bк+1)ь/2] +a^ ahe^ * e<^f b^ff_ + . т— 2. -— 1— + s > 2 2 tt2 k=O (kh) +a 2атт larg z| <; тт/4 , larg a|< тг/2 , E = -2 X (")\ > s =  Z &k , k=l k=l -a2,2 Gk = a z nu ~^F~ Jo z2 2 e"z cos yt , _ 2тгк ? 2 dt ' У " ~ ' t +a 7.10 B1) B2) B3) 7.10 INCOMPLETE GAMMA FUNCTION AND RELATED FUNCTIONS 177 For further results on the computation of error functions and related functions, see Eosser A948) and Salzer A951). For rational approxima- approximations, continued fractions and inequalities, see 7.7. Salzer A956) tabulated complex zeros of the error function. Luke A961Ъ) used 7.7A,11) with a = -| to generate polynomials rrn(y) such that if yaa is the smallest zero of rrn(y) , then lim yon = p , the n—>°o ftZ radius of univalence of the function exp(z2) / exp(-t2)dt . The repre- J0 sentations in 7.7 are also useful to compute zeros of the incomplete gamma function. For repeated integrals of the error function, we follow Hartree A936) and write i°erfc(z) = 2TT~2Erfc z = 2n"i / e"* dt , CO inerfc(z) = i inerfc(t)dt B6) Gk = i [eayErfc(az+y/2z)+e'ayErfc(az-y/2z)J , B4) A partial list of results follows. and with a and z fixed, V )|A-ay. -A-c^W 2.24 у -4а z B5) Equations B1)-B5) follow from E) and the work of Fettis A955) and Luke A956). In the latter reference, the formula for Gjj. corresponding to B5) contains a typographical error. °° / чП inerfc(z) = 2тг~2 J, n: -Z} e"* dt inerfc@) = i 2пГ(п/2+1) (l?+2zD-2n) [inerfc(z)j = 0 B7) B8) B9)
178 INTEGRALS OF HESSEL FUNCTIONS i-(inerfc(z)) = -i^WcCz) , n>0 dz I J 7.10 C0) inerfc(z) = - | i^^rfcCz) + ^ in-2erfc(z) . C1) An effective method for the computation of inerfe(z) is to use C1) in the backward direction. See Gautschi A961Ъ). ,k к inerfc(z) = X ^^ k=0 2п"кк.'гГ1+ SdE") 2 e"z /• n+1 1 2\ Vr(»+i) Ч-т-'^О Ч2 ' <§ «.! -2) Д-irrSti^ -^( 2 ^ -7.2 --W-Jgsi^oC^.I—"О |z|-»<» , larg z| <3tt/4 C2) inerfc(z) = Bn-±TT)-2HanB2z) , where Hhj^z) is given in British Association for the Advancement of Science A951). C3) C4) i_2 -ipd -zBn)' inerfc(z) =e e 2nr(|+l) [l+0(n)l , z bounded, n—>&> ¦ C5) 7.11 INCOMPLETE GAMMA FUNCTION AND RELATED FUNCTIONS 179 7.11. Fresnel Integrals C(z) = i / J_i(t)dt = Bn)'? / t'2cos tdt; C(^ttz ) = / cos ^rrt2dt . (l) Jo 2 «o "o nz l rz l rz S(z) = | / Jr(t)dt = Bn)"^ / f^sin tdt; S(|nz2) = / sin ^rrt2dt . B) Jo 2 Jo ^o C(z)+iS(z) = BTT)'^nY(i, ze"*117) 2Bn)"*e^iTTErf(z2e-^iTT) . C(z) = BnL[e-4f(z^)>Erf(Zi^n)] S(z) = iBn)-*[e-^iTrErf(z*e^iiT)-e^1TErf(z*e-bin)j C(z) = Bz/n)^ Z T^fe k=0 Bk).'Dk+l) S(z) = Bz/ttJ Y. ,4f Ы к 2к+1 ^¦0 Bk+l)!Dk-K5) C) D) E) F) G) l . г " / чк 2к „. °° f -,k 2k+l "I C(z)+iS(z) = Bz/n)Vz X Щ- - f Y. ^l" ¦ (8) Lk=O C/2Jk 3 k=0 E/2Jk J
180 INTEGRALS OF BESSEL FUNCTIONS 7.11 C(z)~i-BTfz)"^ ? cos z II. ^ (")k(V2Jk - sin z 2. - ("f(V2). '2k k=0 z' ,2k+l k=0 z1 ,2k |z|—>» , |arg z|<tt (9) S(z)~i-BTfz)~^ U sin z X — + cos z (-)k(l/2Jk- k=0 2k+l k=0 z' ,2k |z|—»<» , |arg z| <тг C(z)+iS(z) = -Bz/rrJe ^z ^ «A<a/2> fc=0 4k2-! A0) A1) C(z>iS(z) = -Bz/rrJeiZ[2: ^|1 Lk=o i6k^-i .JoJO - (Sk+DJpb.^2) 41 Z 2k+lv кГ0 Dk+l)Dk+3) ]' so= 1 , ek =2 , k>0 . C(z) = Z J2k+i(z) k=0 S(z) - Z Jp>+3/p(z) k=0 2к+3/2^ A2) A3) A4) Further representations follow from C) and the material in 7.10. For rational approximations and continued fractions, see 7.7. 7.11 INCOMPLETE GAMMA FUNCTION AND BELATED FUNCTIONS 181 The so-called "rocket functions", see Rosser, Newton and Gross A947), are related to Fresnel integrals since л°° l rc(z) = rr(z) + i ri(z) = ieiz / t'^e'^dt J z (l+i)(TT/2Lelz - BTr)iieiz[c(z)-iS(z)] . A5) =(z) = Btt)*RcQ2z/tt} 2) ; Rc(z) = ^ f 1 - (I,it2)e-^z2t2 dt , 1+z4 Rc(z) = Rr(z) + iRi(z) ; R(z2)>0 (IB) Another function is ic(z) = ir(z) + i ii(z) = / trc(t)dt = / t-x Jo A7) ic(z) = Tr(i+i)[c(z)+is(z)]-2iz г^Сг^/г!12) A8) An expansion in series of Bessel functions for ic(z) follows, for example, from (ll). For ic(z) , we have ic(z) = Tr(l+i)[c(z)+iS(z)]+4Z akJ2k+2(z)i "^ t)kJ2k+l(z) > k=0 k=0 2k+l 2k = ? (гт+i)-1 , ък = X (-)VD'1 m=0 A9) m=0
182 INTEGRALS OF BESSEL FUNCTIONS 7.12 For additional references to rocket functions and related items, see Eosser A948), Eankin A949), Rosser and Walker A953) and Roberts and Calctwell A959). Each source contains tables, see 7.13. 7.12. Indefinite and Definite Integrals Associated with the Incomplete Gamma Function and Related Function^ (^¦^J'^<.?V) ¦ R(a)>0 , Е(Ъ) ? 0 , R(ua+M,+l)>0 Jo A) R(a)>0 , Е(Ъ) й 0 , R(ua+u)>0 B) I Z И.+1 t^i(-t>tU)dt " Z ^»(-M>)-^^<^'^ ' Е(Ъ) ? 0 , E(p.)>-1 > E(»)>0 nZ / [Ci(t)+i si(t)]dt = z[Ci(z)+i si(z)J-i(l-< Jo eiz) • I Erf(t)dt = z Erf(z) - i(l-e'Z ) C) D) E) 7.12 INCOMPLETE GAMMA FUNCTION AND RELATED FUNCTIONS 183 / [c(t)+iS(t)]dt = (z-i/2)[c(z)+iS(z)]+i(z/2rrJeiz Jo F) re-(at2+2tt+c)dt = а4е(.Ъ2-*с)/*^Х+в.-Щ>)-Ж(э.-Ъ)] , G) J 0 Г e-(at2^t+c)dt m а-^^-ас)/^^^-^) } R(a)>0 ; R(a) = 0 , Е(Ъ)> О f e'at cos 2bt dt = |(тг/аLе"Ъ /а , R(a)>0 . Jo / e'at sin 2bt dt = &'^e~b /^fi(аъ) , R(a)> 0 J0 Г e-a2t2-b2/t2dt = Ba)-ire2a1:)Erf(az+Vz)+e-2a1:)Erf(az-Vz) i i 2аЪл1_^ -2аЪ 1 .,.2, . - fie -Kfn^e I , R(b ) ? 0 /; ra2t2-b2/t2dt = ^Bа)-1е-2аЪ ^ E(a2)>Q ^ е(ъ2)>0 (8) О) A0) A1) A2) Jo 2^2 >,e-a^dt _ Ti0, f E(a2)> Q } H(D)> ^ _ A3)
184 INTEGRALS OF EESSEL FUNCTIONS 7.12 I a-pz е"В*у(а,глLЬ = - ^-— Y(a,bz) + if—") v(a, [р+Ъ] z) 0 P рЧр+Ъ/ ч К(р)>0 , Е(а)>0 Г e-ptEi(-btU)dt = i [yA-v)-1b р7ъ1+ - Ei(-pz) Jo PL J P L^Ei(-bZu) + ^ (\-\ p pjo z v -1 -pt, -bt ., \,, e r (e -l)dt , A4) E(p)>0 , Е(Ъ)>0 , E(u)>0 . 00 / vk. Ге-^Е1(-Ъ^ = i ГуA-р)-Лд P>1+ 1 Z ^^TT Jo pL J Pk=ik.'(p7b *1 'A)k E(p)>0 , Е(Ъ)>0 , 0<Е(и)<1 /; /; e"ptEi(bt)dt = - - 1п(р/Ъ-1) , Е(р)>Ъ>0 _ 00 / e"I)tCi(t)dt = -(гр)^^) , E(p)>0 ^0 A5) A6) e-PtEi(-bt)dt = - i 1пA+р/ъ) > R(p)> ° j larg ЪКп . A7) P A8) A9) 7.12 INCOMPLETE GAMMA FUNCTION AND RELATED FUNCTIONS 185 / e"ptsi(t)dt = -(arc tan p)/p , E(p)> 0 ^0 B0) X >2 e"PtErf(t)dt = ?!L_ Erfc(p/2) , E(p)> 0 . 0 P B1) / e-PtErfcOOdt = Ei A-еЬ ) + e^_ Ег^р/г) , E(p) a 0 . Jo 2p p B2) f I'D -t sinh.8 [c(t)+iS(t)]dt = (csch 2e)(e2e+ie-2e) , E(sinh e)> 0 . B3) f e-PVf^t^dt = - 2-H Erf(bz)* + i(^^JErf fZ (Ъ+Р) V . B4) /. i Л , -ц 4i e-ptKrf(btJdt = 5-(rJ-) , E(p)>0 , Е(Ъ) й 0 . q dp \ D+p У B5) /; e-ptKrfc(b/tJdt = g е'2(ЪрJ , E(p)>0 , Е(Ъ) ^ 0 . B6) X .-pt dt 0 (t+z J = 2pepzErfc(pzJ , E(p)>0 , z ? 0 , I arg z |< ТГ B7) I e-pt i. i_ -I dt = 2(n/zJep Erfc(pzJ , E(p)>0 , z ^ 0 , larg z|< тт . B8) 0 t?(t+z)
186 INTEGRALS OF EESSEL FUNCTIONS 7.12 7.13 INCOMPLETE GAMMA FUNCTION AND RELATED FUNCTIONS 187 f iSL^l dt = ttB/zJ [{|-C(pz)] cos pz + (i-S(pz)} sin pzl Jo t2+z2 Ц. J I J R(p)>0 , z f 0 , |arg z|<n/2 Г f2e"pt dt = (tt/z)B/z)* r{i-S(pz)} cos pz- (i-C(pz)} sin pzl Jo t2+z2 L J B9) R(p)>0 , z f 0 , larg z|<tt/2 C0) - fctt (- [pze-*111 }2)j , R(P2)> 0 , z { 0 . C1) The latter has been studied and tabulated by Goodwin and Staton A948). See also Ritchie A950) and Erde'lyi A950). In Ritchie, the term involving Ei(x2) in f(x) should be negative. Г sinxt dt = Ba)-lr eaxEi(-aJc)+e-aXEi(ax)] Jo a2+t2 x>0 , a ? 0 , larg al< n/2 C2) Г * cos rt dt = 4 ГеахЕ1(-ах)+е-ахЕ1(ахI Jo a2+t2 x>0 , a ? 0 , larg a| <n/2 C3) For a list of indefinite integrals which are expressible in terms of the exponential integral, see Corrington A961). i 7.13. Description of Mathematical Tables In addition to the following, see Jahnke and Emde A945), Jahnke, Emde and Losch (i960) and National Bureau of Standards A961, Chs. 5,7). See also the remarks in 1.1. Exponential Integrals for Real Argument Akademiia. Nauk, SSSR A954a): Ei(x) , Ex(x) , x = 0@.0001I.3@.001) 3@.0005I0AI5 , 7d. British Association for the Advancement of Science A951): Ei(x) - In x , -[Ei(x)+ln x] , x = 0@.1M , lid. Ei(x) , x = 5@.1I5 , 10-lls. Ex(x) , x = 5@.1I5 , 13-14d. Harris A957): E1(x) , exE]_(x) , Ei(x) , e'xEi(x) , x = l(lL@.4) 8AM0 , 18s or 19d. Karpov and Razumovskii A956): li(x) , x = 0@.0001 J.5@. 001 J0@. 01) 200@.1M00AI0000A0J5000 , 7s. li(x) - In |l-x| , x = 0.95 @.0001I.05 , 6d. National Bureau of Standards A940): Vol. I, Ei(x) , Ex(x) , x = 0@.0001) 2@.1I0 , 9d. Vol. II, Ei(x) , Ex(x) , x t= 0@.001I0@.1I5 , 7-lls. Exponential Integrals for Complex Argument (see also sine and cosine integrals) Hershey A959): Ei(z) , z = x+iy , x = -20AJ0 , у = 0AJ0 , 13s. Also approximations to 13s of the coefficients of two polynomials of degree fourteen whose quotient gives ze"zEi(z) to within a maximum relative error in the absolute value of 2.2 x 10 . Approximation is valid over the left half plane outside the unit circle. Mashiko CO A953): Let l(z) = Г t^e^dt = С (g)-iS (g), where z = §e z for 0 <. I <. 5 and z = TT1ela for T) ? 0.2 . Put l(TT1eia) = z-VzAa(Tl) exp (i§a(Tl)} . Ca(|) + In g , Sa(|) , | = 0@.05M , a = 0°BoN0°(lo)90° , 6d. Aa(T]) to 6d and §a(T]) to 5d for T] = 0@.01H.2 and a as above. ia
188 INTEGRALS OF EESSEL FUNCTIONS 7.13 National Bureau of Standards A958a): All tables to 6d. z = x+iy . E-l(z) + Ш z ; x,y = 0@.02I ; -x,y = 0@.l)l . Ех(г) ; x = 0@.02L, у = 0@.02K@.05I0 ; x,y = 0(lJ0 ; -x,y = 0@.1K.1 ; -x = 0@.5L.5 , у = 0@.1L@.5I0 ; -x = 4.5@.5I0 , у = 0@.5I0 ; -x,y = 0AJ0 . exE!(z) ; x = 4@.l)l0 , у = 0@.5I0. Sine and Cosine Integrals and Iterated Sine and Cosine Integrals (see also exponential integrals for complex argument) Akademiia Nauk, SSSR(l954b): Si(x) , Ci(x) , x «= 0@.0001J@.001I0 @.005I00 , 7d. Ci(x) - Ln x , x = 0@.0001H.0099 , 7d. Bouwkamp A948): E(x) =f^f1(l-e-±t) , Ex(x) =/Q tE(t)dt , x = 0@.2J0 , 6d. British Association for the Advancement of Science A951): Si(x) , Ci(x) - 1л x , x = 0@.1M , lid. Gerbes, Reynolds, Hoes and Drane A958): S(x) = 2 [si(x)-x(l-cos x)] and its first eleven derivatives, x - 0°(l°I8OOO° , 6d. nx Px Hallen A947): Let L(x) *= / t-1(l-e-it)dt . L1;L(x) - / t-1L(t)dt , J0 0 Px x = 0@.2J8 , 5d. Lg-^x) = / telt[LBt)-L(t)Jdt , x = 0@.2I4 , J0 5d. Hallen A955): Let L(x) = / t-1(l-e-lt)dt . L01(x) = / t-1L(t)dt , J0 J0 x = 0@.01H.2 , 6d. Li;L(x) = f f 1eltL(t)dt , L001(x) = fXt-1LO1(t)dt , L011(x) = /lXt-1L11(t)dt , L101(x) = /lXt-1eitL01(t)dt , Lm(x) = />Xt-1e-ltL11(t)dt , Jo Jo x = 0@.01H.2@.2I4 , 6s or 6d. 7.13 INCCMPLEJTE GAMMA FUNCTION AND RELATED FUNCTIONS 189 National Bureau of Standards A940): Vol. I, Si(x) , Ci(x) , x = 0@.0001J@.1I0 , 9d. Vol. II, Si(x) , Ci(x), x = 0@.001I0@.1L0 , lOd. National Bureau of Standards A954a): Si(x) , Ci(x) , x = 10@.01I00 , lOd. Tai A951): Y + Ш x - Ci(x) , x = 0@.001I0@.01M0 , 6d. Generalized Sine, Cosine and Exponential Integrals Bleick A953): Let Sia(x,y) = / (t2+y2)-Lt sin tdt , Cia(x,y) = Jo fix л x+iy / (t2+y2) cos tdt , Si (x+iy) = / fl-sin tdt , Ci(x+iy) = "со +iy лх+iy / t -'-cos tdt . For x, у = 0@.1K.1 , the origin excluded, Joo+iy tables of the above integrals are given to 12d though only 10d are guaranteed. Harvard University Computation laboratory A949a): Let u = (t2+a2 )~Z . nx „x S(a,x) = / u'-'-sin udt , C(a,x) = / u(l-cos u)dt , Ss(a,x) = J0 ^0 /x nx u'-'-sin u sin tdt , Sc(a,x) = / u'-'-sin u cos tdt , Cs(a,x) = О J0 nx nx / u'-'-cos u sin tdt , Cc(a,x) = / u^cos u(l-cos t)dt , are tabu- J0 J0 lated to 6d. Tabulation extends over 0 s a s 25 , о s x s 25 .
190 INTEGRALS OF EESSEL FUNCTIONS 7.13 7.13 INCOMPLETE GAMMA FUNCTION AND RELATED FUNCTIONS 191 Harvard University Computation Laboratory A949b): Let u = (t +a J . nX ЛХ E(a,x) = / u(l-e-u)dt , Es(a,x) = / e-^-^in udt , Ec(a,x) = 0 u0 u(l-e-ucos u)dt , a,x = 0(hL9h , h = 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 6d. Error Function for Real Argument, Its Repeated Integrals, Error Function for Pure Imaginary Argument, and Related Functions British Association for the Advancement of Science A951): Hhn(x) , n = -7(l)-4 , (n+13) decimals; n = -3(lM , x = -7@.l) to point where functions vanish identically to lOd. 2 Carslaw and Jaeger A959, p. 485): ex erf с x , erf x , erf с х , x = 0@.05I.0@.1K.0 , the first to 4d, the latter two to 6d. Bn)inerfc x , x = 0@.05I.0@.1) to point where 4d entries vanish. Gawlik A955): e"^ / e^ dt , x = 0@.01I0 , lOd. 0 - Hartree A936): 2 ierfc x , 4i2erfc x , x = 0@.01I@.02J , 4d. A few other entries are also given. Harvard University Computation laboratory A952a): Ф(}(х) - B.Г* Ге-^dt , cp(n>(x) - B.)"* *^±!) , J0 dx11 n = -1AI0 , x = 0@.004) to point where values to 6d do not change; n = 11AJ0 , x = 0@.002) to point where 6d values vanish identically. Kave A955): inerfc(x) , x = 0@.01) to point where functions vanish identically. The number of decimals corresponding to n are as follows, n = 0,1,2 , 6d; n ¦= 3,4 , 7d; n = 5,6,8 , 8d; n = 7,9 , 9d; n = 10,11 , lOd. I National Bureau of Standards A953): g(x) = Bn) g(t)dt , x = 0@.0001I@.001O.8 , 15d. g(x) , 2 / g(t)dt , x = 6@.01I0 , 7s. National Bureau of Standards A954c): f(x) = 2rf2e~X , / f(t)dt , ¦Г x = 0@.0001I@.001M.6 , 15d. Also x = 4@.01I0 , 8s. к X Гх i. 1 Radio Corporation of America A946): Bтт)"а / tcosh tdt , Btt)~2 / tsinh tdt , 2tt'2 / i "° i ,-tc i ЛА t2  / ег г t~2sinh tdt , 2n'2 / e"° dt , 2n / e° dt , '0 ^0 "О nX x = 0@.001H.02@.01J , 8d. n'2 / f2A(x-t)dt , where A(x) is ^0 cosh x or sinh x , x = 0@.02I@.1M , 8d. p nx о Rosser A948): e^ / еЪ dt , x = -0.2@.05L@.1N.5@.5I2.5 , lOd. J0 J2 fx t2 Гх .2 V- e / e" dt , x = -0.2@.05K.8@.1N.3 , lOd. I e"' dy / J0 ^0 ^0 / e^dy / e~b dt , x = -0.2@.05K.5@.1N , lOd. 'У t2 e dt ,
192 INTEGRALS OF EESSEL FUNCTIONS Error Function for Complex Argument (see also Fresnel integrals and error function for pure imaginary argument above) 7.13 Carslaw and Jaeger A959, p. 486): e"z < l+2iTT'2 / e° dt } , z = x+iy , x = 0@.1I.0@.2J@.5KAM , у = 0@.1J@.2M , 4d. V>} ' Clemmov and Munf ord A952): (тт/2Jе51пр / e"1^ dt , |p| = 0@.01H.8 , v/p arg p = 0°(l°L5° , 4d. Faddeeva and Terent'ev A954): e"z < l+2iTT" / e* dt > , z = x+iy , x,y = 0@.02K ; x = 3@.1M , у = 0@.1K ; x = 0@.1M , у = 3@.1M ; 6d. 2 Г1сР +2 Fried and Conte (i960): Z(cp) = 2ie'cp / e dt , cp = x+iy , x = 0@.l)l0, у = -10@.1I0 , 6s mostly. 2 Г°° 2 Hensman and Jenkins A955): B/n)ez / e-t dt , z = x+iy , x = 0@.02J , / у = 0@.02L , and x,y = 0@.l)l0 , 6d. / e* dt , J0 Karpov A954): e"z" / e^dt , z = pe19 , p = 0@.0002M , 9 = 0@.625° L5° , 5d; 9 = 90° , p as above, 5s. Karpov Pz 2 A958): / et dt , z = pe19 , 0 ? p ? p0 , тт/4 s 9 ? n/2 and 6=0, 5d or 5s. p0 depends on 9 and decreases from p0 = 5 for 6 = tt/4 to p0 = 3 for 9 = n/2 except for 9 = 0 and in this case p0 = 10 . 7.13 INCOMPLETE GAMMA FUNCTION AND RELATED FUNCTIONS 193 Fresnel Integrals (see also error function for complex argument and rocket functions) Akademiia. Nauk, SSSR A953): С(-§ттх2) , S(^ttx2) , x = 0@.001J5 , 7d. С^ттх2) , x = 0@.001H.101 , 7s. S(^rrx2) , x = 0@.001H.58 , 7s. Pearcey A956): C(x) , S(x) , x = 0@.01M0 , 6-7d. Radio Corporation of America A946): C(x) , S(x) , x = 0@.001H.02@.01 J, 8d. n / tA(x-t)dt where A(x) is cos x or sin x , J0 x = 0@.02I@.1M , 8d. van Wijngaarden and Scheen(l949): Ci^nx2) , S^rrx2) , x = 0@.01J0 , 5d. Rocket Functions (see also Fresnel integrals) Rankin A949): A(x)+iB(x) = Rc(x) , see 7.11A6); Z(x) = n / A(t)dt ; ^0 z(x) - In x ; x = 0@.01I@.05I.5@.1I5 , 4d. A*(x) = / t" A(t)dt , B*(x) = / t"T(t)dt , A*(x) + \ In x , B*(x) + 5 In x, ^x ^x x = 0@.1I , 4d. A*(x) , B*(x) , x = 1.1@.1K , 4d. Roberts and Caldwell A959): rc(x) , Rc(x) , see 7.11A6), x = 0@.01J0 , 6d; rr(x) , x = 0@.001H.15 , 6d; ri(x) , x = 0@.001H.380 , 6d. 2 2 /)X Rosser A948): Rr(x) , Ri(x) , Rr (x) + Ri (x) , / Rr(t)dt , J0 x = -0.06@.02K.5 , x = 3@.05M , 12d. The first three are also given to 12d for x = 5.05 , 5.10 and 5.15.
194 INTEGRALS OF BESSEL FUNCTIONS 7.13 Г 1 — TOijis A947): rc(x) , ir(x) , ra(x) =[n-2ii(x)j2 = l}? , rt(x) = arc tan ri(x)/rr(x), x <= 0@.0001H.003 Rosser, Newton and Grc (rr2(x)+ri2(x)]? , rt(x) = arc tan ri(x)/rr(x), x - 0@.0001H.0010 @.0002H.0030@.0005H.010@. 001H.020@.002H. 050@. 005H.10@. 01) 0.20@.02H.60@.05I.50@.1K.0@.2)8.0@.5M1 , 6d Rosser and Walker A953): / Rr(t)cos a(t-x)dt , / Ri(t)sin a(t-x)dt Jx ^x (see 7.11A6)), x = 0@.1M , a/n = 0.1@.1J , 5d. For a lesser range of x , values of the integrals are given for a/n = 2@.1)8 . Miscellaneous Incomplete Gamma Functions Abramowitz A951): / e-t dt , x = 0@.01J.5 , 8d. J0 Kreyszig A951): Si(x,a) , a = 0.25@.25I.75 , x = 0@.2L@.5J0 , 3d. Si(z,a) , z = x+iy , x = 0AJ0 , у = 0AM , a = 0.25@.25I.75 , 2d or 3s. Kreyszig A953): Ci(x,a) , a = 0.25,0.5,0.75 , x = 0@.2L@.5J0 , 3d. Ci(z,a) , z = x+iy , x = 0(lJ0 , у = 0AM , a = 0.25,0.5,0.75 , 2d or 3s. nm G.F. Miller A960): (x+n)ex / e"xtt"ndt , n = l(l)8 , x = 0@.0l)l ; Jl n = 1AJ4 , x = 0@.1J0 ; n = 1AJ4 , x'1 = 0@.001H.05 ; 8d. nco National Bureau of Standards (I954"b): E^x) = / t~ne~xtdt , n = 0AJ0 , ^1 x = 0@.01J , 7d; x = 2@.l)l0 , 7-10d. Eg(x) - x 1л х , x = 0@.01H.5 , 7d. %(x) + i х21л x , x = 0@.01H.1 , 7d. CO , Pagurova A959): Е„(х) = Г t"Ue dt . ТаЪ1е I is a reproduction of к National Bureau of Standards (I954"b) above. exEn(x) , n = 2(l)lO , 7d and exEu(x) , v = 0@.l)l all for x = 0.01@. 01O@.05I2@.1J0 . Added in Proof Fox (I960): F(±z) = e+XEi(±x) , z = x = 0@.001H.1 , lOd. Similar list- listings for functions related to Si(x) , Ci(x) and /V^ dt . CHAPTER VIII REPEATED INTEGRALS OF BESSEL FUNCTIONS 8.1. Introduction Suppose f(z) is analytic and g(z) is integrable in the domain |z| s с . Let f_r(z) = fihl, fo(z) = f(z) t dzr A) and go(z) = g(z) , gx(z) = / go(t)dt,..., gr(z) = / gr_1(t)dt . B) That is, gr(z) is the r-th repeated integral of g(z) . Then the repre- representation / f(t)g(t)dt = X (-) f.k(z)gk+1(z>(-)m / f.m(t)gm(t)dt C) J0 k=0 Jo affords a method for the evaluation of the integral on the left. Thus, to evaluate integrals involving Bessel functions, an analysis of repeated integrals of Bessel functions is useful. It is convenient to generalize and treat the fractional integral -1 fiz ¦afV{z) ={r(o)}' J (z-t)a"\(t)dt , R(a)> 0 , D) where Wv(t) is defined Ъу 1.4.3A), and R(u)>-l( IR(u )l< 1) for Bessel nmctions of the first (second) kind. The path of integration is the 19b
196 INTEGRALS OF BESSEL FUNCTIONS 8.1 segment t = zt , T>0 or any equivalent path. If Wy(z) » Jy(z) , we write Ja v(z) in place of wa y(z) , etc. If v = 0 , write wa 0(z) wa(z) . If a = 0 , we define Repeated integration Ъу parts of D) yields E) vajV(z) •{ГИ1))/^-*^»1*14' ' R(a)>r- „z nz 1 , F) G) so that wr y(z) is the r-th repeated integral of W^(z) of D) yields the functional, representation l = wa-l,v(z) • Differentiation (8) dz If r is a positive integer, we write »-r,»<2 dzr (9) see 1.4.3(8). For a general discussion of fractional integrals and deriva- derivatives, and a glossary of tables, see Erdelyi et al.A954, Vol. 2, Ch. XIII) and the references given there. 8.1 REPEATED INTEGRALS OF BESSEL FUNCTIONS 197 We also consider Ko,u(z) ={r(a)}"V (t-O^VtJdt , R(z)>0 , R(a)>0 ; z = 0 , R(a) > | R(w) | , where the path of integration is one of the rays t = zt , т>1 or t = z+t , т > 0 . We can write A0) 16 KajU(z) ={r(o)}" f (t-z)a"\(t)dt , 6 real, 16 К it/2 , R(a)> 0 ; 161 = тт/2 , 0<R(a)<3/2 . (ll) Here the path of integration lies in the branch of the cut plane deter- determined Ъу -тт< arg z <. tt and is the ray pe , p—»» , except for an initial finite path. Thus, *aM*'*") - bi^iV-a){r(*)}~1 />m(t-xr141)(t)dt , "x x>0 , 0<R(a)<3/2 . A2) The formulas analogous to F)-G) are Ka,v(z) ={r(a-r+l)}'X f (t-z)a"rKr.ljl>(t)ut , R(a)>r-1 J 7. A3)
198 INTEGRALS OF BESSEL FUNCTIONS r16 О г 16 Xt,u(z) = / ^-1,1,(*)й* > |arg 6I<TT/2 > u z where the path of Integration is as in A1). Also ^-Ka,u(z) = "Ka-l,v(z) > CLZ ^ ,yr d%(z) The equations 1.4.5F) and A4) and the continuity principle give *-»=/0* ,-z cosh t(sech t)acosh vt dt ^ 8.1 A4) A5) A6) A7) R(z)>0 ; R(z) = 0 , R(a)> |R(i>)| The formulae telovf follow from the relations connecting Bessel functions. 7a>v{z) = (esc utt)[(cos »TT)jajU(z)-Jaj_u(z)] , |H(w)|<l • A8) 8.2 REPEATED INTEGRALS OF BESSEL FUNCTIONS 199 la,v(z) = e"*L(U+a>TJf,..,,(zeiLTT) > -"<аг8 z W2 , "a,uv = e^Ki^aVj^^^-iSiTTj t n/2<arg z s n . ka^(z) = |n(csc m)[iaj.B(z)-lM(8)] , |H(OI<1 • L du J u=o B0) B1) B2) Ч^е41П) = ^l("+1-a)n ba,V(z)+i^,v^] ' |H(U)|<1 . B3) In A8)-B3), we take -n<arg z s n . 8.2. Power Series Expansions and Differential Equations The combination 8.1D), 1.4.1A), and 1.2A4) produces ± (z) - 2a у (z/2)^2k+ar(,+2k+l) a, u kt k•' Г[u+k+l)r(u+2k+a+l) 2 (z/2) ^u+1 u+2 v+a+1 u+a+2 z T(u+a+l) 2 3 (^— ' — 'u+1' ^— ' —Г— ¦¦ — 4 r7-) - za F /'I . a+1 a+2 . z2>. 'f) ' ^ B) and from the former, if n is a positive integer or zero, Ч-пB) =ta,n(z) + ia,n(z) ' C)
200 where t Jz) <= 0 , and Cl, U integrals of bessel functions 8.2 n-r L 2 J t . .k. / .a-n+2k. , .. (v\ = 2a V (-) (z/2) (n-k-1).' a,n^ /f- k.1(n-2k-l).T(a-n+2k+l) (O It follows that i y(z) and i _v(z) are independent unless v = 0 , or unless и is a positive integer and a is a negative integer or zero. If we use the series expansion for ia^(z) to define kajU(z) by 8.lBl), the resulting series representation is valid for all v provided v is not an integer. Similarly, a series representation for ya v(z) follows from A) and 8.1A8). The formula ka(z) = - (у+1л z/2)ia(z)+2a ? (Z/2Jk+aBk)i /t(?k+a+lHBk+1)} + 2a ? (z/2Jk^Bk).' |1+4+...+l/k} k=l-(к.1 JГBк+а+1) E) follows from (l) and 8.1B2). Also 2ПУ ' (z)=(Y«* z/2)JfT(z)-2a2: (-) (z/g) aBk)' (фBк+а+1)-фB^1)} a a k=0 (к.1 JГBк+а+1) L 2a ^ (-)k(z/2Jk+aBk).' Г1ф -+1/к| . k=l (к.1 JГBк+а+1) L Using 1.3.1D-5) and previous results of this chapter; we find F) 8.2 REPEATED INTECEAIS OF BESSEL FUNCTIONS 201 [z2D4-Ba-5)zD3+ ((a-2J-u2+abz2) D2-2ab(a-2 )zD + ab(a-l)(a-2)]wajU(z) = 0 . Ka^y(z) is also a solution of this equation if ab <= -1 . If v = 0 , A , A]_ , and В are arbitrary constants, then G) [zD3-(o-2)r?+zD-(o-l)] {AJa(z)+Bya(z)j - 2Bz' a-2 (8) [zD3-(a-2)D2-zDf(a-D] {Aijz )+AlKa(z)+Bka(z)} = - ?gL . (9) If ab = -1 , and u = 0 , then ia y(z) and ia (z) coalesce and a second solution is k^z) • From 1.3.1E), two other solutions of G) are conveniently taken in the form fa4v(z)=fa2F3(^f , ^ ; Ц* 2+u-a 1 . z? ' 2 ' 4 ) fa-l4v(z) = fa-lz 2F3(^ , 3lu - 3^-a 3+v-q 3 . z2\ 2 2 4^ A0) A1) where fa = 2a'X*f)r(^)/r(a) A2) In series form, we have raaa,»(z)= 2атт sin an r(l-a+2k)(z/2) ,2k sin(a+u) E sin(a-u) | k=0 г(^ +к) rQ^ +k) Bk).' , A3)
202 INTEGRALS OF BESSEL FUNCTIONS 8.2 2an sin(g-l)n rB-a-b2k)(z/2)' ,2k+l **-**>»М~ sin(a-I+u)|sin(a-l-u)| k=0 гE=р *) г(^ +k) Bk+l).' A4) Note that |D»w}-ww A5) Here we assume the parameters are such that the series A3)-A4) have meaning. Singular cases and situations where i „(z) , V-u^z^ ' aa v^z) and Ъ „(z) are not linearly independent are later studied in connection with series representations of Ka u(z) . It is convenient to introduce the formal series с (z a, i> , _, /3-a 2-a 2+u 2-u . 3 . 4J\ ) = A^T" ' ~2~ ' 2 ' 2 ' 2 ' Z2j , ч /2-a 1-a l+i> l^u . 1 . 4Л V»(z) = л^т"j т' т' 2 ' 2' Z2; A6) A7) Then, if r is an even positive integer, r-2 frar,u(z) = J^)T (™/2)(csc UTT/2)cr^(Z) , v is not an even integer , A8) „r-1 fr-lbr,u(Z) = |ТГГ)Т C"/2)(eeo UTT/2)dr^(z) v is not an odd integer A9) 8.2 REPEATED IHTECKALS OF BESSEL FUNCTIONS 203 If r is an odd positive integer, then _r-l frar,u(z) = J^JT (n/2)(sec UTr/2)dr^(z) , v is not an odd integer , fr-lbr,»(z) = fJ)T ("tt/2)(csc vn/2)crjU(z) , и is not an even integer B0) B1) We now suppose that (L5), A4) and ia ±v(z) are defined and linearly- independent . Let Ka,»(z) = aia^(z)+bia,-v(z)+cfaaa,u(z)+dfa-lba,^z) ' B2) where а , Ъ , с and d are constants of integration. Take Re(a-l)>|Re(i>)| . Then 8.1A5) and B2) with z = 0 and 8.5A) shew- that с = 1 and d = -1 . To find a and Ъ , we construct the asymptotic expansion of Ka u(z) using B2) and the appropriate results of 1.3.з\ Equate this to the asymptotic expansion of Ka v(z) which follows from 8.1A3), see 8.4C). Then ' 2a = -TT csc(o,+i>)tt , 2Ъ = -тт csc(a-u)TT , B3) no that >WZ) =2-[slg^- h^} + V«,^' - f-lbe,u<«> • B4)
204 INTEGRALS OF BESSEL FUNCTIONS 8.2 In particular, if a is a positive integer, say a ¦» r , then r r-2 . (-f^ (тг/2)(вес ^/2)^^@ , v is not ал integer B5) Equation B4) is valid for all values of the parameters for which the functions on the right have meaning. If a is not an integer and (a+v) is a positive even integer, then faaa u(z) and тт/2 ia v(z )/sin(a+u)rr are not defined though their difference can be defined using L'Hospital's theorem. Thus, in this and other similar singular cases, we can derive series expansions for К (z) by limit processes. These singular cases are delineated below, and from the analyses it is apparent how one con- constructs independent solutions of 8.2G) for all possible combinations of the parameters a and v . We first suppose that" a is a negative integer or zero. Let a = -r . Then K-r,u(z) = ant-fcsc vn [i_r^_u(z) - l_r>u(z)] , v is not an integer . B6) Let v = n+e , n a positive integer or zero. Then 8.2A) with appropriate use of 1.2E) gives 8.2 REPEATED INTEGRALS OF BESSEL FUNCTIONS 205 *-r,n+e(z) f—1 -r-1 Д J(-)k(z/2Jk-n-r-er(n+e-k)r(n+e-2k+r) k=0 k.T(n+e-2k) Гп+r-ll + (-)П2-Г-181п en |- (-)k(z/2Jk-n-r'er(n-i-e-k)r(n4-e-2k-fr)rBk-fl-n-e) L 2 J + (-)Г2-Г-1 T1 (-)k(s/2Jk-n-r-e к_ГпТг+1-| к!ГBк+1-п-г-е) L 2 J Г(п-»е-к)ГBк+1-п-е) ^(-ГУ1-1! Z (z/2Jk^-r-ert2k^!-e) sin етт lv=o Г(к+1-е)(п+к)'ГBк+п-г+1-е) - i (z/2Jk+n-^erBk+n.l.eI k=0 к.'Г(п+к+1+е)ГBк+п-г+1+е) J B7) Thus
206 INTEGRALS OF BESSEL FUNCTIONS 8.2 № -r-l ? Jf-^Z/2Jk-n-r(n-k-l^.[(n+r-2k-l).' K-r,n<z):=2 ?n k.'(n-2k-l): * (-('г"' 1;1 (-)t('/gi^'°'rU-^i)'(a^°).' -m k.1 Bk-n-r)! + (-Г ^ П+Г -Г-1 f fz/2r-rB№).' ^ k:(n+k).'Bk+n-r).1 X {-2 1пB/2)-2фBк+п+1)+2фBк+п+1-г)+ф(к+1И(п+к+1)} B8) provided r<n-l . If r s n-1 , the second series in B8) disappears. If r S n+1 , the last series in B8) must be modified in view of the singu- singularities arising from Bkin-r)! and \|i Bk+n+l-r) for certain values of к, Let r = n+l+m , m s 0 . Then with the aid of 1.2E) and 1.2A2), the last series of B8) remains as it is, save that the summation begins with к = -— instead of к = 0; and to this we must add the finite series [f] 2"r Z k=0 ( z/2 )п+'г*-т Bk+n): (m-2k) ¦' k.'(n+k)! B9) Note that К r n(z) is essentially the r-th derivative of K^z) , see 8.1A6). We next consider the situation where a and (a-v) are not integers, but (a+u) is a positive even integer or zero. It is convenient to define the auxiliary functions 8.2 REPEATED INTEGRALS OF BESSEL FUNCTIONS 207 ,(z)=f a „(z) -ZJhl^L эа,ич ' а а,и4 ' 2 sin(a+u)TT i (z) pa,v(z) = -fa-lba,v(z) " I sin(I-v)TT ' C0) C1) so that \,v^ =Sa,v(z) + Pa,^z) • C2) Under the above hypotheses, the series for p „(z) is defined, but a series representation for ga ^(z) must be derived by a limit process. Let a+v = 2m+2e , m a positive integer or zero. We can write S2m.-v+2e,v^z' _ ^^2m-2-v+2e sin(e-u )tt sinBe-v)n ^- (-) (z/2) Г(т+е-к)ГBк+1+У-2т-2е) k=0 Bk).T(k+l+u-m-e) . TT22m-2-V+2e[sinBe-v)TT у (z/2Jk+2mrBk+l+v-2e) sin етт |sin(e-v)TT k=0 Г(к+1-е)Г(к+1+и-е)Bк+2т).' 00 , , ,2k+2m+2e , , ч - sec етт У (z/2) Tg rBk+l+v) к=0 к!Г(к+1+и )rBk+2m+l+2e) C3) whence
208 §2ш-Ь"B) INTEGRALS OF BESSEL FUNCTIONS , ^2m-2-» ^ (-^(z/2Jk(m-l-k).TBk+l+»-2m) {->^ 2- Bk).T(k+l+v-m) + 22m-2-, у (z/2Jm+2krBk+l+l>) f CQt m . 2 ^(z/2) 8.2 k=0 - 2фBk+l+v)+ф(k+1)++(k+l+u)+2фBk+l+2m)} C4) Let us retain the hypothesis that a+v =2m , but now assume a-v Is an odd integer. Thus a and v are same (but, of course, not necessarily the same) odd multiples of -g. As Ka ^(z) is an even function in v , it is sufficient to put и = n+^- , n a positive integer or zero. In this event g2m_y „(z) is defined, but a series representation for pa v must be developed by the usual limit process. The analysis runs along the same lines as in the derivation of series representations for K_r n(z) and ggjjj.y y(z) . We therefore omit details and state only the final results. P2m-n-!,n+i(z) m+n 2m-n-5/2 ^ f- )k(z/2Jk+1rBk+n-2m+5/2)(m-n-2-k).- = (-) 2 2. Г(к-т+3/2)Bк+1): k=0 + 22m-n-5/2 " (z/2Jk+?nl-2n-1rBk-n^) *-_ к'.Г(к-п+?)Bк+2т-2п-1): k=0 X {2 lu(z/2)+2\|iBk+|-n)-i|r(k+l)-i|r(k-n-t4)-2i|rBk+2m-2n)| m г n+1 C5) 8.2 REPEATED INTEGRALS OF BESSEL FUNCTIONS 209 P2m-n-in+i(z) = 22m-n-3/2 ^ (г/2Jк+2ш-2п-1ГBк-п^)Bп-2т-2к->: k=0 k.T(k-n+^) 2k+l + 22m-n-5/2 у (z/2 )'::J''r"LrBk+n-2m+5/2 ) . _n Г(к-т+з/2)(k+n+l-m).' Bk+l).' a.— U X{2 m(z/2)+2^Bk+n-2m+5/2)-iKk-m+3/2H(k+n+2-m)-2tBk+2)j > m <. n+1 C6) Now suppose that a+v = 2m , m a positive integer or zero and that v is a positive integer or zero. Then neither C0) nor C1) is defined. Here let и = n+e , and express K2m_n_e n+e(z) in series form using C2) along with the combination (l), A4) and C4). Then a series representa- representation for )<2m_n n(z) follows by applying the familiar limit process. Again we spare details and state the final results. K2m-n,n(z> = P, 2m-n, n , . 2m-n-2 m'^-'1 (z/2Jk(m-l-k).'(m-l-n-k).' KZ) kt0 Bk).'Bm-l-n-2k).' m - - - , vk. , ,2k+2m-2n, . + 22m-n-2 у (-) (z/2) (n-l-k).' j^Tq k.' Bk+2m-2n).' (n-l-2k).' X {-2 lti(z/2)-2i|r(n-2k)+i|((k+l)+i|r(n-k)+2i|rBk+l+2m-2n)} , m s n C7)
210 K2m-n,n(z> IHTEGRAIS OP BESSEL FUNCTIONS 8.2 , , Pm-n-1 ^^ fOk(Z/2Jk+2m-2n(n-k-lVBn-2m-2k-l).' = P2m-n,n(z>+2 4- k.'(n-2k-l).' л.— U rgm-n-li , ,n+in 2m-n-2L J- J Mk(Z/2Jk(m-k-l).' + (-> 2 ?0 Bk).'(k+n-m)!Bm-n-2k-l).' X {- 2 1иB/2)-2фBт-п-2к)+ф(т-к)+ф(п+к+1-т)+2фBк+1)] , where „2m-n-l ?2m-n,n(z) - (-JV^ Z m ? n , n-1 , л. , <2k+2m-2n (- ^(z/a^^'^tafn)! (n-k-1).' k.'Bk+2m-2n): L 2 J . .m 2m-n-2 ^ 2,- J (-)k(Z/2Jk+1r(m-n-k-j) ^"; ^ п ^- Bk.+l).T(k-m+3/2)Bm-n-2k-2)! + 22ш-п-1 f (Z/2Jm+2k(n+2k): A, k!(n+k).'Bk.+2m): X (-2 1пB/2)-2фBк.+п+1)+г|((к+1)+ф(п+к+1)+2И2к+1+2т)} C8) C9) 8>г . О REPEATED IMCEffiALS OF HBSSEL FUNCTIONS 211 There remain other singular cases, but as these can be readily related to results already obtained, we sketch the manner of derivation and omit details. Suppose, for example, that a and a-v are not integers, but a+v is a positive odd integer. Put a+u = 2m-l , m a positive integer. Then a series representation for ^2m.i.v viz) follows from that of K2m_v y(z) by differentiation in view of 8.1A5). Again, suppose a+v = 2m-l and v = n+g- where n is a positive integer or zero. Then differentiation of the series expansion for K^m_n_i n+i(z) leads to our desired result. Series representations for K^ , n n(z) follow in a similar manner from C7)-C9). ' 8.3. Recurrence Equations Using 8.1(8,15), the differential equations 8.2G-9) are easily con- converted to the following difference equations. аЪа(а-1>а+1^(г) = 2ab(a-l)zw^v(z)- [(a-lJ-u2+abz2} wa_^u(z ) + Ba-3)zwa_2^(Z)-z2wa_3^(Z) . a(a-l)Ka+l,v(z) = -2(a-l)zKa^(z)+ {(a-lJ-u2-z2} K^^^z ) A) + Ba-3)ZKa_2^(Z)+Z2Ka_3^(Z) . aJa+l(z) = zJa(z) " (a-l)ya-l(z) + zJa-2(z) • aVi(z) = *ya(z) - (a-Dv^z) + zya.2(z) - i^± aKa+l(z) = -zKa(z) + (a-l)Ka-i(z) + zKa-2(z> • B) C) D) E)
212 INTEGRALS OF BESSEL FUNCTIONS 8.4 Note that each of the four components of Ka v{z) as given by 8.2B4) also satisfy B). We also have the contiguous relations F) G) 8.4. Asymptotic Expansions for Large z We start with 8.1A1). Replace Kv(t) by its asymptotic expansion 1.4.6F), and noting that(Erde^yi, et al., 1954, Vol. 2, p. 202) _1 Г( -Г (t-zf-W^dt = е-К"Ъ-Ч)ЪB) , A) where W& b(z) is Whittaker's function and Wa,b(z) ~ e~^za2Fo(i-a+b,!-a-b;-l/Z) , 4a = l-2a-2k , 4b = l-2a+2k , |z|—>« , I arg z|<3tt/2 . B) We find XaU(Z)~(TT/2zFe-z Z (-L^"k > ' k=0 |z|—>oo , larg z|<3tt/2 , C) 8.4 REPEATED INTEGRALS OF HESSEL FUNCTIONS 213 and (see also (б)) ck {hv)^-v)* 3F2(-k,i-k,a;i-^,i-*-,;2) 2kk.f D) In the following, E)-(8) come from 8.2(l), 8.2A0-11) and the results of 1.3.3. The connecting formulae 8.1A8-23) produce (9)-(l2). i (z) — a, uv ' -z kz " + ~^—I e BttzJ k=0 BnzJ Z_ ckz-k+-^e-ie^+a+i)"i: (-)\z"k k=0 * Г(а-1) Ca,^(z) * =--5ге(и+1)тт a-1 da.,(z) , a, u |z|—»oo , -B+e)TT/2<arg z<B-e)n/2 , e = tl , E) where c^u(z) and ^„(z) are given by 8.2A6-17) and 2(k+l)ck+1 = fkck+gkc]5..1+h]5.c]5._2 , c_2 = c.x = 0 , cQ = 1 , fk = 5к2+Dа-1)к-ф-а-и2 , gk = "(k-i) [4к2+(ба-7)к+7/2+2а2-5а-2и2] , hk = (к-3/2)(к-^)(к+а+и-3/2)(к+а-и-3/2) . F)
214 aa,v(z INTEGRALS OF BESSEL FUNCTIONS 8.4 }..rC-F-;rC 2 ;VL z CkZ-*-iee-* z (-)Ч ,-k k=0 1 „(о_1)Г?2±р) rB=p) (z/2)a-Ce kpO ,a-2jh.e(a-2)n tt(csc im/2)(sec an/2) ca,v(z) rC^X^)^/2)' a-1 iie(a-l)n rr(sec im/2)(csc arr/2) \v^ ' |Z|-»oo , -B+е)тт/2<аг8 z<B-e)n/2 , e = ±1 z Z ckz-k+iee-Z Z (-L^"k =0 k=0 ur / 3+v^N r (i-v-a\ (z/2 )a-2eiie(a-3 )тт V 2 > V 2 У c (z) tt(csc vtt/2)(csc атт/2) a>v TT(l-a)(sec итт/2)(зес агт/2) da,v(z) ' |z|- , -B+e)n/2<arg г<B-е)тт/2 , e = ±1 G) (8) 8.4 REPEATED INTEGRALS OF BESSEL FUNCTIONS 215 Wz>~ (TT/2z)WieOT X ("Lz-k k^O " Ы^^/2)^ c^{z)+ jnCsec Wa^a-l UI-J-oo , -B+e)TT/2<arg г<B-е)тт/2 , e = ±1 L K u k=0 J da,v(z) * O) ??l)Ca^(iZ)+?Sda'u(lZ) ' |z|—»oo , |arg z|< тт ^ A0) >*r L k-0 k=0 J . у (cot итт/2Jа-2 (tan №/2)za-1 „ , . Г(а-1) ca,vt") - r(g; ^ 4a,v(lz) * |z|—>oo , |arg z|<tt , A1) where 9 = z - Bи+2а+1)тт/4 A2)
216 8.5. Infinite Integrals INTEGRALS OF HESSKL FUNCTIONS 8.5 K (о) =^— rfsiMrfe") , h(o)>|h(u *aM0) Г(о) А2/ ^2 J KX „@) =(тт/2)зес vtt/2 , |H(v)|<l • Kg „@) =(utt/2)csc utt/2 , |R(v)|<2 • )l K (o)=H^4^sec^fT Г1"-^! ' |R(U)I< *2г+1У0> 2 г7г(?) 2 ^=1 L Bк-1J J A) B) C) 2Г+1 . D) Kg; f0^ - vtt ir-ll|r(ii csc vtt TT ["i-JzLl, |H(»)I ¦'vl0) "Г 2Г(г^) 2 ^ L 4k2 J <2r . E) Formula A) comes from 8.1A0) and 2.6F), while B)-E) readily follow using 1.2A,5,6). From 8.4A0-11), we get (t)dt = 1 , R(u)>-1 , J0 f"yv(t)dt - - tan|H , |H(v)|<l , Jo n<*> n t / / Yo(u)du dt = -2/tt Jo ^o F) G) (8) 8.6 REPEATED INTEGRAI5 OF BESSEL FUNCTIONS 217 8.6. Further Representations Circular representations for jn r(z) readily follow from 2.7. Exponential series representations for Ka v{z) are given in 8.8. The formulas Jr(z) = ^(zJjJzJ+Brfz)^B)+СгB) f Jo(t)dt , A) yr(z) = Ar(z)Yo(z)+Br(z)Y1(z)+Cr(z) / Yo(t)dt - 2/тт ^(z) , B) Jo ft °° Kr(z) = irAr(iz)Ko(z)+ir-1Br(iz)K1(z)+ir-1Cr(iz) I Ko(t)dt , C) J z where (see 8.2A6-17)), r-1 („\ _ z д (л„\ _ z' /2-r 1-r 1. 4\ (O M*) - (Й C^o(lz)" (йтт лС?' ? ^ Iг - ^) ' E) und A?.(z) and Br(z) are also polynomials in z , are easily derived by- repeated applications of the recurrence equations 8.3C and 5), respec- respectively. A?.(z) and Br(z) are obviously solutions of 8.3C). The above polynomials are tabulated below for r = 1AN .
218 INTEGRALS OF EESSEL FUNCTIONS 8.6 Vz) Br(z) cM) Dr(z) 1 2 0 0 24 8 ?_ _ 15 z* 120 120 z 2 z^ + 2z_ 6 3 ^ + z? 24 24 . llz3 120 120 8z 15 z 2~ 3 z_ 6 z 24 zf__ 120 1 2 z_ 2 ? + = 51 + 3z 12 8 z 24 z 6 4 „2 2 3 2z 3 15 F) Repeated integration of 1.4.5E) yields (-i)r+1 [^e±X Se° ecosr-1ede = тг/2 (jr(x)-Cr(x)j +i rr/2 {yr(x)+2/rr Dr(x)}* •/о x>0 G) In particular, P2n(x) = (-)П Г sin(x sec e)cos2ned9 = -тт/2 |у2п+1(х)+2/тг D2n+1(x)| Jo x>0 (8) 8.7 REPEATED IHTEGRALS OF BESSEL FUNCTIONS 219 ,^ P2n+l(x) = (")П / cos(x sec 9)cos2n+1ed9 = тг/2 {у^+г^У^/ъ D2n+2(x)} > (9) x>0 , which have Ъееп discussed Ъу Havelock A923, 1925). Repeated integration of 2.4(l) with ц = 0 and appeal to the con- continuity principle yields the expansion лв,„(.) = ^ Хо^Ч+а+2кЫ ' ^>-^ A0) A similar type formula for repeated differentiation of any Bessel function is given Ъу 1.4.3(8). 8.7. Asymptotic Expansions for Large Parameters If z is fixed, |u|—>m and/or |a| —><*> , then the various ascending series in z afford convenient expressions for computational purposes. The combination 8.2(l) and 1.2(8) gives i^vl2) = : " 7T jexp |(и+аIл ez [2rr(i;+a)P L-rW Lo[-i 2(u+a) 12(u+a)JJ [ \(u+aK \y v /'w+l u+2 .1,+t u+a+1 u+a+2 . z2 N |u+a|—><» , |arg(u+a)l<n A) Note that if z is fixed, the 2^3 in (l) is essentially a descending series in v . With v = q exp(^in) , a and a fixed, we have
220 INTECSALS OF BESSEL FUNCTIONS 8.7 ^¦^¦"•[^^{^ьег)] |u|->oo , |arg(a+iq.)l<TT , where = 2TT a(a+l)Bq+l) a p о ' 2 12cf Using 8.2B4) and arguments similar to those above, then B) C) D) >Wz> . Unfafo/if^ Г .n i_ CQS J_ (8Bа+1).Л sin J | sinh qn L а 4Ч а 32q2 I- J J L 2 {q2+(a-2Jj J L б{<12+(а-3J} JJ L V- Iql^oo ? |arg(a+iq.)l<TT Here 9a = ea- от -a-1 a Ш exp /-q.TT/2 + a(a-3-)(a-g) 1 I 6q.2 J E) F) G) 8.8 REPEATED IMTEGRALS OF EESSEL FUNCTIONS 221 If a •= 0 , Kq i (z) = K. (z) and E) essentially agrees with a known result, see Erdelyi et al. A953, Vol. II, p.88). 8.8. Exponential Series Representations for Ka „(z) Employ 8.1A7) and the theory of Fettis A955) and Luke A956). Then » -z coshBk+l)h/2 . . , ^„(O-hZ2 , cosh "Bk+1)h/2 * %...(O , (i) k=0 coshaBk+l)h/2 a, uv 00 -z cosh kh /i , v e cosh ukh i , -z / \ Ka)U(Z)=hZ 4be +g (z) , k=0 coshTdi B) where fa,u(z) =  2 (-) gt(O , gajU(O = -2 Z gt(O k=l k=l et(z)=i[KO)lqi(z)+KOjlqs(z)] , q.i = p+i" ^ ч2 = p-i» ^ p = — h C) D) Note that (l) and B) are trapezoidal rule representations of 8.1A7) with remainder terms fa ^(z) and ga y{z) , respectively. With h suffici- sufficiently small, p and so also I Q-i g | are large. Thus, an easy appraisal of the error terms follows frcm 8.7E).
222 IHTEffiALS OF BESSEL FUNCTIONS 8.9 8.9. Description of Mathematical Tables n00 n00 Bickley and Naylor A935): Ki-^x) = / KQ(t)dt , Kin(x) = / Kij^CtOdt = "x ^x Kn Q(x) , see 8.1A4), n = 1AI6 , x = 0@.05H.2@.1J,3, 9d. Havelock A925): Pn(x) , see 8.6(8-9). n = 3,4,5, x = 0@.4L.8,5AI0 , 4d. Jaeger A948): 2~njn(x) , see 8.1D-7). n = 1AO , x = 0AJ4 , 8d. CHAPTER IX INTEGRALS INVOLVING STRUVE FUNCTIONS 9.1. Introduction The results of this chapter axe much akin to those of Chapters I and V, and we omit all proofs. Definitions and connecting formula are as follows. A) LV»(Z> = /lZ*4(t)dt = -e^^+V\ (Ze^) , Н(ц+и)>-а . B) U a In (l)-B), -n<arg z s: n . We have the differential equation ,M.+"+l 2г05+A-2цJ0г+(Ди2+22H] Hi „(z) = -^ *' 2"-1Г(*)Г(^) C) 9.2. Power Series Expansions pz oo k, . .u+2k+l / t^E ftUt = z^1 T (-) (z/2) Jo ^ ^ ; " kt0 (^+2k+2 )Г(к+3/2 )r(u+k+3/2) a+v+2 2и+±(ц+и+2 )ГC/2 )Г(и+3/2 ) 2F3\ 3 1,1+ i±iz 2 1 ,u+ 1 Q+ttll 2 ' 2 2 z 4~ R(n+")>-2 A) 523
224 INTEffiALS OF BESSEL FUNCTIONS 9.3 [ t№.(t)dt = (iff* . [in z/2-4t(m+i)-4t(v*B4)] -2^Z (-)k(z/2Jk+2-2m (к+1-т)Г(к+3/2)r(v+k+3/2) k=O k/m-1 Е(ц)<? > M*+u = m > m a positive integer B) I 4k/ /„\2k t-2^,(t)dt = B/n)B-Y-ln 2z)-(l/n) Z ^"? (z/2),. • C) {C/2^}' k=l k' 9.3. Asymptotic Expansions for large z f t^tby^t^dt-/- ^е^)ге=р>о.™ tt sin(n+u)n-/2 7H+u a^^n+vjr^jrlv+j) ЛA, I, I -«,- f ,* Ъ-% ¦ |z|—->-oo , |arg z|<n , R(n±v)>-1 , H+u is not a positive even integer or zero A) 9.3 IHTESIAIS INVOLVING KERUVE FUNCTIONS 225 «z .m+1 u+l , т ^ i / t>1[H|;(t)-Yv(t)]dt~.^ g r(m^)r(m-^-p)cos vn Jo tt2 kySm |z|—»oo , |arg z|< п , Е(ц-и)>-1 , ц+и = 2m , m a positive even integer or zero . B) nZ oo ( / [Ho(t)-Yo(t)]dt~ B/tt)(Y+1h 2z)+(l/n) Z" J0 k=l _ _J U_ B/zJk ^ |z|—>oo , |arg z| <n See 3.11C) for a polynomial approximation to C) / t^[i u(t)^(t)]dt~ - ^ ; r x,2 J Jn L ~v v J n tan(u,+uW2 C) z^ ,+u 2v-L(n+v)r(i)r(v+J) —aOM-"^'1-*?'?) 2ie cos noo ^-^ / t^CtJdt , [zl-^-oo , -B+e)rT/2<arg z<B-e)n/2 , U z e = ±1 , R(n-u)> -1 , R(li+w)> -2 , H+u is not a positive even integer or zero . D)
226 INTEGRALS OF EESSEL FUNCTIONS 9.4 L V[i (t)-Vt)]at~ 2"+1r(^)r(^-v)cos vn z2mcos vp. ^ Г(к^)Г(к4-У) ,„, ,2k 2V k=0 X {m z/2-i* &*?)%&**¦»)} - g ^ X (k.m) B/z) 2ie cos un Г00 / t\(t)dt , |z|—»co , -B+е)тт/2<аге z<B-e)n/2 , «7. e = ±1 , R((j,-u)>-l , (j,+v = 2m , m a positive integer or zero . E) 9.4. Infinite Integrals f tH'H (t)dt = ^1 ,+v >t/2 -2<R(|j,+u)<0 , R(n)<i • ft-V-\(t)at = ff , R(,)>-3/2 . Jo 2u+1r(v+l) A) B) I t*4 [Hu(t)-Yu(t)] dt Jo тт sin(|j,+i; )tt/2 R(p,+u)< 0 , R(n±v)>-1 C) 9.5 INTEGRALS INVOLVING STRUVE FUNCTIONS 227 / t^i.^tM^Ct^dt = - u П 2^rC 2 ;rCV-)cos m тт tan((j,+u)n/2 -2<Н(й+и)<0 , R(M,-v)>-l D) /со 17+1 ^ e-VLu(t)dt « - 2(g1>gy? , -KH(u)<-i • E) / e"tt-%(t)dt = Ov-l^rC^Mi)]'1 , R(v)>* . F) 9.5. Reduction Formulas Let z g^(z) =J e'ptt4(t)dt , A) where Vy(z) represents the Struve function or the modified Struve function. The parameter Ъ introduced in the reduction formulae is associated with the particular Struve function as noted in the following table. VyU) Ъ VO 1 Lu(z) -1 . B) I*H,v(s) = -e-pZZ4(z) + (^)Vl)V(Z) - tg^u+1(z) [г^гСу+з/г)^!^)]'1/1 e-^t^dt C)
228 INTECKALS OF HESSEL FUNCTIONS 9.5 9.5 (P2^)g^(z) = te-pZZ*Vu+1(Z)H-(Ml-v-l)e-pzz^1Vu(Z)-pe-I)ZZ*Vu(Z) + рBц-1^и(*)+ [»2-U-iJ]v2,»(z)+ [^«^MVa)] K"-H0g^u+l(z) = -2"e'pZZtV1,(z)-2uP8^v(z)+(^)gML,v.i(z) + (u-n)[2Vr(u+3/2)r(V2)]f e"*V+udt . Z) • D) Evaluation of g^ u(z) for Special Values of the Parameters Case I let р2+Ъ = 0 and v = ±(ц-1) in E). Then -pz v+1 _ , -. - [BU+lJur(v+3/2)r(l/2)]'1J e-ptt2u+1dt . [P2BU-lJU-1r(U4)r(i)]e"PZ • E) F) G) (8) INTEGRALS INVOLVING STRUVE FUNCTIONS /Q e^ttjdt - sgg^O-lW.)] - [Bи+1JиГ(и+3/2)ГA/2)]" / eitt2u+ldt ^ j,^^,! } v f _± If v = 4 , / e^tH i(t)dt = Г eltt-2ji(t)dt , J0 ^0 2 and the latter is given Ъу 5.2E). f- A, iZ -u+1 Jo -"fXttjat = - 2_^__ [Hu(z)+4.l(z)] + [Bu-lJ1'-1r(v4)r(i)](elz.l) , u ^ * . [ e1V*5i(t)dt = B/n)* /VV^l-cos t)dt ^0 JO = BTT)'^[{2Ci(Z)-CiBZ)-Y-ln Z/2J +i[2Si(z)-SiBz)}] / e-4\(t)dt = ^з- [4(z) * 4+1(z)] 229 O) A0) (ID A2) - [Bи+1JиГ(^3/2)ГA/2)]'1 f е±ЬЬ2]}+1аь , R(u)>-1 , u ^ -i . A3)
230 IHTEGRALS OF EESSEL FUNCTIONS If v - -\ , [>b\ l(t)dt = f e^t- Jo  Jo -4Ii(t)dt , and the latter is given Ъу 5.2A0). I s , ±z -u+1 e-V\(t)dt = - e~^— [Lu(z) , Vl(.}] / etttL1(t)dt = B/ttJ / e'V^cosh t-l)dt Jo 2 ^o = BттГ? [Ei(±2z)-2Ei(tz)+Y+ln z/2] Case II let p = 0 and м, = tv in F). Then 5-v,v+l(z) = "z'4(z) + ^ 2иГ(и+3/2)ГA/2) /* t\.1(t)dt = z\(z) , R(v)>4 Jo 9.5 A4) + [Bu-lJU-1r(v4)rD)](l-e±Z) , u ^ 4 • A5) A6) A7) A8) A9) 9.6 INTEGRALS INVOLVING STRUVE FUNCTIONS f t-"H (t)dt = 5 J0 2иГ(и+3/2)ГA/2) - -(z) ^ t\_x(t)dt = z\(z) , R(u)>-| . /" t"%+1(t)dt = z-\(z) - 2иГ(У+3/2)ГA/2) 9.6. The Complete Cicala Function Let F(z) = f e"zt [l+t-i-d+t)*] dt , R(z)> 0 . J0 Then, see Lake and Ufford A951b), F(z) = i-Y+m 2z+z-1+n/2[Y1(z)-H1(z)] +п/г f [ Ho(t)-YQ(t)]dt Also, let F(ix) = FR(x)+iFl(x) = J e-^fl+fi-d+t-S^dt , x>0 , G(x) = FR(x) - A-Y-ln 2x) = S(x) - R(x) . 231 B0) B1) B2) A) B) C)
232 Then INTEGRALS OF BESSEL FUNCTIONS 9.7 R(x) - tt/2 [/Xbo(t)dt-LL(x)] , S(x) = tt/2 j^lJOdt-I^x)] , D) (x) = .„/2 - x + Kx(x) + / Ko(t)dt Jo E) We also have the representation F(ix) = ix-l[T(x)-l] , T(x) = i™ f t-1[HL(it)-Y1(it)-2/TT] 2 Jx dt . F) 9.7. Description of Mathematical TatxLes For integrals of Struve functions, see National Bureau of Standards A962, Ch. 12). See also the following. «x „x Abramowitz A950): / H^t^t , / Ln(t)dt , n = 0,1, x = 0@.1I0 , «0  6d or 6s at least. Harvard University Computation laboratory A952Ъ): FR(x) , Fj(x) , R(x) , S(x) (see 9.6C-5)),x = 0@.01I0 , 8d. Horton A950b): / t"H (t)dt , n = l(lL , x = 0@.1I0 , 4d. J0 W. P. Jones A952): F(z) (see 9.6A-2)). z = 0@.02H.04@.04H.2@.2) 0.4@.1H.6@.2I.2,1.5,2AI5 , 4d. Kussner A940): T(x) , see 9.6F). x = 0@.02H.6@.1I@.2NAI0B) 14,20 , 5d. The same is also tabulated in Dingle and Kussner A947). In t3oth of these sources, the notation used is 8(x) . 9.7 INTEGRAIS INVOLVING STRUVE FUNCTIONS 233 Luke and Ufford A953): G(x) , FR(x) , Fj(x) (see 9.6C-5)), x = 0@.0lH.l@.lL@.2N@.5)l0 , 6d. Comparison with the Harvard tables above shows that there are a few errors of at most two units in the sixth decimal place. nx Struve A882): J - (l/n) / tHxBt )dt =i+ (i/2ttx)H1Bx) Jo n2x - (l/тт) / tHo(t)dt . x = 0@.1L@.2O@.4I5 , 4d. Godfrey JO A948) tabulates (l/ '") f f\( Jo 2t)dt . This is essentially a copy of 8truve's tatsle with some additional entries apparently olatained Ъу linear interpolation.
CHAFFER X SCHWARZ FUNCTIONS AND GENERALIZATIONS 10.1. Introduction The material of this chapter is related to that of Chapter IV. We define Jp(\,z) = Jc(\,z)+iJs(\ nZ ,*) = / el4 Jo (H )dt , Jo it. Y (\,z) = Y(X,z)+iY4(\,z) = / e"YQ(Xt)dt , A) B) which are knovm as Schwarz A944) functions. We also consider the more general function, see 13.3.2C3), nl T6,^,u^'(u) = / e1(*rt(l-tNt^Ju(et)dt , H(,i+u)>-l , RF)>-1 . C) 10.2. Povrer Series Expansions T6,n,ufe'u>) " r(u+i) Jn г^ц+б+Пгкн-г") ak,u(e^) i(g/2)V у rFH-l)r(^H-2kH-2) ( } r("+i) j^o r(n+e+wefc«) k,^p' ; A) 234 10.2 where SCHWARZ FUNCTIONS AND GENERALIZATIONS 235 к 2к vk+1, /„ч2к+1 \»(э'в) s Ч»" еA'Же? Л^-й;^/^) (з) For the development of (l)-C) and other related results, see Luke, Constant and Ruhlman A956) and Luke and Fettis A958). Jordan A955) gives the equivalent of (l)-C) except for some typographical errors. We have the following contiguous relations ЭЪ, a, = 'k'" • Ъ = bB"^1>v (*) Bk+l)Bk+2)Bk+2u+l)Bk+2u+2)ak+1 v = - | cu2Dk+2u+l)Dk+2u+3) (р2-Ш2JDк-*-2ин-5) Dk+2u-l) ^-1*" ' Bк+2)Bк+3)Bк+21Л-2)Bк+21Л-3)Ък+1^ = - L2Dk+2u+3 )Dk+2u+5 ) + (P2-,.,2) Г BkH-l)Bkf2^l)Dk^2^5) x Bk+2 )Bk+2u+2 I1 Ък „ 'I Dk+2u+l) JJ ^'и E) (p2-UJJDk-t-2i;-f5) Dk+2u+l) k-l,u F)
236 IHTESIALS OF HESSEL FUNCTIONS 10.2 (k+u+l)Bk+2u+l)(e2/^)ak x = (u+l)[Dk+4u+l)(e2/^)-2U]akjl; 2/ 2, + 2u(u+l)(l-eV*'i)ak^.1 . (к+У+1)Bк+2и+3)(р2/ш2)ЪкI,+1 = (и+1)[Dк+4У+3)(е2/ш2)-2и]ък>и (V) ,2 /...2 - + 2и(и+1)A-ес1/ш?;)Ък^_1 (8) If и = p = О , then '....ОС0'") = %SS^ Л(^6+2;1Щ) 16,ц,<^ and so T. ...„№,«> -a*»Z Г(ц+6+2) = Г(ц+1)ГF+1) е1ш F F+иц+6+2;-1«>) , Г(м,+ 6+2) -1- -1- > ^ (-)k(p/2)"+2krFtl)r(f^2k+l) (ш) (9) Here l6,n,»"""" " * ^ к.'Г(и+к+1)Г(г+2к) k'r^ Cj,. r(u))S =kjr = 1F1F+ljr+2k;-ii»)) , r = ,j,+ 6-HM-2 , A0) A1) and ilu(r+2k-6-l)ckjr+1 = -(r+2k)(r+2k-l-iiu)ck^r+(r+2k)(r+2k-l)ckjI,_1 , ck,r+2 = ck+l,r > 5 fixed • A2) 10.2 SCHWARZ FOKCTIONS AND GENERALIZATIONS 237 In a number of applications 6 currence relations = 0 . In this event, we have the re- jw°k,r+l = Bk+r)(l-cj^r) > *2ck+l,r = Bk+r)Bk+r+l)(l-ck^r)-iiuBk+r+l) re"t%(xt)dt = z^leiz X (-)k(XZ/2)V+2k Jo k=0 к.'(и+У+2к+1)Г(и+к+1) X 1F1(l;M,+u+2k+2;-iz) - (-)kz2k Jc(X,z) = z Z )-> z. gF^-k,-^;!^2) k=Q Bk+l). 2 ? (-)Vk jB(x,z) = z^ 21 )f^fTr2Fi(-k,-Mf;i;^) k=o ^K+?i>- iz. Je(O,z) = i(l-e") . Je(l,z) = zeiz[jo(z)-ij1(z)] A3) A4) A5) Je(x,z). z -^F feltt2kdt k=0 k! Jo - ieiZ Z (?) U'iZ- T ^~ U/2Jk • A6) k=0 L r=0 r- J A7) A8) A9) B0)
238 IlWEffiAIS OF EESSEL FUNCTIONS 10.3 (n/2)Ye(\,z) = ln(Xz/2)Je(X,z)+ielz[^(Xz/2)Jo(Xz)-(n/2)Yo(Xz)] + ielz ? (X/2JkBkk) [tBkfl)-*(Wl)] U k=0 L 2k-l -iz_ V (-lz)r r=0 r! j +ie' iz k=o Kky L r=o • -i (n/2)Ye(l,z) = (nz/2)e1Z[Yo(z)-iY1(z)]-i . B2) lim [(n/2)Ye(X,z)-lji(Xz)Je(X,z)] = i [(у-Зл 2 )(l-elz) X->0 + Ci(z) - (y+ln z) + iSi(z)] . B3) 10.3. Expansions In Series of Bessel Functions /oV\Ut)at - zeiz Z[^;f2l:(fk[wk(z)-lWk41(z)] ,(i-x2r^[i^MiH|, Ii-x21<i , - ±al A) where Wk(z) now stands for any of the Bessel functions of the first three kinds only and cr depends on the particular Bessel function under consid- consideration as tatmlated Ъе1о>г. 10.3 SCHWARZ FUNCTIONS AND GENERAUZATIONS 239 Wk(z) Jk(z) Yk(z) 42)(Z) 0 2/tt 21/tt -21/tt B) If Wk(z) = Jk(z) , the restriction on X can Ъе removed. The аЪоуе follows from 1.4.2A4), 5.2C,6) and 1.4.1G). /„ e"« C0S eJu(t)dt = 2e-iZ cos 9 Z l4<°« в^1+и(«) , 0 k=0 where R(u)>-1 Uk(cos 9) = sin(kH)e k sin 9 is the СЬеЪузЬеу polynomial of the second kind, see Erdelyi et al. A953, Vol. 2, Ch. 10). C) D) I ¦Jv(t)dt = 2e'lz X i (k+l)Jk+1+u(z) , R(u)>-1 . 0 k=0 E) f e-"ju(t)dt = e-±z\zJv(Z)+±ZJv+1(z)-2v ? ikJk+u+1(z)l . F J0 L k=0 J
240 INTECSALS OF EESSEL FUNCTIONS 10.3 10.4 SCHWARZ FUNCTIONS AND GEUERAUZATIONS 241 e-t cos eIv(t)dt = 2e -z cos 9 ^_ Uk(cos 9)lk+1+u(z) , R(u)>-1 . G) k=0 r\-t cos e^j^ + (Y+ln z/2) Te-t cos 9Iq On "n (t)dt I z _ ^„(tfet = 2e*z Z (t)VDlk+i+u(O • 0 k=0 (8) = 2e -z cos 8 " / /оч2т+к+1 Z ^(=0. e) Z^tol?, [K^+2)-t(i)] [Ze?tlu(t)dt = e*zfzlu(z) t zlu+1(z)-2v ? (^Ч^^2)! • (9) i J0 L k=0 -I nZ Г2 n/2 / e"" oos 9Y (t)dt-(y+ln z/2) / e"" oos 9JQ(t)dt Jo Jo ,m, /„ ч2т+к+1 k=0 m=0 _2e-iz cos 9 j- ^(м e) [ф(к+1).фA)] Jk+1(z) k=l .2e-izcose Ji4(-e)(Z/2)] ,k+l oo / „ /rs \m (z/2)mJm(z) k=0 k' m=0 m.'(m+k+lJ A0) 2e-z cos 9 ^ Uk(cQS e) ^(k+l).t(l)J Ik+i(z) k=l + 2e -z cos 9 ? VCOS 9)(z/2)k+1 Л (-fC^^Jz) m k=0 k.' m=0 m.1 (m+k+1J A1) Equations C)-(9) follow from the material in 12.2. To prove A0), use C), 1.4.1A,5) and 1.4.2G,11). The equations (ll) arise in a similar fashion. 10.4. Representation in Series of Circular Functions / '- .+ m+1 I r r , e^t'VU^dt = ^— Y (=°s 2n ^k) l{Aak(z)+1*mb(z)\ k=0 {Cmk(z)+1IW(z)}] + Rq,2n(z) ' A) / ^Vj^^XtJdt =^T (einBn+l)Xk)[.{Ank(z)+iE^(z)} Jo dq- k=o L L + {cnk(z)+inmk(z)}]+ R^2n+1(z) , B)
242 INTEGRALS OF BESSEL FUNCTIONS 10.4 10.5 SCHWARZ FUNCTIONS AND GENERALIZATIONS 243 where Amk(z)+i^Dk(z) = z -m-1 I Z.laktim. /iz tludt Cnk(z)+inmk(z) = z-m-1 Г e^Vdt , C) D) E) ak = l+iDjj , Ък = l-afe , (% = X oosBk+l)Tr/4q. , T!n|(Xz/2L<1-nzm+1|eXy |R (Z)|S_?L _ , Xz = Xx+iXy , Xy :> 0 , i q.,n4 " Dq.-n).'Dq.-n+m+l) 110 = 2 , 11n = 1 for n a 1 • F) The following relations are useful for the computation of Aj^z) , R (z) , etc. It is sufficient to omit the к subscript and write Then V») - ^(z) = z-1 (V^t-at Ao(z) = sin e/e , bo(z) = (i-cos e)/e , e = az , G) z) + mBm_1(z) = sin 9 , z) - mV^z) = - cos 9 , m> 0 (8) 0) A0) The above statements generalize those of Lake and Fettis A956) who note that the results are useful to solve an integro-dlfferential equation arising in panel flutter. The latter source contains some typographical errors. There, in Kq.. E), for zm~^ read zm+;l- . In each line of F), for z1" read z11 . Also, in Eqs. (8)-(lO), к should Ъе replaced Ъу m . 10.5. Asymptotic Expansions for Large z 16 / ePtt^(Xt)dt~ ("Mg)a z^e-(X-P^z X a. Jz CX-p) k=0 -k |z|—>oo , 6 real , 161 <; тт/2 , X>0 , X>R(p) , where the path of integration is defined as in 2.1(9) and ak = к.' BХ )k Sk(S) , SjjCe) = 3F2(-k,M,-k+i,i;u-k+i,-u-k+i;e) , e = Щ- , X-p о fni - l t 9(кн-1)(и,-к-^) , , /; 16 e4%(t)dt~ - i^Zfi! zVi^»,^», 4-^*-^-i/2O , |z|—>« , 6 real , 161 <; тт/2 , R(jj,) <-¦§¦ A) B) C) D) E)
244 INTEGRALS OF BESSEL FUNCTIONS Jx ^ Wx^ (X+p) Xj 2_ l-J a2]5X +i 2, С") a2k+lx f I k=O k=O J 0<x-»=° , X>0 , p real , X+p ^ О , R(n)<i , where ak is given Ъу B)-D) with 9 = SL. . ¦ к -2k . ^- , .к -2k-ll Xi I (") ^k* -1 Z (") a2k+lx j ' k=0 k=0 0<x-».co , \>o , p real , \ ? p , R(n)<i > where ak is given Ъу B). /VVhJ1^ )dt ~ {2™)\»е±[2*^-^ Lk=O k=0 10.5 F) G) X(Z (-)ka2kx'2k+1 i- (-)ка2к+1х'2к"Н^ °<x-^-, R(^)<4 , (8) where ak is given Ъу B)-D) with X = 6 = 1 10.5 SCHWARZ FUNCTIONS AND GEHKRAUZATIONS 245 X 3Fi(i-u^^-i-M.;i-|j.;-i/2ix) , o<x-».co , r(m,)<4 . (9) «/x ° U+^ -^П^ [ kt0 [4i(l+X)x]kr=0^rA8X ; J 0<x->co , X>o A0) /' "x e«B<a)(XtLt VTixi Lk=O [4i(l-X)x]k r=0 8X J 0<X->co } \>0 A1) /; >t%(xt)dt^^-(p:x?' j(-Lz-k BttXzJ(p-\) k=0 |z|—>-co , R(p-X)> 0 , |arg z|<tt/2 , A2) where a^ is given Ъу B). /; e-4%(t)dt. ,H+1 BnXzJ(n+i) 3F1(i-i»,i+i»,-i-M.ji-M,;l/2z) , |z| —*.» , R(M,)<-i . A3)
246 INTEGRALS OF BESSEL FUNCTIONS 10.6 10.6 SCHWARZ FUNCTIONS AND GENERALIZATIONS 247 10.6. Infinite Integrals See also 2.6 and 4.5. fe^t^T (Xt)dt = (V^V^+D 2FYHiZli , ^1 ;v+l;-X2/p2) Jq р^+1Г(и+1) V 2 2 У R(p,+u)>-l , R(p)>|l(X)| , |X/p|<l A) 2 2 - R(n+v)>-l , R(p)> |I(X)| , |X/r|<l , r = (p+X f ¦ B) rC°e-ptt%(Xt)dt - Г(^+1)г-»-\У(Ф) > H(m.+i;)>-1 , H(p)>|l(X)| , C) where A* ^(Z) = F^I)(S) 2^-^^-^-^ ^ is the Legendre function of the first kind, see Erdelyi et al. A953, Vol. I, Ch. 3). Here, z lies in the complex plane cut along the real axis from -1 to 1. If z = x , -1<х<1 , replace E+l\zVl Ъу /l+x^11 . Vz-1/ \l-xS rVptti;jl,(\t)dt = (ax)"^)^-2^1 , h(i>)> 4 , r(p)> |i(\)| • Jo E) f e-pttU+1Jv(Xt)dt = pBX)UC/2)l,r-2l;-3 , R(u)>-1 , R(p)>|l(X)| . (б) ^0 / e-p\(Xt)dt = r-VCp+r)-" , R(u)>-1 , R(p)>|l(X)| . (?) J0 ЛСО / e-ptt-1Ju(Xt)dt = iTV(pfr)7 , R(u)>0 , R(p)> |I(X)| . (8) />t4(t),t = е^^Г^ВгС-Ь) , ^„j^, f ЕЫ<4 . (9) J0 r(iJ^+1r(u-ti) fe-4%(t)dt = Г(^1)ГD-р) f !,(,„)>.! , R(li)<.l 0 r(iJ^r(u-^) A0) ПС» / e-ptY0(Xt)dt = - i- arc sinh p/X Jn nr = ^m(^?), R(p)>|i(x)| (ii) J e-PV^Xt^t = r-1-2i(nr)-1arc sinh(p/X) , H(p)> |l(X)| . A2) In C)-(8) and A1)-@2), r is defined as in B).
248 INTEGRALS OF EESSEL FUNCTIONS 10.6 f e-Ffct\(Xt)dt Jo r(u,-m-l)sin рл ov s^sin^+iOn ^(р/в) r(m,+u)>-1 , R(p+X)>0 , s = (p2-X2J , A3) where «!<o -fe? [*•>-№;•<¦>] A4) is the Legendre function of the second kind, see Erdelyi et al. A953, Vol. I, Ch. 3), and z is in the complex plane cut along the real axis from -1 to 1. See the remark after D). Ге-РЧ*-Ч+±(>Л)dt = (n/2X)* Г(^)Г(^+1) р-,(р/х} ? Jo sM/ R(n+v)>-l , R(n-v)>0 , R(p+X)>0 . A5) e±i;t%(t)dt , see 4.5D-5). -t cosh 9,, **№ - (sin^ 9 - l*(»)l<l,R(eosh9)>-l • (IS) /* e"PtKo(Xt)dt = s Jo = s arc sinh s/X Г11л(^),В(^)>0 . A7) 10.6 SCHWARZ FUHCTIONS AND GENERALIZATIONS 249 / (cos pt)K0(t)dt = ^n(l+p^)-2 , |l(p)|<l • J n A8) /; (sin pt)K^(t)dt = (l+p2)arc sinh p , |l(p)|<l . A9) Some special cases of the a"bove results are found in sections 2.6 and 4.5. Further special cases are given Ъе1сяг. Throughout the remainder of this section, s = (p -X2)^ , u = (X2-p2)? Л со / t" Jy(Xt)sin pt dt = v~ sinfv arc sin(p/X)l , 0 s p s X , = vU(p+s)' sin un/2 , p 2: X>0 , R(u)>-1 . B0) /CO t Jv(Xt)cos pt dt = v~ cos ly arc sin(p/x)] , 0 s p s X , = vXU(p+s)' cos un/2 , p ;> X>0 , R(u)>0 . B1) / Ju(Xt)sin pt dt = u" sinfv arc sin(p/XI , 0 ? p<X , ^0 = s-1Xu(p+s)-u cos un/2 , p>X>0 , R(v)>-2 . B2) „CO / Jv(\t)cos pt dt = u cos[u arc sin(p/X)] , 0 <. p <. X , = -sXU(p+s)' sin un/2 , p>X> 0 , R(v)> -1 . B3)
250 IHTEGRALS OF BESSEL FUNCTIONS 10.6 /; eiptJo(Xt)dt = u , 0 ? p<X , = is , 0<\<p B4) / eiptYo(Xt)dt = 2i^- arc sin p/X , 0 s p<X , ^0 П = .s-l + 2i?ilnCPliV 0<X<p n V X J f Jo 2u -1 eiPtHA)(Xt)dt = ^— arc cos p/X , 0 ? p<X , -1 f J0 = -2B_iaCEz?V 0<X<p n V X У e^V^ptJdt = B/ттр) , p>0 . /; Equations B0)-B8) are special cases of the discontinuous №еЪег- Schafheitlin integral, see 13.4.2. B5) B6) B7) iptH02)(Xt)<lt = 2U'1 - ^— arc cos p/X , 0 s p<X , = 2is + 2?± Дл(Е=Г\ , 0<X<p . n V 1 / B8) 10.7 SCHWARZ FUNCTIONS AND GENERAUZATIONS 251 10.7. Description of Mathematical Ta"bles Crowley A954): / eitJQ(Xt)dt , X = 0@.1I0 , x = 0@.02I0 , Xx S 15 , «'O 5d. Garrick and RuMnow A946): w~l I eltJ0(Mt )dt , M'1 = 0.2@.1H.9 , </o 5 ranges from 0.02 to 20 , 5d. oL Hoyt A947): Q*(R) = l-Q(R) , Q(R) = (l-Ъ2) / е'Х10(ЪХ)й\, (l-b2)L = R2 , J0 Ъ = 0,0.3@.1H.9,0.95,1; R = 0.2@.2H.8,1.6,2.0 . ТаЪ1еэ are accurate to аЪо^ 3d. See the author's remarks and compare with Rice's ta"bles described below for ("b,R) = @.6,0.8), @.8,0.6). л1 Huckel A956): / tXe'lS5tJ0(M'1ujt )dt , («(M2-!) = 2км2 , X = 0(l)ll , ^0 M = 1.2@.1I.6@.2J.0@.5L.0,5.0 , к = 0@.005 H.15@.01H.2 @.025H.35@.05I@.01J , 6d. Luke A950b): / extJ0(Xt)dt , X = 0@.l)l , x = 0@.02J@.1I0 , '0 5d at least. />x Mathematics Center, Amsterdam, Computation Department A951): / eictJQ(t)dt, ^0 / elctY (t)dt , с = 0.3@.1H.8 , x = 0@.1N.1 , 8d. u n
252 INTEGRALS OF HESSEL FUNCTIONS 10.7 nx Rice A948): / e^Ost )dt , к = 0@.2I , x = 0@.2 M@.4 )9(l)l5,со , 4d. ^0 Also к = 0.9 , x = 10AI5,со , 4d; к = 0.86,0.9,0.96,1.0 , x = 15A) 20,co , 4d. „x Schvarz A944): / el1;J0(H )dt , X = 0@.l)l , x = o(O.O2J , 6d; ^0 x x = 0@.1M , 8d. / eitY0(Xt)dt , X = 0@. l)l , x = 0@.02J@.1M , Jo 6d. Auxiliary ta"bles axe also provided to facilitate interpolation of the latter integral near the origin. For errata, see Math. Ta"bles Aids Сотр. 4, p. 100. Zartarian and Voss A953): Let M = iu/p and v = 0 in 10.2A-3). a^M) = (-)n«4,0 > W*> = (-f+V2n\o , n = 0AN , M = 5/4, 10/7, 3/2, 5/3, 2, 5/2, 9d. See also 2.9 and 3.12. CHAPTER XI INTEGRALS INVOLVING PRODUCTS OF BESSEL FUNCTIONS AND STRUVE FUNCTIONS 11.1. A General Theorem for the Evaluation of Indefinite Integrals Let Л, (z ) *%(z) X a^z) ±— = Fx(z) , Y. 4(z) ПГ~ = ^(Z) ' Ъ2B) = *гМ > C1) k=0 dz^ k=0 dz^ W(z) = f^zjf^z) - f{(z)f2(z) B) Then a2(z)W'(z)+a1(z)w(z) = fx(z )F2(z )-f2(z )F1(z )+ [aQ(z )-Ъ0(г )} ^(г)^(г) + {а1B)-Ъ1B)} fi(z)f^(z) , and .* ff (t)F (t)-fp(t)F (t)] W(z)v(z)=J X 2 aJA 1 [v(t?dt a2(t) rz fa (t)-b (t)l h/(-^Fr]^(t)f2(t)v(t)dt rzfa (t)-b (t)l z a (t) h/ tJ-^fe-]fi(t)^(t)v(t)dt' ^Нг) -J 4o dt C) D) ?53
254 INTEGRALS OF EESSEL FUNCTIONS 11.2 This is a generalization of 3.1B-3), 4.6(l), and results of Chapter V, and includes statements previously given Ъу many authors. See Coulmy A954), Horton A950a), Luke (l950a,1953), MacLachlan A955), Maclachlan and Meyers A936), Maximon A955), Maximon and Morgan A955), Petiau A955), Picht A949), Schubert A953), Straubel A941,1942), and Watson A945). Except where noted, proof of virtually all the expressions in sections 11.2-11.4 follows from D) and the difference-differential properties of Bessel functions and Struve functions. For the most part, the integrals of this chapter are indefinite, though some definite integrals are given in 11.2C0-44). For definite integrals involving the product of two or more Bessel functions, see Chapter XIII. 11.2. Integrals Involving the Product of Two Bessel Functions In the following equations Cv(z) and Du(z) are cylinder functions, see 1.4.1(8). J {(k2-X2 )t- (f-v2 )t"X} C^kt )DuUt )dt f tCu(kt)Du(Xt)dt = —^— fkCu+1(kz)D1)Uz)-XC1,(kz)D1,+1(Xz)) k2-*2 |cu(kz) SL DB(Az)-DB(Az) ^L Cu(k)) . B) pz J tCu(kt)Du(kt)dt = ^ z2 BCu(kz)Du(kz)-C1,_1(kz)D1,+1(kz)-C1,+1(kz)D1,.1(kz)} . C) 11.2 INTEGRAIS INVOLVING PRODUCTS OF EESSEL FUNCTIONS AND STRUVE FUNCTIONS J tC^(kt)dt = i z2 |cy(kz)-Cu_1(kz)Cu+1(kz)| = *z2[(^-^)^(kzK2(kz)| . z J tCMi(kt)Du(kt)dt = - -^_ |cMi+1(kz)Du(kz)-CMi(kz)Du+1(kz)] \ir-v С (kz)D (kz) + j±—_j; ^i+U J tCu(kt)Du(kt)dt = g |cu+1(kz) ^L - Cu(kz) aDp^(kZ) j Cu(kz)Du(kz) 2y (p+H+y)/ tPCMi(t)Du(t)dt+(p-|i-u-2)J tp-1C11+1(t)Du+1(t)dt = zp{c^z)Du(z)+C^+1(z)Du+1(z)} . J Jy(t)Jy+1(t)dt = ^ Jy+k+l(z) • k=0 255 D) E) F) G) /*"ii"';wt)D«+i(t)dt= g(^I)b(z)Bv(z)v(z)vi(z)} • (e) / t^+\(t)Du(t)dt = ^^ {c^(z)Du(z)+C^+1(z)Du+1(z)} . (9) A0)
256 INTEGRALS OF EESSEL FUNCTIONS 11.2 f jn(t)jn+1(t)dt = i fi-jf(z)} -i4)= z 4(z) > n>° • (id JO l -J k=l k=n+l nz z C2) n-1 C1AB)DI,(z)+C(A+n(z)Du+n(z) + 2 21 Vk(z)Du+k(z) . k=l A3) nz °° 2uJ f^CtJdt = jf,(z) + 2 Z Ju+k(z) • A4) k=l n-1 k=l /Z П oo f^OOdt = 1+J^(z)+J^(z) - 2 Z 4(z) = Jn(z) + 2 Z 4(z) * 0 k=0 k=n+l n>0 A6) (^2)J t^+2(^(t)dt = („+1) {y2-J(^lJ]jVc^(t)dt + | z^+1^{zCi;(zL(li+l)Cu(z)|2+ {z2-y24(^lJ}c^(z)l . A7) -2nJ t-^CtJlJnCtJdt = C0(z)D0(z)+Cn(z)Dn(z) + 2 Z Ck(z)Dk(z) , n>0.(l5) | 11.2 INTEGRALS INVOLVING PRODUCTS OF BESSEL FUNCTIONS AND STRUVE FUNCTIONS 257 2By+l)J1Vy+1C^(t)dt = z2y+2[c^B)+C^+1(z)] ,,^ . Aв) 2A-2, )|Zt-2u+1C2(t)dt = zU+2 [^(zJ+C^.^z)] , i; ^ | . A9) 2z(v2-i)J t(^(t)dt = F{zCIJ(z)+icl7(z)}2+ {z2-y2+i}(^(z)l , v f±\ . B0) /' t'2Jn(t)Jm(t)dt = -1 z'xJ (z)j (z) J . (z)J (z)+J (z)j Лг) nv ' mv ' n-14 ' mv ' nv ' m-lv ' (m+n+l) (m+nJ-l 2zJn-l(z)Jm-l(Z) A zJn-2(z)Jm(z) [(m+nJ-l] [(m-nJ-l] (m+n+l)[m2-(n-lJJ zJn(z)Jm-2(z) (m+n+l) [n2-(m-lJ] , |n-m| f 1 B1) J t- Jn-i(t)Jn(t)dt = -i z Jn-i(z)Jn(z) Г n~2 1 ¦^4) + г1 4B)-ИLB)-И^г) -"МД. B2)
258 INTEGRALS OF BESSEL FUNCTIONS J t-aJn(t)Jm(t)dt ,-1 ±_ ZJnB )Jm(Z > тг-т[Jn_i(z )Jn(z )+Jn(Z)Jm.x(Z)] (m+n+2) (m+n) + L-^~ [jn-2(z)Jm(O+2Jn.l(z)Jm-l(z)+Jn(z)Jm-2(z)] (m+n-ir-1 , z | Jn-5(ZV2) , Snr:4)_,^jn-2(z)jm-i(z) (т+п)[ m2.(n.2J (n-m)[m2-(n-2J] (n-a44) , u , x , Jn(Z>WZ)l + <«UoLfi J-(z)Jm-2(z) + -??zr\ n^m, |n±ml^2 Jzt-34(t)dt =. _^_TL-24(Z)+z-iJn.i(z)jn(z) 1 Г 2 П'2 2 2 + i z CJn-3(Z^n(z)-Jn-2(z)Jn-l(z))j I ' n ^ °'1 • 11.2 B3) B4) fZt-34(t)dt = - -?l_(i^4(z)+ 21 k24(z)l , n ^ 0,1 . B5) J n(nd-l) L ^ k=l J 11.2 INTEGRALS INVOLVING PRODUCTS OF BESSEL FUNCTIONS AND STRUVE FUNCTIONS 259 / t-3Jn.2(t)jn(t)dt= - ?!jn_2(Z)jn(z)- ?i Jn.i(z){jn.2(z)-Jn(z)} - 8n(n-l)(n-2) |Jo(z) + 2 Z 4(z) - (ПГ) Jn-2(z) - (n-2L_1(zL(n-l)(n-2)j^(z)l , n^ 0,1,2 . B6) We have noted typographical errors in the forms for B4)-B6) given Ъу Petiau A953); likewise, for the form of B4) given Ъу Picht A949). For further reduction formulae and results of the type B1)-B6) relating to Я7, J Л (t)Ju(t)dt , see Coulmy A954), Picht A949), Schubert A953) and Straubel A941, 1942). Equations B7)-B9) come from 1.4.1A7,18,20). X 0 J^at)Jv(^)dt - г(ц+1)Г(и+1) - l-ffaz) F(-k' -^k; и+1;Ъ /а } X Z „,, ч/ ,,ч / R(n+v+p)>-l k=0 k!(M,+y+p+2k+l)(M,+l)k B7) nz /l vM,+U p+1 (|i+u+p+l)r(|i+l)r(u+l) X 3^4 ^ ,+U+l U.+U+2 U,+U+D+l U+U+D+3 2\ R(|l+U+p)> -1 B8)
260 INTEGRALS PF BESSEL FUNCTIONS 11.2 pz fl ,2u p+1 / tVtOi^tOdt = tsLLJ J0 Bu+p+l) |r(u+l))' w t, /21M-P+1 . v+1 u+2 2y+p+5 z4\ „, , w /OQ^ Let yr Ъе the r-th positive zero of J0(x) , i.e., J0(vr) = 0 . The equations C0)-D4) below axe essentially due to Butler and Pohlhausen A954). See also 3.10. I JO(Yrt)Jo(Yst)dt = 2Jl(Ys) Z 0 k=0 - (-)kj2fcfl^8)PkB^-D 2k+l ш = Yr/Ys s x > where C0) PkBou2-1) = (-)\Fx(-b,b+lil;m2) C1) is the Legendre polynomial. Г1 2 J J0(Yrt)dt = 2J1(Y^) k=0 (-Lk+l(Vr) 2k+l C2) 11.2 IMTEffiALS INVOLVING PRODUCTS OF BESSEL FUNCTIONS AND STRUVE FUNCTIONS 261 /; j1(Yrt)j0(Yst)dt -1_ . , f (")k+1J2k(Ys) = ® ji(ys) 2. ¦ k=l 2k |ркBш2-1)+Рк.1BиJ-1)| = <«Jl(Ys) Z J2k+2(Ys) 2Fl(-k^k+2^2^ ) • k=0 C3) Here u) = Yr/Ys fi 1 • If Yr/Ys - ^ > use tlie relation Ys / J1(Yst)J0(Yrt)dt + Yr / Ji(Yrt)Jo(Yst)dt = x • J 0 J0 C4) In F1) of the cited reference, which corresponds to our C3), the sign of &2п_1_ should Ъе positive. \(yTt)Jo(yTt),t = Jx(yT) f;.^ WYr>_ l k=0 k+1 2Yr C5) J j^tjj^tjdt = лх(У8)? "JB?1)У5){Рк+1Bш2'1)+2РкBш2) Johi(yJ Рк.хBцJ-1)}= uuJx(Ys) Z 2k^1S 5Fg(-k,kH-l,5/2;l/2,2;ou2) . C6) J k=0 ^k -1
262 INTEGRALS OF BESSEL FUNCTIONS 11.2 (Vl(Yrt)dt. Jl(Yr) z (")kyk;r(Vr) - -?b*> /^(Yrt^ , = 1 ; ek = 2 , k> О C7) f V^(Yrt)dt = i- fjf (Yr)- ^=^ f tm-2^(Yrt)dt} , m ? 0 . C8) f tmj2(Yrt)dt = 1 fjf(Yr)-(m+l) / tmJ2(Yrt)dtj , <J0 №-!-) I J0 J pi / t jf(Yrt)dt = \ jf(Yr) . Г tmJ0(Yrt)J0(Yst)dt =-iH^L[2YrYg [^(Y^Ye) - (m-3)y tm-2J1(Yrt)J1(Yst)dt] m / 1 . C9) D0) - (m-l)(y^y2e) J tm-2Jo(Yrt)Jo(Yst)dtl . D1) 11.2 INTEGRALS INVOLVING PRODUCTS OF BESSEL FUNCTIONS AND STRUVE FUNCTIONS 263 и n tmJ1(Yrt)J1(Yst)dt = -(l^_i^^2 (Yr+Ys) [ji(Yr)Jl(Ye) - (m-3) f tm-2J1(Yrt)J1(Yst)dt] - 2(m-l)YrYs J tm-2Jo(Yrt)Jo(Yst)dt I / Л0(Уг*^1(УВ*L* = "рЦ Vr rjl(Yr)Jl(Ys) J0 Y?-Y| L L Г1 - (m-2) / ^^(^^(YgtjdtI Jo J /Vvo( - mYs / t- "J0(Yrt)J0(Yst)dt 0 Yr / tmJ1(Yrt)J0(Yst)dt+Ys Г tmJ0(Yrt)J1(Yst)dt  J 0 Л1 = m / tm-1Jo(Yrt)Jo(Yst)dt . J0 D2) D3) D4) The following are tabulated by Butler and Pohlhausen A954). All entries are to 5D.
264 л ~ INTEGRALS OF EESSEL FUNCTIONS 11.3 Ли(у^^„(уг*L* J ц - 0,1 ; в - 0,1 j г - 1AI0 ; m = O(l)lO Г1 / ^(Ypt^^Yst)^ i|,= 0,lit=O,li r,s = 1AM ; m = 0AM Jo 11.3. Integrals Involving the Product of a Bessel Function and a Struve Function tJu(kt)Hy(jet)dt = z |JeJu(kz)Hl;.1Uz)-kJi,.1(kz)Hl;(Xz)| ^u+l pkz -ЩпЩI tJ^(t)dt • (^2-v2) J t^CtJJ^tJut = z (ju(z)H^.1(z)-Ju_1(z)H^(z)J z i Г t%(t)dt-(n-u)H^(z)Ju(z) . -1r(i)r(u-ti)J 2^-1Г(|)Г(^4) A) B) (PV")/ tP-^^t^^tJdt + (P-^-y-2)J tp"XH^+1(t)Ju+1(t)dt = zP {H,(z)Ju(z)+H^+1(z)Ju+1(z)) - HI7iX^M/\^Ju(t)dt . C) 11.3 INTEGRALS INVOLVING PRODUCTS OF EESSEL FUNCTIONS AND STRUVE FUNCTIONS 265 „z 2(H+I>+1)J t"|1"I;-:lB11+1(t)J1,+1(t)dt = 2-M, ГA/2)Г(м,+3/2) J t-uju(t)dt ^^K(z)jv(z)+vi(z)j^iB)} • 2b+v+l)J ^+^\(t)Jv(t)it = - 2-1* Г (l/2X|i+3/2) ./>+y+2Ju(t)dt + 2^и+2{^B)^B)+Н11+1(О^+1(^} • D) E) у Г t'\(t)Ju(t)dt - (v+l)J tHu+1(t)Ju+1(t)dt ¦ (i) {^(^„(^w^io} - 2^tl/l,T(v.s/JZ*v*№ ¦ ^ z n-1 /\kJ (t)dt J v=n 2krfl/2 ^rfk+3/: k=0 2кГA/2)г(к+3/2) г 1 п"х 4H0(z)J0(z)H-Hn(z)Jn(z)[ - 2 Z Hk(z)Jk(z) , n>0 . G) L J k=l z z J tH1(t)J1(t)dt = (!/tt)J Jo(t)dt-(i)|Ho(z)Jo(z)+H1(z)J1(z)J . (8)
266 INTEGRALS OF BESSEL FUNCTIONS 11.4 11.4. Integrals Involving the Product of Two Struve Functions (k2-/)J tHv(kt)HvUt)dt = z [xHu(kz)Hv.1(*z)-kH1,_1(kz)H1,Uz)j r(t)r(v+t) [(к/2/Г1 J^tX(t)dt-(V2k)U+1/ \%(t)dt} . A) z » (H2-)J tHMi(t)H1,(t)dt = z JH^iOH^zHl^ztev.!^)! 1-1» nz л1"^ PZ rD)r(»+i) J t\(t)dt - r(i2)r(^i)J ^(*)«-(^-»)^(а)н»(г) • B) In Horton A950a), the last term of B) is missing. (р+ц+и)/ tpH^(t)Hv(t)dt + (p-n-u-2)Jtp~1Hti+1(t)Hv+1(t)dt = zp (H^^tz)^^)^^)} - r(l/22)r(,+5/2)/ t^+PHu(t)dt r(l/2)r(v+3/2) •JZtu+\(t)dt . (з) 11.4 INTEB1AI? INVOLVING PRODUCTS OF BESSEL FUNCTIONS AND STRUVE FUNCTIONS 267 2(^fl)J t^-U-1^+1(t)Hu+1(t)dt D-M. r(V2)r(ii+3/2). JbJT)! *"Ч(*L* ,-u ГB/2)ГA»+3/2) /Zt~4( t)dt - Z"^- " {V2»»(z4+i(zWo} • D) = ^+U+2 {^(z^Cz^^z^^z)} «j1 t"^(t)dt - (v+l)J t"^+1(t)dt = i{H^(z)+H^+1(z)}- ГA/2)Г(и+3/2) ¦I t Hy(t)dt F) 2nJ t"^(t)dt = - [^(z)f^(z) J n-1 -- - о П f tkH. & )dt - 2 Z ^@ + 2 X ^T ~ ' n>0 k=l k=0 2кГA/2)Г(к+3/2) G)
268 INTEGRALS OF BESSEL FUNCTIONS 11.5 11.5. Integrals Deduced from Wronskians Let gx(z) and g2(z) Ъе independent solutions of the differential equation a2(z)E^+ai(z)^+ao(z)g(z) = 0 , and put Then dz' W(z) = gl(z)g2(z) - gi(z)g2(z) = ^y , A , a known constant, In {V(z)} =| ,z ax(t) a2(t) dt '/ dt _g2(z) V(t)g^(t) gx(O A) B) C) '/" dt gx(O V(t)gl(t) S2(z) '/" V(t)gl(t)g2(t) ш[б1(г) = In (O E) The above also follow from 11.1C). tt J-v(z) j2(t) " ' 2 sinuiT Jv(z) PZ dt _ J tJ^(t) F) 11. 6 IMTEORALS INVOLVING PRODUCTS OF BESSEL FUNCTIONS AMD STRUVE FUNCTIONS 269 /; dt tt v W 'I dt V «,,(O j?(t) 2 vz)'J ti2u(t)": iv(o G) / dt - .. ]-M W,,(t)J.i,(t) 2 sin wr Jv(z) (8) /' dt -^^i.r = In I (z) tJv(t)Yu(t) 2 Jy(z)JJ «„(t^Ct) K,(z) (9) Г dt jt JjM]_ . Г •/ t^(t) " 2 Yu(z) ' J J,,(O rz dt Iv(z) tK2(t) Ku(z) A0) dt • HB)(z) in v v ' J t[H«(t)]^4 ^«(z) '/¦ dt iTT^1^) t[HB)(tf 4 HB)(z) A1) /: dt = — In tn^(t)ni2ht) 4 ^^(z) A2) 11.6. An Integral Involving the Product of Three Bessel Functions Fettis A957a) studied the integral I(o,P,y,x) = / tJo(at)Jo(pt)Jo(Yt)dt , Jo A)
270 INTEGRALS OF BESSEL FUNCTIONS 11.6 and gave a short table of 1(уг,ув,у^,1) for all combinations of r,s,t s 3 where the Yr's for г = I*2;3 B^e the first three positive zeros of Jo« • CHAPTER XII MISCELLANEOUS INDEFINITE INTEGRALS INVOLVING BESSEL FUNCTIONS 12.1. The Integral j(x,y) 12.1.1. Introduction We consider J(x,y) = 1 - e"y I е'\ J2(yt)H dt . A) A related function is l 2 P 3 2 ttVf^p) = 2e"p / te-t IoBpt)dt = 1 - j(x,y) , x = 02 , у = p2 . B) « n J(x^y) appears in a wide variety of applied problems. For the subsequent material 12.1.1 through 12.1.5, we closely follow the work of Goldstein A953) who should Ъе consulted for further details and an extensive bibliog- bibliography. See also the work of Goldstein and Murray A959). For additional references and description of tabular material, see 12.1.7. We introduce the notation 2(xyJ = 5 , (y/x)* = П , (Ax=J = z C) Some elementary properties of (l) follow. J@,y) = 1 ; J(x,0) = e" J(x,y) + J(y,x) = 1 + e-(x+y^IoE) D) E) 271
272 INTEGRALS OF BESSEL FUNCTIONS J(x,x) = i [l+e-2XIoBx)] lim J(x,y) = 1 5 lim J(x^) = ° 12.1.2. Partial Differential Equations aj(x,y) = .e-(x+y)io(O Эх Ъу fjibll + Ml&ll + ti2 ^Ibil = о . ЭХ2 ЭХ ЪУ b2ju,y); (y-i+i) m^ii+г2 щь*1=° Эу2 Эу S2j(xjy) + -1 9J(x,y) _ ^-2 fjix.yl = ЭУ2 Эу Эх2 fjix^ + bJj&Yl + Э?(х^ = о . ЭхЭу Эх Эу Consider 92K(r,t) + 1 bK&tl - j: 5K(r;t) в Q , 2 г Эг s 9t К(г,О) = 1 for г<а , К(г,О) = 0 for r>a 12.1.2 F) G) A) B) C) D) E) F) G) 12.1.2 MISCELLANEOUS IMDEFIKITE INTEGRALS INVOLVING BESSEL FUNCTIONS 273 where a and s are constants, and K(r,t) is finite for all values of r and t . Then *<*'*> = 1-Кй'й) (8) The solution of the telegraphy equation, see Goldstein A953, p. 169), LC g^L^ + d^cR) av(x,t) + RSV(x^t) = s2v(x,t) > dt Эх2 (9) dtc where L, C, R ' and S are the self-inductance, capacitance, resistance and leakage resistance of the line per unit length, respectively, шау Ъе expressed in terms of J(x,y) . At t = 0 , suppose the end x = 0 is raised to unit potential (V=l) and is thereafter maintained at that poten- potential. If V = 0 for x>vt , then for x<vt , V(x,t) - e"P* [е^Л^у^^ (l-Jty^)}] , A0) where -1 p = |(R/L+S/G) , v2 = (LC) a = [(R/LJ-(S/CL] , Э = [(R/LJ+(S/CJ] , x-l = ia(t+x/v) , yx = &(t-x/v) , xg = ig(t+x/v) , y2 = ia(t-x/v) A1)
274 INTEGRALS OF BESSEL FUNCTIONS Again, consider .2_ .2„ч Ъ2В *< %х2 Ь^} ^ 9z2 where к]_ and Ъз are constants, subject to the conditions: At t = 0 : s = 0 vhen z = 0 and x +y s a 2 2 2 s = oo vhen z = 0 and x +y < a s = 0 vhen z ^ 0 ; со oo оэ for t г О ^ -co « -oo u - s dxdydz = Q , a constant Then where F(P,p) is given by 12 .1.1B). See Wilson A951). If X = J(rs,t) > j(rs,t)+e(r-1)(t-s){l-J(s,rt)} 12.1.2 A2) (И) f}=|a(k,t)-*, P = i(ML(^V)= , A4) A5) 12.1.3 MISCELLAMEOUS INDEFINITE INTEGRAIS INVOLVING EESSEL FUNCTIONS 1-J(t,rs) j(rs,t)+e(r-1^t-S){l-J(s,rt)} then See Opler and Hiester A954). 12.1.3. Power Series Expansions and Expansions in Seri( of__Bessel Functions J(x,y) = 1-х X •Цр-2Р1(-к,.к;2Л)-2) , 7)>1 k=0 sk к J(x,y) = 1-х X ijjL^. Л(-к,-1-к;1;7J) , 7)<1 k=0 J(x,y) = е-(х+У) 21 7)^E), T)<1 k=0 J(x,y) = 1-е-(х+У) X Ti-\(S), 7)>1 k=l A generalization of D) is given Ъу 12.2B0). 275 A6) -(tl)t - (fOs - X(l-«) - r»(l-O . A7) A) B) C) D)
276 INTEGRALS OP BESSEL FUNCTIONS 12.1.4 ! xe J(x,y) ¦= 2 - -(x+y) (yx) ioE) " -(x+y), 2(y-x) 1^; а к. ,2k-1 -(х+у) л у И (у-х) е jlk(x+y)+Ik.i(x+y)f- E) ?b k.I2kBk-l)(x+y)k L « e?-1I Bx) j(x+e,x) - i {l+e-2XIoBx)} -e-2x Z ^— ' ^ >- J k=l vhere Д is the forward difference operator, and AIn(z) = In+1(z)-In(Z) , Ak+1In(z) = u*Tn^(z)-b\{z) Г Pv 1 ?v Д екДк11Bх) J(x,x+e) = i |l+e-2xIoBx)J +ex Z jr • 12.1.4. Laplace Transform and Integral Representations f e-Pyj(x,y)dy = p-^xp (- ?Ь.Л , R(p)>0 . Г е-РУ0Г(у,х)ау = p^Jl-Cp+lJ-^xp (- ЖЛ\ , R(p)>-1 n c+i<» J(x,y) = gij- / P'^xp (py - E_) dp , c> 0 G) (8) A) B) C) 12.1.4 MISCELLAKEOUS INDEFINITE INTEGRALS INVOLVING BESSEL FUNCTIONS Let Then we ъ) = e^ Г4 e-^t(l-n^TTt)dt " J0 t2D-tJ[(l-nJ+nt] °^; an Jo tiD.t)i[A.,J^t] 277 J(x,y) = е-(х+УI(§,Т|) for T|<1 , = 1 + e-(x+y)l(§,T|) for T)>X . D) « 0 1-2T) cos e+T]2 dTT J о 1-2Т) cos e+T]^ F) J(x,y) = 1-х2 I e-2J0 |2(yt)H ^^(xtjijdt . G)
278 INTEGRALS OF BESSEL FUNCTIONS 12.1.5 12.1.5. Asymptotic Expansions j(x,y) ~KZ {e-5io(.)+ (g*) (ans)"* Zo *k4B§rk} e"Z^) ? akckB5)"k , 71 «1 , S-»« > 1"T1 k=0 where ak = k.' > 4 = 2Fi (-k,i;*-k;- -^i) =k = i( i-Tl Hr( i+il L » akck = ^4A+11 ^V^) J(x,y) -1Ф'2 [eIoE)- (^) Bn5L ^Z акЪкB5Гк] -"Wf* * ^ (*Wz) eIoE)+(z/n)* Z - k=0 k.' B5+z)b 71<1 , z/g small, §->» , A) B) C) ^x.e ^s; ^ алB5) , ti »i, s-*« * D) where ak , Ък and ck are defined by B) and C). E) 12.1.5 where MISCELLANEOUS INDEFINITE INTEGRALS INVOLVING BESSEL FUNCTIONS Eo(z) = 2zez(^ - Erf z*) , E^z) = zm2F0(-m,h-z~L) = (|)m ^(-md-miz) = (i)m^zA(i^-m;-z) . J(x,y)~l + KZ(e-5loE)-(z/n)i ? ?ЬЩ } , - L k=0 k.'B5+z)k J T)>1 , z/g small, 5—*oo , where Em(z) is defined Ъу (б) and G). j(x,y)~KZ e-§IoE)+-^Z (i)kFk(z) Bтт§)гк=0 k.'Bg)k T1<1 , S- j(x,y)~i + Kz eioE) - iacsL 2: ,XJ ^ (i)A(z) Bn5 J k=0 k.' B? )k T)>i , 5->co , 279 F) G) (8) (9) A0)
280 where INTEGRALS OF EESSEL FUNCTIONS Fo(z) = Eo(z) is given Ъу (б), and Fk+1(z) + zFk(z) = (i)k , k-1 Fk(Z)-z (-)maifm)-m+(-)kAo(Z) , m=0 r(i) Fk(z) = (i)keZzk^r(i-k,z) . 12.1.6. Integrals Related to J(x,y) Let f(X ,X,T) = I Te-^lJCv2-»2)*} dw , ;X,T)=^VWIO{(-2^L}^ > g(X h(\,X,T) = / we'Xwl o{(v2-^)*} dw Then 12.1.6 A1) A2) A3) A4) A) B) C) (l-\2)h(\,X,T) = XTe'XTIo(Z)+e-XTZI1(Z)-\Xe-XX-Xg(X,X,T)-XX2f(\,X,T) , D) 12.1.6 MISCELLANEOUS INDEFINITE INTEGRALS INVOLVING BESSEL FUNCTIONS 281 where Z2 = T2 - X2 . f(X,X,T) — + x |Io(Z)+e [1J\2 ' 2ZX )] -^HM)]) ' where Zx = {x+(X2-lJ j (T.X) . Z2 = ^-(x2-!)^ | (T.x) . g(X,X,T) = (X2-l)-V^<!e*(Zl+Zk;/Zl)^^Zl Z2 i(Z2+Z2/Z2) H^t)]}- ГA,х,т)=.^^1о(г)+|AЧ?,^)} g(l,X,T) = (T-X)e-TIo(z)+e-TZI1(Z)-2x|l-j(^ , ^)j h(l,X,T) = l/3(T-X)(T+X-X2)e'TIo(Z)+l/3(T+l-X2)Ze'TI1(Z) E) F) G) (8) (9) A0) 2^(h(?;?)) A1)
282 INTEGRALS OF BESSEL FUNCTIONS X2g(l,X,T)+3h(l,X,T) = Z2e-TIo(Z)+(T+l)Ze-iI1(Z) Х^A,Х,Т)+8A,Х,Т) = -Xe-X-HTe-TIo(Z)+e-TZI1(Z) . 12.1.7 A2) A3) A7) See Ford A958) for (l)-(l3). Binnie and Miller A955) have shown that со к 2k -T , g(i,x,T) = -x - Z {~Г e vn RdO + ^-iW > <14> k=0 к.|2кBк-1)'Г;'1 L J nT Q(X,T) = 2 I R(X,w)dw = 2BT+l)g(l,X,T) - 4h(l,X,T) , A5) Jx where Н(Х,т) = e^Iw(Z) + 2g(l,X,T) . A6) Blanusa A948, 1950) gives reduction formulas for [W-xV/2in[(v2-x2)*}dw ¦ Jx L 12.1.7. Description of Mathematical Tables and Approximations Admiralty Research laboratory A953): 104F(p,p) , see 12.1.1B). Э = 0@.05J.50 , p = 0@.05J.50 , 4d. Binnie and J.C.P. Miller A955): Tables computed Ъу G.F. Miller. R(X,T) , Q(X,T) , see 12.1.6A5-16). X = 0@.2M.0 , T = X(o.2M(lJO , 4 or 5s. P l / 2 2 \ Bose A947): P(L) = I t^W2^ +X ^Iq(H)dt , q. = fe-1 , where Jo 2L2 = nprf[ , D2 = if - 2/n , 2\2 = прД2 , and Д2 and D2 are the population and estimated squared distances of two p-variate samples whose harmonic mean size is n . Values of L are tabulated for P = 0.99, 0.95, 0.05 and 0.01 for p = l(l)l0 , X = 0@.5KAN, 8,12FJ4,36,54,72,108,216,432 , 2d. 12.2 MISpELLANEOUS INDEFINITE INTEGRALS INVOLVING BESSEL FUNCTIONS 283 т>г P + i Brinkley and Brinkley A947): e"K / e"tIQBRt2)dt , r = 0@.1M , Jo R = 0@.1M , 5s. /ix l e'tIoB[yt]2)dt , x = у = 0 0@.1M@.2I0@.5J0AM0BI00EJ00A0M00 , 6d. Hastings and Wong A953): See this source for numerous analytical approxi- approximations to / е~г(Р +х )plo(px)dp . Jr Opler and Hiester A954): See 12.1.2^15-17). This report tabulates X and (i) to 4d as follows, r = 0.2@.2I,2, s = 1,2B)8 , t/s = 0.2,0.5,1,2,5 . r = 0.2@.1I,1.2@.1I.5,2AM , s = 10EI00A0) 1000 , t/s = 0.1@.1H.4@.2IAL,6 . r = 0.2@.1H.9 , s = 10E) 100A0M00 , t/s is selected so that X = 0.1 and 0.9 . П °° i/t2+x2 \ Rand Corporation A951): I te 2V 'lo(xt)dt , R = 0.1@.1J0 , Jr x = 0@.05I , 6d. Wilson A951): 104F(P,p) , see 12.1.1B) , @ = 0@.25L , p = 0@.25M , 4d. 12.2. A General Theorem for Representing an Indefinite Integral Involving Bessel Functions in Series of Bessel Functions The following results are due to Maximon A956). Let su(f,g) = Z fk+uWg) > A) k=0
284 INTEGRALS OF BESSEL FUNCTIONS 12.2 where f = f(z) and g = g(z) . Then differentiation of (l) and use of the difference-differential properties of <J\,(z) leads to the formula ijzexp [-i(fg-gA)] [(fg)'fwju-1(g>+(e/f)'*Ч(в)]dz = exp [-Htg-g/t)] S,,(f,g) • B) Now put 6(о^+Э) = yf > 2a(af2+P) = yit2-!) , C) vhere a , Э and у are independent of z and и . Then with ,z we have Fv = Y re"a(of2+3)"afi;+1Ju(g)af , gF^ - oF,, = e~*Bv(t,g) and solving this as a difference equation, we find jVvAerVj^^df = g^ |^ (f/P)k(ek+1-ak+1)jk+u(g) , (*) E) k=0 Y ^ 0 , a f Э ^ F) \U+n, L'u+n provided that lim (a/p)""rilF))+rl = 0 . We retain this assumption throughout. n—»<» If a = Э , 12.2 MISCELLANEOUS INDEFINITE INTEB?ALS INVOLVING HESSEL FUNCTIONS f"e^d+^rVj^itgJaf = (a/Y)e"V Z (к+1)Лк+иF) J k=0 = (a/YJe'V-1 [(l-i;+Y/aa)f Z Л^(в) L k=0 + ig{fju.1(g) - Jv(g)}l , y ^ о . If y= O, since g = 0 gives trivial results, put f2 = - p/o , f - f = 2h Then from B), A'^K-lCsW»]^ = 2e-^ Z fk+1Jk+u(s) > k=0 whence fV^j,,.^^ = fj^ ? (f/p)k(Pk+1-ak+1)Jk+u(g) , a / Э , 285 G) (8) (9) A0) k=0 provided that lim f"nGu+ = 0 where G^ is the left-hand side of n—><= A0).
286 INTEGRALS OF HESSEL FUNCTIONS 12.2 If a = P , fe-*\_x(t)lt =2e"iz Z (k+a)Ak+u(z) J k=O = e-lz[2(l-y) Z ikWz)+z {ju.1(O+iJu(O}l ¦ A1) See also 10.3C-6,10). If, in the above equations, f and g are replaced Ъу -if and ig , respectively, we get the corresponding results involving Iu(z) . It is also convenient to replace a and у Ъу -a and -y , respectively. Let Tu(f,g) = Z fk+uWs) k=0 A2) where f and g are defined as in (l). Then i|Zexp[-|(fg+g/f)] [(fg)'fU'1Iu.1(g)-(g/fIfUIu(g)]d2 = exp[-|(fg+g/f)] Tu(f,g) • A3) Let gCoAp) = yt , 2с(а^+р) = 7(^+1) , A4) 12.2 MISCELIAHEOUS IHDEFINITE IMTEORALS INVOLVING BESSEL FUNCTIONS 287 where а , P and у do not depend on z or и . Then /V^f^rVv^df - -^ % (?/?? {ek+1-(-a)k+1} Wg) , Y^0,a + P^0 . A5) / e-c(l+f2)-2f%.1(g)df = -(a/Y)e-V Z (к+1)Лк+и(е) k=0 = -(a/Y)e-V-1|(l-U+Y/2a)f Z Лк+и(й) k=0 i g [fiy-i(g)+iu(g)} Y Ф 0 . If у = 0 , we put f2 = -p/a , f + f = 2p A6) A7) Then [V^^teJde = ^i i (f/g)kf gk+1-(-a)k+1)lk+u(g) , a+g^ 0 , A8) J a S k=0 L J
288 INTEGRALS OF BESSEL FUNCTIONS 12.2 / e;tlu.!(t)dt = 2e+Z ? (±)k(k+l)lk+u(z) k=O xt i_2 f "е* x-U+1Iu(Xx) f e^ /+1I>y)dya. Jo «o = exp [i(^?)W ? %(^)u+kiu+k(^%) L ^ i+t2 ^J k=o vi+t2y s0 = t<7(t^+l), ek = 1, k>0, R(u)>-1 B1) = e;z fad-v) ? (±L+y(z)+z K-i(z) J I^Z)}1 • ^19) L k=0 L J -1 i See also 10.3G-9,11). Far an application, put f = z/X and g = \z in A3). Then f Ze"*t2tU+1Iu(H)dt = xV*z2 ? (zA)k+"+1Ik+»+l^z) > R(u)>° ' B0) Jo k=0 and-with, appropriate change of notation, this is the statement 12.1.3D) if v = 0 . Finally, in the cited reference, Maximon shows that 12.3 MLSCELIAKEOUS INDEFINITE INTEGRALS INVOLVING BESSEL FUNCTIONS 289 12.3. Other Indefinite Integrals fe-\(t)Tn(l- |i)dt = §g [ln(z)+In+1(Z)] . A) M>) = f F(a,-b) = (td+bd)-2J1(t)dt B) Tabulated. See Froberg and Wilhelmsson A957). a = 0.1@.1J@.2 )lO , Ъ = 0@.1J@.2I0 , 6d. To facilitate interpolation for Мах(а,ъ) s 1 , an auxiliary function f(a,u) defined by F(a,b) = Jr[(a2+b2 )г-ъ] - [f(a,b)]3 is also tabulated for a = 0.1@.1I , Ъ = 0@.1I , 6d. <ln(R/r) л1п(й/г) / (cosh ut)(z-w)'pJp(z-w)dt , -w2 = R2+r2-2Rr cosh t . C) See Buchholz A949). I X Jn(t) dt D) 4d. Tabulated. See Kinizer and Wilson A947). n = 1AK , x = 0@.1)9.9,
CHAPTER XIII DEFINITE INTEGRALS 13.1. Introduction In this chapter ve list integrals over finite and infinite intervals. Far the most part, these are not covered in previous chapters. The list is by no means complete, but is representative of the type of results known in closed form. For more extensive tables, consult Erdelyi et al. A953, 1954). See also Campbell and Foster A948), Oberhettinger A957b) and the references given in 1.1. We give a rather thorough coverage of numerical and analytical material which has appeared since about 1945 and 1950, respectively. 13.2. Orthogonality Properties of Bessel Functions Let Cy(z) be a cylinder function of order v . That is, Cv(z) = AJy(z) + BJy(z) where A and В are constants independent of v . Then fb / tCu(\mt)C,,(\nt)dt = 0 if m^ n Ja = f*t2{A--^)^nt)+Ci2(^)]| L L *-nt J J (i) if m = n , 0<a<b , B) provided the following two conditions are satisfied. 1. \n is a real zero of h1XCu+1(Xb) - hgCyUb) = 0 290 C) 13.2 DEFINITE INTEGRALS 291 2. There exist numbers кд_ and kg (both not zero) so that for all WW^na) - k2CuUna) = 0 . D) If a - 0 , the above relations axe valid if В = 0 . This case is covered Ъу the following result. / tJ^t)^ J0 (ont)dt = 0 if m ? n , v>-l , = i [^(ап)] if m = n , b = 0 , u>-l , 1 Га2, 2 21,2, , 2an Lb< if m = n,b^0,va-l , E) where аро^, • • • are the positive zeros of aJv(x)-t-bxJ,J(x) = 0 , and a and b are real constants. The expressions (l)-E) follow from 11.2B,4). If b = 0 , some results in connection with E) are given in 3.10. From 13.4.2E), Г°° -1 = DП+217+2) if m = n , H(u )+n+m> -1 , (б) J t'1Jn+|(t)Jm+|(t)dt = 0 if m/ n ** —00 >-l = 2Bn+l)~ if m = n (V)
292 INTEGRALS CF BESSEL FUNCTIONS 13.3. Finite Integrals 13.3.1. Convolution Integrals f 3Jt)Jv(z-t)it = 2 ? (-)kVu+2k+l(z) > R(^)>-! > *(»)>-! • J 0 k=0 / Jy(t)J.u(z-t)dt = sin z , |R(u)|<l Jo / L 13.3 A) Л z / J,,(t)!!.,,(z-t)dt = J0(z) - cos z , -l<R(u)<2 . B) C) Г t-^OOJ^z-t^t = ^'\+иB) , R(m.)>0 , R(u)>-1 . D) ^0 Z J^(t)J,(z-t) ^ = (^z)-l(^+u)j (z) , R(^)>0 , R(u)>0 . E) t(z-t) V+u' Z(z-t)'%(t)dt = tt(z/2)^4^(8)J^,-J(») , R(»)>-1 • F) The above expressions are easily proved Ъу applying the convolution theorem of the Laplace transform calculus. If Fi(p) = I e-5zfi(z)dz = L[fi(z)] , Jo G) 13.3.2 then DEFINITE INTEGRALS 293 5(P) = Fi(p)F2(p) = L[f3(z)] = L| I fX(u)fa(z-u)dul (8) provided F^(p) and Fg(p) are absolutely convergent. Convolution integrals can Ъе converted to finite definite integrals with trigonometric argument. Thus iTt/2 P ' 2 2 f3(z) = 2z / f-[_(z sin u)f2(z cos u) sin u cos u du U П O) See 13.3.2. For example, E) above is a special case of 13.3.2C6). For other convolution integrals, see 1.3.2A), 4.3G), 5.2A4-21), 8.1D), and 13.3.2A5-18, 36-46). See also Bailey A930a, 1931) and Rutgers A931). 13.3.2. Integrals Involving Bessel Functions with Trigonometric Argument Most of the integrals in this section may Ъе proved as follows. The Bessel function(s) in the integrand are expanded using 1.4.1A) or 1.4.1A7-19) as appropriate, and termwise integration is performed with the aid of 1.2A4-16) as appropriate. The derived expansions can Ъе ex- expressed as either a hypergeometric function or as a series of such func- functions. Further results are obtained Ъу specializing parameters, variaЪles or Ъо№, and using the formulas in 1.3.5, 1.3.6 and 1.4.1. Many, ЪиЬ not all, special cases which lead to rather simplified expressions are de- delineated. For integrals not covered Ъу these remarks, we usually give proof or references, or the reader should refer to 13.1.
294 IHTEGRAIS OF BESSEL FUNCTIONS 13.3.2 / тг/2 J2uBz cos t)cos2at cos 2gt dt /iff - к1пр f.• Jo J~Bz sin t)sin2ate2letdt = TTBu+lJaz2u 2u 22а+2и+1Г(а+и+е+1)Г(а+и-е+1) X oF, Г J2uBz sin t)e21gtdt = neineju.g(z)Ju+p(z) , R(u)>4 . B) Jo ntr/2 / J.+UBz cos t)cos(n-i;>t dt = ^(z )Ju(z) , R(ti+u)>-l . C) Jo ,rr/2 Ju(z sin t)sinU+1t cos 2nt dt n (-)%/2zfe/z)nf (-)kO(z/2)k , г (z) h^w., D) ( Jy(z sint)sinU+1+2nt dt ^0 1 n (-)k(^) (z/2)k In(n/2zJB/z)n Z ^ J»+i+n+k(z) . B(O>-n-l • E) = (»+DD 13.3. DEFINITE INTEGFtAIS X tt/2 Ju(z sin t)sinut sinBn+l)t dt The combination B) and 1.4.1E) gives iir/2 / Y0Bz sin t)cos 2nt dt = ^nJn(z)Yn(z) Jn Similarly B) with p = i and 7.9A8) yields f"/2 / YQ(z sin t)sin t dt = (nz)~ [sin z Ci(z)-cos z Si(z)l Jo / [J2mBz cos ^ ) " J2mBz)]cos 2(m"nH csc "t d^ « n = 4п(-)П+1 Z (-)kJk+n(z)Jk+n.2m(z) , m = 0 or m = n k=l where n is a positive integer or zero. See Fettis A957b). 295 (-)n(n/2z)^2/z)n f (-)k(D (z/2)\ , , ww , .. " (i+*)-n Ib "^^ J^n+k(O,H(u)>^ . F) G) (8) O)
296 IHTEORAIS OF BESSEL FUNCTIONS 13.3.2 /, тг/2 J (z sin t)sin2a cos2^1 t dt lf-/n\V *(z/grr(B)r(o+v/2) TfcL+v/2 \-z2/i) , R(v+2a)>0 , R(g)>O.(lO) .тг/2 ГП/\(В -in t)Binv+1+fint со-8?-1 t* n (-)k (n) (z/2)k = ir(p)(v+l)nB/z)P+n Z 7^) Jg+vWz) ' k=0 R(u)>-n-l , R(P)>O A1) P uf *- „ т ОЛ-Л j Jn(z sin tjcsc11'1 t cos P 4dt Jo r n-1 . .k, , >p-n+2k I = i(-)nr(e)B/Z)pLn(z)- z ^jrl;^) J ^r^)> 0 . C2) .тт/2 rn^Ju+1(z sin t)sinu+1 t cos2u t dt = |tt(|)vB/z)uJu(z/2)Ju+1(z/2) , Jn R(v)>4 • A3) 13.3.2 DEFINITE 1НТЕ(ЖА1Б 297 .тг/2 Г JV(Z sin t)sin^ t cos2^ t dt = iir(i)tlB/z)^(z/2)Ju(z/2) , «0 li = ±V,K(li)>-5;K(li+v)>-l . A4) X "/2 1,с^,)„М,^,„^№№1;;Ч a+v q+v+1 v „ , 2 ' 2 2 3i ,n a+B+v a+P+v+1 ^+1' 2 ' 2 .тг/2 -2/4 , R(u+a)> 0 , R(g)>0 . A5) Jv(z sin^ t)sin t dt = -^ Jiu+i.(z)J|v4(O , JO 2 ' Jo R(v)>-1 . П/2е12 Sin2t(s.n t cQs tf^t=^^lz-%^Ja{z/2) f R(a)>.i 'a ¦m/2 A6) A7) Г Jy(z sin2t)sin2v+3t cos t dt = Bг)'^и+1(г) , R(u)>-1 . A8) The integrals (l5)-(l8) are of the convolution type. See the concluding remarks of 13.3.1.
298 IHTEGRALS OF HESSEL FUNCTIONS 13.3.2 I tt/2 ЗЛт. sin t)Jv(z sin t)slj?a~\ cos2^ t dt (z/2f+VT(t)rQf- V) J.+V+1 Ц.+Ц+2 u+V. + „ rVl)r(v+l)r(^ +a+p) 3 *\n+i;+l,n+l,u+l, ^ +a+g Е(ц,+и+2а)>0 , R(p)>0 A9) If [i = m+| , v = n+i , 2a = -(m+n) and p = 3/2 , Levine and Schwinger A948) denote the latter integral Ъу 1^ and show that (z/2I ,m+n-l ^n 2 (m+n)r(m4)r(n+i) i л "/2 - тт / cos(m-n.)t(z cos t y1 %+n_^Bz cos t )dt , (m+n)>0 . B0)  In particular, Xl,l = (z/2Tr)-DTTz)+(8z2)'1HoBz)+Dz)H;LBz) n2z - A6z3)-1Dz2+l) / H0(t)dt B1) and similar type expressions are given for 1д_ 2(z) an^- ^2 2(z) * Equation A9) has also Ъееп studied Ъу de Hoop A955) for the cases а = -i , g = 3/2 and а = 0 = i • If p = v = 1 , а = i , g = 3/a , A9) has Ъееп taЪulated Ъу the National Physical Laboratory A953Ъ) to 4d for z = 0@.1J0 . 13.3.2 DEFINITE INTEffiALS 299 irr/2 I J,,_i(z sin t)J,,(z sin t)tan2u t dt = i(i)_uzu'1Jl;Bz) , ^0 0<R(u)<| . B2) ,tt/2 J (z sin t)Ju(z sin t)sin t tan ^ t dt = 2~M'(|)_M:Bz)"' 0 /i2z ttlJl;(t)dt , p, = ±u , R(ti)>-i , RC^+i;)>-2 n ,тг/2 I j|(z sin t)csc t dt = Bz)'1[z-J1Bz)] Jo I тг/2 Jp (z sin t)jp (w cos t)sin2at cos2^ t dt J2^ i(z/2J^(v/2J"r(a+u)r(B^) f (-)k(z/2Jk(a+^k ГB^+1)ГB1;+1)Г(а+Э+н.-н>) ^TQ k.1 B^+l)k(a+e+ti+u)k • -k,-2p,-k,p+u X 3F2^2v+l,l-a-p,-k »tt/2 OTT/^ / J (z sin t )J,,(w cos t)sinM'+;L t cosu+;L t dt B3) B4) -w2/z2^ , R(a+u)>0 , R(P+m,)>0 . B5) = у'\*/у)»Ь/у)\+]1+х(у) > У2 = z ^ , Н(ц)>-1 , R(v)>-1 . B6)
300 INTEGRAIS OF BESSEL FUNCTIONS «тг/2 If v = 0 , the integral becomes Г(ц-*2) 13.3.2 I 3v{z sin t)Jv(z cos t) sin20 t cos2^ t dt Jo = A -ST r(v/2+q+k)r(i;/2+g+k) , , *v+2k , . 2 ,±-n k.TA;+k+l)r(v+a+p+2k) K ' ' Ji;+2k^ ' R(v+2a)>0 , R(u+2g)> 0 , follows from 1.4.2A5) and 1.2A4). See also Bailey A938). I J2m,(z sin t)I2i;^z cos 't)sin ^ ^ cos t dt Jo = ?(z/2) ^ Г(В+у) F /u+l-e I 2/4Л rBv+l)r(g+2M,+v+l) X 2Ч2и+1,Э+2р,+1;+1Г У ' R(n)>4 , R(u+3)>0 . лТт/2 / J (z sin t)lu(z cos t)sinM:+1 t cos1'1' t dt B7) B8) B9) 13.3.2 DEFINITE INTEGRAIS 301 in/2 / J0(z sin t)Ja(z cos t)sin t cosa t dt = |B/z )a (i)ai2a+1(z) , Jo R(a)>-i • C0) itt/2 / J2 (z sin t)!2v(z cos t)tan2M:+1 t dt ^(z/2J^r(v-u) Г(и,+и+1) J2u(zj , R(n)>-| , R("-n)>0 . ПТт/2 +i / J2u,-|(z sltl t)Iu(z cos ¦t)sinM' 2 t tan^ t dt Jn (n/2zJ(z/2)^ iir/2 Г J (z sin2 t)Ju(w sin2 t)sin2a'1 t cos23 t dt ^0 ^ , fz/2ftw/2)VB)r(^%) f (-} B/2) (^+"+aJk 2 Г(и.+1)Г(и+1)Г(р,+и+а+В) j^-q k.'(n+l)k(ti+i;+a+3Jk 2/ 2 X 2F1(-k,-M,-k;i;+ljwVz ) , R(p,+i;+a)>0 , R(g)>0 If \ь = ±b > *>he latter is easily transformed into 10.1C). C1) /„ Jli(z/2)J^z/2^ > * = tv > ЕЫ>-? > R(w-n)>-l • C2) C3)
302 IHTEGRAIS OF EESSEL FUNCTIONS 13.3.2 L т/2 J (z sin2 tU (z sin2 t)sin2-1 t cos2* t dt= ЦФГут^Ъ) X „F, U.+u+a n+u+g+1 u+1 v+2 /2 2 2 2 **5\ц+1,и+1,ц+и+1, И±Е±2*1 , й+^а+Р+1 -Z2/4 C4) nrr/2 J0 . 2 ,2 +Л=,п2а-1 + _я2Э-1 J (z sin t)Ju(w cos^ t)sin'da"-1- t cos^P"-1- t dt 1 (z/2)^w/2)';r(a+a)r(B+n ^ ^^2 ^k 2 Г(м.+1)Г(и+1)Г(а+е+ц,+и) ?\ k'fu+l1) /^a+B+U+Ц N ^a+B+u+u+lN k-0 к.(.ц,+х;к^—с-^_^к^__с_к jk -к -п-к Ё1Н. S+^+l X ,F; 2 2 v 2 2. .2 /_2 w /z ) , R(m,+cx)>0 , R(u+p)>0 . C5) птт/2 / J (z sin2 t)jy(z cos2 t) sin2" t cos2^1 t dt ^0 _ x r(a+u)r(B+,)(Z/2)-a-@ f (") (РУе+^к 2 Г(ц+1)Г(и+1) ^ k=0 k.-("+l)kk ^+^^ -k,-u-k, a^a+^L ^lA-P-y-k.l-p-kl1) Vv+a+e+2k(z) > R(^+a)>0 , R(U+p)>0 . C6) 13.3.2 DEFINITE INTECBAIB 303 JW\b sin2 t)Jv(z cos2 t)sin2^+1 t cos2^1 t dt = ^^g^fr^ ^- (-)kr(u,+v+k-4)r(u+k+i)r(u-P+2k+l)(u+u-^k+i) 4" k.T(u+k+l)rBp,+u+g+2k+l) Jp,+u+2k+i(>Z'' V V 2 У (z/2)i(e-^) ^o k.T(v+k+i)r(^i +ц+к) ^+^+к (О , вЫ>-4 > k(v+p)>o C7) пт/2 рп/г I J (z sin2 t)Jv(z cos2 t)sin2^+1 t cos t dt Jo ГBр,+1) ^- (-)k(u+i>+2k+l)r(u,+^+k+l)r(u,+k+l)r(u-^k+l) ,, ?- i.ir/,.ii.j.i ^r^/,.-ю..J-ol,JO^ tJ(j,+u+2k+l^Zl'' > z[r(tx+l)]2 k=0 к.'Г(и+к+1)Г(и-^ц,+2к+2) R(m,)>-| , R(u)>-1 . C8) ,tt/2 / J (z sin t)Jv(z cos t) sin t cos t dt J0 , , sa " (-)к(а)кГ(а+ц+к) k=0 R(^,+a)> 0 , R(u)>-1 C9)
304 INTEGRATE OF BESSEL FUNCTIONS 13.3.2 13.3.2 DEFINITE IHTEGRAIS 305 г.тт/2 nil/ С / J^(z sin2 t)ju(z cos2 t)cot2u+3 t dt Jo 22UC/2)ur(^-v-l)(z/2)U .tt/2 / J (z sin t)Ju(z cos t)sin ^ t cos t dt Jo Г(м.+и+1) [v^-^vH - 2 C/2W3/2U2/W ,3/2 TT *• ' 'U*- I JV 16 Г(ц+и+2) )-&21 V»«/2(Z)-^V^/2(B)] ' R(m.-")>1 , R(i>)> -1 D0) R(n)>-1 , R(u)>-1 • («) i tt/2 I J (z sin2 t)jy(z cos2 t)cot2l;+;L t dt = Jn 2 (i)ur(^)(z/2)" Г(м,+и+1) Vz)' ,tt/2 r(h.-v)>o , r(u)>-| . D1) I J (z sin2 t)Ju(z cos2 t)sin2^+1 t cos2u+1 t dt Jo n (i) (i)uB/Ttz)* 4 r(ti+u+l) V+^+t J.,+u+i(z) , R(ti)>-i , R(w)>-5 • D6) ,n/2 Г ' 2 2 1 / J0(z sin t)j,,(z cos t)tan t dt = Bu) Ju(z) , R(u)>0 . D2) J0 The integrals C6)-D6) are of the convolution kind. See the concluding remarks of 13.3.1. J JQ(z sin2 t)Ju(z cos2 t)tan3 t dt = [2v(i>-l)J Jju(z)- -^ Jv+1(z)J , Г j^B sln 2t)Ju(z sin 2t)sin2a t cos2^ t dt ^ Jo R(u)>l D3) -i \ 2 /42 / Г J (z sin2 t)Ju(z cos2 t)sin2^+1 t Jo 2.^^+1. cos2U+3t dt A/2) C/2)uB/ttz)= i—iWij V^Z) ' RU)>4, R(O>-i D4) ; X 4F5 r(^+l)r(v+l)r(n,+v+a+p) Jiii j,+i>+2 2 R(^+a)>0,R(^+P)>0 . D7)
306 IHTEGRAIS OF BESSEL FUNCTIONS 13.3.2 ,tt/2 ^J (z sin 2t)Jv(z sin 2t)tanM'' t dt 0 ^ = BzrV ( V^J +u(t)dt , R(n)>-1 , R(u)>0 . D8) mt/2 / К +l)Bz cos t)cos(|j,-u)t dt ^0 = (|пJовс(ц+«)тт[1 BI.„Ы-1^I„(О] , |R(n+«)|<l • D9) itt/2 f KyBz cos t)sin2" t cos" t dt = iTTz'U(|)uIv(z)Ku(z) , |R(v)|<i . E0) itt/2 / Jy(z sin t)sin(pz .sin t )dt = * X (") J2k+1(MJiu+k+i(V2)J^-k-i(z/2) , R(«)>-2 • E1) k=0 ,tt/2 / Jy(z sin t)cos(pz sin t)dt = |n Jo(pz)Jiy(z/2 ) у n + tt X (-W^W^^-k^/2) ' R(«)>-1 k=l E2) 13.3.2 DEFINITE IHTEGRAIS 307 rr/2 / Jy(z sin t)cos (Pz cos t)dt = ^rrJil)(izeu)jil)(|ze"u) , Jo 22 I = sinh u ^ R(u)>-1 , V Ш 2u-VT(v)(wz)" Tl2 = z2+w2-2zw cos t , R(v)>-| , E3) E4) where (^(z) is the Gegeribauer polynomial, see Watson A945, p. 367). ,n/2 [ (\z)'|I-\+u(\z)eit(|i-U)(Cos t)|I+l'dt=nBaz)^Bbz)-V(az)Ju(bz) , J-rr/2 \ = [2 cos t(a2elt+b2e"it)]2 , R(^+u) >-1 . For proof of E5), see Erde'lyi et al A953, v. 2, p. 48). nn/2 / [?-±(х csc "t)-Li(x csc t)J(sin t cos t) dt Jo Tabulated. See Pollard and Present A947). x = 0.5,1,2,4,00. For evaluation of E5) E6)
308 INTEGRAIS OF BESSEL FUNCTIONS 13.3.3 лтг/2 I f(a,t)g(b,t)dt , f(a,t) = (esc t)fcos(a cos t)-cos a] or sec t sin t sin (a cos t) , g(b,t) = J0(b sin t) or cos(b cos t) , E7) see Khudsen A952). 13.3.3. Lommel's Functions of Two Variables These functions arise in a wide variety of applied problems, and should assume added importance in view of seme tables by Dekanasidze (i960). See also Boersma A962). The tables are described at the end of the section. Except for F)-(8), the following formulae are in Watson A945, pp. 537-550) where other expressions are also recorded. Uu(w,z)+iUu+1(w,z) = z(w/z)U / Ju.1(zt)exp(iiw(l-t2)j tUdt  = z(w/z)U Г J^.xCz cos e)exp j|iw cos2e| sin" 9 cos 9 de , R(v)>0 . (l) See 13.4.6A8) for evaluation of the first integral with upper limit equal to infinity. 13.3.3 DEFINITE INTEGRAIS 309 /CO J1.u(zt)exp |-^iw(l-t2)} t2"Udt in/2 = -wtz/w)" / Ji_u(z csc 9)exp |-g-iw cot2e|(csc 9 K"Ucot 9 d9 , w >0 , z > 0 , R(u)>-| /1 Jx_u (zt)exp ||iw(l-t2 )| t"dt = -U2.u(z2/w,z)+iU1.u(z2/wjZ)+e^1W[u2.l;(z2/w30)-iU-L_l;(z2/w,0)] B) Uu(v,z) = Z (-)k(v/z)^kJu+2k(z) k=0 • C) D) vn(w>z) = (') 51 (") (z/w) Jn+2k^z) ' n ^ integer or zero. E) k=0 Uv(wjZ)+iUu+1(w,z) = z(w/z)Ue*1WBrr/wJ Z (-i )kBk+l)AkJk+i(w/4) k=0 лк. W.w.^ Z (-k)»W2) J—M m=0 m;r(u+m-k) , R(u)>0 . F) If v is a positive integer n and k>n , then
310 INTEGRAIS OF BESSEL FUNCTIONS Ak 2 H2/ZJ ( ) J^ m.T(m+k+2-n) 13.3.3 G) In particular, U1(w,z)+iU2(w,z) = (w/z)Bn/wJe1P-w ? ikBk+l)Jk+i(w/4)J2k+1(z) . (8) k=0 To prove F) start with (l). Use 1.3.6D) with p = q. = 0 , с = •§ , w = 1-t2 and z = iw/4 to represent the exponential function in the inte- integrand. Use 1.4.l(l) to expand the Bessel function and evaluate the integral and series with the aid of 1.2A4) and 1.3.5A). Then Ak is recognized as a jj?2 > an(^ the expansion in series of Bessel functions follows from 1.3.6G). Equation (б) generalizes a statement of Zernike and Hijboer A949). For unrestricted v , w and z , Vv(v,z) can Ъе defined by 2 / , i,, Vv(w,z) = cos(^w+^ z /w+|w) + U2.u(wjZ) . Uu(w,z) + Uu+2(w,z) = (w/z)UJu(z) . Vv(v,z) + Vu+2(w,z) = (w/z)"%(z) . (9) A0) (H) ^ Uu(v,z) = -(z/v)Uu+1(w,z) , ^ Vu(v,z) = -(z/wty^Kz) . A2) Both Uv(wjz) and V2_l,(w,z) are particular integrals of 3z2 z az w2 A3) 13.3.3 DEFINITE INTEC3RAIB 311 Uu(Vj0) - i cffr/s?;4*' k=0 Г(и+2к+1) A4) k=o k- A5) vy(v,o-? (-)k(:!/2v)kvu-k(v,0) k=0 A6) Wv,0)M-)n[coB^- Z^-^^] A7) U^KOM-flsin^Z^-)^)^1 k=0 Bk+l)! A8) U-n(w.0) = cosDw+AriTT) j Vo(w,0) = 1 ; Vn(w,0) = 0,n>0 A9) n , ,k, / s2k+m V-an-m^O) = (-)П Z ''HI , m = 0 or 1 k=0 (гк+ш): B0) Un(w,z) = (-)\(z2/w,z) ; Vn(w,z) = (- )nUn(Z2/w, z) B1) In A7)-B1) , n is a positive integer or zero. Dekanasidze (I960) tabulates Un(w,z) and Vn(w, z) for n = 1,2 to 6d. The w and z range is 0.5<:w<6.25,wSzs 4w and 6.25 sv slO , y s г slO . The spacing in z is always 0.01 while that of w varies. For 0.5 <. w <. 1.2 , 1.2 <ws;4,4swslO, the spacing
312 INTEGRALS OP EESSEL FUNCTIONS 13.4 in w is 0.02, 0.05 and 0.1, respectively. Equation D) on page 2 of this reference contains several typographical errors. Boersma A962) tabulates B/w)Un(w,z) for n = 1,2 to 6d where w = тг(ттI0гт , z = 0,1,2 . 13.4. Infinite Integrals 13.4.1. Integrals with Exponential Functions The integrals of this section and their special cases may Ъе viewed as Laplace transforms, Fourier transforms, etc. For references to more ex- extensive tables, see the remarks in 13.1. / e";PttH1Wl;(\t)dt . See 2.6,4.5 and 10.6 . Ге-Р2^-^)*; = W2p)"r(^) 1Р1(^;и+1;-а2/4р2 J0 2pMT(u+l) . e-a2/^(a/2P)"r(^) lBiDv^+li1,+ljeW) , 2pMT(u+l) Е(ц,+и)>0 , R(p2)>0 . A) B) If v = n = -2(^J and jj, = m-n+1 , m = -?DI , Heatley A943) gives tables of B) for various values of r = ia/p , i = л/^Т . For other tables of the confluent hypergeometric function -^(a, c;x) see the general re- remarks in 1.1 and Slater (i960). See also Chapter VII. re-ttia-lJa[2(zt)i]dt Jo = z"a/2Y(a,z) , R(a)>0 , R(z)>0 C) 13.4.1 DEFINITE INTEGRALS 313 (V^V^at^t - a»Bp2r-Va2/4*2 , R(U)>-1 , R(p2)>o . J0 0°° 2.2 i =2/Rt,2 p о / e P Ъ Ju(at)dt = T,42v)e /8P 11и(а2/8р ) , B(»)>-1 , R(p2)> 0 . J 0 Г e"P2t2Yu(at)dt (O E) 2/„ 2, = _ g e-a /sP^l4u(a2/8p2)tan Urr/2+rr-Ix^(a2/8p2)sec т/г] , |B(i»)|<l , R(p2)>0 . J">e-^t2Ku(at)dt = g ea2/8^(a2/8p2)sec Urr/2 , F) |B(i»)|<l , R(p2)>0 . G) Г tXe"^2J (at)ju(bt)dt J0 ^ l(a/2p)^(b/2p)"r^+^+1>) oo (-)k(a/2pJkCl±±2±MiA рХ+1Г(ц+1)Г(и+1) Z k=0 к-'(ц+1)к ,2,2 X 2F1(-k,-M,-k;u+l;b /вГ) , R(|il+u+\)>-l , R(p^)>0 (S)
314 /; INTEGRALS OF EESSEL FUHCTIOHS „2.1.2 ч/.„2 13.4.1 te-^2Ju(at)Ju(bt)dt - -^ e-(^V^Iu(^) R(y)> -1 , R(p2)> О О) / tVP t J (at)Ju(at)dt = —— ^—- - Jo ^ PX+1r(^+i)r(u+i) i+V+1 LL+V+2 A+LL+U+1 X F 3 SV^+i^u+i^+u+i 2/2 -a/jT) , R(\+n+y+l)>0 , R(pci)>0 . A0) Let pco l(n^;A) = / e'pttXJ (at)Ju(bt)dt , a>0 , Ъ>0 ; ^0 R(p) > 0 , R(n,+u+X)> -1 ; if p = 0 , R(|i,+u+l)> -R(X) > -1 for a f Ъ ; if p = 0 , R(n,+u+l)> -R(\)> 0 for a = Ъ . A1) If p=O, see 13.4.2. If A = -g , see Cl). For a discussion of tables of A1), see the remarks after A8) and B5). 13.4.1 DEFINITE INTEGRAIS 315 2И-%Ц-»+*+1Г(ц-„+1) Vo хл(^,^^ -f)™\ , r2 = а2+Ъ2-2аЪ cos 9 , R(p,-v+l)>-l , v is a positive integer or zero. A2) l(|i.^;A) = B/n) / tXK (at)lu(bt)cos (pt^p.-w+X )n) dt , а>Ъ . A3) For discussion of (ll)-(l3) including power series representations, re- recurrence formulae and special cases, see Eason, Noble and Sneddon A955).* We now give some special cases of (ll). The following notation is used. Let k2 = 4ab p2+(a+bJ , к = sin a , sin {3 = p [(a-bJ+P2] _i_ A4) K(k) and E(k) are the complete elliptic integrals of the first and second kinds, respectively. Л0(а,Р) is essentially the complete elliptic integral of the third kind introduced and tabulated by Heuman A941). * In Eq.s. B.3), B.4) and B.6) of this reference, only the real parts of the integrals should be taken.
316 IMTEGRAIS OF BESSEL FUNCTIONS l(n,n;O) = к - ,42 J( tt/2 cos 2n8 de тт(аЪJ Jo A-k2 sin2 bf 13.4.1 A5) For conditions of validity for A5) and the following, see the remarks surrounding (ll)-(l3). l@,0;0) = ^Щ , тт(аЪ)г l(l,l;O) = 2—т ГA4к2)К(к)-Е(кI , ттк(аЪJ L I(n,n;l) = ^-r- Gn(k2) , Gn(k2) = (-)П f т/2 4тт(аЪ)' cos 2n6 d9 (i-k2 sin2 eM/2 A6) A7) A8) Riegels A950) has shown *that Gn(k ) can be expressed in the form (l-k2)'1in[fnK(k2)-gnK(k2)] where fn and gn are polynomials of degree n in (l-k2) . The exact coefficients in these polynomials are tabulated for n = 0AO . He derives an expansion for Gn(k ) in powers of 1st valid for кг<<1 and also an expansion valid near к = 1 . (l-k2)Gn(k2) is tabulated to 4d for n = 0(lK , k2 = 0@.0lH.9@.001) 0.999. There are seme errors (see Math. Rev., v. 11, 1950, p. 617). l@,0;l) = pk5E(k) 4тт(аЪK/2A-к2) A9) i(i,i;i) = pk 2n(abK/2(l-k2) [(l-|k2)E(k)-(l-k2)K(k)J . B0) 13.4.1 DEFINITE INTEGRAI? 317 .3,2,2 2 J(l n-n - kJ(ag-^V)E(k) kK(k) 8rr(abK'/2a(l-k2) 2тт(аЪJа B1) тnлл^ Pk к(к) Ло(а^} , 1 я^. I(l,0j0) = - *¦ *-{ + - , a>b , 2тт(аЪ)^а 2а а 2тта 2а , а = Ъ , ркК(к) , Ло(а^} 2тг(аЪ)^а 2а , а<Ъ , B2) An equivalent statement by Sura-Bura A950) is 1A,0;0) = a [l-AoCkbBi)} , 2 X2(X!-2P2) г л\ ki= ~—~tv: 'sln 3i= LV^i^^J ' Xl(x2+2pd) xx = f-a2+b2+p2, Xg = f+a2-b2-p2, f2 = (а2+Ъ2+р2 J-4а2Ъ2 B3) EquationB2) has also been studied by Fettis (i960) who notes that the Byrd and Friedman A954, p. 251) statement for l(l,0j0) does not give correct results. In this connection, Fettis' result for B2) and the expression given for B3) by Eason, Noble and Sneddon, Sura-Bura and Byrd and Friedman contain typographical errors.
318 IMTEGRAIS OF BESSEL FUNCTIONS 13.4.1 l(lj0;.1? _- *М?Ш + I***** *00 + ?b?!l . 2 , a>b , 2a 2E(k) p_ nk 2a Pfab^E(k) , (a2-b2)kK(k) *Ло(а'Р) пак 2n(abJa 2a , a = b , , а<Ъ B4) 2 V2. l(l,l;-l) = к) ,k(a2+b2V/2)K(k) , (а-Ъ >Ло^> , Ъ Л " _ , . ,3/2 4аЪ 2а ' п(аъJк 2п(аЪ)' ,3/2 а >Ъ 2^.2, pS(k) . ?kBaf+?/2}_KaO + 1 пак гтта0 ГИ ^Га2+Ъ2+^/2) К(к) (а2-Ь2)Л0(а,Р) , a п(аъ)гк 2п(аЪKА 2^2. 4аъ 2Ъ , а = Ъ , , а< Ъ . B5) Eason, Hoble and Sneddon A955) have composed tables of l(^,v;\) for (l*,"iX) = @,0;0) , (l,l;O) , A,1;±1), (l,Oj±l) , (l,0;0) , (O,l;±l) , @,l;0) , (O,Ojl) ; Ъ/а,р/а = 0@.2J,3; 4d. To facilitate interpolation in the vicinity of singular points, auxiliary functions are also tabulated. Nomura A940a,Ъ, 1941) also has tables of l(^,u;\) for X = -1 , a = b = 1 and all pairs of |i,u such that ц = n , v = 0(l)n , n = 0AL , and (ц,«) = E,0),E,l),E,2),E,3),F,0),F,l) . Also ^ and v are halves of integers varying from 1 to 8 . p = 0.4@.2I.2,1.5@.5K,5 and 10,20 in some cases. 5d, 7d. If p = 1 , Weeg A959) has tabulated l(O,ljO) and l@,l;-l) to 5d for (a,b) = (l,l),C,l),F,l),(l/3,l/3),(l,l/3),(l/6,l/6) and A,1/6). 13.4.1 V DEFINITE IHTEGRAI? 319 For other integrals involving Bessel functions which can be expressed in terms of complete elliptic integrals, see Byrd and Friedman A954, pp. 249-251) and 13.4.2A1-14). Some other representations of (ll) follow. l(n,v;X) ^^i/г./o^^;y . (а/2Г(ъ/2Гг(ц+1;+\+1) j- r(^+l)r(v+l)^+V+X+1 k=0 (_ )к(я /pJk/ X+M.+U+1 N ^Х+ц,+и+2'\ 4 2 AV 2 Jb k.'(n+ll X 2Fx(-k,-^-k;u+l;b^/a^) , R(|i+u+X+l) > 0 , R(p+ia + ib)>0 . B6) l(^,u;X) (a/2f (b/2) Г(м.+и+Х+1) z (-^f^rYV^^) Q^f^-) a2+p2/ V 2 r(,+l)r(u+l)(a2+p2)^W1>k=0 k.1 (»+!)„ x v (^izk -k, ^2^1 +k^+l; 2'IV 2 a2+p2 ) 2, 2i R(b)>0, |R(ib)|<p, |b| < (a +pJ-p , R(n+v+X+l)>0 . B7) 1(ц^Д)|а=ъ Г(ц+1)г(и+1)р^+и+Х+1 4F3' i+u+\+l u,+u+X+2 li+u+I u,+u+2 ^+l,U+l,|i+U+l 4a? P2. 2/ 2i | a /p |<1, R(p+2ia)>0, R(^+y+X+l) > 0; if R(p+2ia) = 0, also require R(x)<0 . B8)
320 INTEGRALS OF BESSEL FUNCTIONS 13.4.1 fVl)tt*J_i(at)Jt(at)dt = [np(p2+4a2)/2] , R(p)>2l(a) . B9) I н(р2+4а2)а 'e'&tk x(at)J ... (at)dt = vH^^ Г i } R(p)> 2I(a) . C0) 0 -* /4 a^pW)]* f e"pttl (atjl^btjdt = C2r(n+u4)P'^(cosh a)P'|\(cosh p) , Jn ^ 2 sinh a = ас , sinh p = t>c , cosh о cosh p = pc , R(p±a+b)>0 , |1(а)|<тт/2 , |l(P)|<n/2 , R(n+«)>-i • C1) For similar type integrals involving other kinds of Bessel functions, see Cooke A956a). For integrals of the type / <Ve-p2tkKi(ata)Ku(btf3)at , C2) special cases and generalizations, see Ragab A952-1953, 1954, 1954-1956), MacRobert A953, 1954-1956, 1957) and Rathie A954, 1954-1956) and the references given there. See also 13.4.5A4). rVptt-3/2Kl/,Bt-4)dt =2Texp(-3p1/3) , R(p)>0 . C3) Jn ' 32 13.4.1 DEFINITE INTEGRALS 321 n со / e-pttK2/3Bt-2)dt =HlV-1/5exV(-3V1/5) , R(p)>0 . C4) For C3^-C4), see Klamkin A957). See also 13.4.1C2). ( ">e-iu)tJn(t)dt = J -co 2(-i)nTn^) 2 A-uT) 1— , uj <1 , d\2 = 0 , or > 1 , C5) where Tn(uj) is the Chebyshev polynomial of the first kind. ? t-VluJtjn(t)dt = f- (-1)пA-ш )kn_xM , ш2<1 , , щ2>1 , C6) = 0 where Un(w) is the Chebyshev polynomial of the second kind. For a generalization of C5) and C6) to the case where the integrand also con- contains as a factor a periodic continuous function of period 2n , see Pinney A958). Г t-2e-iwtJn+i(t)dt = (-ОПBтт)*Рп(Ш) , ш2<1 , J -co = 0 , w2 >1 , C7) where Pn(ou) is the Legendre polynomial.
322 INTEGRALS OF BESSEL FUNCTIONS A(r) = г Г tet"t2/4TJo(rt)dt . Jo 13.4.1 C8) Tabulated . See Bullaxd and Cooper A948). т = 1 . Various r , 4d. Also 4d values of / A(t)dt . 0 i: f(x>y) = I e-t (cosh yt Jo(xt)-l] csch t J 0 dt C9) Tabulated. See (Admiralty Computing Service, 1945). x = 0@.1M , у = 0@.1I . f(x,y) is the solution of tl + I M + S?f = 0 D0) for ax2 x Sx ay2 and satisfies the conditions — =0 on у = 0 for x / 0 , —- = (x +l) ' dy 5у on у = 1 . and (—) +( — "} ~» 0|(x +y ) near the origin and also large values of x . [V^tV^E2)]"^ , Ге^Е^+^Е2)]'^ , Jo Jo D = K0(t)-Kx(t) , E = Io(t)+I-L(t) . D1) Tabulated. See Sears A940). x = 0@.25)l@.5JB IOEKO,4O . 3d. v = 1 2 Г e'^2 [Jo(t )Yn(Xt )-Yp(t )Jo(\t )] "Jo t[jo(t)+Yo(t)] dt D2) 13.4.1 DEFINITE INTEGRAIS 323 Tabulated. See Jaeger A956). X=i@.lJ, 71=0.001@.001H.01@.01H.1@.1IAI0A0I00A00I000 . 3d. \ = 2AI0 , 1] = 0.1@.1IAI0A0I00A00I000 . 3d. \ = 10A0I00 , 71 = 10A0I00A00I000 . 3d. Kp ,<i;x) = / -l=-xtc t хе 0 [pt Jx(t )+qJQ(t )] 2+ [ptY1(t )+qY0(t)] 2 , R(x)>0 . D3) For expansions of l(p,q.;x) and a table of l@,l;x) , see Jaeger A942) and Jaeger and Clarke A942). x = 0@.0l)l(l)l0(l0I00(l00)l000 , 3d. I(a,x) = B/rr) /; t'2(l-e-xt2){j1(t)Yo(xt)-Y1(t)J0(xt)} J2(t)+T^(t) dt , R(x)>0 . D4) See Zonneveld and Berghuis A955) W(x) = h 4(t)+n2i2(t) dt , R(x) > 0 D5) For rational approximations to W(x) valid for 0 s x < <» , see Hastings A955,, pp. 193-194). Equations D2)-D5) are typical of a large number of integrals which occur in applied problems. The integrals usually arise by solving a partial
324 INTEGRAIS OF BESSEL FUNCTIONS 13.4.2 differential equation using the Laplace transform, and inverting this trans- transform by contour integration. In this connection, see Carslaw and Jaeger A959); Miles A959), Ward A955) and the references given there. 13.4.2. Weber-Schafheitlin Type Integrals X> t"xJ (at)Ju(bt)dt (b/a)»(a/2)^r(^f±l) 2r(v+l)r^^ 2F1V 2 ,+u-X+l и-ц-X+l .1}+1. 2 ;v+l;b2/a2j , 2 J R(n+v-A+l)>0 , R(x)>-1 , 0<b<a . (l) t"XJ (at)Ju(bt)dt i&nb/rt-h Q*f^) >-\i+\+± \ ,+v-X+l ц-tf-X+l 2rlV 2 JH+l;a2/b2J , 2Г(,+1)Г(^ 2 J R(m,+"-X+1)>0 , R(X)>-1 , 0<а<Ъ . B) R(^+u+l)>R(X)> 0 , a>0 C) Note that the expressions on the right of (l) and B) are not continuous at a = Ъ . For some special cases of (l)-C), see 10.6B0-28). 13.4.2 DEFINITE IHTEGRAIS 325 / tU+1"^J (at)Ju(bt)dt = 0 if 0<а<Ъ , _ bV(s.2-b2r-V+1 i-v-1. 2^"l;--La^r(n-u) Rdi-u )> 0 , R(u)> -1 . if 0< Ъ< а , JoV\(at)Ju(at)dt = \ Sl^-y , H(^)>0 , a>0 . / tJo(at) [l-Jo(bt)j dt = 0 if Ъ s a = 1л(ъ/а) if Ъ ? a . Jo t-XK^(at)l);(bt)dt Д-1. . v (a/2) (ъ/а) г^У^гЛ-М^ V 2 / V 2 / D) E) F) 4Г(и+1) v R(w±|j,-X+1)> 0 , а>Ъ 2Fl(^-^ * 2 i^ibV^J , G) t'XK (at )Ky (bt )dt (а/2)Х-1(ъ/а)^г(ИН1^) г^11^1) Г (^f^) г(^у.) 8ГA-Х) X gFl Л+v+n-X ^ itH^i л-хЛ-Ъ2/а2) , R(-A±^±u+l)>0, R(a+b)>0. (8)
326 INTEGRAIS OF BESSEL FUNCTIONS 13.4.2 13.4.3 DEFINITE INTEGRAIS 327 Г t-XYu(at)ju(tt)dt = ? sin(u-n-\W2 / t'\(at)lu(ht)dt , Jo n JO R(u±|i-\+l)>0 , а>Ъ . (9) fV'+\(at)Jv(H)dt = (^/Wr(^+1) Jo " (а2+Ъ2)и^+1 R(u+l)>|R(p,)| , R(a)>|l(b)| . Г J0(at)J0(ht)dt = B/тта) К(Ъ/а) , |Ъ/а| < 1 . Jo / t'1J0(at)J1^t)dt = B/п)Е(а/ъ) , |а/Ъ|<1 Jo / K0(at)l0(bt)dt = A/a) K(b/a) , |ъ/а|<1 . J0 (Ю) A1) A2) A3) f t2Ko(at)lo^t)dt = l& Е(ъ/а) - \-— К(Ъ/а) , |ъ/а| < 1 . A4) Jn (а2-Ъ2J а(а2-Ъ2) More generally, if in G) the numbers v , -|-(и-Х+ц) and ^-(u-X-ц) are positive integers or zero, and |ъ/а|<1 , then G) may Ъе expressed as a linear combination of complete elliptic integrals of the first and second kind. See, Muller A955). A similar statement applies to (8) if X is a negative integer or zero, -g-(v±|j,-?i) are positive integers and R(a+h)>0 . 13.4.3. Sonine-Gegenbauer Type Integrals I P (t^+Z2JU а<Ъ , [ z ] J^-l(^(a -Ъ J] , а>Ъ , R(u)>R(|j,)> -1 if а^Ъ , E(u)>E(p,+l)>0 if a = Ъ Г" / J (a(t2+z2)*}t^ 2^(^+1)^ (az) u n dt = (t2+z2)*u T^+V Ъ > a , r(u+1)>r(m,)> -1 For a generalization of B), see 13.4.5A3). s: ytt) {a(t2+z2)*}t^+1 (t2+z2)h dt - Г/я2+>,2ч|1«^-1 = ^ (a +^ )г av I z > Ки.^.1{2(а2+Ъ2)г| , R(n)>-1 , R(z) /; -a(t2-y2Ft е-1у(а2+Ъ2)* J (Tat) г dt = ,2 2 (а2+Ъ2L A) B) >0 . C) — , arg(t -y ) = 4tt if t<y . D)
328 INTEGRAIS OF BESSEL FUNCTIONS 13.4.3 r *A«**f}№ dt = rJ>t)(t2.z2ft-dt J0 (t2+z2)^ к au,+iz"-n X a*0, r(^)>R<h)>-1 • KJa(t2+z2)^t2^ a№aj_y Q (t2+z2)^ a,+V-,-l »"^ l> 0 , R(p,)> -1 • Jo (t2+z2)" 2U-2 dt r4(t)(t2-z2f5/2 dt = _K^ii_Hl,BZ) , R(u)>* i0 (t2+b2)^/2+"/2 2r(i)z"+1 " dtx = ln^Lli J LLil^ (y/x)kj (by)Ju.k.i^x) , ъ^+и k=o R(p,+u)>0 ,Ъ>0,х>0,у>0 E) F) G) (8) 13.4.3 DEFINITE INTEGRAIS 329 /Q\ {(t2+z2)i} jv {{t^)i}t2«-\t2^f-ht = l t2p-1(t2-z2)a-1J^(t)Ju(t)dt (z/2)^+1z2a+2^3 Г(а)Г^+^)з1п^+^)п Г(й+1)г(и+1)Г (a+P+ *??) sin (a+p+ J^) „ J.+V+1 M.+U+2 Ll+V "^J 2 'Э+ 2 X F I 3 4\ц+1^+1,М,+и+1,а+3+ ^~ (tt/2 J2a+2p-2rC-2a-2P )cso (W ^) тт гB-а-р- ИСЛ) гB-о-р- И**) Г B-О-Э+ ^) гB-о-Э+ ^) ^3/2-a-g,2-a-g,l-a X »F, 3Г4 ч2.о.Э. МС? ,2.a.g. l|v ^_а„р+ ^ ^.а.р+ ^ R(a)>0 , R(a+g)<3/2 О) The latter is a generalization of results given Ъу de Hoop A955). It may be proved Ъу contour integration using 1.4.1A8), 1.3.2G) and 1.2A4). See Pritchard A951) for (8).
330 IMTEGRAIS OF HESSEL FUNCTIONS 13.4.4 13.4.5 DEFINITE INTEGRAIS 331 13.4.4. Hankel-Nicholson Type Integrals u+1 » t" X(at) a^z^ dt = 0 (t2+z2)^+1 2^Г(ц+1) -KR(u)<2R(p,)+3/2 K._.,(az) , a>0 , R(z)>0 , ¦4>-ц CL"C ~~ 0 t2+z2 2z v+1 [^(az^L^az)] , a>0 , R(z)> 0 , R(v)> -5/2 I 'V,,(t)- dt =¦ 0 t2+z2 z4Binm [jv(z)-Jv(z)] * R(z)>0 , R( I Yjat) 0 t2+z2 dt = -z'^az) , a>0 , R(z)>0 . I ctx ~ p p 0 1T+zd ^[H.u(az)-Y.u(aZ)] 4 cos mjr i' R(a)>0 , R(z)>0 , R(u)>-i I A) B) u)>-l • C) (O E) ° J^dt = I1 P)^ (^),a>0)R(Z)>0)R(»)>-l • F) 0 (t2+z2)i ^А2У ^V2> Рш t"VJ (at) B2/r» a>0 , R(z)> 0 , R(v)> -\ P» tU+1J (at) (82/rv a> 0 , |arg z|< tt/4 , R(i>)> -\ I 00 tu+5Ju(at) a >0 , |arg z| < tt/4 , R(u) > l/б . 13.4.5. Integrals Involving the Products of Three or More Bessel Functions I >%(at)j>t)Ju(ct)dt = (ЪС)Й11П"А Pti(cos A) , Bтг)га^ 2 R(p.)>-i , R(v)>-i , G) (8) (9) A) if a , Ъ , с are the sides of a triangle of area Д, and A is 0 , 2 2 2 arc cos c ~a or ТГ according as a^ is less than, hetween, or greater 2Ъс than the two numbers (Ъ-сJ, (Ъ+сJ . P^(z) is defined Ъу 10.6D). Note t.hat Д = |Ъс sin A . Thus
332 INTEGRALS OF EESSEL FUNCTIONS 13.4.5 13.4.5 DEFINITE INTEGRALS 333 f>4(at)Ju(bt)Ju(ct)at - -^^ , R(v)>4 • B) /\(at)Ju(bt)Kx(ct)at If а , b , с are not the sides of a triangle, the latter integral is zero. Jx(at)J0(bt)J0(ct)dt = ^ . C) Г t1"^,! (at^bt^ct^t J0 . (bc)^-1ie1^sin(v-,)nsinh^i ЦЦ A^ Q2.b2_02 = 2Ъс cosh x, a >b+c , b>0 , o>0 , R(p,)> -\ , R(")> D) 2bo cosh у = a2+b2+o2 , R(a±ib±ic)>0 , Н(й+«)>-1 , R(«)>-1 • E) Q^(z) is defined by 10.6A4). See Watson A94^, p. 411 ff) for the above and other results pertinent to this section. See also Erde'lyi et al A954, v. 2, Ch. 19). For the definition of OjJ(z) , we follow the latter refer- reference and not that of Watson. Let a , b and с be positive. Then Г(ц+1)Г(и+1)с^+и+1 FMWFb,W ' (e) provided R(|j,+u±x )> -1 . Here, with a = a2 _, p = b2 , у = с2 , = v-q+B- f(у-^^+^Л;g i-g- 1(у+а-РJ+43у}г 2Y = Y+a-g- Kv+q-g) +43y. 2Y For extension of this to complex с and related matters, see Henrici A957). See also Erdelyi et al A954, v. 2, pp. 52-53). I tK0(at )J0(bt)J0(ct)dt = [a4+b4+c4-2b2c2+2a2c2+2a2b2] , Jo R(a)>|l(b)| + |l(c)| . f^(at)dt ¦ 2Г(./2+1/6) a>Q f R(W)>.V3 JO 3ar(u/2+5/6Wrf2/3U2 ЗаГ(и/2+5/б) (гB/3)} G) (8) I 'J^(at)J.u(at)dt = ^(v/2+l/6)sin n(u+l/5) >Q> R{v)>.x . (9) 33/2аГ(и/2+5/б) (ГB/3)}
334 IHTEGRA.IS OF BESSEL FUNCTIONS 13.4.5 j>^[JvMJv(bt)]\t - SiXlth) ^Л^Ъ*2/ъ*) , R(u)> 0 , 0<а?Ъ I j^zt^txi^dOdt A0) (n) Tabulated. See Bennett A948). n = 6(l)lO , z = l(l)lO ; n = 100 , z = 4CI0EK0 ; (n,z) = F,5.8), G,6.6), (8,7.2), (8,7.5) . 4d, 6cL. f [jo(^)]nJl( Jo rt )dt C2) Tabulated. See AI7 , 4d. Greenwood and Durand A955). n = 6AJ4= , r =/6.5@.5I2 Г [w^ -_ 1 dt -\-±=l- (t2^2)^ 2^14 u,+l) TT fT (я _,\1 ^+1znu 1=1 b> Z ai > R(Win+|)>R(iJ,)>0 i=l Г J0 rpttk-XK,](axte)Ku(xte)f(t)dt A3) A4) 13.4.6 DEFINITE INTEGRA.IS 335 For A4) and generalizations of same, see Ragab A955a, 1955Ъ, 1956) and the references given there. In A4), the parameters and associated f(t) are as follows. e = ±1 , p = 1 , a = ±1 , f (t) = 1 ; e = -1 , p = 0 , a = ±1 , f(t) = Kf|Bt) or Jf]Bt) ;e = l,p = 0,a = ±l, f(t) = Kf|(t) ; e = ±1 , p = 1 , a = ±1 , f(t) = I^t) . See also 13.4.1C2). / tnI1(at)l1(bt)K0(ct)dt . See Bowkamp A947) . A5) CO csc |tt(h+u-\) Г t"^ (t)jy(t)Jx(pt)dt A6) Tabulated. See Kobayashi A939). p = 2(o.2K@.5L,5,7,10 ; \ = o(lM ; ц, = 0.5AJ.5 ; v = 0.5AM.5 ,\i^v,\j, + v<6; \ and p,+u are not at the same time even or odd. Otherwise all combinations of X , ц , v . 7d. 1&Ю r^(t) dt г L ^t)*' Jo tK K0(xt) dt A7) Tabulated. See Ollendorff A926, 1929). x = 0.001,0. 01,0.05,0.1@.1H.5 . 3d. For the given range on x , the first integral is given with the limits 0.1 to 3. 13 .4 .6. Miscellaneous Integrals r Jo(at)sin Ы z2+t2 dt = z^sinh ЪгК0(аг) , R(z)>0 , a>0 , 0<Ъ<а . (l)
336 INTEGRALS OP BESSEL FUNCTIONS 13.4.6 13.4.6 DEFINITE INTEGRAIS 337 П- Jo(at)cos Ы ^ Е Ь-1е-Ъ»1о(м) , R(z)>0 , a>0 , а,Ъ« Jo z2+t2 f Jo - «„(at^Ort) ^ _ Iu(,z)Ku(az) f R(z)>0 , а*ъ>0 , r(v)>-1 z2+t2 Jo •1(t+X)jo(tLtB ^1)^,^0 B) C) J D) x+t F(z,n) = 2z f "^B2 eluhtjeoeh 2rt dt = ^ [4(O+^(O] > R(z)> ° • ^5) \ ["^B2 sinh t)e'2ntdt . See Olver (l95l) , (б) Jo ° /^ where % and dz/dn = F(z,n) are tatulated to lOd for n = 12DI5 . Г"к +uB? oosht)oosh(p,-u)t dt = ^(z^^z) , R(z)>0 . G) J о ^ ч\ f"... f\ —V rf tf/p-4(ts)-s = v^1/pb Jo Jo 4*2'--Vl в=1 z> 0 , R(v)>i - 2/p , p = 2,3, (8) /„"••• />(tA±vl)n »ГЛ-Ч(*,)«а ¦ »-Vp^) • R(z)>0 , p = 2,5,... For proof of (8)-(9), see Ragab A952-1953, 115-117). J -J^~ « = 2 [Ho(az)_Yo(az)] , a>0 , |arg z|<n . 0) f J n "^— dt = \ [H0(ax)+Y0(ax)] , a>0 , x>0 . A0) A1) For proof of (lo) and A1), and short tatles of same, see Lamb A917). J^(at) tt/2 I —7— dt = - - Jn(az)Yn(az)+(-) H0Baz cos t )oos 2nt dt , Jo Z^ 2 Jo j2(at) a > 0 , | arg z |< тт . n/2 (Л2) <f — dt = - Jn(ax)Yn(ax)+(-)n / H0Bax cos t )oos 2nt dt , Jo x-t 2 Jo a > 0 , x > 0 . l''ur proof of A2) and A3), see Dorr A953). A3)
338 IHTEGRA.IS OF BESSEL FUNCTIONS 13.4.6 [".^(x cosh t)(sinh tJX(oosh t^dt = 2 XVM JV-XW ' x>0 , R(X)>0 , R(u-2\)>-| For a generalization of A4), .see MacRobert A956). A4 ) 1+LL-2U Г -A- x [2(at)*V r2(ab+at)ildt = гB,-,-1)ъ^- Jq (b+t)u ^L J^"L J 2a" V2 a / О ., Ъ / 0 , |arg a|< тт , I arg ЪКтт , R(n)> -1 , RBu-|j,-l)>0 \ \ See Rathie A954a) far a generalization of A5). A5) a-tiTT ^i o^e ** tIl;(t2)K2UBzt)dt = ^(z2) , z / 0 , larg z|<tt/4 . A6) ooe*iTr 5(,+l)in/2 Jte4it2Ku(zt)H(D(zt)dt = ^^2) , z{o , larg zl< n/4 . A7) Here L is the path «e5111 to бе^117 , 6>0 , a quarter circle of radius 6 with center at the origin to 6 and then to =° . For other formulas of the type (l6)-(l7), see Meijer A951). J"Ju.1(-t)exp [±4iV(l-t2)} t»« = z-^z/w)^ {± f t Ц2- T ^] , 0<R(u)<3/2 , w>0 , z>0 . A8) 13.4.6 DEFINITE INTEGRAIS 00 / Ju.1(zt)expf+|iwt2} tudt = z(z/w)uexp /± i^? T ±M 1 . Jo L J (_ 2w 2 j For a discussion of the integral A8) with lower limit equal to unity, see 13.3.3. >=» (t2-62JJi(at)dt 339 A9) 'o Bt2-lJ-4t2[(t2-l)(t2-62)]1 B0) See Reissner A952). *n(z) = / Jo f2(ztJ} Jn(t)dt . Jo ^ J B1) Tabulated. See Jaeger A948). §n(z) , $^(z) , n = 0(lO , z = 0AJ4= , 5d. tJx(xt) / t + sinh t dt B2) Tabulated, x = 0AM , 6d. For this and discussion relating to the evalu- evaluation of F( Nelson A961). (sinh Jt+Jt cosh ^^(^^(yt ) y(sinh t+t) dt B3)
340 INTEGRAIS OF BESSEL FUHCTIONS 13.4.7 13.4.7. Integrals vlth Respect to the Order /.: °° 2i9t Ju+t(x)lVt(y) dt J 2 еов_9_ X J,, ^-le^ie *U+U) i(-,)e v+J{2(x2e-19+y2e19)cos 8 } "] , R(^)>1 , provided 9 is real and |ЭК п . If 181 > тт , the integral,-"is zero. A) I 2,- Jt(zt)j.t(zt)oos TTt dt = i(l-z )'г , |z|<l t [jt(zt)J_t(zt)cos TTt-l)]dt = -|tt' Jo B) C) I Jlt(x)seoh |nt cos yt dt = 2 sin(x cosh y) , x>0 , у * о . D) |J -CO Л CO (t Jlt(x)osoh |nt cos yt dt = -21 oos(x cosh y) , x>0 , у г 0 . E) J-OD /: ei9tJ,(X)dt ^ elxSln 9 , -n<e<n ¦, \ = тт ; , 191 > тт , 9 real F) 13.4.7 HEFIWITE 1Е1ТЕСЖА1? fC°it(z)dt = У" - f{^^)-\-Z °°Sh t dt , R(z)>0 For F) and G), see Cooke A954). f Kj_t(x)eoB yt dt = |тте-х oosh У , |l(y)| ^ |тт , x> 0 i(n+") X V. H (ea+e-a)(x2eVe-a)} 2] , x / 0 , у / 0 . For (9), see Conolly A956). 341 G) (8) (9) I Kit+iM,(x)Kit+ii;(y)dt = "Ki^-iuCx+y) , larg x| + largyKn . A0) ^|CD TTt e Kit+i^^^t+iuCy)" = ^""Xn-iu^-y) > x>y>0 . A1) -CO /" ela\+lt(x)Ku.lt(y)tt = „(Si^y^ ^^ oosh a)i] , d-cx, \xela+y/ L J larg x| + larg у I + |l(a)|< тт . A2) " Ui'c Oberhettinger and Higgins A961) for an extensive table of the J/'bedev transform p со r(t)KIt (x)dt . See also the references in 13.1.
342 IMTEGRAIS OF BESSEL FUNCTIONS Jo ^С^^-х-У tKit(x)Klt(y)tanh TTt ut = -5тт(х+у)~ (*yJe~ ~y , larg х|<тт,х^0,у>0 ftK^WK^sinh nt at = -^f- e-(-2/^) Jq 2 ' У ' I |arg х|<ч/4,х/0,у>0 ntKlt(x)K2it(y)sinrtat=^7Fe-(^/8x) О / у ' 2"/ x |arg х|<п/2,х/0, у>0 13.4.8. Dual ana Triple Integral Equations The pair of equations f(t)g(t)Ju(xt)at = A(x) , 0<x<l I f(t)ju(xt)at = в(х) , x>i , 13.4.8 A3) A4) j A5) A) where g(x) , A(x) ana B(x) are known, ana f(x) is to be aeterminea, are oallea aual integral equations. They are important in a number of ap- applied fieias ana arise in the solution of Ъоипаагу value problems where the oonaitions on one Ъоипаагу are of "mixed." type. Suppose 13.4.8 where DEFINITE INTEGRA.IS f(x) = f (x) + fp(x) I f2(t)Ju(xt) = 0 if 0<x<l , «0 = B(x) if x>1 . Then by the Hankel inversion formula f2(x) = x I tB(t)ju(xt)at , Ji ana the pair (l) reauces to / f1(t)g(t)ju(xt)at =a(x) - Г f2(t)g(t)Ju(xt)at , o<x<i , ¦ Jn «n ^0 (xt )at = о , x > i 343 B) C) D) E) Thus it is sufficient to oonsiaer (l) with B(x) = 0 . To avoia confusion, we write / f(t)h(t)Ju(xt)at = a(x) , 0<x<l J0 Г f(t)jy(xt)cLt = 0 , x>l . Jo F)
344 INTEGRAIS OF BESSEL FUNCTIONS 13.4.8 If h(t) = t2a , then f(x)= Г( u+a4 ds Jo ra*l-a f V^J (xs) *- f'"a(t)tl;+1(s2-t2)adtds , -К а< О , a+1) Jo ьо+Э+1, Г(x) = ". Г а.„ч / ^^W*** , Jo 2агЛ+а+1±]Л V 2 / |R(a)|<l , RBa+P)>-3/2 , R(a+w)>-l , n(v)>-1 and with g = и , f(x) = Г(и+1) Bx)ar(i;+a+l) Same special oases of (8) are given in the table below. Hi) f(x)=J^t! fV^^V^xs) fSa(t)tU+1(s2-t2r1dtds , 0<a<l .- Г\а) Jo Jo Further^ if a(x) = xP , then 1.2A4=) and 2.3(l) give гЛ+&±?>х"Bа+Э+1) V 2 / (8) JB+a+1(x),|R(a)|<l)E(a+»)>-lJBW>-l • (9) 13.4.8 -i -i 1_ 1_ 1 I 0 1 0 0 0 V 0 1 1 1 0 EEFINITE IMEGRAIS f(x) B/n)sin x , D/nx)(sin x-x cos x) , 1 - COS X Bx2)-1B-2 cos x-x sin x) , B/nx2)(sin x-x cos x) . 345 A0) For further discussion and applications of (б)-(ю), see Chong A953), Erdelyi et al A953, v. 2, pp. 1&-П), Gordon A954=), Noble A956, 1958), Tranter A956), Sneddon (i960) and the references given in these sources. In the special case given by Erdelyi et al,which corresponds to the last equation of (Ю) above, for v = 1 read v = 0 . To solve (б) in the general case. Tranter A956) assumes f(x) = x1'6 X Vu+eW3^ k=0 (n) In this event, the second equation of (б) is automatically satisfied in view of 13.4.2B), and the ak's can be found by solving an infinite set of linear equations. If a(x) = xu , Tranter develops an iterative scheme to compute the a-^'s and illustrates with some examples. Cooke A956b) assumes p p+1 pl Г(Х) = ГA^Г)] U^(u)Ji;..g(xu)du > °<R(P)<1 , A2)
346 INTEGRALS OF BESSEL FUNCTIONS 13.4.8 13.4.8 DEFINITE INTEGRALS 347 where b(u) is to Ъе determined. Again the second equation of (б) is automatically satisfied and with suitable restrictions, b(u) satisfies an integral equation of Fredholm type. Anders A954) discusses the pair I tf(t)Jo(xt)dt = 1 , 0<x<l , t6(t)f(t)j (xt)dt = 0 , x >1 , A3) where 6(t) = (l-t2J , t ? 1 ; 6(t) = i(t2-!J , t >1 \ tf(t)j (xt)dt = A(x) , 0<x<l , A4) I t(t2-a2)kf(t)JQ(xt)dt = 0 , x>l , where a ^ 0 and 0<l^< 1 has Ъееп studied Ъу Achiezer A954). He also considers the system f(t)J (xt)dt = A(x) , 0<x<l , r03 f(t)J_ (xt)dt = 0 , x >1 , A5) for a >0 and -1<и<1 . Lebedev and Ufliand A958) study the pair pea I f(t)J (xt)dt = A(x) , x<a J0 f"tf(t) ^2ht+slnh2tb0(xt)dt = 0, x>a .  sinh2 t Study of a flow pattern at high subsonic speeds leads Helliwell A961) to consider A6) Л CO cosh 2y-t-cosh 2ut sinh 2vt -)j.x/3(xt)dt = 2x'1/3k(u) 2K(x1,x2) J [xf/5J2/5 (xxt )-x2/5 Jg/5 (xgt)] If2 l^l J.l/3(xt)dt Isinh 2vt Xg < X< X-^ A7) I f(t)J_w3(xt)dt = 0 , 0<x<x2 , x >x-, . The cases Xg = Xj_ and x2 = 0 are treated in detail. Peters A961) applies Sonine integrals (see 13.3.2B6) and 13.4.3A)) to solve n со I tef(t)J (xt)dt = A(x) , 0<x<l p со (t2-k2)af(t)Ju(xt)dt = B(x) , x>l , k>0 J0 A8)
348 INTEGRAIS OF HESSEL FUNCTIONS 13.4.8 This generalizes (б) (if h(t) = t2a ) and A3)-A7). He also notes that 13.4.3A) may Ъе used to solve f tSf(t)J (x(t2+l32J}dt =A(x) , 0<x<l , f f(t)J (x(t2+b2)*]dt = B(x) , x>l . Tranter (i960) treats the triple integral equation system I f(t)Jy(xt)dt = A(x) , 0<x<a , Jo I t2af(t)Jy(xt)dt = B(x) , а<х<Ъ , Jo Г f(t)J (xt)dt = 0 , х>Ъ , .Jo where A(x) and B(x) are known and a = *i • He assumes A9) B0) CHAPTER XIV TABLES OF BESSEL FUNCTIONS AMD IHTEGRAIS OF BESSEL FUNCTIONS Introduction Here we give tables of Bessel functions of integral and fractional order, and some integrals of Bessel functions. The tables are designed to enable the user to check expansions and make trial computations as usually required in exploratory studies. The tables are not necessarily intended for further table making and so are not too extensive. In many applications linear interpolation should give sufficient accuracy. For the most part, sufficient tabular data are provided so that interpolation to virtually the full accuracy of the tables is readily accomplished using Taylor's theorem. Other than this, we provide no interpolatory analyses. Most of the tables are available to greater accuracy in the cited refer- references, and these sources should be consulted where necessary. The entries in each table are accurate to within 0.52 units of the last decimal. An (n-l) decimal value obtained by rounding off an n decimal table which is accurate to within 0.52 units of the n-th place may contain errors up to 0.55 units of the (n-l)-th place. This could happen if the n-th figure is a five. In all such instances, we recomputed to insure the accuracy stated for our tables. f(t) = t"a X Ck^+a+lW13*) k=0 B1) so that the third equation of B0) is automatically satisfied. With the aid of 13.4.2A), the ck's are determined by a dual series. Closed form solu- solutions are known only for the cases и = ±i , see Tranter A959). In partic- particular, if A(x) = 0 , B(x) = 1 , a = -i and v = \ , then ck = &(-) Pk(cos e)/K(co= 6/2) , a = b cos e/2 , where Pjj is the Legendre polynomial and К is the complete elliptic integral of the first kind. B2) 349
350 INTEGRALS OF BESSEL FUNCTIONS TABLE I. Jn(x) , Yn(x) , n = 0,1 Jo« Y0(x) Jt(x) Yl(x) 0.0 .1 .2 .3 .4 0.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 1.0000000 0.9975016 .9900250 .9776262 .9603982 0.9384698 .912 0049 .8812 009 .8462874 .8075238 0.7651977 .7196220 .6711327 .6200860 .5668551 0.5118277 .4554022 .3979849 .3399864 .2818186 0.2238908 .1666070 .1103623 . 0555398 .0025077 -0.0483838 - .0968050 - .1424494 - .1850360 - .2243115 V -CO -1.5342387 -1.0811053 -0.8072736 - .6060246 -0.4445187 - .3085099 - .1906649 - .0868023 + .0056283 0.0882570 .1621632 .2280835 .2865354 .3378951 0.3824489 .4204269 • .4520270 .4774317 .49682 00 0.5103757 .5182937 .5207843 .5180754 .5104147 0.4980704 .4813306 .4605035 .4359160 .4079118 0. 0000000 .0499375 .0995008 .1483188 .1960266 0.2422685 .2867010 .3289957 .368842 0 .4059495 0.4400506 .4709024 .4982891 .5220232 .5419477 0.5579365 .5698959 .5777652 .5815170 .5811571 0.5767248 .5682921 .5559630 .5398725 .52 01853 0.497 0941 .4708183 .4416014 .4097092 .3754275 -6 -3 -2 -1 -1 -1 -1 -0 - -0 - - - - -0 - - - - -0 - + 0 -co .4589511 .3238250 .2931051 .7808720 .4714724 .2603913 .1032499 .9781442 .8731266 .7812128 .6981196 .6211364 .5485197 .4791470 .4123086 .3475780 .2847262 .2236649 .1644058 .1070324 . 0516786 . 0014878 .0522773 .1004889 .1459181 .1883635 .2276324 .2635454 .2959401 0.0 .1 .2 .3 .4 0.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 * Extracted from British Association for the Advancement of Science MATHEMATICAL TABLES - Volume VI, BESSEL FUNCTIONS PART I - FUNCTIONS OF ORDER ZERO AND UHITY, Cambridge University Press, London and New York, 1950, with permission of the Royal Society and the publisher. ' 1 i, 1 TABLES OF BESSEL FUNCTIONS TABLE I. Jn(x) , Yn(x) , n = 0,1 351 Jo« *oW Jx(x) *l(x) 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 b.5 b.6 b. 7 b.8 b.9 G.O C.I G.2 C.3 0.4 -0.2600520 - .2920643 - .32 01882 - .3442963 - .3642956 -0.3801277 - .3917690 - .3992302 - .4025564 - .4018260 -0.3971498 - .3886697 - .3765571 - .3610111 - .3422568 -0.32 05425 - .2961378 - .2693308 - .2404253 - .2097383 -0.1775968 - .1443347 - .1102904 - .0758031 - .0412101 -0.0068439 + .0269709 .05992 00 .0917 026 .1220334 0.1506453 .1772914 .2017472 .223812 0 .2433106 0.37685 00 .3431029 .307 0533 .269092 0 .2296153 0.1890219 .1477100 .1060743 .0645032 .0233759 -0.0169407 - .0560946 - .0937512 - .1295959 - .1633365 -0.1947050 - .2234600 - .2493876 - .2723038 - .2920546 -0.3085176 - .3216024 - .3312509 - .3374373 - .3401679 -0.3394806 - .3354442 - .3281571 - .3177464 - .3043659 -0.2881947 - .2694349 - .2483100 - .2250617 - .1999486 0.3390590 .3009211 .2613432 .2206635 .1792259 0.1373775 . 0954655 .0538340 . 0128210 - .0272440 -0.0660433 - .1032733 - .1386469 - .1718966 - .2027755 -0.2310604 - .2565528 - .2790807 - .2984999 - .3146947 -0.3275791 - .3370972 - .3432230 - .3459608 - .3453448 -0.3414382 - .3343328 - .3241477 - .3110277 - .2951424 -0.2766839 - .2558648 - .2329166 - .2080869 - .1816375 0.3246744 .3496295 .3707113 .3878529 .4 010153 0.4101884 .4153918 .4166744 .4141147 .40782 00 0.3979257 .3845940 .3680128 .3483938 .3259707 0.3009973 .2737452 .2445013 .2135652 .1812467 0.1478631 .1137364 .0791903 .0445476 .0101273 -0.0237582 - .0568056 - .0887233 - .1192341 - .1480772 -0.1750103 - .1998122 - .2222836 - .2422495 - .2595599 3.0 3.1 3.2 3.3 3.4 3.5 3. 6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4
352 INTEGRALS OF BESSEL FUNCTIONS TABLES OF BESSEL FUNCTIONS 353 TABLE I. Jn(x) , Yn(x) , n = 0,1 TABLE II. e-xIn(x) , e^x) , n = 0,1 , ex * J0(x) Y0(x) Ji(x) Yl(x) 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0 0.2600946 .2740434 .2850647 .2930956 .2981020 0.3000793 .2990514 .2950707 .2882169 .2785962 0.2663397 .2516018 .2345591 .2154078 .1943618 0.1716508 .1475175 .1222153 . 0960061 .0691573 0.0419393 .0146230 - .0125227 - .0392338 - .0652532 -0.0903336 - .1142392 - .1367484 - .1576552 - .1767716 -0.1939287 - .2089787 - .2217955 - .2322760 - .2403411 -0.245 9358 -0.1732424 - .1452262 - .1161911 - .0864339 - .0562537 -0.0259497 + .0041818 .0338504 .0627739 .0906809 0.1173133 .1424285 .1658016 .1872272 .2065209 0.2235215 .2380913 .25 01180 .2595150 .2662219 0.2702 051 .2714577 .2699992 .2658749 .2591558 0.2499367 .2383360 .2244937 .2085701 .1907439 0.1712106 .1501801 .1278748 .1045271 .0803773 0.0556712 -0.1538413 - .1249802 - .0953421 - .0652187 - .0349021 -0.0046828 + .0251533 .0543274 .0825704 .1096251 0.1352484 .1592138 .1813127 .2013569 .2191794 0.2346363 .2476078 .2579986 .2657393 .2707863 0.2731220 .2727548 .2697190 .2640737 .2559024 0.2453118 .2324307 .2174087 .2004139 .1816322 0.1612644 .1395248 .1166386 .0928401 .0683698 0.0434727 -0.2740913 - .2857473 - .2944593 - .3001869 - .3029176 -0.3026672 - .2994789 - .2934226 - .2845944 - .2731150 -0.2591285 - .2428010 - .2243185 - .2038851 - .1817211 -0.1580605 - .1331488 - .1072407 - .0805975 - .0534845 -0.0261687 + .0010840 . 0280110 .0543556 .0798694 0.1043146 .1274659 .1491128 .1690613 .1871357 0.2031799 .2170590 .2286600 .2378932 .2446924 0.2490154 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10. С e"XI0(x) %» %(x) ХКд.(х) 0.0 .1 .2 .3 .4 0.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 1.0000000 0.9071009 .8269386 .7575806 .6974022 0.6450353 .5993272 .5593055 .5241489 .4931630 0.4657596 .4414404 .4197821 .4004249 .3830625 0.3674336 .353315 0 .3405157 .3288719 .3182432 0.3085083 .2995631 .2913173 .2836930 .2766223 0.2700464 .2639140 .2581801 .2528055 .2477557 0.0000000 .0452984 .0822831 .1123776 .1367632 0.1564208 .1721644 .1846700 .1944987 .2021165 0.2079104 .2122016 .2152569 .2172976 .2185076 0.2190394 .2190195 .2185528 .2177263 .2166119 0.2152693 .2137477 .2120877 .2103230 .2084811 0.2065846 .2046523 .2026991 .2007374 .1987773 CO 2.6823261 2.1407573 1.8526273 1.6626821 1.5241094 1.4167376 1.3301237 1.2582031 1.1971634 1.1444631 1.0983303 1. 0574845 1.02 09732 0.9880700 0.9582101 . 9309460 .9059181 .8828335 .8614506 0.8415682 .8230172 .8056540 .7893561 .7740181 0.7595487 .7458682 .7329072 .7206041 .7089050 CO 10.8901827 5.8333860 4.1251578 3.2586739 2.7310097 2.37392 00 2.1150113 1.9179303 1.7623882 1.6361535 1.5314038 1.4428976 1.3669873 1.3010537 1.2431659 1.1918676 1.1460392 1.1048054 1.0674709 1.0334768 1.0023681 0.9737702 .9473722 .9229137 0.9001744 .8789673 .8591319 .8405301 .823042 0 1.0000000 1.1051709 1.2214028 1.3498588 1.4918247 1.6487213 1.8221188 2.0137527 2.2255409 2.4596031 2.7182818 3.0041660 3.3201169 3.6692967 4.0552000 4.4816891 4.9530324 5.4739474 6.0496475 6.6858944 7.3890561 8.1661699 9.0250135 9.9741825 1.1023176A) 1.2182494A) 1.3463738A) 1.4879732A) 1.6444647A) 1.8174145A) 0.0 .1 .2 .3 .4 0.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Extracted from Watson, G.N., A TREATISE ON THE THECBY OF BESSEL FUNCTIONS, Cambridge University Press, London and New York, 1945, with permission of the publisher.
354 INTEGRALS OF BESSEL FUNCTIONS TABLES OF BESSEL FUNCTIONS 355 X 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 TABLE e"XI0(x) 0.2430004 .2385126 .2342688 .2302480 .2264314 0.2228024 .2193462 .2160494 .2129001 .2098875 0.2070019 .2042345 .2015774 .1990233 .1965656 0.1941983 .1919159 .1897134 .1875862 .1855300 0.1835408 .1816151 .1797495 .177 9409 .1761863 0.1744833 .1728291 .1712215 .1696584 .1681377 0.1666574 .1652159 .1638114 .1624424 .1611073 II. e "Inlx, e'XIX(x) 0.1968267 .1948921 .1929786 .1910902 .1892299 ' 0.1874000 .1856022 .1838379 .1821076 .1804119 0.1787508 .1771245 .1755325 .1739746 .1724502 0.1709588 .1694997 .1680723 .1666757 .1653093 0.1639723 .1626639 .1613833 .1601298 .1589026 0.1577010 .1565242 .1553716 .1542424 .1531359 0.1520515 .1509885 .1499463 . 1489243 .1479220 ) , e"Kn^x; , eXK0(x) 0.6977616 .6871311 .6769751 .6672592 .6579523 0.6490263 .6404560 .6322181 .6242916 .6166573 0.6092977 .6021965 .5953390 .5887114 .5823013 0.5760968 .5700872 . 5642625 .5586133 .5531310 0.5478076 .54263^4 .53760G4 .53271^0 .52795ф 0.5233247Ч .5188116 \ .5144136 .5101258 .5059438 0.5018631 .4978799 .4939902 .4901905 .4864773 n = u,x , e\(x) 0.8065635 .7910030 .7762803 .7623243 .7490721 0.7364675 .7244607 .713 0065 .7020647 .6915988 0.6815759 .6719662 .6627424 .6538798 .6453559 0.6371498 .6292426 .6216169 .6142566 .6071468 0.6002739 .5936250 .5871886 .5809536 .5749099 0.5690480 .5633590 4 .5578348 45524676 .5472503 0.5421759 .5372382 .5324313 .5277494 .5231874 2.0085537A) 3.0 2.2197951A) 3.1 2.4532530A) 3.2 2.7112639A) 3.3 2.9964100A) 3.4 3.3115452A) 3.5 3.6598234A) 3.6 4.0447304A) 3.7 4.4701184A) 3.8 4.9402449A) 3.9 5.4598150A) 4.0 6.0340288A) 4.1 6.6686331A) 4.2 7.3699794A) 4.3 8.1450869A) 4.4 9.0017131A) 4.5 9.9484316A) 4.6 1.0994717B) 4.7 1.2151042B) 4.8 1.3428978B) 4.9 1.4841316B) 5.0 1.6402191B) 5.1 1.8127224B) 5.2 2.0033681B) 5.3 2.2140642B) 5.4 2.4469193B) 5.5 2.7042641B) 5.6 2.9886740B) 5.7 3.3029956B) 5.8 3.6503747B) 5.9 4.0342879B) 'б.'о 4.4585777B) W.I 4.9274904B) 6.2 5.4457191B) 6.3 6.0184504B) 6.4 X 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 j 7.5 7.6 7. 7 7.8 7. 9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 D.G U. 7 '.1.8 '. I. 'J i о. о TABLE e"XI0(x) 0.1598048 .1585337 .1572925 .1560802 .1548956 0.1537377 .1526056 .1514982 .1504147 .1493541 0.1483158 .1472990 .1463028 .1453267 .1443699 0.1434318 .1425118 .1416094 .1407239 .1398549 0.1390018 .1381642 .1373417 .1365336 .1357397 0.1349595 .1341927 .1334388 .1326975 .1319684 0.1312513 .1305457 .1298514 .1291681 .1284955 0.1278333 II. e"XIn(x е-Х1д.(х) 0.1469386 .1459738 .1450270 .1440976 .1431852 0.1422892 . 1414093 .1405450 .1396958 .1388613 0.1380412 .1372350 .1364424 .1356630 .1348965 0.1341425 .1334007 .1326708 .1319524 .1312454 0.1305494 .1298641 .1291892 .1285246 .1278699 0.1272250 .1265895 .1259634 .1253462 .1247379 0.1241382 .1235470 .1229640 .1223891 .1218220 0.1212627 ) , eXW , eXK0(x) 0.4828474 .47 92978 .4758254 .4724276 .4691016 0.4658451 .4626556 .4595308 .4564686 .4534669 0.4505237 .4476372 .4448056 .4420271 .4393001 0.4366230 .4339944 .4314127 .4288766 .4263848 0.4239360 .4215289 .4191625 .4168355 .4145468 0.4122955 .4100806 .4079010 .4057558 .4036441 0.4015651 .3995180 .3975018 .3955159 .3935596 0.3916319 n 0 0 0 0 0 • 0. • 0. • 0. = 0,1 , eX еХКд.(х) .5187402 .5144032 .5101719 .5060421 .5020099 .4980716 .4942235 .4904623 .4867848 .4831880 .4796689 .4762249 .4728534 .4695518 .4663178 4631491 4600436 4569992 454 0139 451085 9 4482134 4453946 4426280 4399119 4372448 4346252 4320519 42 95234 4270385 4245 960 4221945 4198332 4175107 4152261 4129784 4107666 6 7 8 8 9 1 1 1 1 1 1 1 2 2 2 2 3 3 4 4 4 5 6. 6. 7. 8. 8. 9. 1. 1. 1. 1. 1. 1. 1. 2. ex .6514163B) .3509519B) .1240583B) .9784729B) .9227472B) .0966332C) .2119671C) .3394308C) .4802999C) .6359844C) .8080424C) .9981959C) .2083480C) 4406020C) 6972823C) 9809580C) 2944681C) 6409503C) 0238724C) 4470667C) 9147688C) 4316596C) 0029122C) 6342440C) 3319735C) 1030839C) 9552927C) 8971291C) 0938019D) 2088381D) 3359727D) 4764782D) 6317607D) 8033745D) 9930370D) 2026466 D-} - 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8. 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. П. X .5 .6 .7 .8 .9 .0 .1 .2 .3 .4 .5 .6 .7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 n
356 INTEGRALS OF BESSEL FUNCTIONS X 0.0 .1 .2 .3 .4 0.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 0. 0. 0. 0, 0 0 J2(x) 0000000 0012490 0049834 0111659 0197347 0306040 0436651 ,0587869 ,0758178 ,0945863 ,1149035 .1365642 .1593490 .1830267 .2073559 .2320877 .2569678 .2817389 .3061435 .3299257 .3528340 .3746236 .3950587 .4139146 .4309800 .4460591 .4589729 .4695615 .4776855 .4832271 0. • 0. 0. 0, 0 0 TABLE J3(x) 0000000 0000208 0001663 0005593 • 0013201 0025637 0043997 ,0069297 , 0102468 , 0144340 . 0195634 .0256945 .0328743 . 0411358 .0504977 .0609640 .0725234 .0851499 .098802 0 .1134234 .1289432 .1452767 .1623255 .1799789 .1981148 .2166004 .2352938 .2540453 .2726986 .2910926 III. Jn(x) J4(x) 0.0000000 .0000003 .0000042 . 0000210 . 0000661 0.0001607 .0003315 .0006101 .0010330 . 0016406 0.0024766 .0035878 .0050227 .0068310 .0090629 0.0117681 . 0149952 .0187902 . 0231965 .0282535 0.0339957 .0404526 .0476471 .0565957 .0643070 0.0737819 .,0840129 .0949836 .1066687 .1190335 > 0. ¦ 0. 0, 0 0 0 n = 2AN J5(x) 0000000 0000000 0000001 0000006 0000026 0000081 0000199 ,0000429 , 0000831 . 0001487 .0002498 .0003987 . 0006101 .0009008 . 0012901 . 0017994 . 0024524 .0032746 .0042936 . 0055385 .0070396 .0088284 . 0109369 .0133973 . 0162417 .0195016 .0232073 .02 73876 .0320690 .0372756 * J6W 0. 0000000 .0000000 .0000000 .,0000000 .0000001 0. 0000003 .0000010 .0000025 .0000056 .0000112 0.00002 09 .0000368 .0000615 .0000986 .0001523 0.0002280 .0003321 .0004721 .0006569 .0008965 0.0012024 .0015875 .0020660 .0026534 .0033669 0.0042246 . 0052461 . 0064518 .0078634 .0095032 X 0. • • • • 0. • 1. 1. 1. 1. 1. 1. 1, 1, 1 1, 2 2 2 2 2 2 2 2 2 2 0 1 2 3 4 5 6 7 8 9 0 1 2 ,3 ,4 .5 .6 .7 .8 .9 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 AWfclU OCU. И'иШ L/CUI1UX j ЛИ . у 1-) ¦ I'-' V.UJ.4 -TV1.W-/ J- J-J. ¦¦¦ i jii.li j. -i_m.VJ_. ^-.^ ^ „^ FUNCTIONS OF THE FIRST KIND, TO ALL SIGNIFICANT ORDERS, Dover Publi- Publications, New York, 1948, with permission of the publisher. TABLES OF BESSEL FUNCTIONS 357 TABLE III. Jn(x) , n = 2AN 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 C.I 0.2 C.3 6.4 Jg(x) 0.4860913 .4862070 .4835277 .4780317 .4697226 0.4586292 .4448054 .4283297 .4093043 .3878547 0.3641281 .3382925 .3105347 .2810592 .2500861 0.2178490 .1845931 .1505730 .1160504 ' .0812915 0.0465651 .0121398 - .0217184 - .0547481 - .0866954 -0.1173155 - .1463755 - .1736560 - .1989535 - .2220816 -0.2428732 - .2611815 - .2768816 - .2898714 - .3000723 J3(x) 0.3090627 .3264428 .3430664 .3587689 .3733889 0.3867701 .3987627 .4092251 .4180256 .4250437 0.4301715 .4333147 .4343943 .4333470 .4301265 0.4247040 .4170686 .4072280 .3952085 .3810551 0.3648312 .3466186 .3265165 .3046415 .2811260 0.2561179 .2297789 .2022838 .1738184 .1445786 0.1147684 .0845982 . 0542833 . 0240416 ¦ .0059077 J4(x) 0.1320342 .1456177 .1597218 :1742754 .1891991 0.2044053 .2197991 .2352786 .2507362 .2660587 0.2811291 .2958266 .3100286 .3236110 .3364501 0.3484230 .3594094 .3692925 .3779603 .3853066 0.3912324 .3956468 .3984683 .3996253 .3990576 0.3967168 .3925672 .3865863 .3787657 .3691107 0.3576416 .3443929 .3294138 .3127681 .2945339 J5U) 0.0430284 .0493448 .0562380 .0637169 .0717854 0.080442 0 .0896797 . 0994854 .10984 00 .1207178 0.132086 7 .1439079 .1561363 .1687200 .1816009 0.1947147 .2079912 .2213550 .2347252 .2480168 0.2611405 .2740039 .2865116 .2985665 .31007 04 0.3209247 .3310313 .3402935 .3486170 .3559105 0.3620871 .3670646 .3707668 .3731243 .3740750 J6(x) 0.0113939 .0135591 .0160220 . 0188061 .0219344 0.0254290 .0293112 .0336009 .0383164 .0434740 0.0490876 . 0551683 .0617245 .0687611 .0762792 0.0842763 .0927455 .1016755 .1110507 .1208502 0.1310487 .1416157 .1525155 .1637077 .1751469 0.1867827 .1985602 .2104199 .2222981 .2341274 0.2458369 .2573523 .2685972 .2794926 .2899584 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4
358 INTEGRALS OP BESSEL FUHCTIOKS TABLE III. Jn(x) , n = 2AN ! 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0 J2U) -0.3074304 - .3119161 - .3135251 - .3122776 - .3082186 -0.3014172 - .2919660 - .2799797 - .2655949 - .2489678 -0.2302734 - .2097035 - .1874649 - .1637778 - .1388734 -0.1129917 - .0863797 - .0592888 - .0319725 - .0046843 +0.0223247 .0488084 .0745271 .0992506 .1227594 0.1448473 .1653229 .1840111 .2007550 .2154167 0.2278792 .2380464 .2458447 .2512230 .2541532 0.2546303 -0.0353466 - .0640599 - .0918370 - .1184740 - .1437753' -0.1675556 - .1896411 - .2098717 - .2281019 - .2442023 -0.2580609 - .2695840 - .2786971 - .2853455 - .2894950 -0.2911322 - .2902644 - .2869200 - .2*811478 - .2730169 -0.2626162 - .2500533 - .2354537 - .2189598 - .2007296 -0.1809352 - .1597613 - .1374038 - .1140677 - .0899655 -0.0653153 - .0403388 - .0152594 + .0096999 .0343183 J4(x) 0.2748027 .2536798 .2312830 .2077417 . 1831965 0.1577981 .1317058 .1050866 .0781139 .0509660 0. 0238247 - .0031260 - .0297016 - .0557187 - .0809963 -0.1053574 - .1286310 - .1506526 - .1712668 - .1903277 -0.2077009 - .2232641 - .2369090 - .2485413 - .2580827 -0.2654708 - .2706601 - .2736223 \- .2743470 - .2728415 -0J691309 - .Й632581 - .2552835 - .2452843 - .2333542 J5W 0.3735654 .3715506 .3679958 .3628760 .3561771 0.3478963 .3380421 .3266347 .3137062 .2993006 0.2834739 .2662935 .2478382 .2281981 .2074735 0.1857748 . 1632215 .1399418 .1160713 .0917524 0.0671330 .0423657 . 0176064 - .0069869 - .0312549 -0.0550389 - .0781816 - .1005286 - .1219297 - .1422400 -0.1613213 - .1790430 - .1952837 - .2099320 - .2228874 J6(*) 0.2999132 .3092757 .3179645 .3258995 .3330022 0.3391966 .3444098 .3485726 .3516206 .3534944 0.3541405 .3535122 .3515695 .3482804 .3436210 0.3375759 .3301390 .3213134 .3111118 .2995568 0.2866809 .2725266 .2571462 .2406017 .2229649 0.2043165 .1847462 .1643521 .1432398 .1215223 0.0993191 .0767551 .0539601 .0310680 .0082154 0.0583794 -0.2196027 xO. 2340615 -0.0144588 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0 TABLES OF BESSEL FUNCTIONS TABLE IV. e" In(x) , n = 2(lN * 359 0.0 .1 .2 .3 .4 0.5 .6 .7 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 ¦г.2 :.'.3 ;>.4 ~%M e-XI3(x) 0. 0000000 .0011320 .0041073 .0083969 .0135860 0.0193521 .0254458 .0316770 .0379022 . 0440151 0.0499388 . 0556193 .0610206 .0661209 .0709088 0.0753811 .0795406 .0833947 .0869539 .0902306 0.0932390 .0959939 . 0985103 .1008034 .1028881 0.1047787 .1064892 .1080327 .1094217 .1106680 0.0000000 . 0000189 .0001368 . 0004191 .0009027 0.0016043 .0025257 . 0036585 .0049877 .0064938 0.0081553 . 0099497 .0118547 . 0138486 .0159110 0.0180231 . 0201679 . 0223299 . 0244955 .0266527 0.0287912 .0309022 .0329781 .0350127 .0370010 0.0389387 .0408227 .0426507 . 0444207 . 0461318 e"XI4(x) 0.0000000 . 0000002 . 0000034 .0000157 .0000450 0.0001000 .0001886 .0003182 .0004948 . 0007233 0.0010069 .0013479 . 0017471 .0022045 .0027189 0.0032885 .0039110 .0045834 .0053023 .006 0642 0.0068654 .0077019 . 0085701 .0094659 .0103857 0.0113259 .0122829 . 0132534 .0142344 .0152228 e'^sCx) 0.0000000 .0000000 .0000001 .0000005 .0000018 0.0000050 .0000113 .0000222 .0000394 .0000647 0.0000999 .0001468 .0002072 .0002 826 .0003746 0.0004843 .0006129 .0007611 .0009298 .0011192 0.0013298 .0015615 .0018142 .0020879 .0023819 0.0026960 .00302 93 .0033813 .0037511 .0041380 e"XI6(x) 0. 0000000 .0000000 .0000000 .0000000 .0000001 0.0000002 .0000006 .0000013 .0000026 .0000048 0.0000083 .0000134 .0000205 .0000303 . 0000432 0.0000597 .0000805 .0001060 .0001369 .0001735 0.0002166 . 0002664 . 0003235 . 0003882 .0004610 0. 0005420 .0006317 .0007301 .0008375 .0009539 0.0 .1 .2 .3 .4 0.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Kxtracted from Watson, G.N., A TREATISE ON THE THEORY OF BESSEL FUNCTIONS," Cambridge University Press, London and New York, 1945, with permission of the publisher, and British Association for the Advance- Advancement of Science, MATHEMATICAL TABLES - VOLUME X, BESSEL FUNCTIONS PART II - FUNCTIONS OF POSITIVE INTEGER ORDER, Cambridge University Ргчч;и, New York and London, 1952, with permission of the Royal Society •mil the publ.i.:,her. The valuer I.MbLo:; of .L(;(x) K'ven in the of e"xIg(x) were deduced from the .Latter reference.
360 INTEGRALS OF BESSEL FUNCTIONS ! TABLES OF BESSEL FUNCTIONS 361 X 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 .8 .9 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .0 .1 .2 .3 .4 e"xI2(x) 0.1117825 .1127758 .1136572 . 1144358 .1151197 0.1157167 .1162339 .1166776 .117 0540 .1173686 0.1176265 .1178323 .1179905 .1181048 .1181791 0.1182166 .1182204 .1181933 .1181380 .1180568 0.1179519 .1178254 .1176790 .1175145 .1173335 0.1171374 .1169276 .1167 052 .1164714 .1162272 0.1159736 .1157115 .1154416 .1151648 ,- .1148817 / TABLE IV. — V / \ e xI3(x) 0.0477833 .0493750 .0509071 . 0523802 • .0537949 0. 0551523 .0564535 .0576999 .0588928 .0600338 0. 0611243 . 0621661 .0631607 . 0641096 . 0650147 0.0658774 .0666994 .0674822 .0682274 . 0689364 0.0696107 .0702518 .0708610 .0714396 .0719889 0.0725101 .0730045 . 0734.732 .0759173 .0743378 0.0747357 . 0751121 .0754678 . 0758038 . 0761209 e"XIn(x) , n — X-r / \ e xl4(x) 0.0162159 .0172112 .0182063 .0191910 .0201876 0.0211700 . 0221447 .0231102 .0240654 . 0250090 0.0259400 .0268576 .0277610 . 0286495 . 0295227 0.0303800 .0312212 .0320458 . 0328538 . 0336449 0.0344190 . 0351762 . 0359163 . 0366395 .0373459 0.0380355 .0387084 .0393650 .0400052 . 0406295 0.0412379 . 0418307 . 0424083 .0429707 . 0435184 = 2AN e"XI5(x) 0.0045409 .0049590 . 0053913 .0058369 .0062947 0.0067638 .0072431 .0077318 .0082288 .0087333 0.0092443 .0097611 . 0102826 .0108082 .0113371 0.0118685 .0124017 .012 9361 .0134711 . 0140060 0.0145403 .0150735 .0156051 . 0161346 .0166617 0.0171858 .0177068 . 0182241 .0187376 .0192470 0.0197519 .02 02521 .0207475 .0212378 . 0217229 e"xI6(x) 0.0010796 .0012144 .0013584 . 0015116 .0016738 0.0018449 .002 0249 .0022135 .0024106 .0026159 0.0028291 .0030501 .0032785 . 0035141 .0037566 0.0040056 .0042609 . 0045221 .0047890 .0050612 0. 0053384 .0056203 .0059065 .0061968 .0064909 0.0067885 .0070892 .0073928 .0076990 .0080075 0.0083181 .00863 06 . 0089445 .0092599 .0095763 X 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 I 0 1 2 •7 i 3 1 4 5 6 ! 8 ']'' 9 kg fj 0 J9 1 Я 2 11 3 II 4 ^Ш И 5 ш 6 31 7 U . 8 ,^ffi • 9 Ц H •° flj .1 mm •2 Я •3 Hj •7 |HJ ¦8 ,^и .9 Ш1 .0 BJ .1 HJ X 6 6 6 6 6 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 8. 8. 1 8. 8. 8. 8. 8. 8. 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 1.0. 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 Ь 6 7 8 У 0 е 0 0 0 0 0 0 0 0 -Х12(х) .1145930 .1142992 .1140008 .1136985 .1133927 .113 0837 .1127720 .1124579 .1121418 .1118240 .1115048 .1111845 .1108632 .1105413 .1102189 .1098962 .1095734 .1092506 .1089281 .1086060 1082843 1079633 107643 0 1073235 1070049 1066873 1063708 1060554 1057413 1054284 105116 9 1048067 1044980 1041908 103885 0 1035808 TABLE IV. е"Х13(х) 0 0. 0. 0. , t ш 4 0. 0. 4 0. 0. 0764199 0767016 0769668 0772161 0774503 0776700 0778758 0780684 0782482 0784159 0785720 0787169 0788511 0789752 0790895 0791944 0792904 0793778 0794569 0795282 0795920 0796486 0796982 0797412 0797778 0798084 0798331 0798523 0798661 0798748 0798785 0798775 0798721 0798623 0798483 0798304 е"х1п(х) , п е"Х14(х) 0.0440515 .0445704 .0450754 . 0455667 .0460446 0.0465094 . 0469614 .0474009 .0478282 . 0482436 0.0486473 .0490396 .0494208 .0497911 .0501509 0.0505003 .0508398 . 0511693 .0514894 . 0518001 0.0521017 .0523945 .0526787 .0529545 . 0532221 0.0534817 .0537336 .0539779 . 0542148 .0544445 0.0546673 .0548833 . 0550926 .0552955 .0554921 0.0556826 = 2AN е"х15(х) 0.0222 027 .0226769 .0231454 .0236083 .0240653 0.0245164 .0249615 .0254006 .0258337 .02626 07 0.0266815 .0270963 .0275049 .027 9074 .0283038 0.0286 941 .0290783 . 0294565 .0298286 .0301948 0.0305551 .0309094 .0312580 .0316 007 .0319378 0.0322691 .0325948 .032 9150 .0332297 .0335390 0.0338429 .0341415 .0344349 .0347231 .035 0062 0.0352843 е"Х16(х) 0.0098936 .0102115 .0105299 .0108486 .0111673 0.0114860 .0118043 . 0121223 .01243 96 . 0127562 0.0130719 .0133866 .0137 001 .0140124 . 0143233 0.0146328 .0149406 . 0152468 .0155513 .0158539 0.0161546 .0164533 .0167500 .0170446 .017337 0 0.0176271 .0179151 .0182007 .018483 9 .0187648 0.0190432 . 0193192 .0195928 .0198638 .0201323 0.0203983 X 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0
362 INTEGRALS OF BESSEL FOTCTIOHS TABLE V. (n/2xJJn_i(x) , n = 0(lL * an(x) = (n/2x)\ i(x) -1 aQ(x)=x'icos x a}_(x)=x sin x a2(x) *ъЫ a4(x) 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1, 1, 2, 2 2 2 2 2 2 2 2 2 0 1 2 3 4 5 6 7 8 9 0 1 ,2 ,3 ,4 .5 .6 .7 .8 .9 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 CO 9.9500417 4.9003329 3.1844550 2.3026525 1.7551651 1.3755594 1.0926317 0.8708834 .6906777 0.5403023 .4123601 .3019648 .2057683 .1214051 0.0471581 - .0182497 - .0757909 - .1262234 - .1701524 -0.2080734 - .2404029 - .2675 005 - .2896852 - .3072474 -0.3204574 - .3295726 -^ .3348415 - .3365080 - .3348132 1.0000000 .9983342 .9933467 • .9850674 .9735459 0. 9588511 .9410708 .9203110 .8966951 .8703632 0.8414710 .8101885 .7766992 . 7411986 .7038927 0.6649967 .6247335 .5833322 .5410265 .4980527 0.4546487 .4110521 .3674984 .3242197 .2814430 0.2393889 .1982698 .1582888 .1196386 . 0824 9S8 0. • 0. 0. 0. 0, 0 0000000 0333000 0664004 0991029 1312122 1625370 1928920 2220983 2499855 2763925 3011687 3241749 3452846 ,3643844 ,3813754 ,3961730 ,4087081 ,4189275 .4267936 ,4322854 .4353978 .4361420 .4345452 .4306503 .4245153 .4162130 .4058302 .3934670 .3792361 .3632614 0. 0. - 0. • 0. • 0. 0. 0000000 0006662 0026591 0059615 0105453 0163711 0233890 0315388 0407505 0509452 0620351 0739248 0865122 0996886 1133403 1273493 1415943 1559516 17 02963 1845032 1984479 2120079 2250633 2374981 2492 Oil 2600667 2699959 2788967 2866857 2 932878 0. • 0. 0. 0. 0. 0. 0000000 0000095 0000760 0002559 0006041 0011740 002 0163 0031787 0047053 0066361 0090066 0118471 0151829 0190331 0234113 0283246 0337739 0397536 0462516 0532494 0607221 ,0686387 ,0769623 08565 00 ,0946537 .1039205 .1133926 .1230084 .1327027 .1424073 0.0 .1 .2 .3 .4 0.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Extracted from National Bureay of Standards, TABLES OF SPHERICAL BESSEL FUNCTIONS, v. 1, Columbia University Press, 1947, with permission of the National Bureau of Standards and the publisher. TABLES OF BESSEL FUNCTIONS TABLE V. (tt/2x)^J x(x) , n = 0(lL n-p 363 an(x) = (n/2xJJn,i(x) x aQ(x)=x~ cosx a2_(x)=x sinx a2(x) ,3(x) 3.0 -0.3299975 3.1 - .3223017 3.2 - .3119671 3.3 - .2992363 3.4 - .2843524 3.5 3.6 3.7 3.8 3.9 4.5 4.6 4.7 4.8 4.9 -0.2675591 - .2490996 - .2292162 - .2081494 - .1861365 4.0 -0.1634109 4.1 - .1402010 4.2 - .1167288 4.3 - .0932091 4.4 - .0698484 -0.0468435 - .0243810 - .0026359 + .0182290 .0380637 5.0 5.1 b.2 S.3 j.4 c). 5 ,.& ,.1 ,.8 ..9 0.0567324 . 0741133 .0900994 .1045989 .1175357 0.1288490 .1384939 .1464408 .1526758 .1571997 I-.. 1. ',.¦1 0.1600284 .1611915 . 1607326 .1587077 .1551851 0.0470400 . 0134131 - .0182419 - .0478017 - .0751591 -0.1002238 - .1229223 - .1431990 - .1610152 - .1763503 -0.1892006 - .1995798 - .2075180 - .2130618 - .2162732 -0.2172289 - .2160198 - .2127496 - .2075343 - .2005005 -0.1917849 - .1815323 - .1698951 - .1570316 - .1431045 -0.1282801 - .1127262 - .0966115 - .0801038 - .0633689 -0.0465692 - .0298627 - .0134015 + .0026689 .0182108 0.3456775 .3266285 .3062665 .2847509 .2622468 0.2389237 .2149545 .1905138 .1657770 .1409185 0.1161107 . 0915230 .0673197 .0436598 .0206954 -0.0014296 - .0225798 - .0426300 - . 0614653 - .0789822 -0.0950894 - .1097078 - .1227715 - .1342275 - .1440366 -0.1521727 - .1586236 - .1633902 - .1664868 - .1679402 -0.1677899 - .1660871 - .1628941 - .1582841 - .1523397 0.2986375 .3026790 .3053668 .3066662 .3065534 0.3050155 .302 0511 .2976696 .2918918 .2847491 0.2762837 .2665478 .2556035 .2435222 .2303837 0.2162759 .2 012938 .18553 90 .1691185 .1521441 0.1347312 .1169983 .0990654 .0810537 .0630842 0.0452768 .0277493 .0106166 - .0060100 - .0220244 -0.0373257 - .0518195 - .0654182 - .0780422 - .0896200 0.1520517 .1615634 .1708691 .1798948 .1885670 0.1968128 .2045609 .2117424 .2182912 .2241445 0.2292439 .2335353 .2369702 .2395055 .2411043 0.2417361 .2413774 .2400119 .2376304 .2342313 0.2298206 .2244120 .2180267 .2106933 .2024479 0.1933334 .1833997 .1727031 .1613057 .1492755 0.1366852 .1236121 .1101375 .0963458 .0823240 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4
364 INTEGRALS OF BESSEL FUNCTIONS TABLE V. (tt/2xJJ _i(x) , n = 0AL an(x) = (TT/2xJJn_^(x) x aQ(x)=x~ cos x а-^(х)=х sinx ag(x) аз(х) a4(x) 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 .0.0 0.1502443 .1439746 .1364751 .1278526 .1182210 0.1077003 .0964150 .0844932 .072 0654 . 0592632 0.0462180 .0330605 .0199187 .0069174 - .0058231 -0.0181875 - .0300672 - .0413603 - .0519731 - .0618201 -0.0708249 - .0789209 - .0860513 - .0921697 - .0972399 -0.1012367 - .1041452 - .1059613 - .1066909 - .1063503 -0.1049655 - .1025717 - .0992129 - .0949415 - .0898173 -0.0839072 0.0330954 .0472032- .0604254 .0726637 . 0838318 0.0938552 .1026717 .1102316 .1164982 .1214470 0.1250667 .1273579 .1283335 .1280184 .1264483 0.1236698 .1197395 .1147232 .1086954 .1017380 0.0939397 .0853950 . 0762034 ,0664679 . 0^62945 0.045X909 .0350658 .0242272 .01338Ё2 .00263^7 -0.0079106 - .0181590 - .0280166 - .0373958 - .0462157 -0.0544021 -0.1451527 - .1368226 - .1274564 - .1171667 - .1060715 -0.0942924 - .0819542 - .0691833 - .0561068 - .0428514 -0.0295425 - .0163029 - .0032520 + .0094953 . 0218292 0.0336462 . 0448498 . 0553510 .0650689 . 0739317 0.0818767 . 0888506 .0948103 .0997228 .1035651 0.1063246 .1079986 .1085947 .1081298 .1066307 0.1041328 .1006801 .0963246 .0911256 . 0851490 0.0784669 -0.1000889 - .1093953 - .1174954 - .1243549 - .1299499 -0.1342663 - .1373002 - .1390580 - .1395557 - .1388192 -0.1368837 - .1337932 - .1296005 - .1243664 - .1181587 -0.1110524 - .1031284 - .0944729 - .0851765 - .0753338 -0.0650420 - .0544006 - . 0435101 - .0324714 - .0213849 -0.0103494 + .0005382 . 0111841 .0214984 . 0313954 0.0407947 .0496216 .0578077 .0652914 . 0720185, 0.0779422 0. • -0. - . - . - . - . -0. - . - . - . - . -0. - . - . - . - . -0. - . - . - . - . -0. - . - . - . - . -0. - . - . - . -0. 0681612 0539474 0397733 0257293 0119049 0016120 0147361 0273848 0394794 0509454 0617133 0717190 0809042 0892173 0966132 1030540 1085094 1129564 1163801 1187733 1201367 12 04789 1198162 1181725 1155791 1120743 1077 02 9 1025163 0965716 0899310 0826619 0748355 0665268 0578136 0487761 0394958 6. 6. 6. 6. 6. 7. T. 7. 7. 7. 7. 7. 7. 7. 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 10. 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 .0 1 .2 .3 Л .5 ,6 ,7 .8 .9 ,0 TABLES OF BESSEL FUNCTIONS 365 TABLE VI. Jv{x) , v = ±1/4 , ±3/4 * 0.0 .1 .2 .3 0.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2-6 2.7 P.8 P.9 J-l/4(x) 1.7199851 1.4318694 1.2721878 1.1559365 1.0595996 0.9736936 .8936461 .817 0352 .7425250 0.6693848 .5972478 .5259769 .4555864 .3861925 0.317 9807 .2511829 . 1860614 .1228962 . 0619752 0.0035869 - .0519863 - .1044733 - .1536191 - .1991881 -0.2409679 - .2787715 - .3124404 - .3418454 - -3668893 0.0000000 .520657 9 .6154579 .6742996 .7143957 0.7416566 .7588823 .7676603 . 7690144 .7636791 0.7522313 . 7351612 .7129110 .6858985 .6545312 0.619213 9 .5803540 .5383637 .4936604 .4466673 0.3978111 .3475212 .2962272 .2443567 .1923325 0.1405701 .0894748 .0394390 - .0091605 - .0559651 J-5/4(x) 2.5824445 1.4892322 1.0422622 0.7770330 0.5899242 .4441712 .3234194 .2193486 .1273451 0. 0447011 - .0302308 - .0984742 - .1606700 - .2172184 -0.2683659 - .3142624 - .3549975 - .3906266 - .4211891 -0.4467207 - .4672628 - .4828696 - .4936124 - .4995833 -0.5008973 - .4976941 - .4901382 - .4784194 - .4627520 0.0000000 .1148846 . 1923848 .2588967 .3180234 0.3711055 .4187434 .4612204 .4986670 .5311378 0.5586525 .5812195 .5988503 .6115694 . 6194199 0.6224676 .6208042 .6145479 .6038450 .5888693 0.5698218 .5469301 .5204462 .4906460 .4578261 0.4223024 .3844077 .3444884 .3029022 .2600155 0.0 .1 .2 .3 .4 0.5 .6 .7 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Extracted from National Bureau of Standards, TABLES OF BESSEL FUNCTIONS OF FRACTIONAL ORDER, Vol. 1, Columbia University Press, New York, 1948, with permission of the National Bureau of Standards and the publisher.
366 INTEGRALS OF HESSEL FUNCTIONS X 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 5 \5 \ 5- 5 5 5 5 5 5 5 6 6 6 6 6 0 1 2 3 4 5 6 7 8 9 0 1 2 3 ,4 ,5 .6 .7 .8 .9 .0 .1 ^ .3\ .4 .5 .6 .7 .8 .9 .0 .1 .2 .3 .4 J_!/4(x) -0.3875067 - .4036657 - .4153678 - .4226480 - .4255746 -0.4242480 - .4188006 - .4093949 - .3962223 - .3795010 -0.3594744 - .3364087 - .3105902 - .2823231 - .2519268 -0.2197326 - .1860813 - .1513199 - .1157985 - .0798675 -0.0438745 - .0081614 + .0269388 . 0611044 \ .0940279 ^ 1254183 > 1550037 .1825335 .2077799 .23%402 0.2506379 .2679240 .2822782 .2936A)93 .3018Й59 TABLE VI. Jylx) Jl/4(x) -0.1006371 - .1428618 - .1823501 - .2188400 - .2520987 -0.2819241 - .3081460 - .3306271 - .3492638 - .3639867 -0.3747606 - .3815845 - .3844909 - .3835457 - .3788467 -0.3705224 - .3587308 - .3436574 - .3255132 "- .3045328 -0.2809721 - .2551051 - .2272223 - .1976271 - .1666332 -0.1345618 - .1017387 - .0684910 - .0351444 - .0020204 +0.0305669 . 0623131 .0929266 .1221307 .1496660 , v = il/4 , i J_3/4(x) -0.4433741 - .4205463 - .3945498 - .3656847 - .3342679 -0.3006304 - .2651149 - .2280732 - .1898633 - .1508465 -0.1113845 - .0718365 - .0325562 + .0061109 .0438305 0.0802817 .1151604 .1481808 .1790781 .2076106 0.2335612 .2567392 .2769815 .2941539 .3081519 0.3189011 .3263574 .3305077 .3313687 .3289871 0.3234387 .3148269 .3032821 .2889600 .2720394 3/4 J5/4(x) 0.2161998 .1718289 .1272764 .0829116 .0390976 -0.0038123 - .0454774 - .0855718 - .1237878 - .1598376 -0.1934559 - .2244019 - .2524608 - .2774459 - .2991995 -0.3175939 - .3325325 - .3439502 - .3518135 - .3561204 -0.3569003 - .3542133 - .3481494 - .3388270 - .3263921 -0.3110163 - .2928951 - .2722460 - .2493062 - .2243300 -0.1975868 - .1693584 - .1399359 - .1096174 - .0787052 X 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 TABLES OF BESSEL FUNCTIONS 367 X 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 'J.5 9.6 9.7 9.8 9.9 1). 0 TABLE VI. Ju(x) J-1/4W 0.3069865 .3089994 .3079221 .3038110 .2967506 0.2868519 .2742514 .2591094 .2416082 .2219503 0.2003559 .1770611 .1523152 .1263780 .0995179 0.0720085 .0441266 . 0161489 - .0116498 - .0390000 -0.0656395 - .0913159 - .1157892 - .1388333 - .1602389 -0.1798143 - .1973881 - .2128099 - .2259516 - .2367088 -0.2450012 - .2507733 - .2539946 - .2546597 - .2527880 -0.2484237 0.1752928 .1987928 .2199708 .2386565 .2547054 0.2680000 .2784506 .2859956 .2906021 .2922654 0.2910090 .2868840 .2799683 .2703654 .2582033 0.2436331 .2268271 .2079769 .1872916 .1649956 0.1413261 .1165308 .0908655 .0645915 .0379733 0. 0112754 - .0152394 - .0413131 - .0666947 - .0911424 -0.1144262 - .1363297 - .1566520 - .1752096 - .1918382 -0.2063938 , v = +1/4 , +3/4 J-3/4W 0.2527211 .2312252 .2077892 .1826654 .1561186 0.1284234 .0998616 .0707194 .0412852 .0118460 -0.0173143 - .0459182 - .0736969 - .1003924 - .1257603 -0.1495717 - .1716151 - .1916984 - .2096503 - .2253220 -0.2385880 - .2493473 - .2575241 - .2630679 - .2659544 -0.2661849 - .2637862 - .2588103 - .2513332 - .2414545 -0.2292959 - .2149996 - .1987275 - .1806586 - .1609877 -0.1399232 J5/4(*) -0.0475027 - .0163118 + .0145696 . 0448509 . 0742505 0.1024993 .1293421 .1545405 .1778744 .1991442 0.2181723 .2348045 .2489112 .2603883 .2691578 0.2751687 .2783965 .2788438 .2765395 .2715387 0.2639214 .2537920 .2412777 .2265272 .2097091 0.1910101 .1706328 .1487942 .1257228 .1016568 0.0768416 .0515272 .0259661 .0004106 - .0248895 -0.0496893 X 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0
368 IHTEGBAIS OF HESSEL FUNCTIONS X 0.0 .1 .2 .3 .4 0.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 J-i/зМ CO 1.997 0537 1.5672305 1.3432 949 1.1879338 1.06442 05 .9582049 . 8623192 .7730526 .6883111 0.6068875 .5280981 .4515854 .3772032 .3049452 0.2348995 .1672171 . 102 0895 .0397330 - .0196239 -0.0757500 - .1284188 - .1774149 - .2225387 - .2636108 -0.3004752 - .3330020 - .3610897 - .3846672 - .4036942 TABLE VII. Ju(x) Jl/3(*) 0.0000000 .4117819 .5158967 .5850148 .6354112 0.6728308 .7000271 .7185627 .7294377 .7333598 0.7308764 .7224452 .7084752 .6893506 .6654453 0.6371326 .6047900 .568802 0 .5295619 .4874713 0.4429398 .3963830 .3482210 .2988759 .2487696 0.1983209 .1479429 .0980398 .0490046 .0012161 , v = ±1/3 , : J-2/3(x) CO 2.7297582 1.6808383 1.2337379 0.9624591 0.7683442 .6155527 .4878613 .3769031 .2779879 0.1883403 .1062622 .0306972 - .0390135 - .1032744 -0.1623263 - .2163034 - .2652732 - .3092625 - .3482771 -0.3823156 - .4113791 - .4354791 - .4546428 - .4689175 -0.4783731 - .4831043 - .4832317 - .4789024 - .4702899 ±2/3 * J2/3(x) 0.0000000 .1501170 .2372244 .3085208 .3698149 0.4233108 .4700616 .5106313 .5453450 .5744049 0.5979500 .6160899 .6289258 .6365631 .6391200 0.6367323 .6295577 .6177769 .6015950 .5812414 0.5569697 .5290559 .4977977 .4635121 .4265338 0.3872124 .3459100 .3029983 .2588562 .2138663 X 0.0 .1 .2 .3 .4 0.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Extracted froirf National Bureau of Standards, TABLES OF BESSEL FUNCTIONS OF FRACTIONAL ORDER, Vol. 1, Columbia University Press, New York, 1948, with permission of the National Bureau of Standards and the publisher. M TABLES OF BESSEL FUNCTIONS TABLE VII. Ju(x) , v = ±1/3 , +2/3 369 X 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 r>.3 j.4 >.5 ..6 >.7 ..8 !>.9 r,.O I-..1 Г..2 Г..З ¦..4 J -0 - - - - -0 - - - - -0 - - - - -0 - - - - +0 0 0 -1/3 M .4181629 .4280978 .4335560 .4346268 .4314312 .4241205 .4128753 .3979042 .3794411 .3577443 .3330932 .3057864 .2761389 .2444796 .2111478 .1764910 .1408614 .1046131 .0680988 .0316673 .0043399 .0395913 .0737681 .1065667 .1377016 .1669071 .1939397 .2185799 .2406339 .2599349 2763443 .2897525 30007 97 3072758 3113210 -0.0449638 - .0891928 - .1311505 - .1705405 - .2070929 -0.2405659 - .2707474 - .2974564 - .3205442 - .3398952 -0.3554274 - .3670927 - .3748770 - .3787997 - .3789131 -0.3753019 - .3680815 - .3573972 - .3434221 - .3263554 -0.3064205 - .2838623 - .2589454 - .2319509 - .2031741 -0.1729216 - .1415082 - .1092543 - .0764830 - .0435167 -0.0106747 + .0217298 .0533927 .0840213 .1133370 J-2/3W -0.4575938 - .4410386 - .4208724 - .3973657 - .3708092 -0.3415113 - .3097965 - .2760023 - .2404767 - .2035752 -0.1656584 - .1270886 - .0882268 - .0494304 - .0110495 +0.0265755 . 0631165 .0982608 .1317132 .1631983 0.1924629 .2192778 .2434392 .2647706 .2831239 0.2983801 .3104502 .3192756 .3248283 .3271107 0.3261551 .3220231 .3148050 .3046181 .2916057 J2/3(x) 0.1684122 .1228753 .0776320 .0330505 - .0105118 -0.0527116 - .0932219 - .1317348 - .1679638 - .2016460 -0.2325441 - .2604479 - .2851760 - .3065771 - .3245307 -0.3389481 - .3497725 - .3569792 - .3605758 - .3606012 -0.3571253 - .3502480 - .3400977 - .3268302 - .3106267 -0.2916921 - .2702528 - .2465545 - .2208595 - .1934448 -0.1645987 - .1346185 - .1038076 - .0724727 - .0409208 X 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4
370 INTEGRALS OF HESSEL FUNCTIONS X 6. 6. 6. 6. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 8. 8. 8. 8. 8. 8. 8, 8 8, 8, 9 9 9 9 9 9 9 9 9 9 10 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 V 0 l 2 ,3 ,4 .5 .6 .7 -8 .9 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .0 J_l/3(x) 0.3122253 .3100280 .3047971 .2966283 .2856436 0.2719900 .2558377 .2373786 .2168236 .1944010 0.1703540 .1449380 . 1184182 . 0910673 - .0631623 OL 0349823 /. 0068056 - .0210928 - .0484439 ( - . 0749871 -0.1004725 - .1246633 - .1473379 - .1682918 - .1873392 -0.2043150 - .2190759 - .2315013 - .2414948 - .2489845 -0.2539233 - .2562897 - .2560872 - .2533441 - .2481132 -0.2404711 TABLE J 0. # • 0. ¦ 0. ¦ 0. 0. 0 _ _ - -0 - -0 VII. Jv{x) 1/3(*) 1410775 1669992 1908793 2125171 2317362 2483853 2623395 2735015 2818013 2871974 2896766 2892534 2859699 ,2798952 .2711241 ,2597762 ,2459942 .2299425 .2118057 .1917857 .1701008 .1469824 .1226734 .0974252 .0714958 . 0451467 .0186408 .0077604 .0337991 .0592239 .0837918 .1072706 .1294411 .1500990 .1690567 .1861452 J.2/3(x) 0.2759353 .2577969 .2374008 .2149757 .1907661 0.1650301 .1380369 .1100636 .0813934 .0523123 0.0231065 - .0059399 - .0345481 - .0624467 - .0893744 -0.1150824 - .1393361 - .1619180 0 .1826287 - .2012892 -0.2177421 - .2318529 - .2435112 - .2526312 - .2591526 -0.26304 07 - .2642863 - .2629062 - .2589421 - .25246 01 -0.2435501 - .2323246 - .2189172 - .2034815 - .1861890 -0.1672277 12/3 -0.0094569 + .0216194 .0520162 . 0814518 .1096576 0.1363798 .1613822 .1844477 .2053806 .2240074 0.2401790 .2537713 .2646862 .2728523 .2782252 0.2807877 .2805496 .2775473 .2718431 .2635248 0.2527039 .2395147 .2241130 .2066739 .1873903 0.1664707 .1441371 .1206230 .0961707 .0710291 0.0454511 .0196914 - .0059961 - .0313608 - .0561577 -0.0801496 X 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0 TABLE TABLES OF BESSEL FUNCTIONS VIII. x"(n+*}In+i(x) , e"\+i(x) , n = 0AL * Ъ» = x-^I^x) 371 X 0.0 .1 .2 .3 .4 0.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 ¦?. 2 ¦?.ъ ? .4 ;\5 ,¦.6 ,\7 ,'.0 ,'.9 ' . 0 '..1 '.4 0 0 0, 1, 1, 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 2. 2. 2. 2. 2. 3. 3. 3. .7978846 .7992150 .8032144 .8099068 .8193323 .8315478 .8466268 .86466 03 .8857576 .9100465 .9376749 . 9688114 .0036466 .0423947 .0852948 .1326128 .1846431 .2417111 ,3041752 ,3724299 4469080 5280845 6164797 7126633 8172583 930946 054471 188646 334359 492581 664369 850880 053376 273231 511951 0 0, 0. • 0. . 0. . • 0. 0. • -пч — • 4(x) .2659615 .2662276 .2670269 .2683629 .2702413 .2726702 .2756601 .2792238 .2833768 .2881370 .2935253 .2995652 .3062830 ,3137085 ,3218744 3308171 3405766 3511966 3627252 3752148 3887225 4033104 4190462 4360033 4542611 4739061 4950318 5177393 5421385 5683479 5964959 6267214 6591748 6940184 7314282 -П+Г"' 10- Ъ2(х) Ю2-Ъ3(х) 0 0 0 0. ¦ 0. • 0. • 0. 1. 1. 1. 1. .5319230 .5323031 .5334445 .5353511 .5380292 .5414879 .5457386 .5507956 .5566760 .5633996 .57 09891 .5794703 .5888720 .5992265 .6105694 .6229398 .6363807 ,6509389 ,6666656 .6836164 7 018514 7214358 7424401 76494 05 7890190 8147641 8422712 8716428 9029893 9364294 9720907 0101104 0506359 0938256 1398496 0.7598901 .7603123 .7615802 .7636973 .7666692 0.7705042 .7752128 .7808078 .7873046 .7947212 0.8030780 .8123983 .8227080 .8340358 .8464136 0.8598763 .8744621 .8902123 .9071722 .9253905 0.9449199 .9658175 .9881445 1.0119666 1.0373548 1.0643850 1.0931386 1.1237029 1.1561714 1.1906440 1.2272279 1.2660376 1.3071954 1.3508322 1.3970879 103-Ъ4(х) 0 0 0 0. • 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. .8443223 .8447061 .8458586 .8477823 .8504817 .8539631 . 8582345 .8633058 .8691889 .8758973 .8834469 .8918552 .9011422 .9113296 . 9224416 .9345047 .9475477 .9616020 .9767013 ,9928824 0101847 0286507 0483260 0692594 0915033 1151136 1401501 1666767 1947616 2244774 2559016 2891168 3242109 3612775 4004163 0 0 1 1 1 1 1 1 1 1, 1, 1, 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. X .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .0 .1 .2 ,3 ,4 .5 6 7 8 9 0 1 2 3 4 Extracted from Jones, C.W., A SH03T TABLE FOR THE BESSEL FUNCTIONS In+i(x) > 2/ti К +i(x) , Camtaidge University Press, London and New York, 1956, with permission оГ the Royal Society and the publisher.
372 INTEGRALS 0У BESSEL FUNCTIONS TABLE VIII. x-(n+i)ln+A(x) , e"xIn+|(x) , n = 0AL Ъп(х) = x-(n+4)ln+A(x) Ъх(х) 10-Ъ2(х) 10^-Ъ3(х) 103-Ъ4(х) Ь0(х) 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 X 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 3. 4. 4. 4. 5. 5. 5. 6. 6. 7. 7. 8. 9. 10. 10. 11. 0. 0. 0. 771173 052690 358453 690597 051449 443551 869678 332861 836407 383931 979380 627063 331691 098408 932837 841119 1784043 1766480 1749424 1732851 1716739 1701067 1685816 1670967 .1656502 . 1642407 , 1628665 . 1615262 .1602184 ,1589419 .1576953 0.7715941 .8147218 .8610336 .9107701 .9641915 1.0215792 1.0832377 1.1494965 1.2207123 1.2972708 1.3795897 1.4681213 1.5633551 1.6658211 1.7760935 1.8947941 cx(x) 0.1427396 .1420243 .1413103 .1405985 .1398895 0.1391839 .1384823 .1377852 .1370929 .1364058 0.1357241 .1350481 .1343781 .1337141 .1330563 1.1888907 1.2411453 1.2968242 1.3561541 1.4193783 1.4867584 1.5585753 1.6351310 1.7167498 1.8037804 1.8965977 1.9956045 2.1012339 2.2139518 2.3342592 2.4626947 (x) = e"xIn+i 10 • c2(x) 0.9276052 .9310434 .9341726 .9370110 .9395756 0.9418822 .9439461 . 9457814 .9474013 .9488184 0.9500446 .9510909 .9519678 .9526850 .9532520 1.4461120 1.4980642 1.5531154 1.6114479 1.6732565 1.7387497 1.8081500 1.8816952 1.9596396 2.0422549 2.1298315 2.2226799 2.3211322 2.4255433 2.5362929 2.6537870 (x) 10 • c3(x) 0.4997913 .5074555 .5148602 .5220120 .5289172 0.5355825 .5420143 .5482192 .5542037 .5599742 0.5655370 .5708985 .5760646 .5810415 .5858351 1.4417335 1.4853419 1.5313618 1.5799209 1.6311554 1.6852100 1.7422387 1.8024054 1.8658845 1. 9328616- 2.0035340 2.0781120 2.1568192 2.2398938 2.3275892 2.4201754 10 • C4(x) 0.2278974 .2345359 .2410915 .2475612 .2539421 0.2602318 .2664282 .2725297 .2785347 .2844422 0.2902514 .2959615 .3015722 .3070833 .3124948 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 X 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.X 6.2 6.3 6.4 TABLES OF BESSEL FUNCTIONS TABLE VIII. x-(n+*)ln+4(x) , e'X^Cx) , n cn(x) = e-XIn+|(x) 373 = 0AL =oW =l(x) Ю- c2(x) 10-c3(x) 10-c4(x) 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.0 9.6 9.7 9.8 9.9 0.0 0.1564777 .1552878 .1541246 .1529872 .1518746 0.1507859 .1497203 .1486769 .1476551 .1466540 0.1456731 .1447115 .1437688 .1428442 .1419373 0.1410474 .1401740 .1393167 .1384749 .1376482 0.1368361 .1360382 .1352541 .1344834 .1337258 0.1329808 .1322481 .1315274 .1308183 .13012 06 0.1294340 .1287581 .1280927 .1274374 .1267922 0.1261566 0.1324049 .1317599 .1311214 .1304895 .1298641 0.1292453 . 1286331 .1280275 .1274285 .1268360 0.1262501 .1256706 .1250976 .1245309 .1239706 0.1234165 . 1228686 .1223269 .1217912 .1212615 0.1207377 .1202198 .1197077 .1192012 .1187004 0.1182051 .1177153 .1172309 .1167518 .1162780 0.1158093 .1153458 . 1148872 .1144336 .1139849 0.1135410 0.9536773 .9539692 . 9541354 . 9541831 .9541193 0.9539504 .9536825 .9533213 .9528722 . 9523403 0.9517304 .9510472 .9502947 .9494772 . 9485984 0.9476620 .9466712 .9456295 .9445397 .9434048 0.9422276 .9410104 .9397559 .9384664 .9371439 0.9357905 .9344083 .9329990 .9315644 .9301062 0.9286260 .9271251 .9256052 . Э240674 . 9225130 0.9209434 0.5904511 .5948951 .5991728 .6 032893 .6072499 0.6110598 .6147237 .6182465 .6216329 .6248872 0.6280140 .6310173 .6339013 .6366699 .6393269 0.6418762 .6443211 .6466653 .6489119 .6510644 0.6531257 .6550989 .6569869 .6587926 .6605186 0.6621676 .6637421 .6652446 .6666773 .6680427 0.6693429 .6705800 .6717561 .6728732 .6739332 0.6749380 0.3178069 .3230198 .3281340 .3331501 .3380687 0.3428907 .3476169 .3522483 .3567858 .3612307 0.3655841 .369847 0 .3740209 .3781068 .3821062 0.3860203 .3898505 .3935982 .3972646 .4008512 0.4043593 .4077904 .4111458 .4144268 .4176348 0.42 07713 .4238374 .4268347 .4297643 .4326276 0.4354259 .4381605 .4408327 .4434436 .4459946 0.4484868 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0
374 I-l/4(x) INTEGRALS OF BESSEL FUNCTIONS TABLE IX. 1„(х) , v = ±1/4 , ±3/4 * [-3/4(x) 0.0 .1 .2 .3 .4 0.5 .6 .7 .8/ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 X? 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 CO 1.7314900 1.4705672 1.3508656 1.2861067 1.250.9702 Д;2'384027 --" 1.24 04066 1.2552377 1.2813195 1.3177529 1.3640690 1.42 00957 1.4858805 1.5616453 1.6477593 1.7447224 1.8531569 1.9738038 ,' J.1075223 2.2552929 2.4182222 2.5975496 2.7946563 3.0110754 3.2485040 3.5088168 3.7940817 4.1065770 4.4488103 0.0000000 .5227447 .6253845 .6990174 .7616164 0.8196760 .8764808 .934 0401 .9937580 1.0567231 1.1238519 1.1959691 1.2738563 1.3582835 1.4500325 1.5499137 1.6587808 1.7775426 1.9071749 " 2.0487314 2.2033545 2.3722866 2.5568820 2.7586193 2.9791147 3.22 01363 3.48362 00 3.7716865 4.0866593 4.4310859 CO 2.6346146 1.6133150 1.2482474 1.0721795 0.9800768 .9343098 .9179580 .9223276 .9425725 0.9758675 1.0205489 1.0756719 1.1407679 1.2157032 1.3 005955 1.3957616 1.5016863 1.6190031 1.7484842 1.8910354 2.0476965 2.2196442 2.4081979 2.6148279 2.8411660 3.0890172 3.3603746 3.6574351 3.9826179 0.0000000 .1152133 .1945961 .2656404 .3328996 0.3985851 .4641153 .5305533 .5987802 .6695802 0.7436871 .8218142 .9046745 .9929953 1. 0875313 1.1890745 1.2984643 1.4165970 1.5444345 1.6830142 1.8334588 1.9969864 2.1749219 2.3687083 2.5799203 2.8102772 3.0616593 3.3361232 3.6359204 3.9635170 0.0 .1 .2 .3 .4 0.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Extracted from National Bureau of Standards, TABLES OF BESSEL FUNCTIONS OF FRACTIONAL ORDER, Vol. 2, Columbia University Press, New York, 1949, with permission of the National Bureau of Standards and the publisher. TABLES OF BESSEL FUNCTIONS 375 TABLE IX. Iv(x) , v = ±1/4 , ±3/4 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 .3 .4 .5 .6 .7 .8 :,.O с .0 (i.4 ^1/4 (*) 4.8235404 5.2338004 5.6829239 6.1745739 6.7127745 7.3019457 7.9469418 8.6530940 9.4262569 10.2728597 11.1999627 12.2153193 13.3274442 14.5456886 15.8803227 17.3426264 18.9449893 20.70102 07 22.6256699 24.7353597 27.0481323 29.5838100 32.3641724 35.4131504 38.7570408 42.4247418 46.4480114 50.8617531 55.7043291 61.0179054 66.8488315 73.2480581 80.2715966 87.9810251 96.4440448 4.8077592 5.2197421 5.6703946 6.1634023 6.7028092 7.2930528 7.9390030 8.6460044 9.4199236 10.2672001 11.1949036 12.2107957 13.3233983 14.5420690 15.877 0836 17.3397272 18.9423937 20.6986964 22.6235881 24.7334947 27.0464612 29.5823124 32.3628299 35.4119468 38.7559617 42.4237740 46.4471433 50.8609743 55.7036304 61.0172784 66.8482688 73.2475530 80.2711432 87.9806180 96.4436792 I-3/4(x) 4.3385847 4.7282628 5.1548699 5.6219419 6.1333640 6.6934043 7.3067513 7.9785549 8.7144722 9.5207167 10.4041137 11.3721607 12.433 0937 13.5959603 14.8707003 16.2682343 17.8005608 19.4808635 21.3236290 23.3447767 25.5618012 27.9939293 30.6622926 33.5901176 36.8029346 40.3288077 44.1985879 48.4461916 53.1089070 58.2277313 63.8477420 7 0.0185052 76.7945251 84.2357390 92.4080617 4.3216154 4.7131775 5.1414515 5.6099996 6.1227299 6.6839305 7.2983 072 7.9710254 8.7077554 9.5147226 10.3987626 11.3673820 12.4288247 13.5921454 14.8672903 16.2651852 17.7978338 19.4784238 21.3214459 23.3428227 25.5600518 27.9923628 30.6608895 33.5888607 36.8018084 40.3277984 44.1976833 48.4453806 53.1081798 58.2270792 63.8471571 7 0.0179805 76.7940544 84.2353166 92.4076826 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4
376 INTEGRALS OF BESSEL FUNCTIOHS TABLE IX. I (x) , v = ±1/4 , +3/4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7^3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 ^1/4 (*) 105.7350927 115.9360159 127.1368131 139.4364514 152.9437650 167.7784444 184.0721253 201.9695870 ""21-.-63QQ714 243.228735? 266.9582510 293.0305620 321.6788244 353.1595385 387.7548970 425.7753709 467.5625559 513.4923073 563.9781906 619.4752819 680.4843525 747.5564761 821.2981032 902.3766486 991.5266444 1089.5565164 1197.3560468 1315.9045931 1446.2801398 1589.6692680 105.7347645 115.9357211 127.1365483 139.4362135 152.9435512 167.7782524 184.0719528 201.9694319 221.6299320 ч 243.2286105 266.9581384 293.0304607 321.6787334 353.1594566 387.7548234 425.7753047 467.5624964 513.4922538 563.9781424 619.4752386 680.4843135 747.5564410 821.2980717 902.3766202 991.5266189 1089.5564934 1197.3560261 1315.9045745 1446.2801231 1589.6692529 I-5/4(x) 101.3839848 111.2432367 122.0735086 133.9712541 147.0425692 161.4041609 177.1844139 194.5245646 213.5799939 234.5216500 257.5376156 282.8348332 310.6410041 341.2066804 374.8075681 411.7470628 452.3590422 497.0109418 546.1071406 600.0926912 659.4574260 724.7404811 796.5352771 875.4950057 962.3386721 1057.8577504 1162.9235137 1278.4951081 1405.6284460 1545.4860021 101.3836446 111.2429313 122.0732344 133.9710079 147.0423481 161.4039623 177.1842355 194.5244044 213.5798499 234.5215207 257.5374994 282.8347288 310.6409102 341.2065961 374.8074923 411.7469946 452.3589809 497.0108867 546.1070911 600.0926466 659.4573860 724.7404451 796.5352447 875.4949765 962.3386459 1057.8577268 1162.9234925 1278.4950890 1405.6284288 1545.4859867 1747. 1920. 2111. 2321. 2552. 3781350 8445688 6513884 5410757 4319375 1747. 1920. 2111. 2321, 2552. 3781214 8445566 6513774 5410658 4319286 1699, 1868. 2054, 2259, 2485. 3476039 6223176 8615420 7734319 2387875 1699. 1868. 2054. 2259. 2485. 3475900 6223051 8615307 7734218 2387784 10.0 2806.4359071 2806.4358991 2733.3285584 2733.3285502 10.0 TABLES OF BESSEL FUNCTIONS 377 TABLE X. 1и(х) , v = ±1/3 , ±2/3 [-1/з(*) -2/3 (x) 0. 0 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2 m 2. 2. 2- 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 2 1 1 1 1 1 1 1 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 2. 2. 2. 2. 2. 3. 3. 3. 4. 4. CO 0120879 6149615 4371141 3394785 2842546 2561471 2476400 2546101 2746558 3063509 3488729 4018033 4650122 5385906 6228083 7180892 8249957 9442209 0765853 2230372 3846561 5626584 7584051 9734111 2093571 4681025 7517 007 0624157 4027413 0. 0000000 .4133289 .5236935 .6050965 .6747060 0.7389732 .8012491 . 8636228 .9275727 . 9942516 1.0646314 1.1395838 1.2199303 1.3064753 1.4000298 1.5014290 1.6115477 1.7313128 1.8617151 2.0038208 2.1587826 2.3278511 2.5123870 2.7138733 2.9339291 3.1743242 3.4369943 3.7240585 4.0378376 4.3808746 CO 2.7710137 1.7847962 1.4122449 1.2244377 1.1211475 1.0655452 1.0407379 1.0378964 1.0520188 1.0801397 1.1204768 1.1719880 1.2341247 1.3066883 1.3897433 1.4835637 1.5885996 1.7054569 1.8348860 1.9777766 2.1351566 2.3081949 2.4982070 2.7066626 2.9351960 3.1856181 3.4599304 3.7603414 4.0892847 0.0000000 . 1505680 .2400883 .3169644 .3879996 0.4562832 .5236824 .5915239 .6608584 . 7325854 0.8075213 . 8864402 .9701013 1.0592689 1.1547268 1.2572918 1.3678244 1.4872393 1.6165154 1.7567061 1.9089493 2.0744783 2.2546333 2.4508730 2.6647883 2.8981162 3.1527548 3.4307805 3.7344659 4.0662997 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Extracted from National Bureau of Standards, TABLES OF BESSEL FUNCTIONS OF FRACTIONAL ORDER, Vol. 2, Columbia University Press, New York, 1949, with permission of the National Bureau of Standards and the publisher.
378 E-l/5 С*) INTEGRALS OF BESSEL FUNCTIONS TABLE X. Iy(x) , v = ±1/3 , ±2/3 l-2/3^ 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 4. 4. 4. 4. 4. 4. 4. 4, 4. 4, 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 0 1 2 3 4 5 6 7 8 9 0 1 2 3 .4 .5 .6 .7 .8 .9 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .0 .1 .2 .3 .4 4. 5. 5. 6. 6. 7. 7. 8. 9. 10. 11. 12. 13. 14. 15. 17. 18. 20. 22. 24, 26, 29 32 35 38 42 46 50 55 60 66 72 79 87 96 7754221 1834770 6302249 1193134 6547504 2409387 8827145 5853895 3547974 1973450 1200684 1306947 2377104 4504360 .77 91086 ,2349722 .8303773 .5788908 .4954161 .5963262 .8996089 .4250277 .1942980 .2312814 .5621989 .2158664 .2239525 .6212634 .4460555 .7403797 .5504602 .9271114 . 9261963 .6091316 .0434425 4. 5. 5. 6. 6. 7. 7. 8. 9. 10. 11. 12. 13. 14. 15. 17. 18, 20, -22, 24 26 29 32 35 38 42 46 50 55 60 66 72 79 87 96 7559569 1661406 6147769 1055418 642-4679 2299799 8729329 5766556 3469962 1903747 1138384 1251248 2327292 ,4459802 .7751217 .2314040 .8271830 .5760306 .4928546 .5940316 .8975531 .4231854 .1926468 .2298011 .5608717 .2146762 .2228850 .6203058 .4451964 .7396089 .5497685 .9264905 .9256390 .6086312 .0429933 4.4494394 4.8437528 5.2754659 5.7481411 6.2656931 6.8324230 7.4530560 8.1327826 8.8773044 9.6928839 10.5864003 11.5654097 12.6382122 13.8139258 15.1025666 16.5151386 18.0637311 19.7616267 21.6234198 23.6651468 25.9044301 28.3606352 31.0550449 34.0110500 37.2543598 40.8132328 44.7187320 49.0050042 53.7095885 58.8737551 64.5428786 70.7668487 77.6005218 85.1042186 93.3442715 4. 4. 5. 5. 6. 6. 7. 8. 8. 9. 10. 11. 12. 13. 15. 16, 18, 19 21 23 25 28 31 34 37 40 44 49 53 58 64 70 77 85 93 4290087 8255817 2592953 7337431 2528669 8209918 4428636 1236909 8691913 6856415 5799328 5596322 6330496 .8093111 . 0984405 .5114484 .0604298 .7586726 .6207758 .6627798 .9023106 .3587369 .0533444 .0095264 .2529943 .8120089 .7176348 .0040204 .7087 062 .8729638 .5421687 .7662118 .5999503 .1037058 .3438112 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 4. 4. 4. 4. 4. 4. 4, 4, 4, 4 5 5 5 c; 5 5 5 5 5 5 6 6 6 6 6 0 1 2 3 4 5 6 7 8 9 0 1 2 3 .4 .5 .6 .7 .8 .9 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .0 .1 .2 .3 .4 X 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 У.З J.4 Kb 1.6 i.7 ).8 ). У TABLES OF BESSEL FUNCTIONS TABLE X. Iy(x) , v = +1/3 , ±2/3 379 105.3033750 115.47 05673 126.6347914 138.8947672 152.3590596 167.147 0658 183.3 901017 201.2325984 220.8334184 242.3673051 266.0264787 292.0223923 320.5876658 351.9782150 386.4755953 424.3895827 466.0610150 511.8649202 562.2139619 617.5622319 678.4094272 745.3054496 818.85547 04 899.7255080 988.6485705 1086.4314197 1193.962 0213 1312.2177493 1442.2744223 1585.3162557 1742.6468236 1915.7011320 2106.0589174 2315.4592944 2545.8168907 105.3029715 115.4702050 126.6344660 138.8944749 152.3587970 167.1468298 183.3898897 201.2324079 220.8332471 242.3671512 266.0263404 292.0222679 320.5875540 351.9781144 386.4755049 424.3895014 466.0609419 511.8648545 562.2139028 617.5621787 678.4093793 745.3054065 818.8554316 899.7254731 988.6485391 1086.4313915 1193.9619959 1312.2177265 1442.2744017 1585.3162372 I-2/5(x) 102.3936269 112.3325085 123.2491469 135.2405835 148.4135545 162.8854648 178.7854594 196.2556034 215.4521809 236.5471247 259.7295911 285.2076928 313.2104077 343.9896798 377.8227330 415.0146190 455.9010221 500.8513487 550.2721283 604.6107601 664.3596377 730.0606924 802.3103958 881.7652704 969.1479576 1065.2539018 1170.9587113 1287.2262664 1415.1176499 1555.8009838 102.3932138 112.3321375 123.2488138 135.2402844 148.4132859 162.8852235 178.7852427 196.2554087 215.4520059 236.5469675 259.7294498 285.2075659 313.2102936 343.9895772 377.8226408 415.0145361 455.9009476 500.8512816 550.2720680 604.6107059 664.3595890 730.0606485 802.3103564 881.7652349 969.1479257 1065.2538731 117 0.9586855 1287.2262431 1415.1176290 1555.8009650 1742 1915 2106 2315 2545 .6468069 .7011170 .0589039 .4592822 .8168797 1710. 1880, 2068. 2274. 2500. 5622641 8172956 12483 90 2010928 9356459 1710 1880 2068 2274 2500 5622471 8172803 1248253 2010804 9356348 x 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 lu.O 2799.2396196 2799.2396097 2750.4090524 2750.4090423 10.0
380 INTEGRALS OF BESSEL FUNCTIONS TABLE XI. INTEGRALS OF Jo(x) AMD YQ(x) * TABLES OF BESSEL FUNCTIONS 381 0.0 .1 .2 .3 .4 0.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Jo Jo (t)dt 0.0000000 .0999167 .1993343 .2977576 .3946986 0.4896805 .5822413 .6719368 .7583444 .8410659 0.9197304 .9939971 1.0635577 1.1281384 1.1875020 1.2414495 1.2898210 1.3324969 1.3693986 1.4004885 1.4257703 1.4452882 1.4591263 1.4674080 1.4702 940 1.4679809 1.4606 996 1.4487125 1.4323117 1.4118157 / Y (t)dt Jo 0. 0000000 - .2174306 - .3457088 - .4392832 - .5095248 -0.5617955 - .5992716 - .6240996 - .6378689 - .6418402 -0.6370694 - .6244792 - .6049027 - .5791113 - .5478319 -0.5117590 - .4715613 - .4278862 - .3813624 - .3326004 -0.2821929 - .2307132 - .1787150 - .1267297 - .0752650 -0.0248029 + .0242025 .0713269 .1161778 .1583962 Г t^fl-Jjt^dt Г ЛоA)й1 JO Jx 0.0000000 .0012496 . 0049938 .0112184 . 0199003 0.0310070 . 0444971 .0603206 .0784188 .0987252 0.1211652 .1456572 .1721124 .2004357 .2305261 0.2622772 .2955780 .3303129 .3663631 .4036067 0.4419194 .4811754 .5212478 .5620091 .6033325 0.6450916 .6871619 .7294208 .7717484 .8140279 — CO -1.3413838 -0.4342307 - .0510783 + .1523804 0.2696885 .3383921 .3768981 .3954387 .400223 0 0.3952729 .3833291 .3663369 .3457240 .3225670 0.2976970 .2717671 .2452990 .2187136 .1923541 0.1665014 .1413859 .1171968 . 0940880 .0721837 0.0515823 .0323599 .0145725 - .0017414 - .0165593 0.0 .1 .2 .3 .4 0.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 \.i 1/8 li.9 2l0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 The first two columns are extracted from National Bureau of Standards, TABLES OF FUNCTIONS AND ZEROS OF FUNCTIONS, AMS 37, 1954, pp. 21-31. The third column is easily derived from data given in the latter refer- reference, pp. 33-39. The entire ta"ble is availatole in National Bureau of Standards, HANDBOOK OF MATHEMATICAL TABLES, 1962. All the material is reprinted here with permission of the National Bureau of Standards. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 :,.O :,.l :..2 :,.3 ..4 .Г) .'.» . 0 . I. .1 TABLE XI. INTEGRALS OF JQ(x) AND YQ(x) f Jo(t)dt f Yo(t)dt f fX{\-Jo(t)}dt f"tYo(t)dt Jo Jo Jo Jx 1.3875673 1.3599297 1.3292840 1.2960259 1.2605618 1.2233057 1.1846760 1.1450913 1.1049678 1.0647153 1.0247342 0.9854122 .9471213 . 9102152 .8750261 0.8418625 . 8110073 .7827151 .7572111 .7346894 0.7153119 .6992074 .6864710 .6771641 .6713139 0.6689145 .6699268 .6742798 .6818719 .6925719 0.7062212 .7226354 .7416065 .7629051 .7862833 0.1976583 .2336767 .2662021 .2950236 .3199700 0.3409095 .3577504 .3704407 .3789674 .3833561 0.3836696 .3800068 .3725007 .3613169 .3466516 0.3287288 .3077978 .2841310 .2580207 .2297758 0.1997194 .1681849 .1355135 .1020502 . 0681412 0.0341306 .0003568 - .0328499 - .0651705 - . 0963001 -0.1259506 - .1538528 - .1797587 - .2034440 - .2247089 0.8561467 .8979960 .9394719 .9804757 1.0209143 1.0607003 1.0997528 1.1379971 1.1753654 1.2117967 1.2472371 1.2816397 1.3149650 1.3471804 1.3782606 1.4081872 1.4369487 1.4645405 1.4909645 1.5162286 1.5403472 1.5633401 1.5852324 1.6060544 1.6258411 1.6446314 1.6624685 1.6793984 1.6954706 1.7107367 1.7252504 1.7390671 1.7522434 1.7648364 1.7769034 -0.0298727 - .0416861 - .0520155 - .0608874 - .0683376 -0.0744103 - .0791572 - .0826368 - .0849132 - .0860555 -0.0861371 - .0852346 - .0834276 - .0807977 - .0774277 -0.0734012 - .0688020 - .0637132 - .0582169 - .0523937 -0.0463221 - .0400778 - .0337340 - .0273600 - .0210218 -0.0147811 - .0086955 - .0028178 + .0028036 .0081253 0.0131091 . 0177215 . 0219345 . 0257247 .0290741 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4. 4. 4. 4. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 6. 6. 6. 6. 6. .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .0 .1 .2 .3 .4 .5 .6 .7 .8 ,9 ,0 .1 2 3 4 5 6 7 8 9 0 1 2 3 4
382 INTEGRALS OF BESSEL FUNCTIONS TABLE XI. INTEGRALS OF Jo(x) AND Yo(x) X 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0 i 0. 0. # 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X Jo(t )dt 8114767 8382077 8661878 8951209 9247061 9546403 9846217 0143521 0435401 0719033 0991714 1250885 1494149 1719300 1924333 ,2107468 ,2267161 .2402114 .2511289 .2593913 .2649480 .2677758 .2678783 .2652858 .2600546 .2522664 .2420271 .2294652 .2147308 .1979938 .1794418 .1592783 .1377206 .1149972 .0913459 .0670113 nX Yo(t)dt Jo -0.2433806 - .2593137 - .2723918 - .2825279 - .2896645 -0.2937745 - .2948602 - .2929536 - .2881150 - .2804327 -0.2700213 - .2570206 - .2415937 - .2239252 - .2042194 -0.1826975 -. .1595961 -* .1351640 - .1096602 - .0833508 -0.0565066 - .0294008 - .0023055 + .0245102 .0507830 0.0762580 .1006909 .1238504 .14552 02 .1655010 0.1836121 .1996932 .2136056 .2252334 .2344843 0.2412903 f t^fL-JoCt)} Jo L 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1, 1, 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 7885019 7996885 8105190 8210478 8313276 8414092 8513411 8611691 8709363 8806828 8904454 9002577 9101495 9201475 9302743 9405491 9509876 , 9616015 , 9723992 , 9833855 .9945620 .0059270 .0174757 .0292004 .0410908 .0531340 . 0653150 .0776168 .0900204 .1025056 .1150507 .1276333 .1402299 .1528170 .16537 04 .1778664 dt f t'^CtJdt Jx 0.0319695 .0344026 .0363698 .0378721 . 0389145 0.0395063 .03966 09 .0393947 .0387277 .0376829 0.0362858 . 0345642 \ .032547 9 \ .0302684 \ .0277583 ) 0.0250514 / .0221818 - .0191841 .0160928 .012942 0 0.0097652 .0065949 .0034624 .0003977 - .0025711 -0.0054176 - .0081175 - .0106488 - .0129916 - .0151288 -0.0170455 - .0187296 - .0201715 - .0213643 - .0223037 -0.0229880 X 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 • 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0 TABLES OF BESSEL FUNCTIONS TABLE XII. INTEGRALS OF Io(x) AND 383 Ko(x) * fo(x) = e"x f I0(t)dt, gQ(x) = ex f K0(t)dt,  Jx fi(x) = 10-e"X f t^h^t)-!} dt, Sl(x) = xex f V^Jt)dt JO J Jx foW SoW fl(x) 8l(x) 0.0 .1 .2 .3 .4 0.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 L.5 1.6 L.7 1.8 L.9 ~>. 0 \l '.2 ?.3 >.4 • О '.6 '. V '. !! '. 9 0.0000000 .0905592 .1642928 .2239179 .2717246 0.3096429 .3392999 .3620671 .3791005 .3913742 0.3997088 .4047952 .4072152 .4074578 .4059339 0.4029885 .3989109 .3939429 .3882868 .3821111 0.3755557 .3687367 .3617498 .3546738 .3475729 0.3404993 .3334948 .3265930 .3198199 .3131959 1.5707963 1.3578482 1.2503254 1.1728009 1.1117128 1.0612717 1.0183648 0.9810970 .9482180 .9188556 0.8923752 .8682997 .8462610 .8259689 .8071904 0.7897357 .7734480 .7581962 .7438697 .7303744 0.7176295 .7055650 .6941202 .6832416 .6728826 0.6630015 .6535616 .6445298 .6358768 .6275760 0 0 0. 0. ¦ 0. • 0. 0000000 0113140 0409877 0835768 1347363 1910285 2497622 3088584 3667383 4222295 4744889 5229376 5672080 6070995 6425420 6735663 7002797 7228458 7414688 7563806 7678298 7760744 7813746 7839884 7841674 7821544 7781809 7724664 7652168 7566245 0 0. 0. • 0. 0. t • 0. * 000000 368126 460111 506394 532910 548819 558366 563828 566545 567355 566811 565291 563058 5603 02 557163 553745 550126 546364 542506 538587 534635 530670 526711 522768 518854 514976 511139 507350 503610 499924 0.0 .1 .2 .3 .4 0.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Columns 1 and 2 and that part of Columns 3 and 4 for x = 0@.lM are taken from National Bureau of Standards, HANDBOOK OF MATHEMATICAL FUNCTIONS, 1962, with permission of the National Bureau of Standards.
384 INTEGRALS OF BESSEL FUNCTIONS TABLE XII. INTEGRALS OF Io(x) AND Ko(x) fo(x) = e"x / Io(t)dt, go(x) = ex / Ko(t)dt, Jo Jx fx(x) = 10-e'x f t^lljt)-!} dt, gl(x) = xex Г t-1Ko(t)dt Jo L Jx TABLES OF BESSEL FUNCTIONS 385 fo(*) BoOO fl(x) BlOO 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .0 .1 .2 .3 .4 .5/ .6 .7 .8 .9 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .0 .1 .2 .3 .4 0.3067362 .3004518 .2943504 .2884367 .2827131 0.2771802 .2718370 .2666811 .2617094 .2569178 0.2523018 .2478561 .2435756 .2394546 /"-2554874 \ 0.2316683 .2279915 .2244513 .2210421 .2177583 0.2145946 .2115458 .2086068 .2 057728 .203 0389 0.2004008 .1978540 .1953944 .1930181 .1907213 0.1885002 . 1863516 .1842720 .1822584 .1803078 0. 0. 0. 0, 0, 0 0 6196034 6119374 6045584 5974484 5905911 5839714 5775757 5713913 5654066 ,5596109 ,5539942 ,5485472 .5432615 ,5381291 .5331427 .5282952 .5235803 .5189919 .5145243 .5101724 .5059310 .5017955 .4977616 .4938250 .4899819 .4862286 .4825616 .4789775 .4754734 .4720460 .468692 9 .4654111 .4621983 .4590520 .4559699 0. 0. 0. 0, 0 0 0 7468681 7361124 7245090 7121963 6993006 6859360 6722060 6582 033 ,6440109 ,6297029 ,6153450 .6009952 .5867042 .5725166 .5584708 ,5446000 .5309325 .5174921 .5042 989 .4913691 .4787161 .4663501 . 4542 7 9 0" .4425085 .4310421 .4198818 .4090280 .3984797 .3882349 .3782905 .3686426 .3592865 .3502172 .3414289 .332 9154 0.496292 .492717 .489198 .485736 .482332 0.478984 .475694 .472459 .469280 .466155 0.463085 .460067 .457100 .454185 .451320 0.448503 .445734 .443012 .440335 .437703 0.435115 .432569 .430065 .427601 .425177 0.422792 .420445 .418134 .415860 .413621 0.411416 .409245 .407107 .405001 .402926 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 TABLE XII. INTEGRALS OF IQ(x) AND KQ(x) XX со Io(t)dt, go(x) = ex I Ko(t)dt, 0 Jx fx(x) = 10.e"X Г^1 [lQ(t)-l\ dt, gl(x) = xeX [ "Ло( JO J Jx t)dt X 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 'J.I 'J.2 !).3 '3.4 ;).5 ¦J.6 '.1.7 :t.8 '.|.Э 1 ii. 0 fo(x) 0.1784174 .1765844 .1748064 .1730809 .1714055 0.1697782 .1681968 .1666593 .1651639 .1637089 0.1622 924 .1609130 .1595691 .1582593 .1569821 0.1557364 .1545208 .1533342 .1521755 .1510436 0.1499374 .1488561 .1477988 .1467644 .1457523 0.1447616 .1437916 .1428416 .1419108 .1409987 0.1401046 .1392278 .1383679 .1375243 .1366965 0.1358840 goW 0.4529498 .4499897 .4470876 .4442415 .4414497 0.4387105 .4360222 .4333834 .4307923 .4282476 0.4257481 .423292 0 .4208786 .4185063 .4161740 0.4138807 .4116252 .4094065 .4072237 .4050756 0.4029615 .4008804 .3988315 .3968140 .3948269 0.3928697 .3909415 .3890417 .3871695 . 3853241 0.3835053 .3817120 .3799439 .3782003 .3764806 0.3747843 0.3246704 .3166872 .3089589 .3014786 .2942392 0.2872336 .2804546 .2738954 .2675487 .2614077 0.2554657 .2497158 .2441515 .2387665 .2335544 0.2285091 .2236247 .2188954 .2143156 .2098800 0.2055832 .2014201 .1973859 .1934759 .1896854 0.1860100 .1824456 .1789879 .1756332 .1723775 0.1692173 .1661490 .1631693 .1602749 .1574628 0.1547299 Sl(x) 0.400881 .398867 .396882 .394925 .392997 0.391095 .389221 .387372 .385549 .383751 0.381977 .380228 .378501 .376798 .375117 0.373458 .371820 .3702 03 .368607 .367032 0.365475 .363939 .362421 .360922 .359441 0.357978 .356532 .355104 .353692 .352297 0.350919 .349556 .348209 .346877 .345560 0.344258 X 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0
/ BIBLIOGRAPHY Abbott, W.R., 1949: J. Math. Phys. 28, 192-194. Abramowitz, M., 1950: J. Math. Phys. 29, 49-51. Abramowitz, M., 1951: J. Math. Phys. 30, 162-163. Achiezer, N.I., 1954: Dokl. Akad. Wauk SSSR (n.s.) 98, 333-336. Admiralty Computing Service, Great Britain Nautical Almanac Office, 1945: CO Tabulation of the function f(x,y) = / e-t {cosh yt J0(xt )-l|csch t dt . Admiralty Research Laboratory, 1953: ТаЪ1е of p P"P2 i> Э T|2 F = -7= z-— j I BpT))e ц T\ dT) , Teddington, Middlesex. NT" g2 JQ Airey, J.R., 1935: Phil. Mag. G) 19, 236-243. Akademiia Wau^, SSSR, 1953: Tables of Fresnel integrals (,in Russian),Moscow Akademiiaf№.uk, SiaSR, 1954a: Tables of exponential integrals (in Russian), Mopcow. Akademiia Wauk, SSSR, 1954Ъ: Tables of the sine and cosine integral (in Russian), Moscow: Allen, E.E., 1954: Math. Tables Aids Comput. 8, 240-241. Allen, E.E.,.1956: Math. Tables Aids Comput. 10, 162-164. Anders, Т., 1953: Z. Physik 135, 219-224. Bailey, W.N., 1930a: Proc. London Math. Soc. B), 30, 415-421. Bailey, W.N., 1930b: Proc. London Math. Soc. B), 30, 422-424. Bailey, W.H., 1931: Proc. London Math. Soc. B), 31, 200-208. Bailey, W.N., 1938: Quart. J. Math. Oxford Ser. 9, 141-147. Bateman, H. and R.C. Archibald, 1944: A guide to tables of Bessel functions* Math. Tables Aids Comput. 1, 205-308, 403-404. Also same journal (l946)| 2, 59, 190-192. BIBLIOGRAPHY 387 Bennett, W.R., 1948: Quart. Appl. Math. 5, 385-393. Bickley, F.G. and J. Way lor, 1935: Phil. Mag. G) 20, 343-347. Binnie, A.M. and J.C.P. Miller, 1955: Quart. J. Mech. Appl. Math. 8, 468-479. Blanusa, D., 1948: Rad. Jugoslav. Akad. Znan. Umjet. Odjel Mat. Fiz. Tehn. Wauke. 271, 83-143. Blanuea, D., 1950: Rad. Jugoslav. Akad. Znan. Umjet. Odjel Mat. Fiz. Tehn. Wauke. 277, 5-128. Bleick, W.E., 1953: Tables of associated sine and cosine integral func- functions and of related complex-valued functions, Tech. Rept. Wo. 10, U.S.W. Bureau of Ships, Monterey, Calif. Boersma, J., 1962: Math, of Comput. 16, 232-238. Bose, P.K., 1947: Sankhya 8, 235-248 Bouwkamp, C.J., 1947: Wederl. Akad. Wetensch. Proc. 50, 1071-1083. Bouwkamp, C.J., 1948: Quart. Appl. Math. 5, 394-402. Bowman, F., 1958: Introduction to Bessel functions, Dover. Brinkley, S.R. and R.F. Brinkley, 1947: Table of the probability of hitting a circular target. Unpublished. See Math. Tables Aids to Comput. 2, 221. Brinkley, S.R., H.E. Edwards and R.W. Smith, 1952: Table of the temperature distribution function for heat exchange between a fluid and a porous solid, U.S. Bureau of Mines, Pittsburgh, Pa. See Math. Tables Aids to Comput. 6, 40. British Association for the Advancement of Science, 1950: Bessel functions, Part I. Functions of orders zero and unity. Mathematical tables, Vol. VI, Cambridge. Ik-Ltish Association for the Advancement of Science, 1951: Mathematical Tables, Vol. I, Cambridge. Hritish Association for the Advancement of Science, 1952: Bessel functions, Part II. Functions of positive integer order. Mathematical tables, Vol. X, Cambridge. 386
388 INTEGRALS OF BESSEL FUNCTIONS BIBLIOGRAPHY 389 Buchholz, H., 1949: J. Angew. Math. Mech. 29, 356-367. Buchholz, H., 1953: Die konfluente hypergecmetrische Funktion, Springer. Bullard, E.G. and R.I.B. Cooper, 1948: Proc. Roy. Soc. London, 194A, 332-347.j Bursian, V.R. and V. Fock, 1931: Akad. Nauk. Leningrad, Fiziko-Mat. Institut, Trudy (Travoux) 2, 6-10. Burunova, N.M., 1959: Handbook on mathematical tables, supplement no. 1 (in Russian), Moscow. Also in English, Pergamon Press, 1960. Butler, T. and K. Pohlhausen, 1954: Tables of definite integrals involving Bessel functions of the first kind, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio, Technical Report 54-420. Byrd, P.F. and M.D. Friedman, 1954: Handbook of elliptic integrals for engineers and physicists, Springer-Verlag. Cambi, Е.,Л548: Eleven- and fifteen-place tables of Bessel functions of the first kind to all significant orders, Dover. Campbell, G. and R. Foster, 1948: Fourier integrals for practical applica- applications, von Wostrand. Carslaw, H.S. and J.C. Jaeger, 1959: Conduction of heat in solids, 2nd edition, Oxford. • Cerrillo, M.V. and W.H. Kautz, 1951: Properties and tables of the extended Airy-Hardy integrals, Research Laboratory of Electronics, Massachusetts, Institute of Technology, Cambridge, Mass. Chong, F., 1953: Iowa State Coll. Sci. 27, 321-334. Cistova, E.A., 1958: Tables of Bessel functions with real arguments and their integrals (in Russian), Moscow. Clemmow, P.С and CM. Munford, 1952: Philos. Trans. Roy. Soc. London A, 245, 189-211. Conolly, B.W., 1955: Proc. Glasgow Math. Assoc. 2, 147-148. Cooke, J.C, 1954: Monatsh. Math. 58, 1-4. Cooke, J.C, 1956a: Monatsh. Math. 60, 322-328. Cooke, J.C, 1956b: Quart. J. Mech. Appl. Math. 9, 103-110. Corbato, F.J. and J.L. Uretsky, 1959: J. Assoc. Ccmput. Mach. 6, 366-375. Corrington, M.S , 1961: Math, of Ccmput. 15, 1-6. Coulmy, G., 1954: Ann. Telecommun. 9, 305-312. Crowley, Т.Н., 1954: Tables of integrals of certain Bessel functions, Antenna Laboratory, Ohio State University, Columbus, Ohio. Dekanasidze, E.N., 1960: Tables of Lommel's functions of two variables, Pergamon Press. Dingle, M. and H.G. Kussner, 1947: Contributions to nonstationary wing theory VII - The vibrating wing of large aspect ratio theory, Army Air Force Translation Wo. F-TS-935-RE. Dorr, J., 1953: Z. Angew. Math. Phys. 4, 122-127. Eason, G., B. Noble and I.N. Sneddon, 1955: Philos. Trans. Roy. Soc. London. A 247, 529-551. Erde'lyi, A., 1950: Math. Tables Aids Comput. 4, 179. Erde'lyi, A. See Erde'ly1 et al. Erdelyi et al. A953), that is, Erde'lyi, A., W. Magnus, F. Oberhettinger and F.G. Triccmi, 1953: Higher transcendental functions, Vols. I and II, McGraw-Hill. Erdelyi et al. A954), that is, Erde'lyi, A., W. Magnus, F. Oberhettinger and F.G. Tricomi, 1954: Tables of integral transforms, Vols. I and II, McGraw-Hill. Faddeeva, V.N. and M.K. Gavurin, 1950: Tables of the Bessel function Jn(x) for orders 0 to 120 (in Russian), Moscow. Faddeeva, V.N. and N.M. Terent'ev, 1954: Tables of values of the function w(z) = e"z (l+2i l fz 2 tt-2 / ex dx) J0 for complex argument (in Russian), Moscow. Also available in English, Pergamon Press, 1961. rtz, M. and С Harrison, 1957: A tabulation of the function -1 fX x I J0(y)dy , Argonne National Laboratory, Lemonte, Illinois. J0
390 INTEGRALS OF HESSEL FUNCTIONS Fettis, H.E., 1955: Math. Tables Aids Comput. 9, 85-92. Fettis, H.E., 1957a: J. Math. Phys. 36, 88-95. Fettis, H.E., 1957Ъ: J. Aero. Sci. 24, 64-65. Fettis, H.E., 1960: Math, of Comput. 14, 372-374. Fields, J.L., and J. Wimp, 1961: Math, of Comput. 15, 390-395. Fletcher, A., J.C.P. Miller and L. Rosenhead, 1946: An index of mathematical tables, McGraw-Hill and Scientific Computing Service. Ford, F.A.J., 1958/ J. Math. Phys. 37, 157-161. Fox, L., 1954: Щ short table for Bessel functions of integer orders and large arguments, Cambridge. Fox, L., 1960: Tables of Weber parabolic cylinder functions and other func- functions for large arguments, Her Majesty's Stationery Office, London. Fried, B.D. and S.D. Conte, 1960: The plasma dispersion function, Phys. Research Laboratory, Space Technology Laboratories, Inc., Los Angeles, Calif. Froberg, C.E. and H. Wilhelmsson, 1957: Kungl. Fysiogr. Sallsk. i Lund Forh. 27, 201-215: Garrick, I.E. and S.I. Rubinow, 1946: Flutter and oscillating air force calculations for an airfoil in a two-dimensional supersonic flow, National Advisory Committee for Aeronautics Report Wo. 846. Gautschi, W., 1959a: J. Math. Phys. 38, 77-81. Gautschi, W., 1959b: J. Res. Wat. Bur. Standards 62, 123-125. Gautschi, W., 1961a: J. Assoc. Comput. Mach. 8, 21-40. Gautschi, W., 1961b: Math, of Comput. 15, 227-231. Gawlik, H.J., 1955: A table of a function related to the error function, Armament Research and Development Establishment, BR Memo. В 4/l/55, Fort] Halstead, Sevenoaks, Kent. See also Math. Tables Aids Comput. (UMT File), 1955, 9, 222. Gerbes, W.W., G.E. Reynolds, M.R. Hoes and C.J. Drane, Jr., 1958: Table of S(x) and its first eleven derivatives, Air Force Cambridge Research Center, Bedford, Mass. BIBLIOGRAPHY 391 Godfrey, G.H., 1948: Australian Jr. Sci. Research A., Phys. Sci. 1, 1-17. Goldstein, M. and R.M. Thaler, 1959: Math. Tables Aids Comput. 13, 102-108. Goldstein, S., 1953: Proc. Roy. Soc. London A, 219, Part I, 151-171, Part II, 171-185. Goldstein, S. and J.D. Murray, 1959: Proc. Roy. Soc. London A, 252, Part III, 334-347, Part IV, 348-359, Part V, 360-375. Goodwin, E.T. and J. Staton, 1948: Quart. J. Mech. Appl. Math. 1, 319-326. Gordon, A.W., 1954: J. London Math. Soc. 29, 360-363. Gray, A., G.B. Mathews and T.M. MacRobert, 1952: A treatise on Bessel functions and their applications to physics, 2nd edition, Macmillan. Greenwood, J.A. and D. Durand, 1955: Ann. Math. Statist. 26, 233-246. Grobner, W. and N.Hofreiter, 1949, 1950: Integraltafel, erster Teil, unbestimmte Integrale A949); Integraltafel, zweiter Teil, bestimmte Integrale A950); Springer-Verlag. Hallen, E., 1947: Trans. Roy. Inst. Tech. Stockholm, No. 12, 1-6. Hallen, E., 1955: Trans. Roy. Inst. Tech. Stockholm, No. 89, 1-44. Harris, F.E., 1957: Math. Tables Aids Comput. 11, 9-16. Hartree, D.R., 1936: Mem. Proc. Manchester Lit. Philos. Soc. 80, 85-102. Harvard University Computation Laboratory, 1945: Tables of the modified Hankel functions of order one-third and of their derivatives, Cam- Cambridge, Mass. Harvard University Computation Laboratory, 1947-1951: Tables of the Bessel functions of the first kind of orders 0 through 135, Vols. 3-14, Cambridge, Mass. Harvard University Computation Laboratory, 1949a: Generalized sine- and cosine-integral functions, Parts I, II, Cambridge, Mass. Harvard University Computation Laboratory, 1949b: Tables of the generalized exponential-integral functions, Cambridge, Mass. Harvard University Computation Laboratory, 1952a: Tables of the error func- function and its first twenty derivatives, Cambridge, Mass.
392 IHTECKALS OF BESSEL FUNCTIONS Harvard University Computation Laboratory, 1952Ъ: Tables of the complete Cicala function, Problem report No. 58. Hastings, C, Jr., 1955: Approximations for digital computers, Princeton. Hastings, C, Jr. and J.R. Wong, Jr., 1953: Math. Tables Aids Comput. 7, 212-213. Havelock, Т.Н., 1923: Proc. Roy. Soc. London A103, 571-585. Havelock, Т.Н., 1925: Proc. Roy. Soc. London АЮ8, 77-92. Hay, H.G., 1948: Phil. Mag. G), 39, 928-946. Heatley, A.H., 1943: Trans. Roy. Soc. Canada 37, Sect. Ill, 13-29. Helliwell, J.B., 1961: J. Math. Phys. 40, 1-22. Henrici, P., 1957: J. Math. Phys. 36, 151-156. 2 Pz +2 Hensman, R. and D.P. Jenkins, 1955: Tables of B/тт)е2 / e'z dt for com- J0 plex z , Royal Radar Establishment, Malvern, Worcestershire, England. See also Math. Tables Aids Comput. (UMT file) 1960, 14, 83. Hershey, A.V., 1959: Computing programs for the complex exponential integ NAVQRD Report No.'5909, NPG Report No. 1646, U.S. Naval Proving Ground, Dahlgren, Va. Heuman, С, 1941: J. Math. Phys. 20, 127-206, 336. Hitchcock, A.J.M., 1957: Math. Tables Aids Comput. 11, 86-88. de Hoop, А.Т., 1955: Hederl. Akad. Wetensch. Proc. B, 58, 325-330. Horton, C.W., 1950a: J. Math. Phys. 29, 31-37. Horton, C.W., 1950b: J. Math. Phys. 29, 56-58. Howarth, L., 1950: Proc. Cambridge Philos. Soc. 46, 127-140. Hoyt, R.S., 1947: Bell System Tech. J. 26, 318-359. Huckel, V., 1956: Tabulation of the f^ functions which occur in the aero-J dynamic theory of oscillating wings in supersonic flow. National Advis-l ory Committee for Aeronautics TN 3606. BIBLIOGRAPHY 393 Jaeger, J.C., 1942: Proc. Roy. Soc. Edinburgh, A, 61, 223-228. Jaeger, J.C., 1948: J. Math. Phys. 27, 210-219. Jaeger, J.C., 1956: J. Math. Phys. 34, 316-321. Jaeger, J.C. and M. Clarke, 1942: Proc. Roy. Soc. Edinburgh, A, 61, 229- 230. Jahnke, E. and F. Emde, 1945: Tables of functions with formulae and curves, 4th ed., Dover. Jahnke, E., F. Emde and F. losch, 1960: Tables of higher functions, 6th ed., McGraw-Hill and Teubner. Jones, C.W., 1956: A short table of the Bessel functions In+i(x) , ^ ^(x) , Cambridge. Jones, W.P., 1952: The calculation of aerodynamic derivative coefficients for wings of any plan form in nonuniform motion, R. and M., ARC TR No. 2470. Jordan, P.F., 1955: J. Aero. Sci. 22, 722-723. Kamke, E., 1948: Differentialgleichungen Losungsmethoden und Losungen, Chelsea. Karmazina, L.H. and E.A. Cistova, 1958: Tables of Bessel functions of imaginary argument and their integrals (in Russian), Moscow. 2 Pz 2 Karpov, K.A., 1954: Tables of the function w(z) = e"z / ex dx in the complex domain (in Russian), Moscow. ^0 . z „ Karpov, K.A., 1958: Tables of the function plex domain (in Russian), Moscow. F(z) = Г J0 ex dx in the com- Karpov, K.A. and S.H. Razumovskii, 1956: Tables of the integral logarithm (in Russian), Moscow. Kaye, J., 1955: J. Math. Phys. 34, 119-125 KLng, L.V., 1914: Philos. Trans. Roy. Soc. London A 214, 373-432. Kinizer, J.P. and I.G. Wilson, 1947: Bell System Tech. J. 26, 70-79.
394 INTEGRALS OF HESSEL FUNCTIONS BIBLIOGRAPHY 395 KLamkin, M.S., 1957: Amer. Math. Monthly 64, 661-663. / Khudsen, H.L., 1952: Appl. Sci. Res., B3, 51-68. Khudsen, H.L., 1953: Bidrag til teorien for antennesystemer med hel eller delvis rotations - syimietri, I, Komission Has Teknisk Porlag, Copenhagen. Kobayashi, I., 1939: Sendai, Tohoku Teikaku Daigaku, Science Reports 27, 387-391. Kamatu, Y. 1955: Rep. Statist. Appl. Res. Un. Jap. Sci. Engrs. 4, 69-70. Kratzer, A. and W. Franz, 1960: Transzendente Functionen, Akademische Verlagsgesellschaft, Leipsig. Kreyszig, E., 1951: Acta Math. 85, 117-181. Kreyszig, E., 1953: Acta Math. 89, 107-131. Kussner, H.G., 1940: Luftfahrtf orschung, 17, 370-378. For an English translation, see Nation. Advisory Camm. Aero. Tech. Memo. Wo. 979,1941. Lamb, H., 1917: Proc. Roy. Soc. London 93A, 293-312. Lebedev, A.V. and R.M. Feodorova, 1956: Guide to mathematical tables (in Russian), Moscow. - Also in English, Pergamon Press, 1960. Letedev, N.N. and la. S. Ufliand, 1958: J. Appl. Mat\. Mech. 22, 442-450. Lee, K. and L.G. Radosevich, 1960: J. Math. Phys. 39, 293-299. Levine, H. and J. Schwinger, 1948: Phys. Rev. s. 2, 74, 958-974. Un, C.C., 1945: Quart. Appl. Math. 3, 117-142. Lin, C.C., 1955: The theory of hydrodynamic stability, Cambridge. Longman, I.M., 1957: Math. Tables Aids Comput. 11, 166-180. Longman, I.M., 1959: Math. Tables Aids Comput. 13, 306-311. Lowan, A.N. and M. Atramowitz, 1943: J. Math. Phys. 22, 2-12. See also National Bureau of Standards (l954t>, pp. 21-31). Lowan, A.N., G. Blanch and M. Abramowitz, 1943: J. Math. Phys. 22, 51-57. See also National Bureau of Standards A954Ъ, pp. 33-39). Luke, Y.L., 1950a: J. Math. Phys. 29, 27-30. Luke, Y.L., 1950Ъ: Tables of coefficients for compressible flutter calcu- calculations, Wright-Patterson Air Force Base, Dayton, Ohio, AF Technical Report No. 6200. Also (PB 150299) Library of Congress, Photoduplica- Photoduplication Service, Washington 25, D.C., September, 1960. Luke, Y.L., 1952: J. Math. Phya. 31, 131-138. Luke, Y.L., 1955: J. Soc. Indust. Appl. Math. 3, 179-191. Luke, Y.L., 1956: J. Math. Phys. 34, 298-307. Luke, Y.L., 1958: J. Math. Phys. 37, 110-127. Luke, Y.L., 1959: Math. Tables Aids Comput. 13, 261-271. Luke, Y.L., 1960: J. Math. Phys. 38, 279-294. Luke, Y. L., 1961a: Economization of integrals of transcendental functions, Midwest Research Institute, Kansas City, Mo. Luke, Y.L., 1961b: Numer. Math. 3, 76-78. Luke, Y.L. and R.L. Coleman, 1961: Math, of Comput. 15, 233-237. Luke, Y.L., P. C. Constant and B. Ruhlman, 1956: On the evaluation of gen- generalized aerodynamic forces for triangular wings with supersonic leading edges, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio, Technical Report 56-525. Luke, Y.L. and H.E. Fettis, 1956: J. Aero. Sci. 23, 975-976. Luke, Y.L. and H.E. Fettis, 1958: Tables of generalized aerodynamic forces for triangular wings with supersonic leading edges, Wright Air Develop- Development Center, Wright-Patterson Air Force Base, Ohio, Technical Report 58-681. Luke, Y.L. and D. Ufford, 1951a: Tables of the function K0(x)=/ Ko(t)dt , Math. Tables Aids Comput. (UMT File 129), 5, 163. Jo Luke, Y.L. and D. Ufford, 1951b: J. Aero. Sci. 18, 429. Luke, Y.L. and D. Ufford, 1953: J. Aero. Sci. 20, 511-512.
396 INTEGRALS OF BESSELNfUNCTIONS ¦>a u0 Mack, С and M. Castle, 1953: Tables of I I0(x)dx and / Ko(x)dx , J0 Ja Royal Society Unpublished Math. Table File Nb. 6. MacRobert, T.M., 1953: Eroc. Glasgow Math. Assocj. 1, 187-189. MacRobert, T.M., 1954-1956: Proc. Glasgow Math. Issoc. 2, 93-96, i29-131, 183-184. I MacRobert, T.M., 1957: Eroc.' Glasgow Math. Assoc'1. 3, 91-93. Magnus, W. See Erdelyi et al. Magnus, W. and F. Oberhettinger, 1948: Formeln und Satze fur die speziellen Funlcfcionen der Mathematisohen Fhysik, Springer-Verlag. Magnus, W. and F. Oberhettinger, 1954: Formulas and theorems for the functions of mathematical physics (Translated from the German by J. Wermer), Chelsea. Mashiko, M., 1953: Tables of generalized exponential-, sine-, and cosine- integrals, Numerical Computation Bureau, Tokyo. Mathematical Tables and Other Aids to Computatiart^Xnawlfe^hematics of Computation), 1943-present: National Research Council, Washington, D.C. / Mathematics Center, Amsterdam, Computation Department, 1951: The oscil- oscillating wing in a subsonic flow, Interim Report R53, Int. 8. Maximon, L.C., 1955: J. Math. Phys. 34, 84-93. Maximon, L.C., 1956: Proc. Amer. Math. Soc. 7, 1054-1062. Maximon, L.C. and G.W. Morgan, 1955: J. Math. Phys. 34, 79-83. McLachlan, N.W., 1955: Bessel functions for engineers, 2nd ed., Oxford. McLachlan, N.W. andA.L. Meyers, 1936: Phil. Mag. GJ1, 437-448. Meijer, C.S., 1946: tfederl. Akad. Wetensch., Proc. 49, 1165-1175. Meijer, C.S., 1951: Composito Math. 8, 49-59. Meijer, C.S., 1952-1956: Nederl. Akad. Wetensch., Proc. 55, 369-379, 483- 487; 56,43-49, 187-193, 349-357; 57, 77-82, 83-92, 273-279; 58, 243- 251, 309-314; 59, 70-82. BIBLIOGRAPHY 397 Meyer zur Capellen, W., 1950: Integraltafeln; Sammlung unbestimmter Integrale elementarer Funktionen, Springer. Miles, J.W., 1959: Пае potential theory of unsteady supersonic flow, Cambridge. Miles, J.W., 1960: J. Fluid Mech. 8, 593-610. Miller, G.F., 1960: Tables of generalized exponential integrals, National Physical Laboratory Mathematical Tables, V. 3, British Information Services, Nev York. Miller, J.C.P., 1946: The Airy integral, British Assoc. Adv. Sci. Math. Tables, Part-Vol. В., Cambridge. pX Muller, G.M., 1954: Table of the function Kjn(x) = x"n / unK0(u)du , J0 Office of Technical Service, Department of Commerce, Washington, D.C. Muller, G.M., 1955: J. Math. Phys. 34, 179-181. Muller, R., 1939: Z. Angew. Math. Mech. 19, 36-54. Murphy, G.D., 1960: Ordinary differential equations, D. van Nostrand. National Bureau of Standards, 1940: Tables of sine, cosine, and exponential integrals, Vols. 1,2, Washington, D.C. National Bureau of Standards, 1946: J. Math. Phys. 25, 252-259. See also Tables of functions and zeros of functions, National Bureau of Stand- Standards, Appl. Math. Series 37, U.S. Government Printing Office, Washington, D.C., 1954, pp. 113-119. National Bureau of Standards, 1947a: Tables of the Bessel functions JQ(z) and J}_(z) for complex arguments, Columbia U. Press. National Bureau of Standards, 1947b: Tables of spherical Bessel functions, Vols. 1,2, Columbia U. Press. National Bureau of Standards, 1948, 1949: Tables of Bessel functions of fractional order, Vols. 1,2, Columbia U. Press. National Bureau of Standards, 1950: Tables of the Bessel functions Y0(z) and Y^(z) for complex arguments, Columbia U. Press. National Bureau of Standards, 1953: Tables of normal probability functions, Appl. Math. Series 23, U.S. Government Printing Office, Washington, D. С
398 INTEGRALS OF HESSEL FUNCTIONS BIBLIOGRAPHY 399 National Bureau of Standards, 1954a: ТаЪ1е of sine and cosine integrals from 10 to 100, Appl. Math. Series 32, U.S. Government Printing Office, Washington, D.C. National Bureau of Standards, 1954Ъ: Tables of functions and zeros of functions, Appl. Math. Series 37, U.S. Government Printing Office, Washington, D.C. National Bureau of Standards, 1954c: Tables of the error function and its derivative, Appl. Math. Series 41, U.S. Government Printing Office, Washington, D.C. National Bureau of Standards, 1958a: Tables of the exponential integral for complex arguments, Appl. Math. Series 51, U.S. Government Printing Office, Washington, D.C. National Bureau of Standards, 1958b: Integrals of Airy functions, Appl. Math. Series 52, U.S. Government Printing Office, Washington, D.C. National Bureau of Standards, 1962: Handbook \f mathematical functions, Washington, D.C. (in press). \ National Physical Laboratory, 1953a: Integrals' of Bessel functions, Royal Society Unpublished Math. Table File No^/17. National Physical Laboratory, 1953b: Royal Society Unpublished Math. Table File No. 18. Nelson, C.W., 1961: Math, of Comput. 15, 12-18. Noble, В., 1955: Quart. J. Math. Oxford B), 6, 81-87. Noble, В., 1958: J. Math. Phys. 37, 128-136. Nomura, Y., 1940a: Sci. Rep. Tohoku Univ. 1, 28, 304-318. Nomura, Y., 1940b: Sci. Rep. T6hoku Univ. 1, 29, 22-35. Nomura, Y., 1941: Proc. Phys.-Math. Soc. Japan 3, 23, 169-180. Oberhettinger, F., 1957a: J. Res. Nat. Bur. Standards 59, 197-201. Oberhettinger, F., 1957b: Tabellen zur Fourier Transformation, Springer- Verlag. Oberhettinger, F., 1958: J. Math. Phys. 37, 75-78. Oberhettinger, F. See Erde'lyi et al. Oberhettinger, F. and T.P. Higgins, 1961: Tables of Lebedev, Mehler and generalized Mehler transforms, Boeing Scientific Research Labora- Laboratories, Seattle, Wash. Ollendorff, F., 1926: Arch. Electrotech. 17, 79-101. Ollendorff, F., 1929: Arch. Electrotech. 23, 162-180. Olver, F.W.J., 1951: Proc. Cambridge Phil. Soc. 47, 699-712. Olver, F.W.J., Editor, 1960: Bessel functions, Part III, zeros and associ- associated values, Cambridge. Opler, A. and N.K. Hiester, 1954: Tables for predicting the performance of fixed bed i™ exchange and similar mass transfer processes. Stanford Research Institute, Stanford, Calif. Osterberg, H. and G.L. Walker, 1955: Research Center, American Optical Co., Southridge, Mass. Pagurova, V.I., 1959: Tables of the exponential integral function Г °° Ey(x) = / e uu du (in Russian), Moscow. Jl Pearcey, Т., 1956: Table of the Fresnel integral, Cambridge. Pearson, K., S.A. Stouffer and F.N. David, 1932: Biometrika, 24, 293-350. Peters, A.S., 1961: Certain dual integral equations and Sonine's inte- integrals. New York University, Institute of Mathematical Sciences. Petiau, G., 1955: La theorie des fonctions de Bessel, Centre National de la Recherche Scientifique, Paris. Picht, J., 1949: Z. Angew. Math. Mech. 29, 155-157. Pinney, E., 1958: J. Math. Phys. 36, 362-370. Pollak, H.O., 1956: Rep. Statist. Appl. Res. Un. Jap. Sci. Engrs. 4, 110. Pollard, W.G. and R.D. Present, 1947: On gaseous self-diffusion in long capillary tubes, U.S. Atomic Energy Commission, Columbia University, MDDC-1521.
400 INTEGRALS OF BESSEL FUNCTIONS Pritchard, R.L., 1951: J. Acoust. Soc. Amer. 23, 591. Radio Corporation of America, 1946: Tables of integrals, RCA Victor Division, Camden, New Jersey. , F.M., 1952-1953: Proc. Glasgow Math. Assoc. 1, 8-9, 72-75, 115-117,- 119-120, 192-195. , F.M., 1954: Hederl. Akad. Wetensch., Proc. 57, 414-423. , F.M., 1954-1956: Proc. Glasgow Math. Assoc. 2, 52-56, 77-84, 85-88, 124-126, 180-182. Ragab, F.M., 1955a: Hederl. Akad. Wetensch., Proc. 58, 621-626. Ragab, F.M., 1955Ъ: Math. Z. 61, 386-390. Ragab, F.M., 1956: Act a Math. 95, 1-8. Rainville, E.D., I960/ Special functions, Macmillan. f Г°° Af-i-2+ 2 ¦) Rand Corporation, 19Б1: ТаЪ1е of <l(R,x) = / te^ x ;I0(xt)dt , offset Г JR circle probabilities, Santa Monica, Calif. Rankin, R.A., 1949: Philos. Trans. Roy. Soc. London A 241, 457-585. Rathie, СБ., 1953: J. Indian Math. Soc. (N.S.) 17, 168-175. Rathie, СБ., 1954: Proc. Wat. Inst. Sci. India 20, 62-69. Rathie, СБ., 1954-1956: Proc. Glasgow Math. Assoc, 2, 132-138, 170-172, 173-179. Reissner, E., 1952: Math. Wachr. 8, 149-153. Relton, F.E., 1946: Applied Bessel functions, Blackie. Rey Pastor, J. and A. de Castro Brzezicki, 1958: Funciones de Bessel, Dossat, Madrid. Rice, S.O., 1948: Bell System Tech. J. 27, 109-157. Riegels, F., 1950: Arch. Math. 2, 117-125. Riley, J.A. and С Billings, 1959: Math. Tables Aids Comput. 13, 97-101. BIBLIOGRAPHY 401 Ritchie, R.H., 1950: Math. Tables Aids Comput. 4, 75-77. Roberts, J.A. and G.C Caldwell, 1959: Tables of the rocket functions rc(x) and Rc(x), 0 s x <¦ 20 , North Carolina State College, Depart- Departments of Mathematics and Engineering Research, Rayleigh. Pz 2 Rosser, J.B., 1948: Theory and application of / e"x dx and J0 / e * •> dy / edx, Mapleton House, Brooklyn. ^0 Jo /"" Rosser, J.B., R.R. Newton and G.L. Gross, 1947: Mathematical theory of rocket flight, McGraw-Hill. Rosser, J.B. and R.J. Walker, 1953: Properties and tables of generalized rocket functions for use in the theory of rockets with a constant slow spin, Cornell University, Ithaca, N.Y. Rothman, M., 1949: Quart. J. Mech. Appl. Math. 2, 212-217. Rothman, M., 1954a: Quart. J. Mech. Appl. Math. 7, 1-7. Rothman, M., 1954b: Quart. J. Mech. Appl. Math. 7, 379-384. Rothman, M., 1955a,b,c,d,e: See Math. Tables Aids Comput. (UMT File), 9, 77-79. (a) Table of the integrals Ai(±x). (b) Table of the integrals Bi(±x). (c) Table of Gi(x) and its derivative. (d) Table of Hl(-x) and its derivative. (e) Table of the integrals of Gi(x) and Hi(-x) . Rutgers, J.G., 1931: Hederl. Akad. Wetensch. Proc. 34, 148-159, 239-256, 427-437. Rutgers, J,G., 1941: Nederl. Akad. Wetensch. Proc. 44, 464-474, 636-647, 744-753, 840-851, 978-988, 1092-1098. Ryshik, I.M. and I.S. Gradstein, 1957: Summen-Produkt-und Integraltafeln. Tables of series, products and integrals. (Translated from the Russian into German by С Berg and L. Berg. Translated from the German into English by M. Strauss.) Deutscher Verlag, Berlin. Salzer, H.E., 1951: Math. Tables Aids Comput. 5, 67-69. Salzer, H.E., 1955: J. Franklin Inst. 260, 209-211. Schmidt, P.W., 1955: J. Math. Phys. 34, 169-172.
402 INTEGRALS OF BESSEL FUNCTIONS Schubert, A., 1953: Wiss. Z. Tech. Hochsch. Dresden, 2, 437-440. Schutte, K., 1955: Index mathematischer Tabelwerke uad Tabellen - Index of mathematical tables (in "both German and English), R. Oldenbourg. Schwarz, L., 1944: Luftfahrtforschung 20, 341-372. Scorer, R.S., 1950: Quart. J. Mech. Appl. Math. 3, 107-112. Sears, W.R., 1940: J. Franklin Inst. 230, 95-111. Slater, L.J., 1960: Confluent hypergeometric functions, Cambridge. Smir^fov, A.D., 1955: Tables of Airy functions (and special confluent hy- pergeometric functions) (in Russian), Moscow. Also available in English, Pergamon Press, 1960. Smii^i, V.G., 1943: J. Math. Phys. 22, 58-59. Sneddon, I.M., 1960: Proc. Glasgow Math. Assoc. 4, 108-110. Stegun, I.A. and M. Abramowitz, 1957: Math. Tables Aids Comput. 11, 255-257. Straubel, K., 1941: Ing.-Arch. 12, 325-336. Straubel, R., 1942: Ing;-Arch. 13, 14-20. Struve, H., 1882: Annalen Phys. und Chem. C), 17, 1008-1016. Sura-Bura, M.K., 1950: Dokl. Akad. Nauk SSSR (n.s.) 73, 901-903. Tai, СТ., 1951: Tables of modified cosine integral, Stanford Research Institute, Palo Alto, Calif. Tranter, C.J., 1956: Integral transforms in mathematical physics, 2nd ed., Methuen and John Wiley. Tranter, C.J., 1959: Proc. Glasgow Math. Assoc. 4, 49-57. Tranter, C.J., 1960: Proc. Glasgow Math. Assoc. 4, 200-203. Tricomi, F.G., 1954: Funzioni ipergeometriche confluenti, Edizioni Cremones e-Roma. Tricomi, F.G. See Erdelyi et al. BIBLIOGRAPHY 403 Tyler, СМ., Jr. and J.G. Christiano, 1952: J. Appl. Mech. 19, 275-283. Vinogradov, I.M. and N.G. Cetaev, 1950: Tables of Bessel functions of imaginary argument (in Russian), Moscow. Ward, G.N., 1955: Linearized theory of steady high-speed flow, Cambridge. Watson, G.N., 1945: A treatise on the theory of Bessel functions, Cambridge. Weeg, G.P., 1959: Math. Tables Aids Comput. 13, 312-313. Weyrich, R., 1937: Zylinderfunktionen und ihre Anwendungen, Teubner. Wheelon, A.D. and J.T. Robacker, 1954: A table of integrals involving Bessel functions, Ramo-Wooldridge Corp., Los Angeles, Calif, and Rand Corp., Santa Monica, Calif. Whittaker, E.T. and G.N. Watson, 1927: A course of modern analysis, Cambridge. van Wijngaarden, A. and W.L. Scheen, 1949: Verb. Nederl. Akad. Wetensch. Afd. Natuurk. (l), 19, No. 4. Wilson, E.M., 1951: Solutions of the equation (y")^ = yy' and two other equations, Admiralty Research Laboratory, Teddington, Middlesex. Wimp, J., 1960: Polynomial expansions of Bessel functions and some associated Bessel functions, Midwest Research Institute, Kansas City, Mo. Wimp, J., 1961: Math, of Comput. 15, 174-178. Woodward, P.M. and A.M.Woodward (with the assistance of R. Hensman, H.H. Davies and N.Gamble), 1946: Phil. Mag. G) 37, 236-261. Zartarian, G. and H.M. Voss, 1953: J. Aero. Sci. 20, 781-782. Zernike, F. and B.R.A. Nijboer, 1949: La theorie des images optiques. Centre National de la Recherche Scientifique, Paris, 227-235. Zonneveld, J.A. and J. Berghuis, 1955: The asymptotic expansion of a special function and some relations with Bessel functions, Mathe- matisch Centrum, Amsterdam.
INDEX OF NOTATIONS The system of notation used to locate specific material lists, in the following order, chapter, section and subsection (if any). Ex. 1.4.3 means Chapter I, fourth section, third subsection. A number in parentheses refers to an equation. Ex. 1.4.3D) refers to the fourth equation in 1.4.3. An equation number in parentheses, standing Ъу itself, refers to the equation of the particular section or subsection in vhich the reference occurs. Ex. A reference to D) in 1.4.3 means the fourth equation of 1.4.3. There is much ad hoc notation vhich is explained in the text near where it occurs. These data are excluded in this index. In the listings below, the numbers refer to pages on which the func- functions are defined. Ai(z), Airy integral, 127 An(z), polynomial used in rational approximation to у(а>2).> 153 aa i>(z)-> а particular 2F3> 201 B Bi(z), Airy integral, 127 Bn(z), polynomial used in rational approximation to у(а,х), 153 Ъд „(z), a particular 2F3, 201 С C(z), Fresnel integral, 179 Ci(z), cosine integral, 169 Ci(z,a), a generalized cosine inte- integral, 145 (^(z), polynomial used in rational approximation to у{е.^), 155 Су(г), cylinder function, 22 ca u(z), a particular 4^, 202 D Dn(z), polynomial used in rational approximation to y(a>z)> 155 Dy(z), cylinder function, 254 da „(z), a particular 4FX, 202 E E^(z), exponential integral, 163 En(x), repeated integral of Ei(x), 168 En(z), polynomial used in rational approximation to r(a,z), 157 404 IITOEX OF NOTATIOHS 405 Ei(x), exponential integral, 164 Ei(-z), exponential integral, 163 Erf(z), error function, 172 Erfc(z), complementary error func- function, 172 Erfi(z), modified error function, 172 E(k), complete elliptic integral of the second kind, 315 Ey(z), 150 Ey(z), Weber's function, 83 erf z, error function, 172 F Fn(z), polynomial used in rational approximation to T(a,z), 157 pFq; pFq(V1+1Vz) , / al>a2>---.>ap I N eralized hypergeometric function, 4 Xv II \ 0 15 p^Opjiiv* 3u(z), 85 f(\,X,T), 280 ^u(z), 120 Gi(z), associated Airy integral, 134 Gn(z), polynomial used in rational approximation to e"z, 156 g(X,X,T), 280 ga,u(z)> function related to repeated integral of Bessel function, 207 g^^z), 227 Hlln(z); repeated integral of error function, 178 Hi(z), associated Airy integral, 134 Hi^(z),Hi^(z), indefinite integral of z^hJ^z) and z^S2)(z), respectively, 43 H^^z), an associated Bessel func- function, 108 H^ '(z),E^2'(z), Bessel functions of the third kind or Hankel functions of the first and second kind, re- respectively, 22 Hu(z), Struve function, 80 Hi|_^i;(z).> indefinite integral of z^(z), 223 h(X,X,T), 280 n(j,,i>(z)j an associated Bessel func- function, 108 Ii(Ji^l,(z), indefinite integral of z%(z), 42 Iu(z), modified Bessel function of the first kind, 23 IW;X), 314
406 INTEGRATE OF BESSEL FUNCTIOHS INDEX OF NOTATIONS 407 inerfc(z), repeated integral of error function, 177 'ic(z), ii(z), ir(z), rocket func- functions, 181 i-a „(z), fractional or repeated inte- integral of Iy(z), 199 J J(x,y), 271 Jc(\,z), Je(\,z), Js(\,z), Schwarz functions, 234 JL y(z), indefinite integral of zWy(z), 42 Jy(z), Bessel function of the first kind, 22 Ju(z), Anger's function, 83 jr(z), r-th repeated integral of J0(z), 196 j „(z)j fractional or repeated inte- integral of Jy(z), 196 К Ki „(z), indefinite integral of zM-Ky(z), 42 Kp n(z); a function relate'd to asymp- asymptotic expansion of pFq for large z, 7 Kr(z), r-th repeated integral of K0(z), 217 Ku(z), modified Bessel function of the second kind, 23 Ka u(z), fractional or repeated in- integral of Ky(z), 197 K(k), complete elliptic integral of the first kind, 315 кц y(z), fractional or repeated inte- integral of Ky(z), 199 Lp,q(z)^ ^,q(z)^ functions related to asymptotic expansion of -pFg for large z, 8 Ly(z), modified Struve function, 80 Li ^(z), indefinite integral of zM-L^z), 223 li(x), logarithmic integral, 164 M Mn(z )> polynomial used in rational approximation to r(a,z), 158 "p,*' 8 Nn(z)> polynomial used in rational approximation to r(a,z), 158 Рп(ш), Legendre polynomial, 260 Pn(z), function used in error repre- representation for a rational approxima- approximation to y{e.,z), 153 P^z), Legendre function, 111, 246 Py(z), associated Legendre function, 246 p_ „(z), function related to repeated integral of Bessel function, 207 Q Tn(z), error for rational approxima- approximation to r(a,z), 157 0ц(г), function used in error repre- representation for a rational approxima- Тп(ш), Chebyshev polynomial of the tion to y(a^z), 155 Qy(z), associated Legendre function ± --=¦'- ,..._._ p,q * of the second kind, 248 R Rc(z), Ri(z), Rr(z), rocket func- functions, 181 Rk(a,c,6;\), 149 Rn(z), error for a rational approxi- approximation to у(а,г), 153 rc(z), ri(z), rr(z), rocket func- functions, 181 S(z), Fresnel integral, 179 Si(z), sine integral, 169 first kind, 321 (a,m). (z), 14 function, 234 'a , ,,(Р^ш), generalized Schwarz и Un(z), function used in error repre- representation for a rational approxima- approximation to r(a,z), 157 ип(ш), Chebyshev polynomial of the second kind, 321 Uu(w,z), Lommel function of two variables, 3 08 V Vn(z), error for a rational approxi- approximation to r(a,z), 158 Si(z,a)> a generalized sine integral, Vv (z), 227 145 Vu(w, z), Lommel function of two Sk(e), 243 variables, 3 09 Sn(z), error for a rational approxi- W mation to y(a^z), 155 S y(z)> Lommel function, 74 si(z), sine integral, 168 s v(z)i Lommel function, 74 W <u(z), v(z)| , Wronskian of u(z) and v(z), 29 Wi y(z), indefinite integral of zW,(z), 42 W, i,b^z)^ Whittaker's function, 212 m. /\ .j_jn- • л. т it л Wy,(z), function used in error repre- Ti(z), associated Airy integral, 134 n f л. • „ х- -, ¦ 4 /; sentation for a rational approxima- approximation to T(a,z), 158
408 IHTEGRAIS OF BESSEL FUNCTIONS INDEX OF NOTATIONS 409 ?v{z), function used to represent any of the Bessel functions of the first Three kinds or the modified Bessel functions of the first and second kind, 28 Wy(z), Whittaker's integral, 110 wa i>(z)> factional or repeated in- integral of Wy(z), 195 Yc(A,z), Ye(\,z), Ys(A,z), Schwarz functions, 234 Yi y(z), indefinite integral of %v{z), 42 Yy(z), Bessel function of the second kind, 22 yr(z), r-th repeated integral of Y0(z), 217 ya p(z), fractional or repeated in- integral of Yy(z), 198 GREEK LETTERS F(a,z), complementary incomplete gamma function, 144 F(z), gamma function, 2 Y, Euler's constant, 3 y(8->z)i incomplete gamma function, 144 \ji(z), logarithmic derivative of the gamma function, 2 ф (a, c,z), confluent hypergeometric function, 145 MISCELLANEOUS NOTATIONS z = x+iy, i = (-1J , is a complex number. R(z) = x = real part of z. I(z) = У = imaginary part of z. |z| = absolute value of z = (x +y )^. arg z = argument of z, tan(arg z) = (y/x). In z = principal value of the natural logarithm of z. In z = In |z| + i arg z, -n<arg z Stt. with In z defined as za = ea In z above. (a)k = Г(а+к)/г(а). D = d/dx. m; (m) = binomial coefficient = —n ~j means approximate or asymptotic equality. § means Cauchy principal value of an integral. Yr, r-th positive zero of J0(x), 89 (_jn = (_±fi^ д ^ lnteger or zero_ Л0(а,Р), Heuman's complete elliptic integral of the third kind, 315 §(a,c,z), confluent hypergeometric function, 145 [x] = largest integer contained in x, j x >0. d as in 6d means 6 decimals• s as in 5s means ,5 significant figures. The notation x:0@. 02)l, for example, means that entry values of function^ tabulated range from x = 0 to ^ x = 1 in steps of 0.02. A number in parentheses following a numerical number indicates the power of ten by which the numeri- numerical number must be multiplied. Thus, for example, 3.6503742B) means 3.6503742 • 102. See pages 353-355.
N&UTHOR 1ЖРЕХ (Numbers Refer to Pages) AUTHOR INDEX 411 Abbott, W.R. 125 Abramowitz, M. 21,51,69,70,194,232 Achiezer, N.I. 346 Admiralty Computing Service 322 Admiralty Research Laboratory _ 282 Airey, J.R. 27 Akademiia. Hauk 187,188,193 Allen, E.E. ,39 Anders, T. 346 Archibald, R.C. 1 В Bailey, W.N. 293,300 Bateman, H. 1 Bennett, W.R. 334 Berghius, J. 323 Bickley, W.G. 222 Billings, C. 142 Binnie, A.M. 282 Blanch, G. 51,70,168 Blanuea, D. 282 Bleick, W.E. 189 Boersma, J. 308,312 Bose, P.K. 282 Bouwkamp, C.J. 172,188,335 Bowman, F. 1 Brinkley, R.F. 283 Brinkley, S.R. 283 British Association for the Advance- Advancement of Science 40,178,187,188, 190,350,359 Buchholz, H. 144,289 Bullard, E.C. 322 Bursian, V.R. 71 Burunova, N.M. 1 Butler, T. 90,94,260,263 Byrd, P.F. 317,319 Caldwell, G.C. 182,193 Cambi, E. 40,356 Campbell, G. 290 Carslaw, H.S. 190,192,324 Castle, M. 72 de Castro Brzezicki, A. 1,29 Cerrillo, M.V. 41 Cetaev, N.G. 40 Chaundy, T.W. 148 Chong, F. 345 Christiano, J.G. 143 Cistova, E.A. 70,72 Clarke, M. 323 Clemmow, P. С 192 Coleman, R.L. 148 Conolly, B.W. 341 Cooke, J.C. 320,341,345 Cooper, R.I.B. 322 Constant, P.C. 235 Conte, S.D. 192 Corbato', F.J. 21 Corrington, M.S. 186 Coulmy, G. 254,259 Crowley, Т.Н. 251 David, F.H. 72 Davies, H.H. 41 Dekanasidze, E.N. 308,311 Dingle, M. 232 Dorr, J. 337 Drane, C.J., Jr. 188 Durand, D. 334 Eason, G. 315,317,318 Edwards, H.E. 283 Emde, F. 1,187 Erde'lyi, A. 186(see also Erdelyi et Erde'lyi et al., i.e., Erde'lyi, A., W. Magnus, F. Oberhettinger, and F.G. Tricomi 1,5,19,144,148,196,212,221, ( 239,246,248,290,307,332,333,345 Faddeeva, V.N. 40,192 Feodorova, R.M. 1 Ferentz, M. 70 Fettis, H.E. 60,176,221,235,243, 269,295,317 Fields, J.L. 19 Fieller, E.C. 72 Fletcher, A. 1 Fock, V. 71 Ford, F.A.J. 282 Foster, R. 290 Fox, L. 40,41,194 Franz, W. 1,144 Fried, B.D. 192 Friedman, M.D. 317,319 Froberg, C.E. 289 G Gamble, N. 41 Garrick, I.E. 251 Gautschi, W. 21,163,168,178 Gavurin, M.K. 40 Gawlik, H.J. 190 Gerbes, W.W. 188 Giedt, D. 142 Godfrey, G.H. 233 Goldstein, M. 21 Goldstein, S. 271,273 Goodwin, E.T. 186 Gordon, A.N. 345 Gradstein, I.S. 1 Gray, A. 1 Greenwood, J.A. 334 Grobner, W. 1 Gross, G.L. 181,194 H Hallen, E. 172,188 Harris, F.E. 187 Harrison, C. 70 Hartree, D.R. 177,190 Harvard University Computation laboratory 40,41,72,189,190,232 Hastings, C, Jr. 283,323 Havelock, Т.Н. 219,222 Hay, H.G. 141 Heatley, A.H. 312 Helliwell, J.B. 347 Henrici, P. 333 Hensman, R. 41,192 Hershey, A.V. 187 Heuman, C. 315 Hiester, H.K. 275,283 Higgins, T.P. 341 Hitchcock, A.J.M. 40,69 Hoes, M.R. 188 Hofreiter, N. 1 de Hoop, A.T. 298,329 Horton, C.W. 70,232,254,266 Howarth, L. 119 Hoyt, R.S. 251 Huckel, V. 251 Jaeger, J.C. 190,192,222,323,324,339 Jahnke, E. 1,187 Jenkins, D.P. 192 Jones, C.W. 41,371 Jones, W.P. 232 Jordan, P.F. 235 К Кашке, Е. 29 Karmazina, L.H. 72 Karpov, K.A. 187,192 Kautz, W.H. 41 Kaye, J. 190 King, L.V. Л23 Kinizer, J.P. 289 Klamkin, M.S. 321 Knudsen, H.L. 70,308 Kobayashi, Komatu, Y. I. 335 163 Kratzer, A. 1,144 Kreyszig, E. 145,194 Kussner, H.G. 232 410
412 IHTEGRALS OF BESSEL FUNCTIOHS AUTHOR INDEX' 413 Lamb, H. 337 Lebedev, A.V, 1 Lebedev, H.H: 347 Lee, K. 27 \ Levine, H. 29§ Lin, С. С. 141Д42 Longman, I.M. fo Losch, F. 1,187 \ Lowan, A.N. 51,7O4 Luke, Y.L. 40,60,6^,72,93, 95,108, 120,148,152,176,177,221,231,233, 235,243,251,254 M Mack, C. 72 MacRobert, T.M. 1,320,338 Magnus, W. 1 (see also Erdelyi et al. ) Mashiko, M. 187 Mathematical Review 316 Mathematical Tables and Other Aids to Computation (now Mathematics of Computation) 1 Mathematics Center, Amsterdam, Com- Computation Department 251 Mathews, G.B. 1 Maximon, L. С 270,283,288 McLachlan, N.W. 1,254 Meijer, C.S. 7,19,338 Meyers, A.L. 254 Meyer zur Cape lien, W. 1 Miles, J.W. 142,324 Miller, G.F. 194,282 Miller, J.C.P. 1,41,282 Morgan, G.W. 254 Muller, G.M. 72,326 Muller, R. 72 Munford, CM. 192 Murphy, G.D. 29 Murray, J.D. 271 N National Bureau of Standards 1,40,41 69,70,72,94,141,142,168,187,188,189, 191,194,232,362,365,368,374,377,380, 383 National Physical Laboratory 71,298 Haylor, J. 222 Helson, C.W. 339 Hewton, R.R. 181,194 Hijboer, B.R.A. 310 Noble, B. 315,317,318,345 Nomura, Y. 318 0 Oberhettinger, F. 1,51,166,290,341 (see also Erdelyi et al. ) Ollendorff, F. 335 Olver, F.W., Jr. 40,41,336 Opler, A. 275,283 Osterberg, H. 71 Pagurova, V.I. 194 Pearcey, T. 193 Pearson, K. 72 Peters, A.S. 347 Petiau, G. 1,254,259 Picht, J. 254,259 Pinney, E. 321 Pohlhausen, K. 90,94,260,263 Pollak, H.O. 163 Pollard, W.G. 307 Present, R.D. 307 Pritchard, R.L. 328 R Radio Corporation of America 191,193 Radosevich, L.G. 27 F.M. 320,335,337 Rainville, E.D. 1 Rand Corporation 283 Rankin, R.A. 182,193 Rathie, C.B. 320,338 Razumovskii,S.H. 187 Reissner, E. 339 Relton, F.E. 1 Reynolds, G.E. 188 Rey Pastor, J. 1,29 Rice, S.O. 252 Riegels, F. 316 Riley, J.A. 142 Ritchie, R.H. 186 Robacker, J.T. 1 Roberts, J.A. 182,193 Rosenhead, L. 1 Rosser, J.B. 177,181,182,191,193, 194 Rothman, M. 72,142,143 Rubinow, S.I. 251 Ruhlman, B. 235 Rutgers, J.G. 293 Ryshik, I.M. 1 Salzer, H.E. 177 Scheen, W.L. 193 Schmidt, P.W. 71 Schubert, A. 254,259 Schutte, K. 1 Schwarz, L. 234,256 Schwinger, J. 298 Scorer, R.S. 143 Sears, W.R. 322 Slater, L.J. 144,312 Smirnov, A.D. 41,143 Smith, R.W. 283 Smith, V.G. 86 Sneddon, I.N. 315,317,318,345 Staton, J. 186 Stegun, I.A. 21 Stouffer, S.A. 72 Straubel, R. 254,259 Struve, H. 233 Sura-Bura, M.R. 317 Tai, C.T. 189 Terent'ev, H.M. 192 Thaler, R.M. 21 Tranter, C.J. 345,348 Tricomi, F.G. 144,150 (see also Erdelyi et al.) Tyler, СМ., Jr. 143 U Ufford, D. 72,231,233 Ufliand, Ia.S. 347 Uretsky, J.L. 21 Vinogradov, I.M. Voss, H.M. 252 40 W Walker, G.L. 71,194 Walker, R.J. 182 Ward, G.H. 324 Watson, G.N. 1,10,29,33,40,41,71, 84,90,94,110,254,307,308,332,353, 359 Weeg, G.P. 318 Weyrich, R. 1 Wheelon, A.D. 1 Whittaker, E.T." 1 тал Wijngaarden, A. 193 Wilhelmsson, H. 289 Wilson, E.M. 274,283 Wilson, I.G. 289 Wimp, J.J. 19,40 Wong, J.R., Jr. 283 Woodward, A.M. 41 Woodward, P.M. 41 Zartarian, G. 252 Zernike, F. 310 Zonneveld, J.A. 323
SUBJECT INDEX (Numbers "pefer to Pages) Airy functions, 127 ff." .See also Airy'integrals and Integrals of Airy integrals. — ~ Airy integrals, 127 ff.; asymptotic expansions, 129; definitions, 127; de- derivatives, 128; integral representations, 131; interrelations, 128; power series, 129. See also Bessel functions. Anger function, 73,83. Approximations, polynomial, see under modifiers such as Bessel functions, etc.; rational, for Incomplete gamma function and related functions, 152 ff. Associated Bessel functions, 73,107. See also Associated Bessel functions \,№ > Hm,,^z) > and Lammel functions s^U) , S^y(z) . Associated Bessel functions h u(z) ; Яц v(z) > Ю7 ff.; asymptotic expan- expansion for large z, 109; basic properties, 108; connection with derivatives of Bessel functions with respect to the order, 116; difference-differen- difference-differential properties, 108,110; expansionsin series of Bessel functions, 115; formulae for H^y(z) when h^v(z) is not defined, 112; integral representations, 110; relation to Whittaker's integral, 110; used to /z e""ttM'Ku(t)dt and related integrals, 117. Asymptotic expansions (general), 7. See also under modifiers such as Bessel functions, Hypergeometriс functions (generalized), etc. Bessel functions, 22 ff.; asymptotic expansions for large z , 31; basic properties, 22; circular representations of Jn(z ) , 57; connection with Anger-Weber functions, 84; cylinder functions, 22; derivatives with respect to the order, 26,116,166,171; difference-differential proper- properties, 27; expansions in series of Bessel functions, 25; exponential series representations for Ky(z) , 221; generation of, by automatic computers, references to, 21; integral representations, 30; order, half an odd integer, 32; orthogonality properties, 290; polynomial approxi- approximations, 33; products, 24,27; tables of Jn(z) , Yn(z) , n = 0,1 , 350- 352; tables of e"xIn(x) , exKn(x) , eX , 353-355; tables of Jn(x) , n = 2AN, 356-358; tables of e"xIn(x) , 359-361; tables of x cos x , x" sin x , (rr/2x)%n_i(x) , n = 2,3,4, 362-364; tables of Jy(x) , v = ±1/4 , ±3/4, 365-367; tables of Ju(x) , v = ±l/3 , ±2/3 , 368-370; tables of x"(n+?)ln+A(x) , e"xIn+i(x) , n = 0AL= , 371-373; tables of 1„(х) , и = ±1/4 , +3^4 , 374-376;2tables of 1„(х) , v = ±l/3 , +2/3 , 377-379; tables of, references to, 27,40; Wronskians, 29. See also Airy integrals. Bessel polynomials, 154. Cicala function, 231. Confluent hypergeometric function, 144; expansions in series of Bessel functions, 148; integral representation, 312; relation to incomplete gamma function, 145. See also Hypergeometric functions (generalized). 414 SUBJECT INDEX 415 Constants, 3,129. v Continued fractions, for the Incomplete gamma function arid related functions, 161. Convolution integrals, 123,191,195,292,297,30b. Cylinder functions, 23,73,254,290. Elliptic integrals, complete, used to exprcuu integrals of Bessel functions, 315 ff., 326. Error functions, 172 ff.; complex zeros, 177; continued fractions, 159; 'ex- 'expansions in series of Bessel functions, 173; inequalities, 161; inte- integrals involving, 182 ff.; integral representations, 173,183 ff.; radius of univalence, 177; rational approximations, 152; repeated integrals, 177,190,191; representations in series of exponential functions, 175; tables of, references to, 190 ff. See also Incomplete gamma function. Expansions in series of Bessel functions, a general theorem for represent- representing an indefinite integral involving Bessel functions, 283; ez sln 9, {z/2)^+1 , e"z(z/2)^+1 , 25; e"z , 26. See also under modifiers such as Bessel functions, expansions in series of Bessel functions, etc. See also Fourier-Bessel coefficients. Exponential function, expansion in series of Bessel functions, 25; expan- expansion in series of hypergeometric functions, 148; rational approximation, 156. Exponential integral, 163 ff.; continued fractions, 159; expansions in series of Bessel functions, 165; generalized, 189; inequalities, 161; integral representations, 112,186; integrals involving, 182 ff.; rational approximations, 152; relation to derivatives of Bessel func- functions and Struve functions with respect to the order (half an odd integer), 166; repeated integral, 168; tables of, references to, 187, 194. See also Incomplete gamma function. Fourier-Bessel coefficients, 73,89,94,260,291. Fractional integrals, see Repeated integrals and Convolution integrals. Fresnel integrals, 179 ff.; continued fractions, 159; expansions in series of Bessel functions, 180; inequalities, 161; integrals involving, 183 ff. ; rational approximations, 152; relation to rocket functions, 181; tables of, references to, 192,193. See also Incomplete gamma function. G-function, of Meijer, 19. Gamma function and related functions, 2; mathematical constants, related to, 3. Gaussian hypergeometric function BF1), 18,148. See also Hypergeometric functions (generalized). G-egenbauer integrals, 327. Generalized hypergeometric series, see Hypergeometric functions (generalized).
416 INTEGRALS OF BESSEL FUNCTIONS SUBJECT IHDEX 417 Hankel functions1) 22. Hankel-Nichols on Чуре integrals, 330 ff> Hypergeometric functions (generalized), 4 ff. ; asymptotic expansion (general) for large z , 7; asymptotic expansion of pFp+i for large ¦' z , 9; asymptotic expansion «f pFp for large z , 10,13; differential equation satisfied Ъу, 5; expansions in series of Bessel functions, 20;. expansions in series of other hyperge(metric functions, 19; integral representations, 5; special values, 11,18. See also Confluent hypergeo- hypergeometric function and Gaussian hypergecmetriс function. Incomplete gamma function, 144 ff.; asymptotic expansions for large z , 146; basic properties, 144; connection with confluent hypergeometric function, 145; continued fractions, 159; expansions in series of Bessel functions, 148; inequalities, 161; infinite integrals, 147; integral representations, 146, 182 ff.,312; integrals involving, 182 ff. ; rational approximations, 152 ff.; tables of, references to, 187 ff., 194. See also Error functions, Exponential integral, Fresnel integrals and Sine and cosine integrals. Inequalities, for the Incomplete gamma function and related functions, 161. Integral equations, dual and triple, 342 ff. Integrals of Airy integrals, 132 ff.; asymptotic expansions, 136; expansions in series of Bessel functions, 135; expansions in terms of Lommel func- functions, 133,138; interrelations, 132; power series, 133; repeated inte- integrals, 138; tables of, references to, 141. See also Integrals of Bessel /z tMVy(t)dt . Integrals of Bessel functions, definite, with trigonometric argument, for /tt/2 • 2a.-1 J2,|i(z sin t)J2u(w cos t)sin + See also Convolution integrals, Fourier-Bessel coefficients and Lommel's functions of two variables. Integrals of Bessel functions (indefinite); general theorems, 73,195,253,2831 involving the product of two Bessel functions, 254 ff.,268; involving thel product of a Bessel function and a Struve function, 264; involving• the product of three Bessel functions, 269; miscellaneous, 289. Integrals of Bessel functions, J tM?l,(t)dt , 42 ff., 73 ff.; asymptotic expansions for large z , 53,243; basic properties, 42; circular repre- Jn(t)dt , 57; difference-differential properties, 44, 120; evaluation of, for special values of the parameters, 124; expansic in series of Bessel functions, 51,125; infinite integrals, 56, 246 ff.; polynomial approximations, 60,92; power series, 44; representations of, in terms of Lommel functions and Struve functions, 73, 85; tables of /0XJo(t)dt , /QXYo(t)dt , J^f1 {l-Jo(t)} dt , /xVVt)dt , 380- 382; tables of e'x f*IQ(t)dt , ex ?°KQ{t )dt ,e"x /JV1 {lQ(t)-l} dt See t cos 2P-lt dt , 293-308. xex / f1Ko(t)dt, , 383-385; tables чof, references to, 69,94,232. also Incomplete gamma function, Integrals of Airy integrals, Repeated integrals of Bessel functions, Schwarz functions and generalizations . /z . e~ t|1Kl;(t)dt and related integrals, 95 ff.; asymptotic expansions for large z , 101,243; difference-differ- difference-differential properties, 120; evaluation of, for special values of the param- parameters, 121; expansions in series of Bessel functions, 100,122,124,238, 285; infinite integrals, 106,246 ff., 312 ff., 321; power series, 95; representations of, in terms of an associated Bessel function, 107; tables of, references to, 119,251. See also Schwarz functions and gen- generalizations. Integrals of Bessel functions, I e"p"ttl1Kl,(t )dt , reduction formulas, 120 ff. J nX , Integrals of Bessel functions, JQ e~ IQ |2(ytJ| dt , 271 ff.; asymptotic expansions, 278; elementary properties, 271; expansions in series of Bessel functions, 275; generalization, 288; integral representations, 276; partial differential equations satisfied by, 272; power series, 275; related integrals, 280; tables of, references to, 282. Integrals of Bessel functions, infinite, J e t^Ky(\t)dt and related integrals, 56,106,246 ff.,312; J grals, 212; Jo 316 and 318 (tables of, references to), 321,324 ff. ; J t^e"P t К (ata) X Kytbt6)dt and related integrals, 320,321,335,338; of the type 2 2^ e-P t tt-t-^-j^at )dt and related inte- t\g-pc:t j (a-tjj^-b-t),^ and related integrals, 314-320, So vbt) J, {a(tg+zg)i}t^ the type J0 ta (t^z^ '+4(at) dt and related integrals, 327 ff.; of dt , 330 ff.; involving the products of three or (t2+z2)n+l more Bessel functions, 331 ff.; with respect to the order, 340 ff. ; miscellaneous, 322-324,331,335 ff. See also under the names of various integrals, e.g., Hankel-Nicholson type integrals. Integrals of incomplete gamma functions and related functions, 182 ff. Integrals of Lommel functions, see Lommel functions. Integrals of Struve functions, /¦ t|J'Hl,(t)dt , 223 ff.; asymptotic expansions for large z , 224; basic properties, 223; difference-differential prop- properties, 223,227; evaluation of, for special values of the parameters, 228; infinite integrals, 226; polynomial approximation for J L^o^^^o^M -dt > 34' relation to the complete Cicala function, 231; tables of, references to, 70,232.
418 MTEGRAIS OF BESSEL FUNCTIOHS SUBJECT INDEX I 419 Integrals of StruVe functions, J e"p t^Hy(t)dt ; evaluation of, for special values of the parameters and variable, 228 ff.; reduction formulas, 227. Integrals of Struve functions (indefinite), involving the product of a Struve function and a Bessel.. function, 264; involving the product of two Struve functions, 266. Legendre's function, 111,246,248. Legendre's polynomial, 260,321. Lcmmel functions, s^ y(z) and s^,v(z) > 73 ff • ; asymptotic expansion for large z , 74; basic properties, 74; connection with Anger-Weber functions, 83; connection with Fourier-Bessel coefficients, 90; connection with Struve functions, 80; differential-difference properties, 75; expansions in series of Bessel functions, 79; formulae for S t(z) when s „(z) ' is not defined, 76; integral representations, 77; relation to Ti(z) , } Gi(z) and Hi(z) , 134; used to represent / tMWl,(t)dt , 85; used to , represent integrals of Airy integrals, 133,138. Lcmmel functions, Ti(z) , Gi(z) and Hi(z) , 133 ff.; asymptotic expansions, 138; differential equation, 135; expansions in series of Bessel functions, 136; integrals of, 140; integral representation, 135; tables of, refer- references to, 143; used to represent Integrals of Airy integrals, 133. See also Lommel functions, в„ y(z) and S^ u(z) . Lcmmel's functions of two variables, 308 ff.; basic properties, 308; ex- expansion in series of Bessel functions, 309,310; partial differential equation satisfied by, 310; tables of, references to, 311. Nicholson integrals, ЗЗО ff. Repeated or iterated integrals of, Airy integrals, 138; Bessel functions, 195 ff.; error function, 177,190,191; exponential integral, 168; sine and cosine integrals, 172,188. Repeated integrals of Bessel functions, 195 ff.; application to evaluation of integrals involving Bessel functions, 195; asymptotic expansions for large parameter, 219; asymptotic expansions for large z , 203,212; basic properties, 195; circular representations for On,r(z) > 217; difference- differential properties, 201,211; expansion of ja y(z) in series of Bessel functions, 219; exponential series representations for KQ „(z) , 221;further representations, 217; generalization to fractional inte- integrals, 195; infinite integrals, 216; power series, 199; relation to integrals of Havelock, 219; tables of, references to, 222. See also Integrals of Bessel functions. Eocket functions, 181. Schwarz functions and generalizations, 234 ff.; asymptotic expansions for large z , 243; definitions, 234; expansions in series of Bessel func- functions, 238,285; expansions in series of confluent hypergeometric func- functions, 236; infinite integrals, 246 ff.; power series, 234; representa- representations in series of circular functions, 241; tables of, references to, 25|. Sec ul.:;o Integrals of Bessel functions, Г e"Ptt^Ky(t)dt , J e'4%(t)dt , J tl%(t)dt . J Sine and cosine integrals, 168 f f.; continued fractions, 159; expansions in series of Bessel functions, 170; generalized, 145,152,189; inequalities, 161; integrals involving, 182 ff.; iterated integrals, 172,188; rational approximations, 152; relation to derivatives of Bessel functions and Struve functions with respect to the order (half an odd integer), 171; tables of, references to, 188,194. See also Incomplete gamma function. Sonine-Gegenbauer type integrals, 327 ff. Stoke's phenomenon, 10. Struve functions, 73,80; basic properties, 80; derivatives with respect to the order (half an odd integer), 166,171; expansions in series of Bessel functions, 82; polynomial approximations, 92,94; tables of, references to, 94; used to represent Г tuWy(t)dt , 85. Tables of mathematical functions and integrals, references to, 1. under modifiers such as Bessel functions, tables of, etc. Weber function, 73,83. Weber-Schafheitlin integrals, 250,324 ff. Whittaker's function, 212. Whittaker's integral Wy(z) , 110,111. See also